
60 61

ProjectsProjects

Autumn 2014 • Vol. 12 No.2 • inSiDE Autumn 2014 • Vol. 12 No. 2 • inSiDE

Figure 1: An F-cycle as a succession of V-cycles.

Figure 2: Successive refinement of a hierarchical hybrid grid (left to right).

Figure 3: The ExaStencils DSL with four layers of abstraction. Layers 1-2 address
the concerns of application scientists, Layers 2-3 those of mathematicians, and
Layers 3-4 those of computer scientists.

The German Research Foundation's
German Priority Programme 1648
"Software for Exascale Computing"
(SPPEXA) is nearing the end of its sec-
ond of six years. 13 projects started in
January 2013 to address various chal-
lenges of exascale computing. In this
issue, we present project ExaStencils.

ExaStencils is being pursued by eight
principal investigators of five research
groups at three locations. At the Uni-
versity of Passau, there are the Chairs
of Programming (Christian Lengauer
and Armin Größlinger) and of Software
Product Lines (Sven Apel), at the
Friedrich-Alexander-Universität Erlangen-
Nürnberg the Chairs of System Simula-
tion (Ulrich Rüde and Harald Köstler)
and of Hardware-Software-Co-Design
(Jürgen Teich and Frank Hannig), and at
the University of Wuppertal the Applied
Computer Science Group (Matthias
Bolten).

The central goal of ExaStencils is to
develop a radically new software tech-
nology for applications with exascale

performance. To reach this goal, the
project focuses on a comparatively
narrow but very important application
domain. The aim is to enable a simple
and convenient formulation of problem
solutions in this domain. The software
technology developed in ExaStencils
shall facilitate the highly automatic
generation of a large variety of efficient
implementations via the judicious use
of domain-specific knowledge in each of
a sequence of optimization steps such
that, at the end, exascale performance
results.

The application domain chosen is that
of stencil codes, i.e., compute-intensive
algorithms in which data points in a
grid are redefined repeatedly as a
combination of the values of neighbor-
ing points. This neighborhood pattern
is called a stencil. Stencil codes are
used for the solution of discrete partial
differential equations and the result-
ing linear systems. To obtain a perfor-
mance-competitive, highly automated
software technology, the domain is re-
stricted further to multigrid methods [1].

Multigrid methods involve stencil com-
putations on a hierarchy of very fine
to successively coarser grids. On the
coarser grids, less processing power
is required and communication domi-
nates. A multigrid method is character-
ized by two strategies: (1) a smoothing
strategy, which is used to smooth the
sampling error of the grid at hand,
and (2) a coarsening strategy, which
transfers data from one grid to the
next coarser grid. Once one arrives at
the coarsest level, one refines the grid
again via some form of interpolation.
This cycle of coarsening and refining is
called a V-cycle. Various cycling strate-
gies are commonly used. For instance,
an F-cycle multigrid method consists
of a sequence of progressively deeper
V-cycles (see Fig. 1). The technology
for the efficient implementation and a
systematic performance engineering
of parallel multigrid methods is a major
current research topic [2].

ExaStencils also restricts the structure
of the grids. Considered are so-called
hierarchical hybrid grids: at the coarsest
level, the grid is unstructured, but re-
finements of each segment must be ho-
mogeneous, though each segment may
exhibit a different structure (see Fig. 2).

Present-day stencil codes are imple-
mented in general-purpose program-
ming languages, such as Fortran, C,
or Java, or derivates thereof, and har-
nesses for parallelism, such as MPI,
OpenMP or OpenCL. ExaStencils favors
a much more domain-specific approach
with languages at several layers of ab-
straction, the most abstract being the
mathematical formulation, the most
concrete the optimized target code. At
every layer, the corresponding language
expresses not only computational direc-
tives but also domain knowledge of the
problem and platform to be leveraged
for optimization. This approach will en-
able a highly automated code

ExaStencils
Advanced Stencil-Code
Engineering

62 63

ProjectsProjects

Autumn 2014 • Vol. 12 No.2 • inSiDE Autumn 2014 • Vol. 12 No. 2 • inSiDE

• Sven Apel1

• Matthias Bolten2

• Armin Größlinger1

• Frank Hannig3

• Harald Köstler3

• Christian Lengauer1

• Ulrich Rüde3

• Jürgen Teich3

1 University of
 Passau

2 University of
 Wuppertal

3 Friedrich-
 Alexander-
 Universität
 Erlangen-
 Nürnberg

Figure 4: Concrete variability model for the Highly Scalable Multigrid Solver.

generation at all layers and has been
demonstrated successfully before in
the U.S. projects FFTW [3] and SPIRAL [4]
for certain linear transforms.

At the center of the project is a Scala-
based code generator for a wide range
of stencil codes in the domain, which is
currently under development. It takes
code formulated in an external domain-
specific language at four different
layers of abstraction (see Fig. 3). The
ultimate vision is that application scien-
tists will program at the most abstract
layers, and the additional information
specified at the lower layers will be
generated automatically based on an
analysis of the specific problem to be
solved and information on the execution
platform at hand. A preliminary ver-
sion of the code generator in existence
already demonstrates the feasibility of
the ExaStencils approach [5]. It pro-
duces target code in C++ with OpenMP
and CUDA. Distributed architectures
are one of the main focuses of the next
version of the generator framework,
which is currently under development.

One major innovation in ExaStencils
is that it views stencil codes not as
individuals but as members of a fam-
ily. The domain-specific specification
pinpoints the commonalities that the
code shares with the other codes of
the family, and the variabilities in which
it departs from the other codes. Each
point of variability comes with a num-
ber of options or alternatives. The
idea is that application scientists, and
the ExaStencils compiler and run-time
system, choose suitable options from
these variabilities – and no more has
to be specified to obtain a custom-opti-
mized implementation.

In first, yet hand-coded, experiments
on Jülich's BlueGene/Q JUQUEEN, we
employed the Highly Scalable Multi-
grid Solver [6] for hierarchical hybrid
grids. Commonalities and variabilities
are usually specified in terms of a vari-
ability model. The variability model for
the Highly Scalable Multigrid Solver is
illustrated in Fig. 4. Each node denotes
a configuration option - in our case,
the choice of a coarse grid solver, a

smoother, and pre- and post-smoothing
parameter values which must satisfy
the condition that their sum is greater
than zero. A selection of configuration
options gives rise to an executable vari-
ant of the stencil code.

Which configuration options (i.e., which
choices of algorithmic components,
alternatives of data structures, and pa-
rameter values) contribute to maximal
performance is obvious in some cases
and very surprising in others. To make
this problem tractable, ExaStencils will
provide a capability of recommending
suitable combinations of configuration
options, based on a machine-learning
approach [7].

With project ExaStencils, we hope to
provide proof of the application relevance
of the ExaStencils paradigm of domain-
specific stencil code engineering and to
encourage experts of other suitable do-
mains to take a similar approach. For
up-to-date information, please visit the
project's Web site at www.exastencils.
org.

Acknowledgements
We gratefully acknowledge the financial
support fo the Priority Research Initia-
tive 1648 "Software for Exascale Com-
puting", funded by the German
Research Foundation.

References
[1] Trottenberg, U., Osterlee, C. W.,
 Schüller, A.
 Multigrid, Academic Press, 2000

[2] Gmeiner, B., Köstler, H., Stürmer, M.,
 Rüde, U.

Parallel multigrid on hierarchical hybrid
grids: A performance study on current High
Performance Computing clusters. Concur-
rency and Computation: Practice and Expe-
rience 26(1), pp.217-240, Jan. 2014

[3] Frigo, M., Johnson, S. G.
 The design and implementation of
 FFTW3, Proc. IEEE 93(2), pp.216-231,
 Feb. 2005

[4] Püschel, M., Franchetti, P.,
 Voronenko, Y.

Spiral. In: Encyclopedia of Parallel Comput-
ing, 1920–1933, Padua, D. A. et al. (eds.),
Springer, 2011

[5] Köstler, H., Schmitt, C., Kuckuk, S.,
 Hannig, F., Teich. J., Rüde, U.

A Scala Prototype to Generate Multigrid
Solver Implementations for Different
Problems and Target Multi-Core Platforms.
Computing Research Repository (CoRR),
pp.18, arXiv:1406.5369, June 2014

[6] Kuckuk, S., Gmeiner, B., Köstler, H.,
 Rüde, U.

A generic prototype to benchmark algo-
rithms and data structures for hierarchical
hybrid grids. In: Proc. Int. Conf. on Parallel
Computing (ParCo), pp.813-822, IOS Press,
2013

[7] Grebhahn, A., Siegmund, N., Apel, S.,
 Kuckuk, S., Schmitt, C., Köstler, H.

Optimizing Performance of Stencil Code
with SPL Conqueror. In: Proc. Int. Work-
shop on High-Performance Stencil Com-
putations (HiStencils), Größlinger, A. and
Köstler, H. (eds.), pp.7-14, www.epubli.de,
Jan. 2014

contact: Prof. Dr. Christian Lengauer,
lengauer@fim.uni-passau.de

