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Figure 1: An F-cycle as a succession of V-cycles.

Figure 2: Successive refinement of a hierarchical hybrid grid (left to right).

Figure 3: The ExaStencils DSL with four layers of abstraction. Layers 1-2 address 
the concerns of application scientists, Layers 2-3 those of mathematicians, and 
Layers 3-4 those of computer scientists.

The German Research Foundation's 
German Priority Programme 1648 
"Software for Exascale Computing" 
(SPPEXA) is nearing the end of its sec-
ond of six years. 13 projects started in 
January 2013 to address various chal-
lenges of exascale computing. In this 
issue, we present project ExaStencils.

ExaStencils is being pursued by eight 
principal investigators of five research 
groups at three locations. At the Uni-
versity of Passau, there are the Chairs 
of Programming (Christian Lengauer 
and Armin Größlinger) and of Software 
Product Lines (Sven Apel), at the  
Friedrich-Alexander-Universität Erlangen-
Nürnberg the Chairs of System Simula-
tion (Ulrich Rüde and Harald Köstler) 
and of Hardware-Software-Co-Design 
(Jürgen Teich and Frank Hannig), and at 
the University of Wuppertal the Applied 
Computer Science Group (Matthias 
Bolten).

The central goal of ExaStencils is to 
develop a radically new software tech-
nology for applications with exascale 

performance. To reach this goal, the 
project focuses on a comparatively 
narrow but very important application 
domain. The aim is to enable a simple 
and convenient formulation of problem 
solutions in this domain. The software 
technology developed in ExaStencils 
shall facilitate the highly automatic 
generation of a large variety of efficient 
implementations via the judicious use 
of domain-specific knowledge in each of 
a sequence of optimization steps such 
that, at the end, exascale performance 
results. 

The application domain chosen is that 
of stencil codes, i.e., compute-intensive 
algorithms in which data points in a 
grid are redefined repeatedly as a 
combination of the values of neighbor-
ing points. This neighborhood pattern 
is called a stencil. Stencil codes are 
used for the solution of discrete partial 
differential equations and the result-
ing linear systems. To obtain a perfor-
mance-competitive, highly automated 
software technology, the domain is re-
stricted further to multigrid methods [1]. 

Multigrid methods involve stencil com-
putations on a hierarchy of very fine 
to successively coarser grids. On the 
coarser grids, less processing power 
is required and communication domi-
nates. A multigrid method is character-
ized by two strategies: (1) a smoothing 
strategy, which is used to smooth the 
sampling error of the grid at hand, 
and (2) a coarsening strategy, which 
transfers data from one grid to the 
next coarser grid. Once one arrives at 
the coarsest level, one refines the grid 
again via some form of interpolation. 
This cycle of coarsening and refining is 
called a V-cycle. Various cycling strate-
gies are commonly used. For instance, 
an F-cycle multigrid method consists 
of a sequence of progressively deeper 
V-cycles (see Fig. 1). The technology 
for the efficient implementation and a 
systematic performance engineering 
of parallel multigrid methods is a major 
current research topic [2].

ExaStencils also restricts the structure 
of the grids. Considered are so-called 
hierarchical hybrid grids: at the coarsest 
level, the grid is unstructured, but re-
finements of each segment must be ho-
mogeneous, though each segment may 
exhibit a different structure (see Fig. 2).

Present-day stencil codes are imple-
mented in general-purpose program-
ming languages, such as Fortran, C, 
or Java, or derivates thereof, and har-
nesses for parallelism, such as MPI, 
OpenMP or OpenCL. ExaStencils favors 
a much more domain-specific approach 
with languages at several layers of ab-
straction, the most abstract being the 
mathematical formulation, the most 
concrete the optimized target code. At 
every layer, the corresponding language 
expresses not only computational direc-
tives but also domain knowledge of the 
problem and platform to be leveraged 
for optimization. This approach will en-
able a highly automated code 
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Figure 4: Concrete variability model for the Highly Scalable Multigrid Solver.

generation at all layers and has been 
demonstrated successfully before in 
the U.S. projects FFTW [3] and SPIRAL [4] 
for certain linear transforms.

At the center of the project is a Scala-
based code generator for a wide range 
of stencil codes in the domain, which is 
currently under development. It takes 
code formulated in an external domain-
specific language at four different 
layers of abstraction (see Fig. 3). The 
ultimate vision is that application scien-
tists will program at the most abstract 
layers, and the additional information 
specified at the lower layers will be 
generated automatically based on an 
analysis of the specific problem to be 
solved and information on the execution 
platform at hand. A preliminary ver-
sion of the code generator in existence 
already demonstrates the feasibility of 
the ExaStencils approach [5]. It pro-
duces target code in C++ with OpenMP 
and CUDA. Distributed architectures 
are one of the main focuses of the next 
version of the generator framework, 
which is currently under development.

One major innovation in ExaStencils 
is that it views stencil codes not as 
individuals but as members of a fam-
ily. The domain-specific specification 
pinpoints the commonalities that the 
code shares with the other codes of 
the family, and the variabilities in which 
it departs from the other codes. Each 
point of variability comes with a num-
ber of options or alternatives. The 
idea is that application scientists, and 
the ExaStencils compiler and run-time 
system, choose suitable options from 
these variabilities – and no more has 
to be specified to obtain a custom-opti-
mized implementation.

In first, yet hand-coded, experiments 
on Jülich's BlueGene/Q JUQUEEN, we 
employed the Highly Scalable Multi-
grid Solver [6] for hierarchical hybrid 
grids. Commonalities and variabilities 
are usually specified in terms of a vari-
ability model. The variability model for 
the Highly Scalable Multigrid Solver is 
illustrated in Fig. 4. Each node denotes 
a configuration option - in our case, 
the choice of a coarse grid solver, a 

smoother, and pre- and post-smoothing 
parameter values which must satisfy 
the condition that their sum is greater 
than zero. A selection of configuration 
options gives rise to an executable vari-
ant of the stencil code.

Which configuration options (i.e., which 
choices of algorithmic components, 
alternatives of data structures, and pa-
rameter values) contribute to maximal 
performance is obvious in some cases 
and very surprising in others. To make 
this problem tractable, ExaStencils will 
provide a capability of recommending 
suitable combinations of configuration 
options, based on a machine-learning 
approach [7].

With project ExaStencils, we hope to 
provide proof of the application relevance 
of the ExaStencils paradigm of domain-
specific stencil code engineering and to 
encourage experts of other suitable do-
mains to take a similar approach. For 
up-to-date information, please visit the 
project's Web site at www.exastencils.
org.
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