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Zusammenfassung

Kontext: Valide Studien schaffen Vertrauen in wissenschaftliche Erkennt-
nisse. Um ein Studiendesign allerdings sorgfältig beurteilen zu können, ist
neben einer allgemeinen Expertise in Forschungsmethodiken auch spezifi-
sches Fachwissen erforderlich. Beispielsweise kann in einem Experiment der
Einfluss einer manipulierten Gegebenheit auf eine Beobachtung durch viele
weitere Gegebenheiten beeinflusst werden. Hierbei sprechen wir von Störva-
riablen. Die Kenntnis möglicher Störvariablen im thematischen Kontext ist
essenziell, um ein Studiendesign beurteilen zu können. Werden bestimmte
Störvariablen nicht erkannt und folglich nicht kontrolliert, kann dies eine
Gefahr für die Validität der Studienergebnisse darstellen.

Problem: Bisher erfolgt die Beurteilung der Validität einer Studie nur intui-
tiv. Die potenzielle Verzerrung von Studienerkenntnissen durch Störvariablen
ist dadurch spekulativ, statt evidenzbasiert. Dies führt zu Unsicherheiten
im Entwerfen von Studien sowie zu Meinungsverschiedenheiten im Peer-
Review. Zwei Hindernisse erschweren derzeit jedoch die evidenzbasierte
Evaluation von Studiendesigns. Erstens sind viele der vermuteten Störva-
riablen noch nicht ausreichend erforscht, um ihre tatsächliche Wirkung zu
belegen. Zweitens fehlt eine pragmatische Methode, um die vorhandene
Evidenz aus Primärstudien so aufzubereiten, dass sie Forschenden leicht
zugänglich ist.
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Scope: Wir untersuchen die Problemstellung im Kontext experimenteller
Forschungsmethoden mit menschlichen Studienteilnehmern und im thema-
tischen Kontext der Codeverständnis-Forschung.
Beiträge: Wir analysieren zunächst systematisch die Designentscheidun-

gen in Codeverständnis-Experimenten der letzten 40 Jahre und die Gefahren
für die Validität dieser Studien. Dies bildet die Grundlage für eine anschlie-
ßende Diskussion über die große Vielfalt der Designoptionen bei gleichzeitig
fehlender Evidenz zu deren Konsequenzen und Vergleichbarkeit. Daraufhin
führen wir Experimente durch, die Evidenz zum Einfluss von Intelligenz,
Persönlichkeit und kognitiven Verzerrungen auf das Codeverstehen liefern.
Während bisher nur über den Einfluss dieser Variablen spekuliert wurde,
verfügen wir nun über erste Datenpunkte zu deren tatsächlichen Einfluss. Ab-
schließend zeigen wir, wie die Zusammenführung verschiedener Primärstu-
dien zu Evidenzprofilen die evidenzbasierte Diskussion von experimentellen
Designs vereinfacht. Für die drei am häufigsten diskutierten Bedrohungen
der Validität in Codeverständnis-Experimenten erstellen wir Evidenzprofile
und diskutieren deren Implikationen.

Fazit: Für häufig diskutierte Gefahren der Validität findet sich Evidenz für
und gegen deren Vorhandensein. Diese widersprüchliche Evidenz erklärt sich
durch die Notwendigkeit, individuelle Störvariablen im jeweiligen Kontext
eines konkreten Studiendesigns zu betrachten; nicht wie oft geschehen als
pauschal gültig. Evidenzprofile zeigen ein Evidenzspektrum auf und dienen
Forschenden als Einstiegspunkt für eine evidenzbasierte Diskussion ihres
Studiendesigns. Wie bei allen Arten systematischer Sekundärstudien beruht
allerdings auch der Erfolg von Evidenzprofilen darauf, dass ausreichend
viele Studien zu jeweils derselben Forschungsfrage publiziert werden. Dies
stellt eine besondere Herausforderung in einem Forschungsfeld dar, in dem
die Neuheit von Forschungserkenntnissen eines Manuskripts zu den Eva-
luationskriterien jeder größeren Konferenz gehört. Wir blicken dennoch
optimistisch in die Zukunft, da auch Evidenzprofile, die lediglich aufzeigen
werden, dass Evidenz zu einer bestimmten Streitfrage rar ist, einen Beitrag
leisten: Sie werden meinungsstarke Beurteilungen von Studiendesigns als
solche identifizieren sowie zusätzliche Studien motivieren.
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Abstract

Context: Valid studies establish confidence in scientific findings. However,
to carefully assess a study design, specific domain knowledge is required in
addition to general expertise in research methodologies. For example, in an
experiment, the influence of a manipulated condition on an observation can
be influenced by many other conditions. We refer to these as confounding
variables. Knowing possible confounding variables in the thematic context is
essential to be able to assess a study design. If certain confounding variables
are not identified and consequently not controlled, this can pose a threat to
the validity of the study results.

Problem: So far, the assessment of the validity of a study is only intuitive.
The potential bias of study findings due to confounding variables is thus
speculative, rather than evidence-based. This leads to uncertainty in the
design of studies, as well as disagreement in peer review. However, two
barriers currently impede evidence-based evaluation of study designs. First,
many of the suspected confounding variables have not yet been adequately
researched to demonstrate their true effects. Second, there is a lack of a
pragmatic method to synthesize the existing evidence from primary studies
in a way that is easily accessible to researchers.

Scope: We investigate the problem in the context of experimental research
methods with human study participants and in the thematic context of code

5



comprehension research.
Contributions: We first systematically analyze the design choices in code

comprehension experiments over the past 40 years and the threats to the
validity of these studies. This forms the basis for a subsequent discussion
of the wide variety of design options in the absence of evidence on their
consequences and comparability. We then conduct experiments that provide
evidence on the influence of intelligence, personality, and cognitive biases on
code comprehension. While previously only speculating on the influence of
these variables, we now have some initial data points on their actual influence.
Finally, we show how combining different primary studies into evidence
profiles facilitates evidence-based discussion of experimental designs. For the
three most commonly discussed threats to validity in code comprehension
experiments, we create evidence profiles and discuss their implications.
Conclusion: Evidence for and against threats to validity can be found

for frequently discussed threats. Such conflicting evidence is explained by
the need to consider individual confounding variables in the context of a
specific study design, rather than as a universal rule, as is often the case.
Evidence profiles highlight such a spectrum of evidence and serve as an entry
point for researchers to engage in an evidence-based discussion of their
study design. However, as with all types of systematic secondary studies, the
success of evidence profiles relies on publishing a sufficient number of studies
on the same respective research question. This is a particular challenge in
a research field where the novelty of a manuscript’s research findings is
one of the evaluation criteria of any major conference. Nevertheless, we
are optimistic about the future, as even evidence profiles that will merely
indicate that evidence on a particular controversial issue is scarce will make
a contribution: they will identify opinionated assessments of study designs
as such, as well as motivate additional studies to provide more evidence.
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Introduction

1.1. Motivational Context

What does a software developer do? Many of us probably have an answer to
this question. Some of us will tell anecdotal stories about exciting adventures
in the software industry, such as how we used software to put people on
the moon or how today’s cars would no longer function without software.
We do well to tell these stories, especially if we thus spark the questioner’s
interest in software development.
The results of scientific studies can be a bit less romantic. Developers

actually spend most of their time looking at existing code and trying to
understand it. Minelli et al. [MML15] suggest that about 70 percent of
a developer’s time is spent on code comprehension. Xia et al. [XBL+18]
confirmed this finding in a large-scale field study with software professionals
and found that developers spend about 58 percent of their time on code com-
prehension activities. However, this reality is not something that should scare
off interested newcomers to software development. Code comprehension
can be a fulfilling activity, and to ensure that this is the case more often than
it frustrates the developer, researchers are looking into the subject. They

15



investigate the influences on code comprehension with scientific studies, for
example to work out guidelines for more understandable code or to support
developers in understanding code. Today, such studies are more common
than ever [WBW23].

When designing a study, researchers make sure that the study design is as
valid as possible. Validity is a multifaceted construct and we will cover it in
more detail later. For the moment, we use Kitchenham et al.’s brief summary
that validity refers to the degree to which we can trust the outcomes of an
empirical study [KBB15]. Assessing the validity of a study design, that is
whether we can trust the results, requires expert knowledge. No one could
make this assessment better than the researchers themselves, which is why
we consider it a good development that nowadays threats to validity are
discussed in almost every published code comprehension study [SKSL17a;
WBW23].

Two meta-studies have categorized threats to validity discussed in code
comprehension studies, coming up with over fifty different threat cate-
gories [SS15; WBW23]. At the same time, we see a substantial challenge
that is the focus of this thesis: hardly anyone is sure about the actual extent
of the discussed threats, and almost no paper cites evidence on the assumed
threats [MWGW23; WBW23]. The list of potential threats to validity is long,
but their impact in a specific study context is only speculative.
Consider the following example to illustrate this point. The most fre-

quently discussed threat to validity in code comprehension studies is the
influence of programming experience on the observed behavior of study par-
ticipants during a code comprehension task [WBW23]. To researchers who
have commented publicly on this topic, the assumption that a certain treat-
ment influences novice and expert programmers differently makes intuitive
sense [FZB+18]. As a result, the authors of a study often devote a paragraph
in the discussion section of their paper to this potential influencing factor and
mention, for example, that their sample consisted solely of students and that
the study results cannot therefore be applied to more experienced developers.
Is it justified to place such an emphasis on programming experience in this
particular study? What about the more than fifty other potential threats to

16 1 | Introduction



validity, which cannot possibly all be discussed?
The last decades of code comprehension research have been characterized

by intuitive study designs and speculative discussions about the validity
of these studies. This leads to uncertainty for the researchers when they
design their studies, and at the very least, it leads to potential conflict in
peer review, when the reviewer critiques the study design based on their
own different intuition. That researchers have very different views on the
assessment of validity was found, for example, by Siegmund et al. [SSA15] in
a survey of 79 program committee and editorial board members. These views
included even those that would reject papers in principle if they attempted to
maximize internal validity [SSA15]. Note that researchers should generally
have their own opinions. The fundamental issue is that personal views
currently determine which scientific findings are published and which are
not. A decision that, apart from ethical considerations, should instead be
based on an informed validity assessment. Otherwise, we run the risk that
a few researchers will determine the scientific discourse according to their
views, while valid and potentially influential minority views will be unfairly
rejected.

Theoretically, no one can be blamed for the current situation; the research
community lacks a practical solution to discuss design decisions based on
evidence. The good news is that we already have some of the evidence needed
to make evidence-based evaluation of study designs possible. In numerous
primary studies of code comprehension, we find data that support or refute
the influence of certain factors on code comprehension. For example, some
of these studies show that programming experience in their study context
had an effect on participants’ code comprehension performance, while others
found no such effect [MWGW23]. We argue in this thesis, though, that the
existing evidence now needs to be synthesized so that it is more accessible to
researchers when designing their primary studies. It is not feasible for authors
of primary studies to look through the entire corpus of code comprehension
literature each time to learn about the consequences of their design decisions.
To this end, we propose to conduct meta-studies and synthesize evidence
for the influence of commonly assumed threats to validity.

1.1 | Motivational Context 17



1.2. Research Objective and Scope

The research objective is to support researchers with synthesized evidence
in the discussion of the validity of their code comprehension experiments.
The central research question is as follows:

RQ How can evidence be used to evaluate the validity of code comprehen-
sion experiments?

The answer to this question needs a solid theoretical foundation. We will
first look at the design landscape of code comprehension experiments. We
then address individual and contextual factors that should be considered
when designing code comprehension experiments. The following research
questions guide us in this endeavor:

RQ1 What are differences and similarities in the design characteristics of
code comprehension experiments?

RQ2 How do individual characteristics of a developer influence code com-
prehension?

RQ3 How do contextual factors influence code comprehension?
RQ4 What evidence can be found for frequently discussed threats to validity

in code comprehension experiments?

We narrow the scope of this work by two explicit choices. First, we focus
on experiments (defined later in Section 2.5). Code comprehension studies
use a variety of research methods, and many of them could benefit from
evidence-based design decisions. However, the methods are so different
that it is more sensible to develop recommendations for the respective study
designs separately. Furthermore, the entire discussion about the validity of
study designs is very dependent on philosophical views, and these views are
reflected in the use of different research methods. For example, one can
say that validity has a different meaning in an interview study than in an
experiment [PG13].

Second, we focus on experiments in which participants had to understand
a set of concrete lines of code to infer the intentions behind the code at a
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higher level of abstraction. This process is usually referred to as bottom-up
comprehension [OBS04; SM79]. The counterpart to this is called top-down
comprehension, a process in which developers refine hypotheses based on
domain knowledge and documentation until the knowledge can be mapped
to concrete code segments [Bro83; SV95]. There is enough reason to as-
sume that different approaches are based on different cognitive models and,
accordingly, study designs for different cognitive models are not necessar-
ily comparable in nature. By focusing on bottom-up code comprehension
studies, we can at least assume that the primary studies aim to measure the
same cognitive process. We elaborate on this line of thought in Chapter 2.

1.3. Research Philosophy

The core research question of this thesis makes use of at least three constructs
that are frequently encountered in the everyday language of various groups:
Researchers cite and discuss ‘evidence’ on specific research questions and
assess the ‘validity’ of individual studies; Developers are familiar with the
notion of ‘code comprehension’, in the sense that they need to understand
source code to work with it. The way the terms are used in practice, in my
experience, is the way they are used for the most part in this thesis. It is
therefore possible to understand the remainder of the thesis without delving
deeper into this section on research philosophy.
For those who seek a nuanced view of the following chapters and wish

to critique or build upon the work holistically, this section will be useful.
While the discoveries and reflections detailed in chapters three through six
are the result of collaborative work, this section complements the work by
providing a personal perspective that does not necessarily coincide with the
views of my co-authors. This section will have the greatest impact on the
interpretation of Chapter 6, in which I make my central point about using
synthesized evidence to evaluate study designs.
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1.3.1. Experimentation and Evidence

“ The principle of science, the definition, almost,
is the following: The test of all knowledge is
experiment. Experiment is the sole judge of sci-
entific ‘truth.’ ”— R.P. Feynman [FLS63]

It might not be surprising that a physicist such as Richard Feynman puts
great importance on experiments. Experiments are a good way to explore
causality and I myself developed an early enthusiasm for the idea that by
meticulously controlling the experimental parameters and manipulating a
single variable, one might be able to attribute an observable effect to that
manipulation. Even the study of human aspects through experimentation
has long since found its way into science, and in the recent decades into
a branch called behavioral software engineering [GLFW21; LFW15]. This
thesis, for example, is based in part on three experiments that we conducted
to investigate the behavior of developers.
Yet, I would not go so far as to say that experiments are the only way

to learn about the world. I even understand if some researchers are fun-
damentally opposed to trying to explain human behavior with controlled
experiments. One view is that each person is unique and may even perceive
the world differently, which makes generalizations based on experimentally
collected data on any sample at least difficult.

The value I attach to experiments for obtaining knowledge lies somewhere
between these two extremes, between those who consider experiments
to be the only true research method and those who are fundamentally
critical of experiments for explaining human behavior. There are research
questions around human aspects for which other research methods are better
suited than controlled experiments; for example, those questions that seek to
discover individual motivations for a particular behavior (sometimes referred
to as ‘why questions’). For me, the individual characteristics of a person,
innumerable in their quantity, constitute confounding factors that can, in an
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ideal controlled experiment, be controlled for. Since we do not achieve this
ideal state, questions arise about internal validity, that is, how certain we can
be that a measured effect is really due to a manipulated variable. Regardless,
I would say that even if people perceive the world differently and everyone
responds differently to a treatment, an experiment at least provides evidence
about how likely it is that a person will respond to a treatment and what
the potential range of effect sizes is.

What Is Evidence?

Evidence, whether it comes from experiments or other research methods,
can then help people in many ways. In the context of this work, for example,
it should help researchers better assess the consequences of study design
decisions. We argued at the beginning that without such evidence, uncer-
tainty prevails for the most part, which can then lead to frustration when
one’s own study design is rejected in peer review based on the reviewer’s
differing intuition.

But what is evidence? When do we have enough of it to accept a theory as
truth? When might evidence need to be re-evaluated? These questions lead
us straight into the philosophy of science, and over the last centuries numer-
ous great philosophers have argued about them [God21]. My perspective
on these issues can be summarized as follows.

Foremost, I think Karl Popper made an incredibly important contribution
to this discussion with his intention to distinguish science from non-science
by formulating hypotheses in such a way that they have the potential to
be refuted by observations at all [Pop05]. The idea of falsificationism can
prevent statements from being formulated in such a way that observations
can always be interpreted to support a certain statement. We must follow this
basic principle as well when we collect and synthesize evidence to support
study design decisions. Popper, however, was quite strict in his view. If a
prediction were contradicted by an observation, we would reject our theory.
If an observation were consistent with our prediction, then the theory would
not be falsified. Up to this point, I agree. However, Popper also argues that
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in the case of consistency, it cannot be concluded that we have gained in
certainty and that the theory is now more likely to be true.

“ I think that we shall have to get accustomed to
the idea that we must not look upon science as
a ‘body of knowledge,’ but rather a system of
hypotheses; that is to say, as a system of guesses
or anticipations which in principle cannot be
justified, but with which we work as long as
they stand up to tests, and of which we are
never justified in saying that we know they are
‘true’ or ‘more or less certain’ or even ‘probable.’”— K.R. Popper [Pop05]

Here I consider the view of the logical empiricists, a group of philosophers
who were rejected by Popper and subsequently by many other contemporary
philosophers, which ultimately led to their irrelevance, to be quite valid: we
accept that we can never be completely sure that a theory is true (a principle
referred to as fallibilism), but individual pieces of evidence nevertheless
increase our confidence in the truth of a theory [God21]. Taken to a concrete
example, this would mean that observing a sample of experienced developers
solve a code comprehension task efficiently provides relevant evidence on
whether all experienced developers understand code efficiently. The evidence
may be considered less weighty than that from a controlled experiment with
explicitly rejected null hypothesis, but both cases provide us with relevant
evidence that can help us in a discussion about the influence of programming
experience.

When Do We Have Enough Evidence to Accept a Statement As Truth?

For our purposes, we do not necessarily need an answer whether something
is actually as we assume or not. It is sufficient to know what speaks for and
against to then be able to take an informed position. This approach aligns
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with the thinking of Richard Rudner, who believed that evidence alone is
not sufficient, but that it takes a decision to accept the underlying theory.

“ Since no scientific hypothesis is ever completely
verified, in accepting a hypothesis the scientist
must make the decision that the evidence is suf-
ficiently strong or that the probability is suffi-
ciently high to warrant the acceptance of the
hypothesis. [. . . ] How sure we need to be be-
fore we accept a hypothesis will depend on how
serious a mistake would be. ”— R. Rudner [Rud53]

The topic of consequences-influenced decisions to accept hypotheses is
still being debated [God21]. For me, it is intuitive that there is a gap between
evidence and accepting a theory that can be closed by a conscious decision.
Also playing a role for this view is the underdetermination of theory by evidence,
which states “that for any collection of evidence we have, there is always
more than one theory that can in principle account for that evidence. If so,
this seems to show that our preference for a particular theory must always
be influenced to some extent by factors other than evidence—by simplicity,
elegance, or sheer familiarity” [God21]. Thus, while we strive to draw on
more evidence when evaluating study designs, we should keep these aspects
in mind and, with the evidence in hand, never argue for a single absolute
truth.

Is Evidence Timeless?

Let us now assume for a moment that the evidence on a research question
is reasonably conclusive. For example, there could be 42 primary studies
on whether while-loops are better understood by novice programmers than
for-loops, and almost all study authors conclude that a while-loop is the
syntactic construct that is easier to understand of the two. Developers
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form an opinion based on the evidence and program loops from now on
predominantly with the more understandable control structure. Is there a
point when this evidence needs to be re-evaluated and may even become
obsolete?
My view of this question is influenced by the three philosophers Kuhn,

Lakatos, and Laudan, who had different views, but agreed on at least one
rough idea: Researchers have a set of fundamental beliefs that they question
at times, but on which they have collectively agreed to conduct research.1
Whether we believe the evidence from primary studies depends not only on
how the studies themselves are designed. Each such study is based on at
least one fundamental belief, and those beliefs can change over time, for
example, when there is a lot of evidence that a particular theory might not
hold and when we have a better one at hand. When there is a change in
a core belief, we automatically look at the evidence from previous primary
studies with different eyes.

Take the example of research on the comprehensibility of for- and while-
loops to make this more concrete. Researchers in the code comprehension
research field rely on a few basic assumptions that enough researchers agree
with to not have to question or justify them often. In our example, this is at
least the assumption that there is an inherent complexity to certain code and
control structures. This is indeed an assumption that has motivated a number
of publications in the past, for example on atoms of confusion [GIY+17a;
GZFC18] or the development of code comprehensibility metrics that are
purely based on the code and ignore any developer characteristics [Cam18;
MWW20]. However, this fundamental assumption may be discarded in the
future. What we have assumed to know about the influence of certain control
structures on code comprehension, we then have to reassess in light of a

1This quintessence summarizes some of the work of Laudan, Lakatos, and Kuhn on the
evolution of scientific fields. Kuhn first came up with the idea of a research paradigm, and its
role in what he distinguished as revolutionary science from normal science [Kuh62]. Lakatos
developed a picture in which several paradigm-like units can co-exist and referred to them as
research programs that all have a hard core and a protective belt [Lak76]. Laudan further
developed the idea and called the paradigm-like units research traditions [Lau77]. All three had
different views on how many such paradigm-like units there are in a research field, how they
competed and evolve, and how critical researchers were of them at any given time [God21].
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new fundamental assumption. We might then attribute the influences of an
inherent complexity of code structures on code comprehension as measured
in the primary studies to a variable that we do not even know about today.
Kuhn went so far as to argue that it is almost inevitable that paradigms
will collapse eventually as a result of the work of scientists [Kuh62]. This
may sound drastic, but these are the revolutions that move a research field
forward. What we learn from this is that evidence is not timeless, and a
solution to our problem of helping researchers design their studies with
synthesized evidence must be some kind of synthesis that can respond to
paradigm shifts and new evidence with reasonable effort.

1.3.2. Intuition and the Diversity of Study Designs

The pleasure of science is not the least driven by the challenge of finding
innovative solutions to complex problems. Many research questions require
creative and ingenious study designs and human intuition should not be
underestimated in this process. While the goal of this thesis is to bring
evidence into the design and evaluation of study designs, we need to clarify
two points.

First, intuition has and will have its place also in the design and discussion
of future code comprehension experiments. Intuition is what leads us to the
hypothesis for which we collect evidence, ideas for future directions to look
into, and sometimes the one methodological idea that nobody has thought
about before. Evidence will not replace intuition, but it can help a researcher
defend their intuition against unwarranted criticism.

Second, the collection of evidence that this thesis aims for is not driven by
a goal of coming up with the one and only true study design for a specific
research question. This line of reasoning may be intuitive, since at some
point one would know which design decisions make the most sense based
on evidence. Evidence will allow researchers to have meaningful discussions
about their study design and how valid it is. However, we should not forget
that the validity of a study design is not binary: There is no evidence that
would suggest that a study design is valid or invalid. Evidence might tell us
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that a research design might be limited in some ways, and sometimes the
researcher has to choose which facet of validity is more important to them.
This is an intuitive process of compromise, and we will discuss some such
scenarios later in this thesis. In the remainder of this section, I would like
to make the point that it is even beneficial if different authors make such
a decision differently, and that it is important that as many different study
designs as possible exist for the same research question.

On the Construction of Knowledge

“ Science is a human activity, and all human
activities are guided by values of some sort. But
this might be a desire to understand, a desire
to resolve questions about how the world works.
If so, that is not ‘value-free.’ ”— P. Godfrey-Smith [God21]

Latour and Woolgar [LW13] once conducted a field study in which Latour
observed scientists working in a molecular biology laboratory over several
years. They concluded that observations and raw empirical data themselves
would not naturally result in scientific papers. Instead, scientists would
make a series of decisions, interpret observations, and support claims with a
number of assumptions.
What may sound trivial to the experienced scientist is related to a philo-

sophical view essential to this work: A large part of what we take as scientific
facts is knowledge that researchers constructed, rather than natural elements
that are just there independent of thought. This can be problematic. When
humans are interpreting observations, they are subject to bias, “because ob-
servation is affected by the theoretical beliefs of the observer” (this is known
as theory-ladenness of observation) [God21]. Further, science is not value-free.
A specific study design may be consciously or unconsciously shaped by one’s
own beliefs and goals. For example, the decision to take code snippets for
an experiment from open-source projects instead of creating them oneself
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could be shaped by placing more weight on the generalizability of the study
results than on controlling for possible confounding variables, which in turn
could come from being driven by the prospect of industrial impact.
This bias, inherent in any primary study design, is a major argument

that meta-studies are needed to draw conclusions about the evidence for
a hypothesis. In doing so, if enough different study designs by enough
different authors contribute to answering the same research question, we
argue that bias will become less influential.1
Accordingly, intuition and the resulting diversity of study designs is of

great importance to obtain a comprehensive picture of the complex reality.
One question remains: how much may a researcher rebel against existing
evidence and follow their intuition?

“ The only principle that does not inhibit progress
is: anything goes. ”— P. Feyerabend [Fey93]

As pointedly as Feyerabend may have formulated the answer, it sums
up my view. I have previously argued that evidence helps in discussions
of evaluating study designs, and that every bit of evidence contributes to
informed debate. I stand by this, and this stance will be apparent in all
chapters of the thesis. At the same time, in this and the previous section,
we have gained a more nuanced view of what evidence is and that it is
neither timeless nor objective. Everyone should therefore be allowed to
follow their intrinsically motivated beliefs at any time; “We may advance
science by proceeding counterinductively” [Fey93]. Evidence complements
our research without replacing anything of intrinsic value. Openness to
critical thought and new theories, possibly contrary to any evidence, should
remain with us.

1As a personal concern, it should be noted that this is also a weighty argument that the
software engineering research field should consider replication and reproduction studies,
especially in empirical research and research with human study participants, to be more
important than it currently does.
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1.3.3. Validity

Since throughout this thesis we will be discussing threats to validity, even
categorizing them comprehensively in Chapter 3 and investigating their
evidence in Chapter 6, we should establish in advance what this is all about.
In everyday language, validity can denote “the quality of being well-

grounded, sound, or correct” [Merb]. In this work, validity is considered a
multi-facetted construct, and the degree of validity of a study design can be
assessed separately for each facet. The facets into which validity is usually
divided depend on the underlying research method of a study [PG13]. In
controlled experiments in software engineering, a classification into internal,
external, construct, and conclusion validity in the reporting of validity threats
has become widely accepted. This classification was particularly successfully
promoted by Wohlin et al. [WRH+12] and Jedlitschka et al. [JCP08], but in
both cases the idea is based on the work of Cook and Campbell [CC79]. We
will use this classification and define each facet in Chapter 3 when we work
with them for the first time.

In the context of research philosophy, validity has a direct relationship
to the previous two sections: both intuition and evidence are necessary for
its evaluation. Evidence about which threats to validity affect a particular
study design should complement the researcher’s intuition and be cited in
the reporting of threats to validity. If authors of primary studies already cite
evidence in their discussions of threats to validity, secondary studies can also
benefit: contradictory findings can be better explained, and more informed
and nuanced conclusions can be made.
In principle, researchers should aim for study designs that have a high

degree of validity in those facets that are most relevant to the researcher’s
particular principles and goals. “Some ways of increasing one kind of va-
lidity will probably decrease another kind” [CC79], making this form of
prioritization often necessary. As a consequence, a study design will always
have limitations and inherent bias (see Section 1.3.2), which is why a single
primary study will theoretically never be sufficient to satisfactorily shed
light on a complex research question. With a sufficient variety of study
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designs and authors on the same question, a holistic and less biased picture
eventually emerges.

1.3.4. Measuring the Unobservable

One reason that designing code comprehension studies is so difficult is that
we cannot measure how well somebody understood a certain piece of code
directly. Code comprehension is a construct, a concept created by humans
to classify and assign meaning to observed behaviors. If such a meaning
can be agreed upon within a research community, a construct offers added
value (see [RT18a; SB22] for an introduction with examples from software
engineering).
Imagine the following scenario. A developer, Sofia, is known for being

able to see any codebase that is previously unknown to her, and add new
functionality to the codebase on the same day. In contrast, developer Favian
sees himself as someone who usually takes a little longer to become proficient
enough in an unfamiliar codebase to extend it in a meaningful way. We find
that there are more developers like Sofia and more like Favian, all of whom
can be assigned to one of these two groups or something in between. To
theorize about the behaviors and discuss the phenomenon, we define the
construct code comprehension: Sofia is better at code comprehension than
Favian, or, if we do not emphasize performance differences in our theory, we
could say Sofia understands code differently than Favian.
We can measure a developer’s code comprehension, as in Sofia and Fa-

vian’s scenario, by the time it takes them to add functionality to previously
unknown code. Numerous other ways to operationalize the construct exist,
however, and we explore the variety in detail in Chapter 3. In the context of
research philosophy, we want to highlight one point in more detail, as it is
relevant to this thesis.

There are researchers who would at best cautiously agree with the open-
ing statement that code comprehension cannot be measured directly. The
underlying assumption is that there is a physical representation of what we
mean by code comprehension that can be directly observed or measured,
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though perhaps not yet with the methods we know. There would then be a
kind of biomarker, so to speak, that could be used to objectively determine
how well someone understood code. Indeed, this may be less science fiction
than it is a combination of a certain philosophical view of what constitutes a
mental state and the underlying definition of code comprehension. Some
contemporary code comprehension researchers, looking for example at the
brain activity of developers, seek direct access to comprehension right there,
in the brain and its activity. Modern technology like fNIRS and eye tracking
would promise “direct and objective measures of comprehension” [Fak18]
as opposed to traditional methods of self-reporting or summarization tasks
that only serve as “indirect measures” [Fak18].

This view mixes two aspects. One is the hope for direct access to compre-
hension and thus, most likely, to the mind of humans. A discussion of this
would open the Pandora’s box of philosophy of mind [Jaw11; Kin20], which
we refrain from doing here for pragmatic reasons. We can simply accept in
the context of this work that some believe code comprehension is something
physical, i.e. something that occurs in nature, and that others believe it
is a conceptual idea by which different researchers potentially understand
different things. The latter is true for me.
The second aspect is whether there are ‘objective’ or ‘more objective’

measurement methods for how well someone has understood code. This is
the question we need to address at this point, as in Chapter 5, we recommend
certain measures based on evidence from our own studies, which are referred
to within the community as ‘objective measures’ (in contrast to ‘subjective
measures’). It is important to emphasize that ‘objective’ in this context does
not refer to whether understanding is (believed to be) measured directly.
Objectivity refers to the absence of bias that influences either the study
participant or the researcher in the measurement of code comprehension.
We aim to make reliable statements about a developer’s understanding of
code that do not depend on factors other than the understanding itself. For
example, we can imagine that developers’ self-assessments of how well they
understood a particular code snippet depend on their current confidence in
themselves or the standing of the person to whom they are reporting. Self-
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assessments could be subject to bias and hence less objective. We provide
more examples and evidence for similar hypotheses in Chapter 5.

Overall, it is simpler to agree that we aim to obtain reliable (i.e., objective)
measurement results than it is to agree on the nature of code comprehension.
We will nevertheless present in Chapter 2 a framework that attempts to
explain code comprehension at a conceptual level. Generally, we would
argue that the authors of every primary study should at least define, better
yet try to explain, what they mean when they talk about code comprehension.
Today, this is still the exception, as we will see, and an implicit definition by
task prevails: code comprehension is what the experimental tasks measure.
However, this makes it difficult to conduct meta-studies, since it is not
clear whether different primary studies are intended to measure the same
thing. Further, the issue for authors of primary studies is that without an
explanation of what one is actually trying to measure, it becomes difficult to
justify design decisions. And it is precisely these justifications that we seek
to support in this thesis.
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1.4. Contributions

The main contributions of this work can be summarized as follows:

1. We provide a systematic review of the state of the art in designing code
comprehension experiments and of the more than 40-year history of
this research field. This provides the basis for our subsequent discussion
of the considerable diversity of design options in the face of a lack of
basic research on their consequences and comparability. We highlight
what, we believe, are the five most important action items that the code
comprehension research community should address moving forward.
Relevant chapter: 3 | Relevant publication: [WBW23]

2. We conduct primary research and provide empirical evidence on the
influence of intelligence facets and personality traits on a developer’s
performance in understanding source code.
Relevant chapter: 4 | Relevant publication: [WW22]

3. We conduct primary research and provide empirical evidence on the
influence of hints about the difficulty of a code snippet on a developer’s
perception of the code’s understandability.
Relevant chapter: 5 | Relevant publications: [WMG22a; WPGW21]

4. We show that evidence profiles can be used to evaluate design deci-
sions in scientific studies in an evidence-based way. For the three most
frequently discussed threats to validity in code comprehension experi-
ments, we create evidence profiles and discuss their implications.
Relevant chapter: 6 | Relevant publication: [MWGW23]

5. We publish data for all of our studies on which this thesis is based
on Zenodo. The data will allow future studies to perform additional
analyses, replicate findings and reproduce our studies.
Relevant chapter: Appendix B
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1.5. List of Publications

The contributions of this work have been introduced into the scientific dis-
course in the form of five publications, one of which is currently undergoing
the peer-review process:

1. Wyrich, M., Bogner, J., & Wagner, S. (2023). 40 Years of Designing
Code Comprehension Experiments: A Systematic Mapping Study. ACM
Computing Surveys (to appear). [WBW23]

2. Wagner, S., & Wyrich, M. (2022). Code Comprehension Confounders:
A Study of Intelligence and Personality. IEEE Transactions on Software
Engineering, 48(12), 4789-4801. [WW22]

3. Wyrich, M., Preikschat, A., Graziotin, D., & Wagner, S. (2021). The
mind is a powerful place: How showing code comprehensibility metrics
influences code understanding. In 2021 IEEE/ACM 43rd International
Conference on Software Engineering (ICSE) (pp. 512–523). IEEE.
[WPGW21]

4. Wyrich, M., Merz, L., & Graziotin, D. (2022). Anchoring Code Under-
standability Evaluations Through Task Descriptions. In 2022 IEEE/ACM
30th International Conference on Program Comprehension (ICPC) (pp.
133-140). [WMG22a]

5. Muñoz Barón, M., Wyrich, M., Graziotin, D., & Wagner, S. (2023).
Evidence Profiles for Validity Threats in Program Comprehension Exper-
iments. In 2023 IEEE/ACM 45th International Conference on Software
Engineering (ICSE) (pp. 1–12). IEEE. [MWGW23]

The Wagner and Wyrich [WW22] paper was initiated by the first author.
Together, we designed the study, conducted the study, analyzed the data
and reported the results. The paper by Muñoz Barón et al. [MWGW23] is
the result of a Master’s thesis written by the first author, who I supervised.
Already during the realization of the master’s thesis, I was involved in parts
of the data collection and data interpretation. Together with the other
co-authors, we extended the thesis into a paper.
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1.6. Outline

The thesis is structured such that each of the chapters is self-contained, so
that one can jump into any chapter depending on one’s interests and previous
knowledge. Each chapter begins with a reference to the overarching research
context to fit into the continuous storyline of this thesis. The only exception
is Chapter 7, in which the results of all previous chapters are discussed in the
larger context of the thesis, and for which it is therefore advisable to have
read at least Chapter 6 beforehand. The contents of the work are organized
as follows:
Chapter 2 can be seen as a general background chapter that introduces

the reader to the research area of code comprehension. The contents form
the scientific foundation for all subsequent chapters.
Chapter 3 extends this foundation with a systematic mapping study that

analyzes in detail design characteristics of code comprehension experiments
and concludes from the results how the research field may evolve in the
future. One key finding is the lack of support for evidence-based study
designs.
Chapters 4 and 5 present three primary studies that investigate the in-

fluence of individual characteristics and contextual factors, respectively, on
code comprehension. The evidence obtained from all these studies can help
in designing future code comprehension experiments.
Chapter 6 contributes considerably to answering the primary research

question of how evidence can be used in the design of code comprehension
experiments. We will introduce the methodology of evidence profiles and
demonstrate their practical use in synthesizing evidence from primary studies
to support researchers in designing future code comprehension experiments.
Chapter 7 summarizes all contributions and critically examines how this

thesis advances the code comprehension research field. We address the
research questions introduced in Section 1.2 and turn to open challenges
and future research directions before we conclude the thesis in Chapter 8.
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Source Code
Comprehension

The cognitive process of code comprehension is still fairly unexplored. Re-
searchers in the field have a rough idea of what is meant when talking about
comprehensible code or performance in code understanding. However, a
definition of the construct, let alone a comprehensive cognitive model, has
not yet been established to the extent that primary studies would rely on
it in their design. As a result, what is measured is often implicitly defined
by how it is measured, e.g., by the number of correctly answered questions
about a previously considered C function or the time required to find a bug.
Nonetheless, there are starting points on which we can build to define

the scope of this work. For example, ISO/IEC 25010 describes a quality
model for defining individual quality characteristics of a software product.
The quality attribute most related to code comprehensibility in this model
is perhaps analyzability, which is defined as: “Degree of effectiveness and
efficiency with which it is possible to assess the impact on a product or
system of an intended change to one or more of its parts, or to diagnose
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a product for deficiencies or causes of failures, or to identify parts to be
modified” [ISO11]. This definition has some overlap with frequently used
participant tasks in code comprehension studies. However, it remains at a
level of granularity that does not explicitly address that source code may
need to be understood for all described intentions and what it means to have
understood source code.

Boehm et al. [BBL76] provide a more concrete definition of understandabil-
ity in this regard in their early work on quantitative evaluation of software
quality: “code possesses the property of understandability to the extent
that its purpose is clear to the reviewer. This implies that variable names
or symbols are used consistently, code modules are self-describing, control
structure is simple or conforms to a prescribed standard, etc”. The first
sentence of Boehm et al.’s definition is one that can serve us as a basis for
discussion in the following lines. The understandability of source code can
be measured by how clear the purpose of the code is to the reader. The
second part of the definition provides some examples of code characteristics
that would help improve comprehensibility. These are common hypotheses
that are the subject of code comprehension experiments, whose design we
want to support with evidence.

We consider comprehensibility and understandability as synonyms, i.e.,
choosing one over the other is “purely amatter of linguistic variation” [Kin98].
Note that both terms describe a property of the code. However, studies
that intend to provide insights into the influence of a treatment on the
comprehensibility of code usually first measure code comprehension, i.e., how
well a participant understood source code under certain conditions. The data
collected can then be used to draw conclusions about the comprehensibility
of the code.
So, what does code comprehension mean? The landscape of prominent

definitions for code comprehension is fairly limited to the early days of the
research field. At that time, the term program comprehension was mainly
used, which today covers a broader range of research topics, of which code
comprehension is one [WBW23].
For Shneiderman [Shn77], for example, program comprehension is “the
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recognition of the overall function of the program, an understanding of inter-
mediate level processes including program organization and comprehension
of the function of each statement in a program”. Similarly, Letovsky and
Soloway [LS86] state that “the goal of program understanding is to recover
the intentions behind the code” and Pennington [Pen87] elaborates that
“comprehension involves the assignment of meaning to a particular program,
an accompplishment that requires the extensive application of specialized
knowledge”.

These basic ideas that understanding code means being able to see through
and grasp the semantics of the code are not very controversial, neither
then nor today. Such definitions have since provided a common research
foundation for primary research. Yet, it is also clear that the discussion
about the meaning of code comprehension cannot end here because a proper
explanation of what code comprehension could be had not been provided so
far.
For example, a valuable contribution regarding our goal of better un-

derstanding what code comprehension is comes from Gilmore, who distin-
guishes between the comprehension process and the state of comprehension:

“ This paper will make a distinction between the
comprehension process and the state of compre-
hension. The former involves the mobilisation of
cognitive resources and processes in some partic-
ular configuration, with the goal of constructing
somemental representation of the program code.
It is this mental representation of the code which
is the comprehension state. The possibility that
the cognitive processes may be used in different
ways in order to achieve a comprehension state
gives rise to the importance of comprehension
strategies. ”— D.J. Gilmore [Gil91]

1.6 | Outline 37



In the context of this work, both the comprehension process and the state
of comprehension are relevant. If we could better understand the compre-
hension process, we could, for example, design comprehension tasks and
measures in experiments in such a way that they can be justified with vali-
dated code comprehension models and thus strengthen our confidence that
the tasks actually measure code comprehension. The state of comprehension
is relevant at the moment when we attempt to measure how well somebody
has understood code, since most common code comprehension measures
assess the comprehension of a study participant at one given point in time.
The remainder of this chapter is organized as follows. In Section 2.1 we

will review elements of program comprehension strategies. Knowledge about
these strategies helps us to better define the scope of this thesis and to come
closer to an explanation of the construct of code comprehension. We will
learn, moreover, that the strategy itself has an impact on a developer’s state
of comprehension. Sections 2.2 and 2.3 describe, respectively, research on
developer characteristics and contextual factors that have been shown to
influence code comprehension. Section 2.4 will briefly discuss the role of a
construct definition for the reasonable measuring of code comprehension.
In Section 2.5, we bring together all these aspects from sections 2.1–2.4
and create a conceptual model for code comprehension experiments. From
this model, we highlight the focus of this thesis and derive some proposi-
tions about what code comprehension can be and what meaning different
comprehension measures have within this model.

2.1. Program Comprehension Strategies

We travel a bit in time, more precisely to the 1980s, a decade that introduced
almost all the relevant concepts that are still shaping our current picture of
program comprehension. Program comprehension research of that time is
in many aspects comparable to contemporary research. However, the period
was particularly characterized by the development of models and theories
to explain behavioral processes of developers. Although many of the articles
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of that time resemble essays in which new ideas appear to be supported
more argumentatively than empirically, experiments to test the hypotheses
presented were already common at that time.

We start in 1978, when Ruven Brooks [Bro78] lays the first milestone of our
journey with an essay about a behavioral theory of program comprehension.
He assumes that developers switch between ‘knowledge domains’ in program
understanding, which, roughly summarized, represent different levels of
abstraction of reality. According to Brooks, a developer has understood a
program when not only information about objects and their relationships
within one abstraction level are known, but also their relationship in a nearby
abstraction. Brooks’ most influential idea, however, was that the process of
understanding is characterized by the “successive refinement of hypotheses
about the program’s operation” [Bro78]. If a developer takes a particularly
long time to understand a certain code snippet, this can be explained by
the difficulty of finding correct hypotheses at that moment. Brooks already
speculated at this time that there were elements in the program, such as
comments or variable names, that represented cues in understanding the
program.
Five years later, in 1983, Brooks [Bro83] elaborated his thoughts and

the model that we know today as the ‘top-down model’ of program com-
prehension emerged: Hypotheses about knowledge domains are generated,
tested, and refined until their relationship to the code becomes apparent. A
hypothesis describes for example the basic function of a component. The first
hypothesis is generated as soon as the developer receives the first information
about the program; how appropriate this hypothesis is depends on the skill
level and the experience of the developer with the problem domain. The
verification and the establishment of alternative hypotheses are supported
by certain indicators in the code. Brooks calls these indicators ‘beacons’
here for the first time.
Between these two publications by Brooks, in 1979 Shneiderman and

Mayer [SM79] came forward with their model for programmer behavior. In
their work, they did not limit themselves exclusively to program compre-
hension. Five programming tasks were studied, one of which constitutes
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comprehension. Nevertheless, we can also call this work a seminal work
because it resulted in what we know today as the ‘bottom-up model’ of
program comprehension: “Instead of absorbing the program on a character-
by-character basis, programmers recognize the function of groups of state-
ments, and then piece together these chunks to form even larger chunks
until the entire program is comprehended”. Shneiderman and Mayer [SM79]
further emphasized the role of syntactic knowledge (programming language
dependent) and semantic knowledge (general programming concepts) in a
developer’s long-termmemory, as well as the role of short-term and working
memory for the construction of a “multileveled internal semantic structure to
represent the program [. . . ] The central contention is that programmers de-
velop an internal semantic structure to represent the syntax of the program,
but that they do not memorize or comprehend the program in a line-by-line
form based on the syntax”.

Both Brooks [Bro83] and Shneiderman and Mayer [SM79] have supported
their presented concepts with initial experiments, and it did not take long
for independent studies to follow that put the models to the test. Basili
and Mills [BM82] observed themselves comprehending and judging the
correctness of a program, providing early anecdotal evidence that bottom-
up comprehension practically takes place. Adelson [Ade81] found experts
to have larger recall chunks than novices, and that expert chunks contain
more semantically rather than syntactically related information. Wiedenbeck
[Wie86] conducted two experiments on the differing influence of beacons on
experienced and inexperienced developers, and found that supposedly useful
indicators in the code primarily help experienced developers understand it.
Wiedenbeck discusses the role of beacons and considers them to be in line
with the bottom-up comprehension strategy, since beacons can represent
“the link between the top-down hypothesis formation stage and the data
of the program text”. Moreover, what Shneiderman calls a chunk could
also represent a beacon, provided that the chunk represents a stereotypical
part of the program [Wie86]. Soloway and Ehrlich [SE84], at the same
time as Brooks [Bro83], investigated top-down comprehension assumptions
and provided evidence that programming plans and rules of programming
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discourse would help experienced developers with program comprehension.
Programming plans represent stereotypical program fragments, similar to a
kind of beacon. Rules of programming discourse represent intuitive expecta-
tions of developers, e.g. that a function name matches the content of the
function [SE84]. Rist et al. [Ris+86] refinded Soloway and Ehrlich’s plan
idea and provided additional experimental evidence for its positive influence
on program comprehension.
In 1987, the focus of research seemed to shift minimally from cognitive

comprehension strategies to the nature of mental representations of source
code (mental models).
Pennington [Pen87] shows with an example of a code snippet that a

program can be abstracted in at least four different ways: (1) by the goals of
the program, (2) as a data flow abstraction, (3) as a control flow abstraction,
and (4) of ‘conditionalized action’, i.e. under certain conditions the program
performs actions and enters another state. Pennington calls the control-flow
representation ‘program model’ and the combination of data-flow and goal
hierarchy representation ‘situation model’, drawing on theories from earlier
work in the field of text comprehension [VK83]. In her first study, Pennington
shows that procedural (control flow) rather than functional units (goal
hierarchy) “form the basis of expert programmer’s mental representations”,
which implies that even experts initially apply bottom-up comprehension
strategies [Pen87]. Her second study addresses the limitation of small
code snippets. Once again, an understanding of program control flow and
procedures preceded an understanding of program functions.
Letovsky [Let87] propose a cognitive model that is about a ‘knowledge-

based program understander’ who is made of three components, namely a
knowledge base, a mental model of their current and evolving understand-
ing, and an assimilation process interacting with the stimulus materials. His
position is that different types of knowledge play the central role in the
comprehension process and that the understander “is best viewed as an
opportunistic processor capable of exploiting both bottom-up and top-down
cues as they become available”. Letovsky elaborates on some details and ex-
amines his assumptions using video recordings of six professional developers
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who were asked to add a new feature to a project while thinking out loud.
What is interesting for us at a later point of this chapter is what Letovsky
believes a mental model should contain: a description of the goals of the
program (specification), a description of actions and data structures in the
program (implementation), and an explanation of the links between goal
and implementation (annotation) [Let87].
Finally, Littman et al. [LPLS87] distinguish between static knowledge

(what the program does functionally) and causal knowledge (interactions
of functional components during execution). Both types of knowledge are
required for comprehension, which is why they call a mental model that
contains both types of knowledge a ‘strong mental model’. In contrast, a
mental model of the program that only contains static knowledge is called
a ‘weak mental model’. They found some developers to use a systematic
comprehension strategy, i.e. “the programmer performs extensive symbolic
execution of the data flow paths between subroutines”, and some to use an
as-needed strategy, meaning that they attempt to only focus on those parts
of a program relevant for the experimental task, which resulted in either
a weak or a strong mental model. As a consequence, developers following
the systematic strategy were more successful at the requested modification
task [LPLS87]. Koenemann and Robertson [KR91] provided further evidence
a few years later that developers follow an ‘as-needed’ strategy when they
need to understand or modify a program, and that need is primarily based on
the developer’s goals. They further conclude that program comprehension
is mainly a top-down process and bottom-up is used “in cases of missing or
failing hypotheses and locally for directly relevant code units” [KR91].

The 1990s and the Integrated Model

We see that there has been neither a lack of concepts that contribute to un-
derstanding program comprehension nor a lack of empirical investigations
of them. In the 1990s, we also find good examples of work that derives
implications for practice based on the basic research on program compre-
hension described so far. For example, Storey et al. [SFM99] address the

42 2 | Source Code Comprehension



design of software exploration tools to support developers and use theory to
explain what design principles the tools would need to follow to facilitate
the construction of a mental model for program understanding.

What was missing, however, was some kind of metamodel that coherently
integrated the various concepts of the 1980s. Von Mayrhauser and Vans
[VV95] took on this task and in 1995 set another milestone in our history of
program comprehension strategy models with their “integrated metamodel”.
Figure 2.1 depicts the metamodel. It is a re-creation of the graphical

illustration of Von Mayrhauser and Vans, where we have simplified the
knowledge base in its level of detail to make the illustration more concise
and understandable. Apart from that, all components are included that
are also contained in the original model: The top-down model based on
Soloway and Ehrlich [SE84], the program model and situation model based
on Pennington [Pen87], and the knowledge base, as the node that contains
the information to build and switch between the respective cognitive process
models. The integrated metamodel also incorporates elements from the work
of Brooks [Bro83], Letovsky [Let87], and Shneiderman and Mayer [SM79],
so that we find again, e.g., the concepts of beacons, memory, chunking,
and various kinds of knowledge. All five incorporated models also describe
a matching process between the developer’s knowledge and the object to
be understood (‘match comprehension process’), for example through the
systematic verification of hypotheses according to Brooks [Bro83] or via a
more opportunistic approach according to Letovsky [Let87].
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Figure 2.1.: The “integrated metamodel” by Von Mayrhauser and Vans. Fig-
ure based on Figure 6 in [VV95].
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Von Mayrhauser and Vans [VV95] then summarize in their paper which
components of their model and its underlying theory have been empirically
investigated up to that point. Thereby they make the following remark,
which will be of particular importance in Chapter 3 of this thesis:

“ Many experiments are designed to measure spe-
cific conditions (for example, whether or not
programmers use plans) but the experimental
hypotheses (for example, that programmers use
plans when understanding code they have never
seen before) are not always based on a well-
defined program-comprehension theory. ”— Von Mayrhauser and Vans [VV95]

They consider the development of program comprehension models to be
“in the theory-building phase” and theories on large-scale program com-
prehension to be “in their infancy” [VV95]. Von Mayerhauser and Vans
could not have known that the end of the 1990s also marked the end of two
decades of research that produced the most influential models of program
comprehension to date. Is the theory behind program understanding still
in its infancy today? Very likely, yes. We will see in a moment that there
were some notable research contributions and efforts to better understand
program comprehension in the 2000s and the 2010s as well. Code compre-
hension experiments, however, are still not designed based on a lot of theory,
or only to a minimal extent because too little can be explained with existing
theory. We will return to this issue in Chapter 3.
Before we turn to the progress towards theory building in the 2000s, we

would like to highlight an aspect that was increasingly made explicit in
papers of the 1990s and seems still a consensus today [MTRK14]: program
comprehension is usually not an end in itself, but a (necessary) means to
accomplish a maintenance task successfully. We might do well, therefore,
to also develop models that are specific to particular development activities
and incorporate program comprehension as one aspect of such activity.
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Gilmore [Gil91] presents an example of such a model that connects the de-
bugging and comprehension processes. According to Gilmore, the view that
a mental model resulting from the comprehension process would be used in
a subsequent and independent step by the developer for the debugging activ-
ity is not accurate. Instead, he argues that these are two distinct processes,
of which comprehension is part of a larger debugging loop: “The fact that,
in both cases, bugs were more easily found when they were deeper in the
structures contradicts the traditional interpretation of propositional analyses
of comprehension. Both groups of programmers were more likely to find the
deeper bugs, suggesting that they were being detected during an ongoing
comprehension process, rather than by comparison with a comprehension
state” [Gil91].

Gilmore’s resulting model is shown in Figure 2.2. Besides embedding the
comprehension process in a higher-level debugging activity, it also models
the interesting aspect of problem comprehension and places mismatch de-
tection between the mental representation of the program and the mental
representation of the problem at the center of debugging.

We will see in Section 3.2 that debugging and maintenance tasks are used
in code comprehension experiments, but constitute a minority in the choice
of experimental tasks. It is much more common in code comprehension
experiments to try to isolate the comprehension process, which is why we
will not discuss the broader task context in more detail at this point. However,
we will go into quite some detail about contextual factors in general that
have an impact on code comprehension (see Section 2.3 and Chapter 5).
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Figure 2.2.: The “schematic view of debugging” by Gilmore. Figure based
on Figure 4 in [Gil91].

The 2000s: Model Refinements, Model Extensions, and. . . Teaching

We enter the decade in which the International Workshop on Program
Comprehension transitioned into a full conference. The research field has
matured and continued to grow in importance. In the context of program
comprehension strategies and theory, there were two things happening in
the 2000s: existing models were refined or extended, and a new branch of
research emerged that dealt with the education of program comprehension.

Crosby et al. [CSW02] conducted further research on the role of beacons.
Among other methods, they used eye-tracking to see what developers fixated
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on and for how long. They found that there are at least two types of beacons.
One is single lines of code, which contain mnemonic cues about functionality,
and the other is more complex beacons, which contain cues about main
goals of the program. Also, experts seem to rely on beacons, while novices
do not.

At the same time, Rajlich and Wilde [RW02] discuss the role of ‘concepts’
for understanding and learning about unknown and large programs. They
define concepts as “units of human knowledge that can be processed by the
human mind (short-term memory) in one instance”. Examples of concepts
can be single features of the software, which can be found as such in the
code. There may be an overlap here with the concept of complex beacons
described by Crosby et al. [CSW02] and there is definitely some relationship
to the idea of chunking parts of the code into larger segments [SM79]. In
any case, Rajlich and Wilde [RW02] consider domain concept knowledge
essential for program comprehension.

Building on the works of Brooks [Bro83] and Soloway and Ehrlich [SE84],
O’Brien et al. [OBS04] refine the idea of top-down comprehension into
expectation-based and inference-based comprehension, where the difference
can be roughly summarized as whether beacons [Ris+86; Wie86] in the
code confirm or trigger a developer’s (pre-generated) hypotheses. In an
experiment with eight industrial developers, they were able to show empiri-
cally that for expert programmers both strategies play a role together with
the bottom-up comprehension strategy. The preferred approach depends on
the familiarity with the application domain [OBS04].

Guéhéneuc [Gué09] extends existing theories on program comprehension
by adding vision science, i.e. the recognition of items during program compre-
hension. The work brings an interesting new dimension into play: modality.
In the code comprehension experiment landscape, this aspect has so far
been somewhat neglected, perhaps because a homogeneous picture of the
code-reading developer prevails in the minds of the researchers, perhaps also
because modality is assumed to have little influence on the comprehension
of information in general [RCT16]. We will discuss individual developer
characteristics in the following Section 2.2, including how blind developers
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understand source code.
In addition to these theoretical extensions and refinements, the theory of

program comprehension strategies of the 80s and 90s also increasingly
found its way into teaching. A workshop working session on teaching
program comprehension was organized with the goal of establishing “a
repository of teaching resources, to identify the lessons learned and future
directions” [DFKR03]. Then, for example, Exton [Ext02] reviews exist-
ing program comprehension strategies and its relation to the constructivist
learning theory, and Schulte [Sch08] proposes a model of core aspects of
understanding a program text that should guide instructors in designing
teaching lessons. The interested reader will find a good introduction to how
program comprehension models can enrich the computer science educational
perspective in Schulte et al. [SCT+10].

The 2010s: What Happens in Practice

A few refinements of theoretical program comprehension models also en-
tered the scientific literature in the 2010s [BDA14; NP15; SAA+15], but
the decade was marked in particular by studies that examined program
comprehension in practice.

Maalej et al. [MTRK14] conducted a mixed methods study in which they
observed and interviewed 28 software professionals and surveyed 1477
others about their comprehension strategies, the nature of the knowledge
relevant to understanding, and the use of comprehension tools. The work is
a goldmine of qualitative and quantitative findings. Some of the key insights
are that developers use a recurring, structured comprehension strategy de-
pending on the task context, the starting point for comprehension depends
on experience, hypotheses are indeed generated and tested as described by
the theoretical models, and that developers sometimes take notes to reflect
on their mental model. Source code is more trusted than documentation,
and naming conventions and common architecture simplify program com-
prehension. Maalej et al. [MTRK14] also found that dedicated program
comprehension tools are not used. Developers would instead prefer to use
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basic tools such as compilers and text editors for program comprehension.
Minelli et al. [MML15] suggest that about 70 percent of a developer’s time

is spent on program comprehension. They quantitatively examined an IDE
interaction dataset of 740 development sessions from 18 developers (mouse
and keyboard events together with contextual information). A development
activity was defined as a sequence of mouse and keyboard sprees. Devel-
opment activities were then categorized into understanding, navigation,
editing, and UI interactions, where comprehension consisted of basic under-
standing, inspection, and mouse drifting (i.e. mouse-supported reading).
The results show that by far the most time is spent on understanding (70%),
followed at a large distance by UI interactions (14%), editing (5%), and
navigation (4%), with the remaining 7–8% being time spent outside the
IDE. The authors highlight the importance of not getting interrupted during
the development activity, as it is for the most part characterized by mental
processes.

On a side note, both Maalej et al. [MTRK14] and Minelli et al. [MML15],
arrive at a similar picture of program comprehension as we discussed earlier,
namely as an embedded activity. They conclude that “program comprehen-
sion is considered a necessary step to accomplishing different maintenance
tasks rather than a goal by itself” [MTRK14] and “that base understanding
is prevalent inside activities, that is, inside conceptually related sequences
of keyboard or mouse sprees. In other words, the process of program un-
derstanding is not really an activity per-se, but it is interleaved with other
activities like editing” [MML15].
Just three years after Minelli et al.’s research, the key message that pro-

gram comprehension accounts for the majority of developmental activity
was confirmed by Xia et al. [XBL+18]. They conducted a large-scale field
study with 78 software professionals from two IT companies in China and
found that developers spend about 58 percent of their time on program
comprehension activities. Since, according to the authors, program compre-
hension does not only take place in the IDE, Xia et al. [XBL+18] tracked
the activities of developers across different applications. They were able to
show that only about 20% of program comprehension takes place in the IDE,
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27% in web browsers and about 10% in document editors. There is frequent
switching between these applications.

The 2020s: Dawn of the Neuro Age

Up to this point, we have observed that much has been done in terms
of fundamental theories around program comprehension, especially in the
1980s and 1990s, but these efforts have since given way to other efforts, such
as integrating the theories into teaching or comparing them to practitioners’
experiences. Toward the middle and end of the 2010s, a new trend emerged
that we predict will dominate the 2020s and may revive basic research: the
application of psycho-physiological measurement methods in the context of
code comprehension.

While its realization brings some new challenges, the idea is simple to ex-
plain: Researchers use eye tracking, functional magnetic resonance imaging
(fMRI), functional near-infrared spectroscopy (fNIRS), electroencephalogra-
phy (EEG), or combinations of these devices to gain insights into the cognitive
processes associated with software engineering tasks (neural correlates) to
better understand and support such software engineering tasks [SHLW21;
SPB+20; VF21]. A recent systematic mapping study in software engineering
found that most papers that make use of psycho-physiological data explore
program comprehension and debugging strategies [VF21].
Except for eye tracking, which was already used in program comprehen-

sion studies two decades ago (e.g. [CSW02]), the number of studies using,
for example, fMRI and fNIRS to study program comprehension is now also
increasing. Some position papers promisingly outline the possibilities of gain-
ing more objective insights into program comprehension with neuroimaging
devices [Fak18] or even an entirely new, neurocognitive perspective on
program comprehension [Pei18; SPB+20]. However, this development of
the research field is still at a stage where some researchers would agree
that the achieved reliability of the related research setups is probably the
greater achievement to date than initial findings on brain activities in pro-
gram understanding [SPB+20]. In a recent Dagstuhl seminar on the use of
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biometrics and neuroimaging devices in software engineering, the method-
ological challenges of the new technologies were still clearly the focus of
discussion1.

Nonetheless, there are initial findings from psycho-physiological research
that strengthen and expand our understanding of program comprehension.

Siegmund et al. [SKA+14] conducted the first fMRI study in which partici-
pants had to understand code while positioned in a scanner. Measured blood
oxygenation levels can be used to determine brain regions that are active
at the time of a code comprehension task. To identify the regions that are
responsible for comprehension in isolation, participants also had to perform
a contrast task of finding syntax errors. The data show increased activity in
several Brodmann areas during code comprehension. The authors identified
five of these as relevant for code comprehension (BAs 6, 21, 40, 44, 47), since
it is known from previous studies that these areas are related to working
memory, attention, and language processing. The findings form a basis for
the development of a cognitive model of bottom-up code comprehension
that could enrich the previously discussed theory [SKA+14].
Further studies followed that at least partially confirmed these initial

findings and provided some additional insights [FSW17; LMH+16; PSP+18;
SPP+17]. For example, another study by Siegmund et al. [SPP+17] showed
that the presence of semantic beacons in code leads to lower activity in the
relevant brain regions during comprehension, and Floyd et al. [FSW17] found
that developer expertise affects how accurately a classifier can distinguish
code and prose review based on brain activity. Also, worth mentioning is
Peitek et al.’s study [PSP+18], in which, for the first time, fMRI and eye
tracking were tested in combination to investigate code comprehension.
Such a combination has the advantage that fast cognitive subprocesses can
be captured due to a higher temporal resolution of the eye tracker. This
allowed them to show, for example, that fixations on a beacon leads to
semantic recall [PSP+18]. We refer the interested reader to Vieira and
Farias’s mapping study [VF21] as well as to the introduction of the paper by

1The thesis author was present at the Dagstuhl seminar: https:
//www.dagstuhl.de/de/seminars/seminar-calendar/seminar-details/22402
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Sharafi et al. [SHLW21] for further pointers to recent psycho-physiological
studies in software engineering.

Concluding Remarks on Program Comprehension Strategies

We would like to conclude our time travel through the literature on program
comprehension strategies and theory with two notes before we continue to
build on the findings right away in Section 2.5.
First, program comprehension theories have adopted some of their core

elements from the somewhat older research field of reading and text com-
prehension [PC15]. For example, the situation model, as well as bottom-up
and top-down comprehension, are concepts that existed before they were
introduced into the program comprehension context. Pennington [Pen87]
is, to our impression, the only one who really emphasizes that some of
her inspiration comes from theories of text comprehension. While the ap-
preciation for our related field of research leaves much to be desired, one
should also not immediately fall into the belief that findings from reading
comprehension studies can be directly transferred to code comprehension.
For example, we know that code reading and text reading have different
eye movement patterns [BBB+15; PSA20] and that developers with and
without dyslexia can probably understand code equally well (which is not
true for text) [MB19]. However, while the evidence on the comparability of
text and code comprehension is otherwise sparse, differences can already be
identified at the conceptual level: for example, one element of code compre-
hension could be that the developer understands what the code is supposed
to do and compares this with what the code actually does for certain input
values. This matching of a specification with dynamic execution behavior
is an element of code comprehension that is hard to find in comparable
form in text comprehension. So while we should always be open to learning
from the related discipline of text comprehension and should continue to
empirically investigate comparability in the future, we probably do well to
further develop our own models of code comprehension.

Second, this section already helps us a lot to better define the scope of this
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thesis. We will focus on supporting studies that investigate the bottom-up
code comprehension process. Chapter 3, for example, systematically exam-
ines primary studies that have enforced such bottom-up code comprehension
via their task design. Primary studies usually do this to achieve high internal
validity by focusing on a particular aspect of the comprehension process.
However, we know at this point that bottom-up comprehension is only part of
the overall comprehension process, which in practice is part of a higher-level
activity such as debugging. Program comprehension today also involves
much more than understanding source code; for example, developers need
to gain an overview of the architecture, or identify developers who are re-
sponsible for a particular component to solicit their help if necessary [Sie16].
All these aspects make it important, in our opinion, to distinguish between
code comprehension (the focus of this thesis) and the broader concept of
program comprehension. Whatever our findings, though, they then also play
an important role in the overall process of program comprehension because
of the direct dependency.

2.2. The Developer in the Spotlight

Code comprehension is a cognitive psychological process in which, in addi-
tion to the characteristics of the code to be understood, the capacities of the
person who wants to understand the code play a role. We already know that
different types of knowledge are involved in program comprehension (see
Figure 2.1). But is a developer’s knowledge base the only characteristic that
influences their approach or performance in code comprehension? Already
in 1978, Brooks [Bro78] noted that developer characteristics other than
knowledge may play a role in program comprehension.

Even though such individual characteristics were not part of the program
comprehensionmodels and theories presented in the previous section, Brooks
was not the last to speculate on the influence of individual parameters on
program comprehension. Siegmund and Schumann [SS15] compiled a cata-
log of confounding parameters discussed in program comprehension studies.
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Their survey includes papers from 13 journals and conferences published
between 2001 and 2010, and results in 39 confounding parameters. In the
category of ‘individual confounding parameters’ we find 14 variables that
relate to the person who needs to understand the program and that other
researchers in the field assume have an impact on program understanding.
These variables are: color blindness, culture, gender, intelligence, ability,
domain knowledge, education, familiarity with study object, familiarity
with tools, programming experience, reading time, fatigue, motivation, and
treatment preferences [SS15].
We can well imagine that these variables influence code comprehension

in one way or another. But is there evidence on their actual influence? In
Chapter 6 of this thesis, we address this question by looking for evidence
for frequently discussed confounders. At this point, we can already spoil
that, depending on the study context, some of the confounding parameters
compiled by Siegmund and Schumann [SS15] either do not have the assumed
impact on program comprehension, or empirical evidence on them is scarce.1
Yet explicit research on the presumed influencing factors would be im-

portant for at least two reasons: first, researchers could design better ex-
periments because they could make more informed decisions about which
confounding factors to control and how to control them. Second, such re-
search would contribute to theoretical models, ultimately better supporting
developers in their comprehension strategy. We address the first aspect in
detail in this thesis. We will illustrate the second aspect, supporting develop-
ers by researching the influence of individual characteristics, with a concrete
example in the following lines.
The Stack Overflow Developer Survey 2022 received 73,268 responses

1Note that for some of these individual characteristics, it may be considered unethical to
conduct explicit research on differences in performance, for example, if the goal is solely to
investigate whether a particular cultural background or gender accounts for better or worse
code comprehension. Such research can rarely be carefully enough framed to avoid inviting
others to exclude certain people in certain contexts and to point fingers at supposed evidence.
Gender may be among the more commonly discussed confounders [SS15]. However, the real
added value of research in this area will likely be to determine the origin of this assumption
and whether there are gender differences in code comprehension strategies due to, for
example, gender-related hurdles that then need to be addressed.
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(73% of participants identified themselves as developer by profession). 2,547
respondents reported having a physical difference, the majority of which
indicated being blind or having difficulty seeing (1.7% of all survey partici-
pants) [Sta22].

When we theorize about how developers understand source code, does it
make a difference whether a developer is sighted or, for example, fully blind?
While there is some empirical evidence and some field reports that blind and
sighted developers understand code equally well [ARM18; MrV22], blind
developers face many hurdles that they must overcome and work around.

Mealin and Murphy-Hill [MM12] interviewed 8 blind developers on chal-
lenges they face during software development. With similar intentions,
Albusays and Ludi [AL16] collected 69 survey responses from blind devel-
opers and, in a follow-up study [ALH17], observed and interviewed 28
blind developers as they navigated a codebase using their preferred coding
tool. The three studies came to similar results: all participants regularly use
screen readers for development work, some additionally resort to Braille
displays, for example, for more details on punctuation. A recurring theme in
all studies is the poor accessibility of developer tools, which is why blind de-
velopers prefer printf to debugging tools, for example, or copy code snippets
into separate scratchpads and editors to be able to navigate through that
section of code more easily (it is easier to jump to the beginning and end of
the snippet when it is viewed isolated) [AL16; ALH17; MM12]. In general,
many features in IDEs are visual supports for which there is no accessible
equivalent yet. For example, the usefulness of autocompletion is undisputed
among sighted developers, but when such a feature is implemented as a
pop-up, it cannot be recognized by most screen readers [ALH17].

Armaly et al. [ARM18] found that blind and sighted programmers overall
focus on similar parts of the code. Both groups would read method signatures
more often than other parts of the code, and would be less concerned with
control flow than other parts of the code.
Yet, fully blind developers must intuitively and evidently deviate from

sighted developers in some aspects of their comprehension strategy. It is
difficult to get a high-level overview of the code when screen readers work
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linearly and braille displays only show a single line of code. Therefore,
blind developers rely heavily on API documentation [MM12], which at least
raises whether sighted and blind developers have a slightly different idea
of what constitutes a helpful beacon. Then, since diagrams are mostly
inaccessible [AL16; MM12], knowledge sources in addition to code are
limited. Blind developers must also sometimes seek assistance from their
sighted peers [AL16; ALH17], raising the as-yet unexplored question of how
cooperative code comprehension affects the construction of mental models.
Speaking of mental models, the blind outperform sighted peers on serial
memory tasks [RSP+07], which may be why they presumably have a more
detailed mental model for coding tasks that are difficult to visualize [MM12].

We see that the single characteristic of being blind can have a major impact
on the approach to code understanding. At the same time, the aspect of being
blind, as well as the influence of numerous other individual characteristics,
has hardly been reflected in code comprehension models. For example,
personality plays a major role in software engineering [CSC15], but has
barely been studied in the context of code comprehension [WW22]. It would
be naive to believe that all people understand code in the same way and
that differences in performance are solely due to expertise and knowledge.
We will therefore map the influence of individual characteristics on code
comprehension as part of the experimental variables in our conceptual model
(Section 2.5) and provide empirical evidence on the influence of personality
and intelligence on code comprehension in Chapter 4 ourselves.

For the moment, we note that experiment participants differ in other indi-
vidual characteristics beyond their prior knowledge, and that it is important
to understand the influence of these differences on code comprehension
strategies and performance better than we currently do. The findings then
help, as previously explained, in the better design of experiments. Firstly,
because one then knows which confounders need to be controlled in which
way. Secondly, because experiments themselves can then be designed in such
a way that they are accessible to certain groups in the first place, for example
in online experiments by inserting code as text instead of as an image so
that the code can be read out by screen readers. Further, research findings
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benefit the developers themselves eventually: In the context of blindness,
corresponding research findings can guide and motivate the development
of tools and IDE plugins that use audio, e.g., for improving the accessibility
during debugging [PVI+18; SHM+09] and for assisting vision-impaired
students in learning how to program [SFM00].

2.3. Context Is Everything

Imagine an IDE without syntax color highlighting, without autocompletion,
and without all your beloved plugins that make programming and debugging
easier. After reading the previous section, which primarily dealt with the
hurdles that blind developers have to deal with, it is probably no longer that
difficult to imagine such a scenario. In everyday development, however, the
omission of such features would mean major productivity losses for most
developers.

Similar to individual characteristics, contextual factors such as syntax color
highlighting are potential influencing factors on code comprehension, on
which there is a little research, but which have hardly been integrated into
theoretical comprehension models so far. Yet, that would also be quite
worthwhile for reasons that will become evident shortly.

Have you ever tried to understand code in virtual reality? There are now
numerous tools that display code in virtual reality or even allow it to be
manipulated. The tools make use of various spatial metaphors [AAV+19]:
some VR tools display the program as a city [CERS17; FKH17; MLMD01;
RCE+19; SKR19], others as an island [SM18], and still others build a virtual
desk [DTR+20; OMP18; SMHB21] that can, for example, display multiple
screens and exploit the potentially infinite space of a virtual reality.

Most virtual reality tools for visualizing program code are intended to sup-
port developers at least in program comprehension (some additionally serve
to simplify programming or debugging). The results of empirical studies on
the benefits of VR tools vary. A general trend seems to be that developers
work or perceive to work slower in VR [CLB20; DTH+20; OMP18], but this
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may as well depend on the concrete task [MMV+21; RCE+19]. Among
the positive findings is that fewer mistakes are made, and more bugs can
be found through appropriate visualizations [DTR+20; FKH17]. However,
some studies also observed that compared to using established (non-VR)
software visualization tools, there are no significant performance differences
when solving comprehension or related programming tasks [MMV+21;
OMP18; SKR19]. Yet, for some, it is at least fun to use VR tools during
development [CLB20].

Virtual reality is an example of a contextual factor that we can assume has
an impact on a developer’s code understanding process. However, evidence
for this has largely only been collected since 2017 and studies are primarily
interested in the performance of developers rather than their comprehension
processes. Compared to the program comprehension theory presented in
Section 2.1 what could be different when one needs to understand code in
VR?

For example, it could be argued that the metaphor adopted by the VR
tool and the associated visualization approach of the structure of a program
influences which mental representation of the program emerges in the
mind of a developer (a central aspect of program comprehension theories).
The VR tool can be designed in such a way that it shows only hierarchies of
components, packages and classes, but visualizes no control flow. With such a
tool, a developer could not create a programmodel at all. The understanding
of the program would be restricted intentionally to certain other aspects of
the program. The bottom line is that the example of understanding code
in VR demonstrates well that we should incorporate contextual factors into
code comprehension models, as they can be decisive for how a developer
proceeds in understanding a program and which aspects of the program are
perceived in principle. When these connections become clearer, researchers
and tool developers may be able to help developers understand programs
more effectively.

Let us take another look at the work of Siegmund and Schumann [SS15],
who have systematically collected even more contextual factors that, accord-
ing to scientific literature, are suspected of influencing code comprehension.
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Examples of contextual factors that become relevant in code comprehen-
sion studies include learning effects, operationalization of the study object,
order and difficulty of tasks, evaluation apprehension, and time pressure.
Further, at least two psychological effects may be at play: The ‘Hawthorne
effect’ [MWI+07; RD03], which describes that participants in experiments
would behave differently because they were observed, as well as the ‘Rosen-
thal effect’ [RJ66], which today generally stands for the idea that the expecta-
tion of the experiment leader could influence the behavior of the participants
and thus the study results.

In Chapter 5, we will empirically test the influence of a particular psycho-
logical effect, the anchoring effect, on experiment participants’ subjective
code comprehension. And we will find out that developers are influenced by
subtle cues in the environment at least in their subjective perception of code
comprehensibility, but likely also in their concrete code comprehension pro-
cess. In that chapter, we will then explain in more detail that the anchoring
effect is a cognitive bias, and that cognitive biases play a much bigger role
in software engineering than most people realize [MST+18]. Thus, because
code comprehension plays such a central role in software engineering, we
would do well to assume that the previous paragraphs have only sketched
the tip of an iceberg of contextual factors that might have an impact on code
comprehension.

2.4. Measuring Code Comprehension

When researchers in an experiment seek to investigate the influence of a
treatment on the code understanding of the study participants, they even-
tually face the question of how to measure the code understanding of an
individual person at a particular point in time. Many design decisions play
a role in this measurement, such as the criteria according to which the
code snippets to be understood are selected, how the comprehension task is
designed, and, as a central aspect, which comprehension measures are used.
These design decisions result in reflective indicators that operationalize the
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construct of code comprehension [RT18a].
There are more diverse options available today than ever before to measure

a person’s code comprehension performance [WBW23]. At the same time,
there is a lack of research on the comparability of different comprehension
measures [MWGW23]. The research community was aware of this lack of
comparability as early as 40 years ago, when the first studies examined the
comparability of specific task designs [CBF84; HZ86] and others examined
the comparability of various comprehension measures [RC97; Shn77]. Not
much has happened since then, and the few existing studies on the com-
parability of different comprehension measures overwhelmingly conclude
that different common ways of measuring code comprehension do not corre-
late with each other [AWF18; BLMM09; FRM+20; Ise88; YYZD21]. All of
this not only potentially leads to uncertainty in the design of new primary
studies, but also currently leads to each code comprehension experiment
developing its own methodology for measuring the code comprehension
performance of its participants [WBW23]. What was a neglected issue of
comparability of comprehension measures is now becoming a much larger
issue of comparability of study results in the face of increasing and barely
surveyable publication volumes, as authors of potential meta-studies cannot
know which primary studies intend to measure the same construct.
In Chapter 3, we discuss in detail the variety by which code comprehen-

sion is measured in experiments, and there we discuss in more depth the
consequence of the increasing diversity of study designs. In Chapter 6, we
present a methodology for conducting meta-studies that can be used despite
a lack of evidence on the comparability of different study design characteris-
tics. The variety of ways to measure code comprehension and the difficulty
in comparing primary studies both stem from potential differences in how
different researchers conceptualize code comprehension. At this point, we
will therefore discuss the role of the construct definition for a meaningful
measurement of code comprehension.
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What Makes Sense?

The justification of a particular operationalization depends, among other
things, on how one defines code comprehension at the conceptual level.
Based on such a definition, it can then be judged whether “an operationaliza-
tion seems intuitively reasonable” (face validity) and whether “an operational-
ization encompasses all aspects of a construct” (content validity) [RT18a].
The assessment of face and content validity are the first of several steps in
the evaluation of construct validity [RT18a].

A general threat to construct validity is that a definition of the construct is
missing or insufficient [SB22]. An obvious problem that arises is that if it is
not clear what is being measured, it cannot be assessed whether it is being
measured validly in terms of face and content validity. Sjøberg and Bergersen
[SB22] note that in software engineering research, most of the concepts are
often not theoretically defined. We ourselves have confirmed this observation
within the literature on code comprehension experiments [WBW23]. Hardly
any study defines code comprehension. As a consequence, in most cases, an
operationalization of a previously inadequately described construct occurs.
This then leads to limitations in evaluating construct validity, and further
to meta-studies facing difficulties in deciding on the inclusion of certain
primary studies [WBW23].

The intriguing aspect of the discussion about face and content validity is
that the question of a meaningful operationalization of a construct relies
primarily on intuition and consensus among experts [RT18a; SB22]. It is an
example of how intuition enriches the evidence for designing experiments
sought in this thesis (see also Section 1.3.2). Nevertheless, before we can
discuss what constitutes a meaningful measure of code comprehension, we
first need to define code comprehension. We will do this in the following
Section 2.5.
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2.5. A Conceptual Model of Code Comprehension Experiments

“ The goal was always the same: to develop mod-
els and tools to help developers with program
understanding during program maintenance.
However, few authors targeted the more funda-
mental question: “what is program understand-
ing?” ”— Harth and Dugerdil [HD17]

There is a sentiment in Harth and Dugerdil’s quote that we can relate to a
certain extent. Especially in contemporary code comprehension literature,
there are hardly any explanations of what the authors mean by code com-
prehension. To be fair, though, it is precisely the empirical studies of the
80s and 90s that have made a fairly solid contribution to our understanding
of program comprehension, both in terms of observable comprehension
strategies of developers and in terms of how mental models are formed.
Presumably, empirical studies simply reach a limit of the definable with their
methodology, at which point we must proceed with philosophical discussions.
The question of when a developer has understood source code is at least a
question of definition.
We will define code comprehension in this section and then explain the

construct in the context of experiments at a particular level of abstraction
that allows the majority of existing code comprehension experiments to be
mapped to it. In other words, we now design a conceptual model of code
comprehension experiments. The model will immediately help us to clarify
the scope of this thesis. In the medium term, it can be extended to a useful
framework in which new code comprehension experiments can be anchored
and thus assure secondary research a minimum of comparability with other
code comprehension experiments.
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Definition 2.1 (Source Code Comprehension)
Source code comprehension describes a person’s intentional act and degree of
accomplishment in inferring the meaning of source code.

This theoretical definition overlaps with some of the previously presented
definitions from the early days of the field (see introduction to this Chap-
ter 2), in particular Pennington’s description that “comprehension involves
the assignment of meaning to a particular program” [Pen87]. The definition
further includes the distinction between the comprehension process and the
comprehension state, as described by Gilmore [Gil91], and it deliberately
uses the term source code rather than program to explicitly distinguish code
comprehension from comprehension of other objects in the context of the
diversified research field of program comprehension that exists today. Ac-
cordingly, we consider the introduction of a new definition of the construct
to be justified by the way in which it unifies historically evolved views in a
contemporary manner.

Accompanying this definition are some propositions that explain the con-
struct in more detail:

• The degree of accomplishment represents a spectrum. Colloquially,
we tend to speak of someone having understood or not understood
something, thus treating the construct as a binary variable. Researchers
are free to do the same in their operationalization of the construct,
but in doing so, they would miss out on potential in the finer-grained
analysis of performance differences of their experiment participants,
and this should be justified argumentatively.

• The degree of accomplishment can be expressed by contrasting a devel-
oper’s mental model with external reality in terms of the developer’s
goals. Such a comparison suggests intuitively that one measures how
accurately and completely the mental model reflects reality. However,
it should be kept in mind that, depending on the goal of the developer,
it is not always favorable to aim for a complete mental model of the
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code1. We learned in Section 2.1 that the formation of mental models
depends on both the comprehension strategy and the comprehension
task. For example, the task of understanding source code in detail
and the task of finding a bug in the code will lead to different mental
models of the code. When designing the concrete way to measure the
success of code comprehension, this aspect must be considered.

• Inferring the meaning of source code can be discussed and assessed
on at least three dimensions: what the code does (functionality),
what it should do (specification), and what the intention of the code
author was (context). These aspects can be found in similar forms in
various program comprehension models and are surveyed to varying
degrees in contemporary code comprehension experiments. Again,
there is no single approach here: The concrete task design depends
on the reasoning of the researcher regarding the goal scenario of the
developer.

• There are a variety of ways to observe and measure source code com-
prehension. The definition applies to both assessments in the form of
administered comprehension tests and self-assessments of the subject.

The question of what ‘understanding’ means conceptually is not a simple
one. Often, the answer also depends on the specific context, for exam-
ple, whether it is a question of implementing an AI with the capability of
understanding user needs or whether it is a question of explaining neurosci-
entifically how information processing takes place at different levels of the
nervous system2. For our context in which developers need to understand
source code, the above Definition 2.1 and the associated propositions provide
a starting point to work with. Before we delve a little deeper into the notion
of understanding code in an experimental context, we provide a definition
of the term experiment.

1Credit where credit’s due: This idea about considering the goal when matching the mental
model with reality comes from Stefan Wagner, during one of our many fruitful meetings.

2Kevin Mitchell, in a blog post about whether an AI could cook meth, conveys the potential
diversity of views well: http://www.wiringthebrain.com/2019/02/
understanding-understanding-could-ai.html
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Definition 2.2 (Experiment)
An operation or procedure carried out under controlled conditions in order
to discover an unknown effect or law, to test or establish a hypothesis, or to
illustrate a known law. [Mera]

We are aware that the term experiment is used differently [SF18] or even
incorrectly [ATFJ22] within the software engineering research field, and that
there are different types of experiments. The kind of experiments we deal
with in this thesis is closest to what Stol and Fitzgerald classify as ‘Laboraty
Experiment’, the purpose of which is “to study with a high degree of precision
relationships between variables, or comparisons between techniques; may
allow establishment of causality between variables” [SF18]. These can then
be further subdivided into, for example, randomized controlled experiments
and quasi experiments.
Our restriction to a specific research methodology is motivated by the

need to ensure that the associated primary studies are comparable in their
design and the resulting threats to validity so that we can make targeted and
concrete suggestions for improvement. According to Biffl et al. [BKE+14],
the vast majority of threats are too specific to be generalized outside the
particular research area they occur in. We are interested in the type of
experiment in which some degree of causal investigation is sought that is
influenced by confounding variables, which in turn will play a larger role
in this thesis. However, just as important as the research methodology is
that the experiments measure code comprehension with human participants
(more on this in Section 3.2.2).

Now that we have a definition of source code comprehension as well as
experimentation, we bring these two concepts together in the conceptual
model depicted in Figure 2.3. The model consists of three layers: mental
model, mental state and experimental variables. These play a role at two
points in time t and t + x with x > 0.

Let us first look at the top two layers and their interaction. At each point in
time, a developer is in a mental state S, which is backed up by a mental model
M that contains a representation of the source code to be understood. The
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Figure 2.3.: Conceptual model for the design of code comprehension experi-
ments

beginning of an experiment may represent time t; at this time, a developer’s
mental model of a particular code snippet (depending on prior knowledge
of the code) probably does not look too extensive. At a later point in the
experiment (t+ x), after the developer has completed a code comprehension
task, the developer is in a new mental state and accordingly has a changed
mental model of the code.

A lot can happen between these two points in time. Developers generate
hypotheses about how the code works, reject or confirm them, and under-
stand the code better over time. This process generates any number of
mental states and changes in the mental model between the two explicitly
depicted mental states. The two mental states St and St+x are particularly
crucial for designing code comprehension experiments because they repre-
sent the initial state and the state in which a researcher tries to access the
mental model to infer how well a developer has understood the source code
presented (this may happen several times during the experiment).
The third layer, experimental variables, includes all experimental design
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decisions (e.g. the comprehension task), contextual factors, individual char-
acteristics of the developer, and other variables that can influence the mental
state of a developer. In Figure 2.3 we see that the mental state St+x is
influenced by both the previous mental state St and a set of experimental
variables V . Part of the experimental variables, namely the statistical tests
and comprehension measures, operationalize in which way the mental model
Mt+x is accessed at the time t + x .
The term ‘mental model’ is used in this context as it was introduced in the

1990s in the context of program comprehension strategies, i.e. as “a main-
tainer’s mental representation of the program to be understood” [SFM99]
and “an internal, working representation of the software under considera-
tion” [VV95]. According to a recent meta-study on mental representations
during program comprehension, this description captures the essence on
which the community could agree [HLHF22]. At the same time, it should
be mentioned that it would be difficult to find controversies at present any-
way, since research in the field of mental representations during program
comprehension has unfortunately declined considerably [BAV20; HLHF22].
The meaning of the term ‘mental state’ is quite diverse due to different

streams in the philosophy of mind. For example, for followers of physicalism
mental states are equal to brain states (followers of this theory are in the
majority today), for followers of dualism theory mental and physical are two
different things [Jaw11; Kin20]. The topic is as exciting as it is complex
because between and alongside these positions there are many variants, all
of which sound plausible at first, but over time all of which have at least been
confronted with thought experiments, and from some people’s point of view
also refuted. Further elaboration is beyond the scope of this thesis, so we
handle the matter pragmatically as follows. Understanding is directly related
to the mind, and a mental state can be considered as the mind of a person at
a particular time. Therefore, we would like to reflect this connection in the
conceptual model, in that mental states represent the bridge between the
environment (experimental variables) and the mental model a developer has
about the code. However, the conceptual model allows for different views on
the nature of mental states, so that in the first place we only have to agree
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on the idea that at any point in time such a state exists, which will transition
into another state (similar to a state machine). This perspective allows us to
model a progression in the comprehension process of a developer.

With this, we have a rough understanding of the elements of the conceptual
model for the design of code comprehension experiments. We will now go
into more detail on the three depicted links (a), (b), and (c).
Link (a) represents the transition from one mental state to another and

thus constitutes the cognitive model, i.e., “the cognitive processes and in-
formation structures used to form the mental model” [SFM99]. There is
research on this, as we saw in Section 2.1, but it is far from sufficient to
adequately characterize the processes and information structures involved
in code comprehension. In this thesis, however, the link is not the focus of
our investigation.
Link (b) is the focus of this thesis. This link is about the (assumed)

influence of experimental variables on the code comprehension process
and accomplishment. Every experiment that investigates the influence of a
variable on code comprehension is interested in this link (b). It is important
to understand that each such experiment creates its own implicit or explicit
causal model. While link (b) is drawn as a single line with an arrowhead
at the level of abstraction of our model (Figure 2.3), one would see at a
level of detail below that it is actually a complex network of interdependent
variables. We have made such a causal model explicit in two of our studies
and return to it in Section 4.2.2.7 and Section 5.3.2.4.
Link (c) deals with the concrete capturing of the mental model, which

becomes relevant whenever we need to measure a person’s understanding
about a code snippet. In most experiments, this happens once per experi-
mental task, for example when comprehension questions are asked to the
developer after understanding a code snippet. Link (c) will also play an
important role in this thesis, as there are more or less valid ways to measure
comprehension, which can also be supported with evidence.
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2.6. Conclusion

We traveled through the history of program comprehension strategy and
theory research in Section 2.1, learned in Sections 2.2 and 2.3 that indi-
vidual characteristics and contextual factors, respectively, influence code
comprehension, and got a teaser in Section 2.4 that code comprehension can
be measured in many ways. In Section 2.5, we brought all of this together
in a conceptual model for the design of code comprehension experiments.
At this point, we have established a good theoretical foundation on which to
build in the following sections. We begin with a systematic mapping study
that looks in detail at how code comprehension experiments of the past 40
years have been designed and what kind of difficulties they face.
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Forty Years of Designing
Code Comprehension

Experiments

This chapter will provide an answer to RQ1 on what the differences and
similarities in the design characteristics of code comprehension experiments
are. It extends our journal publication [WBW23]. The results and their
discussion serve to establish the foundation for and motivate our overall
objective of bringing more evidence into the evaluation of study design deci-
sions. Furthermore, it will become clear what currently makes it difficult to
synthesize evidence from code comprehension experiments in meta-studies.

3.1. Context and Goals

The relevance of code comprehension in a developer’s daily work was rec-
ognized more than 40 years ago. Estimates of the average working time
invested in source code comprehension range from 30 to 70% [MML15;
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XBL+18]. Consequently, many studies were conducted to find out how
developers could be supported during code comprehension and which code
characteristics contribute to better comprehension. Today, such experiments
are more common than ever. While this is great for advancing the field, the
number of publications makes it difficult to keep an overview. Additionally,
designing rigorous experiments with human participants is a challenging
task, and the multitude of design decisions and options can make it difficult
for researchers to select a suitable design. Even though some recommen-
dations exist, they are largely a collection of arguments and considerations
based on personal experience [Fei21] or refer on a more abstract level to
guidelines for general research methods like controlled experiments [JM01;
WRH+12].

As a result, every researcher currently designs, conducts, and reports their
code comprehension study quite differently. For example, the differences in
design begin with the concrete tasks given to the participants in a study, i.e.,
whether they only need to read code, fix a bug, or even extend the code.
Differences continue with the way in which the success of code comprehen-
sion is quantified, e.g., via the time required to solve a task, correctness in
comprehension questions, subjective self-assessments by the participants, or
psycho-physiological measurements [OBMC20].
We consider a certain diversity in study designs to be essential in good

scientific practice, as complex research questions should be approached from
different angles. Currently, however, this leads to two major issues: first, it
creates uncertainty when designing a new study, as it is not clear from the
multitude of code comprehension studies what the majority of the program
comprehension community currently agrees on as valid study designs [Sie16;
SSA15]. This makes it especially difficult for novice researchers to get familiar
with this field. Second, different study results are difficult to compare, let
alone to incorporate into meta-analyses, in which study results are to be
synthesized [KMB20; Woh14b].
To address these issues, we conducted a systematic mapping study of

95 source code comprehension experiments published between 1979 and
2019. By systematically structuring the design characteristics of code com-

72 3 | Forty Years of Designing Code Comprehension Experiments



prehension studies, we provide a basis for a subsequent discussion of the
huge diversity of design options in the face of a lack of basic research on
their consequences and comparability. We describe what topics have been
studied, as well as how these studies have been designed, conducted, and
reported. Frequently chosen design options and deficiencies are pointed
out. We conclude with five concrete action items that we as a research
community should address moving forward to improve publications of code
comprehension experiments.

3.2. A Systematic Mapping Study

3.2.1. Background and Related Work

In 2007, Di Penta et al. [DSK07] proposed a working session to collabora-
tively launch empirical program comprehension studies. Their motivation
was that the design of such studies was complex due to the ‘large space of
decisions’ and that the community had to discuss what the best practices
were.

In recent years, the debate about the design of program comprehension
studies, which had subsided meanwhile, gained momentum again. In 2016,
Siegmund [Sie16] suggested, based on a survey of program committee
members at major software engineering venues, that the reason for the few
new program comprehension studies may still be that “empirical evaluations
of program comprehension (and human factors in general) are difficult to
conduct”.

In 2021, Feitelson [Fei21] published a series of ‘considerations and pitfalls
in controlled experiments on code comprehension’. For different design deci-
sions like selecting code to be comprehended or the concrete comprehension
tasks, the paper describes how these decisions can affect the results of a
study, and exemplarily points to studies that implemented specific design
decisions. We believe that Feitelson’s work [Fei21] is a valuable pragmatic
approach for guiding researchers in the design of code comprehension ex-
periments by compiling intuitive knowledge. Our work will provide the
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necessary empirical data on how prevalent certain design decisions, and
thus certain pitfalls, actually are.

Several other publications on the analysis of existing program comprehen-
sion studies exist. Oliveira et al. [OBMC20] model program comprehension
as a learning activity and map typical tasks of empirical human-centric stud-
ies on readability and legibility to an adaptation of Bloom’s taxonomy of
educational objectives. Their goal is to identify the cognitive skills that are
most frequently tested in readability and legibility studies. We are particu-
larly interested in their classification of commonly used tasks and measures,
as we use it as a basis for our own classification of comprehension tasks.
Their data show that participants in readability and legibility studies most
often have to provide information about the code, and correctness is favored
as a response variable.

Schröter et al. [SKSL17b] conducted a literature review of 540 ICPC papers
published between 2006 and 2016. They addressed three questions, namely
what the primary studies examined in the context of program comprehen-
sion, what terminology they used to describe the evaluation (e.g., empirical
study, user study, etc.), and whether they reported threats to validity. Their
investigation revealed that source code and program behavior are the most
frequently addressed parts of program comprehension studies at ICPC. More-
over, researchers would use “a diverse and often ambiguous terminology to
report their evaluation”. Finally, they found that the number of empirical
studies reporting threats to validity has increased in recent years. This study
complements our work very well, since it deals with program comprehension
studies in a broader scope and conducts similar investigations as we do.
Yet, we analyze the topic more deeply and consider numerous other study
design features, as – according to their comment on potential future work –
Schröter et al. [SKSL17b] themselves intended “to analyze in more detail
how evaluations on software comprehension are performed, for example,
regarding typical evaluation tasks and comprehension measurement”.
Related to the analysis of threats to validity is a literature survey by

Siegmund and Schumann [SS15] that compiles a catalog of confounding
parameters discussed in program comprehension studies. Their survey
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includes papers from 13 journals and conferences over a period of 10 years
and results in 39 confounding parameters. In our systematic mapping study,
we will use the resulting categories of confounders as a basis to categorize
discussed threats to validity in code comprehension studies. We will come
back to this in more detail in Section 3.2.3.8.
In addition to the meta-studies described above, several primary stud-

ies address specific aspects of the design of code comprehension studies
and provide evidence for consequences of certain design decisions. This
started almost 40 years ago with studies on the differences of certain task de-
signs [CBF84; HZ86]. Over the years, this line of research was extended with
studies on the comparability of different comprehension measures [AWF18;
RC97; Shn77; YYZD21], the influence of cognitive biases on subjective and
objective code comprehension measures [WMG22a; WPGW21], and the ac-
tual influence of suspected confounding variables like intelligence, expertise,
or code length [BP16; FWS93; Tea94; WW22]. All of these studies finally
culminated in the current discussions about capturing psycho-physiological
data to better understand program comprehension [Fak18; SPB+20; VF21].
While these primary studies all contribute to informed decision-making on
individual design aspects, our mapping study reviews multiple design char-
acteristics in their entirety and examines interactions between individual
aspects.
In summary, designing code comprehension studies has interested the

research community for many decades, and yet a detailed, comprehensive
study to capture the actual state of past and current study characteristics is
lacking. We fill this gap with a systematic mapping study.

3.2.2. Methodology

A systematic literature review (SLR) focuses on synthesizing the available ev-
idence for a topic [KC07]. Conversely, a systematic mapping study (SMS) is a
different type of secondary study with a focus on summarizing the conducted
research on a certain topic to provide structure [PFMM08]. Unlike in SLRs,
quality-based exclusion is therefore usually not essential in an SMS [PVK15],
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as the goal is to describe and map what topics were investigated in what
way. Since this is well suited to our objective, we decided to follow the SMS
methodology.

The research questions that guided us in our study on experiments about
bottom-up source code comprehension are as follows:
RQ1.1 How can the studies be classified in terms of their relationship to

code comprehension?
RQ1.2 What are differences and similarities in the design characteristics of

the studies?
RQ1.3 What are differences and similarities in the reporting characteristics

of the studies?
RQ1.4 Which issues and opportunities for improvement are evident in the

design and reporting of the studies?
The answer to RQ1.1 is intended to provide insights into what research

concerns the primary studies address. The focus, however, is not on a possible
synthesis of evidence, but on the classification of the research topics as well
as their relationship to the code comprehension construct, e.g., whether a
certain influence on code comprehension was investigated or, conversely,
whether the influence of code comprehension on a certain construct was
investigated.

RQ1.2 forms the core of this systematic mapping study. The answer to this
question provides comprehensive insights into the unclear status quo of the
design of code comprehension studies. RQ1.1–RQ1.3 were systematically
addressed using the methodology described in the following subsections.
The data obtained is analyzed in Section 3.2.3 and forms the basis for the
subsequent discussion of RQ1.4 in Section 3.2.4. This discussion should
improve the quality of code comprehension studies in the medium term and
should immediately result in concrete proposals for improving the design
and reporting of code comprehension studies.

The following subsections explain our approach to searching and selecting
relevant literature, as well as to data extraction and analysis. An overview
of the methodology is depicted in Figure 3.1.
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Figure 3.1.: Schematic representation of the research methodology

3.2.2.1. Search and Selection Process

We designed our search strategy as a pure snowballing approach, following
Wohlin’s guidelines [Woh14a]. Beginning with a start set of relevant papers
known to us, the referenced as well as referencing literature was reviewed
for a set of inclusion and exclusion criteria. This process is called backward
and forward snowballing, and it is repeated on newly included literature. We
stopped the literature search after two iterations of backward and forward
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snowballing, as we approached saturation.
Snowballing as part of a systematic literature search is not uncommon. Of-

ten, however, a database search with predefined search strings is performed
before snowballing to identify an initial set of relevant papers. We refrained
from doing so, as a thematically broad literature search via databases leads
to a high number of non-relevant search results and thus to considerable
effort. Searching for all papers that measure bottom-up source code compre-
hension in some way would have to cover a wide range of research topics
and would lead to very generic and extensive search terms. We consider
snowballing with a reasonable start set to be more targeted and efficient.
Furthermore, there is evidence that snowballing is similarly effective as and
usually more efficient than database searches [BWP15; JW12; Woh14a].

Start Set. We build our tentative start set on the results of a recent litera-
ture search by Muñoz Barón et al. [MWW20], who searched for program
comprehension data sets at the source code level. Similar to our systematic
mapping study, their study searched for empirical studies that measured
source code comprehension with human participants, but in a final step
filtered for those that had published their dataset. They then continued
working with these data sets to validate a code comprehensibility metric.
Muñoz Barón et al. [MWW20] identified a total of 10 code comprehension
datasets, whose associated papers we use as tentative start set for our SMS.
Nine of the ten papers meet our inclusion criteria (see below). The one

excluded paper was a pilot study for another study in the start set and was
therefore considered a duplicate. Wohlin stresses that “there is no silver
bullet for identifying a good start set” [Woh14a]. However, he describes
characteristics that a good start set should meet, and we will briefly discuss
them.

Since Muñoz Barón et al. [MWW20] conducted a broad database search to
find relevant literature, the start set fulfills the criterion of covering different
communities and the criterion of containing keywords that are closely related
to our research questions. The titles of the papers cover a variety of potential
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clusters related to program comprehension: program comprehension in
general, code and software readability, physiological measures related to
program comprehension, code understandability, and code complexity.
A further criterion requires that the start set covers different publishers,

publication years, and authors. The nine papers in the start set were pub-
lished in IEEE TSE (5), ACM ESEC/FSE (2), and Springer EMSE (2), between
2003 and 2019. Three of the journal papers are extensions of previously
published research papers at the International Conferences on Automated
Software Engineering (ASE), Software Analysis, Evolution and Reengineer-
ing (SANER), and Program Comprehension (ICPC). The nine papers were
authored by 39 distinct authors.
Finally, a good start set “should not be too small” [Woh14a]. While nine

papers seems to be a small number, the papers in the start set have been
cited about 400 times and refer to about 500 papers. Hence, already after
the first snowballing iteration, we will have screened about 900 papers.

Inclusion and Exclusion Criteria. During the search process, a paper was
included in the final dataset only if it met all the inclusion criteria (I) and
none of the exclusion criteria (E):

I1 Reports an empirical study with human participants.
I2 Measures bottom-up source code comprehension.
I3 Published before 2020.
I4 Published in a peer-reviewed journal, conference, or workshop.
E1 Is not available in English.
E2 Is a meta-study.
E3 Is a replication without substantial modification.
E4 Is a duplicate or extension of an already included paper.

Inclusion criteria I1 and I2 ensured that a paper was within the scope of this
work by describing empirical studies with human participants who needed
to understand source code. Examples of code comprehension studies that do
not meet I1 include those that only analyze existing data (see, e.g., [PHD11;
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TCM+18]).
I2 was only fulfilled if the quality or performance of a participant in un-

derstanding code was measured (not, for example, how participants proceed
in understanding code, as in, e.g., [AS96; LGHM07]). Of all the criteria,
I2 represents the one that was the most challenging to evaluate because
primary studies to date rarely define the construct under investigation, and
we will later see that authors use different terms for the same construct. We
also emphasize that in evaluating I2, we focused on the authors’ intent and
only rarely judged at this stage of our study whether the chosen task design
of a primary study can actually measure understanding. If we could not find
any explicit indication that the primary study was intended to measure code
comprehension and at the same time the task design was not explicit in this
respect, we did not include the primary study.
The rationale for restricting our search to papers published before 2020

(I3) was that we started our literature search in early 2020 and that this
constraint would increase the reproducibility and extensibility of our ap-
proach. Including only peer-reviewed literature (I4) served the purpose of
quality assurance. Thus, our dataset contains only primary studies whose
methodology has been considered sound by at least a few members of the
community.

A paper was excluded if it was inaccessible to us due to a language barrier
(E1), if it was a meta-study (E2), or if the design of the study was similar to
that of an already included one because it was a replication, duplicate, or
extension (E3 and E4). We added E3 and E4 to avoid possible bias in the
quantitative analysis of the data. Even with extensions, the original study
designs are rarely modified, which means that inclusion of the original study
and the extension would cause the specific design decisions to be considered
twice in the analysis. Regarding the impact of E3, we identified only one
replication that would have met our inclusion criteria, namely Fucci et al.
[FGN+19].

The set of papers resulting from the search and selection process is char-
acterized in detail in Section 3.2.3.1. In total, we included 95 papers. The 9
papers in the start set led us to 41 relevant papers. On these 41 papers, we
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again performed a snowballing iteration, which yielded 45 more relevant
papers. The ratio of newly included literature to literature screened in this
second snowballing iteration made us confident to assume a saturated data
set at this point. We therefore stopped searching for relevant literature after
the second iteration.

3.2.2.2. Data Extraction and Analysis

Before data extraction, all data items to be extracted were defined with a
description as precise as possible. In addition to DOI, APA citation, publication
year, and venue, 17 additional columns were filled in a spreadsheet for each
of the 95 included papers to characterize different aspects of the study
design. The extracted data items are listed in Table 3.1. The results are
presented according to the same data item categories in Section 3.2.3.1
under subsections of identical names.

Table 3.1.: Extracted data items
Category Data Items
Included Papers DOI, APA citation, publication year, venue
Study Themes study category
Construct Naming construct name
Study Designs research method and experiment design
Participant
Demographics

#participants, demographics

Setting and Materials #snippets per participant, snippet pool size, code
snippet source, snippet selection criteria, remote
vs. onsite, paper vs. screen, programming lan-
guages

Comprehension Tasks
and Measures

comprehension tasks, construct measures

Reported Limitations limitations

Two researchers independently performed the extraction for all papers in
the start set (9) and the first snowballing iteration (41). In several meetings,
each extracted cell was then reviewed for agreement and, if necessary, a
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consensus was reached through discussion. Over time, we thus established
a strong understanding of the literature and difficulties in the extraction
process. This four-eyes principle was highly time-consuming, but led to
greater certainty that the papers examined were correctly understood and
that no relevant details were overlooked.

In the second snowballing iteration, each of the first two authors extracted
half of the 45 newly added papers. Items about which one was unsure were
subsequently examined by the other. The same applied to papers where one
of us came to the conclusion during extraction that the study should actually
be excluded. Such a decision was never made alone. In the supplemental
materials, we transparently indicate which papers were extracted by which
author(s) [WBW22].

After extracting the design characteristics for all 95 papers, the data were
analyzed both quantitatively and qualitatively. Some data items such as pub-
lication date, number of study participants, and used programming language
could for the most part be analyzed without further data transformation.
Other data items such as the study themes and comprehension tasks first
had to be classified using thematic analysis [CD11], since the diversity of
these data was unknown at the time of data extraction. Finally, there were
items for which we extracted descriptive quotations that we first labeled and
then analyzed by category building. Examples of such data items are the
criteria for code snippet selection and threats to validity discussed by the
authors of the primary studies.

3.2.2.3. Threats to Validity

Our methodological approach has a few limitations that are relevant for the
interpretation of the results and that we would therefore like to point out in
advance.
In the search and selection process, we restricted ourselves to papers

published before 2020. The rationale was, as explained before, that we
started the systematic literature search in 2020 and intended to ensure
a replicability of the process. Our results will show a trend that a large
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proportion of included papers were published in recent years. Accordingly,
we should assume that some relevant papers were also published in 2021 and
2022 whose design characteristics are not all represented in our results. We
consider it worthwhile to conduct a similar mapping study again as early as
2026 to capture the latest trends in designing code comprehension studies.

Inclusion criterion I2 required a subjective judgment about whether a given
primary study intended to measure bottom-up source code comprehension.
We prioritized avoiding false positive inclusion decisions over avoiding false
negative ones. Our priority was to arrive at a dataset that included, with a
high degree of certainty, only those studies that met our inclusion criteria.
We may have incorrectly excluded a paper for this reason. On a related note,
no search process, whether it consists of a database search, snowballing, or
a hybrid approach, should claim completeness of the resulting dataset. Cer-
tainly, there are code comprehension studies that meet our inclusion criteria
but were mistakenly excluded or not discovered during the search process.
However, we are confident that the 95 papers found are a representative set
of papers for our inclusion criteria.
Regarding the quality of individual primary studies, we relied solely on

inclusion criterion I4, i.e., that the study was peer-reviewed. We did not per-
form any further quality assessment, as sometimes suggested in guidelines
for systematic literature reviews [Kee+07]. This decision is based on our
motivation to obtain the status quo of study designs accepted by the com-
munity. It is therefore unavoidable (and even desirable for us) that several of
the included primary studies have flaws in their design or reporting. After
all, it is these weaknesses that we aim to systematically identify and discuss.
As for the process of data extraction and analysis, we would like to

point out that in the second snowballing iteration, data extractions were
mostly performed by individual researchers. The same applies to the analysis
of extracted data. The categories of extracted data items were generally
analyzed and proposed by a single researcher. In both cases, however, results
were discussed in detail, and the opinions of the other authors were regularly
solicited. Each author also worked with data points extracted from the other
authors in the data analysis, which in a sense verified extracted data points,
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since one had to occasionally look at the papers again for their context.
Additionally, a few papers describe several different experiments. In case

of differences between these experiment facets, we therefore either selected
the dominant variant (e.g., for the experiment factor design) or a suitable
aggregated value (e.g., median number of snippets per participant) during
the synthesis. We make the entire process as transparent and traceable as
possible by publishing the data and analyses [WBW22].

3.2.3. Results

We present the results grouped by the categories introduced in Table 3.1. A
critical discussion of findings of particular interest follows separately in the
subsequent discussion section 3.2.4.

3.2.3.1. Included Papers

We included a total of 95 primary studies published from 1979 to 2019.
Figure 3.2 shows the number of published studies per year. A large proportion
of the included studies were published between 2010 and 2019 (67.4%),
and about half of all included studies were published from 2015 and onward
(51.6%).

41 papers were published in a journal, 45 in conference proceedings, and 9
in workshop proceedings. The papers were published in 51 different venues,
of which 39 appeared only once in the dataset. The top 4 venues by number
of included papers are EMSE (10), IWPC/ICPC1 (9), TSE (8), and ICSE (6).

1The International Conference on Program Comprehension (ICPC) was a workshop
(IWPC) until 2005. One included paper was published at IWPC.
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Figure 3.2.: Number of publications per year and venue

3.2.3.2. Study Themes

As a general starting point for study themes, we were interested in the study
distribution according to the following three relationship types:

• X⇒ code comprehension: the study analyzes how one or more other
constructs (X) influence code comprehension, e.g., identifier naming
length or developer experience.

• X⇔ code comprehension: the study analyzes the correlation be-
tween code comprehension and one or more other constructs (X), e.g.,
source code metrics or eye tracking data.

• code comprehension ⇒ X: the study analyzes how code compre-
hension influences one or more other constructs (X), e.g., developer
motivation or happiness.
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A study could be mapped to several of such instances, depending on its
scope and research questions. For example, Peitek et al. studied three in-
stances in S1: fMRI data⇔ code comprehension (RQ1), code complexity⇒
code comprehension (RQ2), and programming experience⇒ code comprehen-
sion (RQ3). Nonetheless, 78 of 95 studies in our sample were mapped to a
single relationship instance (82%), while only 13 and 4 studies were mapped
to 2 and 3 instances respectively. No study in our sample produced more
than three instances. To analyze the distribution of relationship types, we
assigned a primary type to the 17 studies with more than one type, e.g., S1
was categorized as X⇔ code comprehension because RQ1 was the primary
focus of their study.

As a result, the majority of studies, namely 67 of 95 (71%), belong to the
X⇒ code comprehension relationship type, i.e., analyzing which constructs
influence comprehension in which way is the most popular type of research
in our sample. The remaining 28 papers all belong to the relationship type
X⇔ code comprehension, i.e., they analyzed correlations between constructs
and code comprehension, mainly to evaluate suitable measurement proxies.
Surprisingly, we did not find a single study for the type code comprehension⇒
X. Potential explanations could be that such research is perceived as either
not industry-relevant or not suitable until further progress is made in defining
and measuring code comprehension as a construct.
In addition to these general relationship types, we also assigned one or

more thematic labels to each paper based on the study purpose (between
1 and 10 labels, median of 1). Afterwards, these labels were grouped
into higher-level categories (see Table 3.2). In total, we created 43 labels
assigned to 11 categories. Categories consisted of between 1 and 10 labels
(median of 3). The most popular categories in our sample were semantic
cues (e.g., identifier naming or comments), developer characteristics (e.g.,
experience or age), psycho-physiological measures (e.g., eye tracking or EEG),
and code structure (e.g., control structures or procedure usage). Less studied
areas were code improvement, test code, and mental models. Concerning
individual labels, 15 of the 43 themes were assigned to at least 4 papers
(see Figure 3.3). Among the most popular themes were identifier naming
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Table 3.2.: Study purpose categories (m. = mentions, l. = labels)
Category #m. #l. Description (‘One study goal is. . . ’)
semantic cues 30 3 to analyze how semantic information

in source files (e.g., identifiers or com-
ments) influence comprehension.

developer
characteristics

30 5 to analyze characteristics of developers
in the context of comprehension (e.g.,
experience or code familiarity).

psycho-
physiological
measures

29 7 to evaluate the feasibility of psycho-
physiological measures collected from
developers (e.g., fMRI or EEG) as prox-
ies for comprehension.

code structure 28 10 to analyze how structural attributes of
source files (e.g., control structures or
code size) influence comprehension.

code evaluation 10 2 to analyze or provide ways to evaluate
code understandability (e.g., metrics
or self-assessment).

programming
paradigms

9 4 to analyze and compare programming
paradigms w.r.t. comprehension (e.g.,
object orientation or reactive program-
ming).

comprehension
support

9 4 to analyze or provide ways to better
understand code without changing it
(e.g., code browsing techniques or dia-
grams).

visual
characteristics

8 3 to analyze the influence of visual code
characteristics on comprehension (e.g.,
indentation or syntax highlighting).

code improvement 4 3 to analyze or provide ways to change
existing code towards better under-
standability (e.g., methods or tools).

test code 3 1 to analyze or improve test code w.r.t.
comprehension.

mental models 3 1 to analyze how developers mentally
represent code and how this influences
comprehension.
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(16 studies), experience (15), comments (10), and control structures (9).
Additionally, three labels from the psycho-physiological measures category
are among the top 15: eye tracking (9), EEG (9), and fMRI (4).
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Figure 3.3.: Most popular study themes (assigned to at least 4 papers)

When analyzing the evolution of the four largest thematic categories over
the years (see Figure 3.4), we see that studies on semantic cues like identifier
naming and code comments were most popular early on but lost their relative
market share in the last decade. The relative popularity of studies on code
structure and developer characteristics increased, even though both are not
comparable to the meteoric rise of psycho-physiological measures. Enabled by
technological advances and the increased affordability of relevant devices,
the last 10 years saw an abundance of studies evaluating data from, e.g.,
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Figure 3.4.: Evolution of the four most popular study categories according
to their number of occurrences

eye tracking, fMRI, EEG, NIRS, or HRV as proxies for code comprehension.
This signifies a shifting focus of the research community towards a more
developer-centric and individual perspective of code comprehension. As
an example, Couceiro et al. even envision “biofeedback code highlighting
techniques” in S51, i.e., reporting complex or potentially buggy lines of code
in real-time during development, using data from non-intrusive techniques
such as HRV, pupillography, and eye tracking.

3.2.3.3. Construct Naming

For each primary study, we extracted the name used for the central construct
under investigation. In total, we identified 10 different construct names (see
Figure 3.5), which optionally could be combined with “code” or “program”.
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The most frequently used name was by far “comprehension”, with 72 of 95
studies (76%). Seven studies used “readability” as the construct name, even
though they measured comprehension, i.e., participants’ level of understand-
ing and not their ability for visual perception1. Four studies focused on their
concrete experiment tasks and explicitly used “task difficulty” as a construct.
The remaining seven constructs were all used by at most two studies.

The majority of studies (73 of 95) also used constructs describing an
activity like “comprehension” or “reading”. Only 22 studies used an attribute
like “comprehensibility”, “complexity”, or “cognitive load” as the construct.
Lastly, nearly half of the studies (47 of 95) combined their construct name
with “program”, 24 studies combined it with “code”, with the remaining 24
studies refraining from using such a modifier. As an example, 45 of the 72
studies using “comprehension” as the construct phrase it as “program com-
prehension”, 18 as “code comprehension”, and 9 only as “comprehension”.
With “program comprehension” being a superset of “code comprehension”,
using the latter would be more precise, as many studies we excluded for not
being concerned with bottom-up source code comprehension used the older
term “program comprehension”.

3.2.3.4. Study Designs

Concerning the used research methods, 94 of 95 studies conducted some
form of experiment. The one exception was S42, a field study performed
by Sedano to test a proposed code improvement method. Since the used
terminology on this may differ, we did not distinguish between different
types of experimentation, such as controlled experiments, experiments, or
quasi-experiments [WRH+12]. Moreover, such a distinction would have

1Comprehensibility, readability, and legibility are different constructs, and the program
comprehension community is starting to distinguish these more explicitly as can be seen, e.g.,
in the call for an 2022 EMSE special issue on ‘code legibility, readability, and understandability’
at https://tinyurl.com/EMSECfP. Code can be legible and readable due to being
presented in a certain way and using familiar keywords. However, readable code does not
necessarily have to be understood by the reader. In both code and text comprehension, there is
evidence that comprehensibility and readability do not necessarily correlate [BP16; ST92]. In
our mapping study, we restricted ourselves to studies in which code had to be understood.
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Figure 3.5.: Names for the central construct in our primary studies

provided little value for answering our RQs. We therefore classified all
studies that manipulated at least one independent variable while controlling
for other factors as an experiment. Nonetheless, the degree of manipulation
and control differs between studies. For example, Salvaneschi et al. used
two explicit treatments in S8, namely the object-oriented Observer design
pattern vs. reactive programming constructs. In comparison, Buse and
Weimer did not have such clear treatments in S6. Instead, their manipulation
manifested in the varying complexity of the many code snippets shown to
participants.

To be able to analyze trends and differences in experiment designs, we ex-
tracted the following properties that are loosely based on the methodological
publications from Juristo and Moreno [JM01] and Wohlin et al. [WRH+12]:

• Factor design: we extracted whether the experiment used a factorial
design, i.e., several factors were manipulated in parallel, or a one-at-a-
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time design, i.e., only a single factor was manipulated in parallel.
• Allocation design: we extractedwhether the experiment used awithin-

subject design (also called repeated measures design), i.e., each partici-
pant received each treatment at least once, or a between-subject design
(also called independent measures design), i.e., each participant only
received a single treatment.

• Randomization or counterbalancing of tasks: this is important for
within-subject designs to combat familiarization and carryover effects,
especially for the within-subject variant called crossover design [VAJ16].
We extracted whether this was applied (yes or no).

• Experience- or skill-based balancing: this is especially important
for between-subject designs, as they do not account for individual dif-
ferences between participants, e.g., regarding expertise or motiva-
tion [VAJ16]. Consciously balancing your groups regarding potential
confounders can mitigate such effects. We extracted whether this was
applied (yes or no).

within-subject between-subject

one-at-a-time

factorial

71 (76%)

23 (24%)

69 (73%) 25 (27%)

60

9 14

11

94 (100%)

Figure 3.6.: Distribution of factor and allocation design

92 3 | Forty Years of Designing Code Comprehension Experiments



Concerning the factor design, 71 of the 94 experiments in our sample
chose a one-at-a-time design. Only 23 studies used a factorial design, which
is generally considered to be both more complex and powerful. Concerning
allocation design, we see a similar imbalance, with 69 studies choosing a
within-subject design, which is considered to be more robust against par-
ticipant heterogeneity. Only 25 studies relied on a between-subject design,
where skill differences between groups can be a threat to the validity of
the results. When combining factor and allocation design (see Figure 3.6),
within-subject is substantially more popular for one-at-a-time designs (85%
of studies), while between-subject is a bit more frequently chosen for factorial
designs (61%).
A combined analysis with the publication year also reveals a shift in ex-

periment design over time (see Figure 3.7). Before 1990, most studies used
factorial between-subject designs. A typical example is S67, a 2x2 factorial
experiment published by Tenny in 1985. He analyzed the effect of inter-
nal procedures and code comments on comprehension by assigning each
participant to one of four groups: no procedures and no comments, no
procedures and comments, procedures and no comments, and procedures
and comments. Over the years, one-at-a-time within-subject designs started
to rise in popularity, until they became the dominant form of code compre-
hension experiments from 2010 and onwards. A typical example for this
is S3, an experiment to analyze the impact of identifier naming styles on
code comprehension published by Hofmeister et al. in 2019. In their study,
every participant received tasks for each of the three levels of naming styles:
single letters, abbreviations, and words.
Lastly, we analyzed the frequency of applying suitable precautions for

the respective weakness of the two types of allocation design, i.e., if within-
subject designs used randomization/counterbalancing and if between-subject
designs used experience- or skill-based balancing during group assignment.
Of the 69 within-subject designs in our sample, 45 applied randomization or
counterbalancing of tasks (65%). This means that approximately one third
did not use this proven technique to counteract potential familiarization
effects. However, the numbers are much worse for between-subject designs.
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Of the 25 experiments with this allocation design, only 6 balanced their
groups based on experience or skill (24%), i.e., 76% took insufficient or no
precautions in this area.

3.2.3.5. Participant Demographics

All included studies have in common that they used a sample of human
participants to answer their research question. The number of participants
ranges from 5 to 277, with a median of 34. Figure 3.8 shows the distribution
of sample size per paper. For papers that reported different numbers of
participants, for example, due to multiple reported sub-experiments, the
mean of minimum and maximum reported number of participants was used
for that paper (this has been the case for 13 papers).
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Figure 3.8.: Number of participants per study, grouped by venue type. Colors
indicate the demographic composition of the sample.
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About half of the 95 papers (53.7%) reported a sample that consisted
entirely of students. For 9 papers (9.5%), only professionals were included
in the sample. In 24.2% of the samples, the participants were composed
of students and professionals. 7 papers (7.4%) recruited a sample of stu-
dents and faculty members. For 4 papers (4.2%), we were either unable to
find any information at all or only very vague information on participant
characteristics.

Looking at the number of participants and their demographic characteris-
tics by type of venue (journal/conference/workshop), substantial differences
emerge. The number of participants for journal articles with a median of 61
(mean: 77.5) is higher than the median of 26 for conferences (mean: 58.2)
and the median of 26 for workshops (mean: 33.1). Furthermore, a sample
in a journal paper is least likely to be composed entirely of students (46.3%
of papers compared to 55.6% for conferences and 77.8% for workshops).
None of the nine included workshop papers sampled any professionals. Two
of the workshop papers recruited faculty members in addition to students.

3.2.3.6. Setting and Materials

We also extracted and analyzed several aspects of the experiment settings
and used materials, i.e., the code snippets. Regarding the experiment location,
72 of the 95 studies were conducted onsite (76%) and therefore had strong
control of the study environment. In 14 cases, a remote experiment was
chosen, thereby trading off some control for more and a wider variety of
participants. Two studies adopted a mixed approach, with both onsite and
remote participation. For seven studies, we could not reliably determine the
study location from the paper. The earliest remote study (S24 by Lawrie
et al.) was already conducted in 2007 based on a browser-based Java applet,
but the median year was 2019. Due to the COVID-19 pandemic, we expect
the percentage of remote experiments published in 2020 and later to be
substantially larger.

As the snippet medium, 67 studies presented the code on a screen (71%),
while 21 studies used code printed on paper. One study used both mediums.
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In six cases, we could not reliably determine if a screen or paper was used.
While we found studies published as recent as 2018 using paper (S34 by
Ribeiro and Travassos), the median year was 1996, indicating that this
becomes increasingly rare. Unsurprisingly, location and medium are also
interrelated to some degree, i.e., all 14 remote experiments used a screen,
while all 21 paper-based studies were conducted onsite.

Concerning the used programming languages for the snippets (see Fig-
ure 3.9), we identified a total of 21 unique languages (plus pseudocode).
The majority of studies (84 of 95) only used a single language for their
snippets, with eight studies using two languages, and a single study using
three, four, and nine languages respectively. The latter outlier is S42, where
Sedano let participants bring their own code snippets, resulting in a variety
of languages. With 45 papers (47%), Java is by far the most used language in
our sample. It is followed by C (14 studies), C++ (10), and Pascal (10). For
seven papers, we could not reliably extract the used programming language
from the paper (label n/a). A total of 13 languages were only used in a
single study. Studies using older languages like Fortran, Cobol, Pascal, Algol,
Basic, PL/I, or Modula-2 were all published before 2000, with a median year
of 1987.

We also extracted and analyzed the snippet pool size and number of snippets
per participant for each study. In four cases, we could not reliably determine
these metrics from the paper. The remaining 91 studies had a median snippet
pool size of 9, with a mean of 24.7 over the range from 1 to 389 snippets. 34
studies (37%) had 5 or fewer snippets, and 18 studies (20%) had between
6 and 10 snippets. Apart from that, we see a decent variety of snippet pool
sizes, with some outliers in the lower hundreds, like S89 by Asenov et al.
with 298 and S41 by Sasaki et al. with 389 snippets. In 45 cases, participants
worked on the complete snippet pool (100% snippet percentage). The
majority of these were within-subject designs, as treatments were most often
embedded into the snippets. In the remaining studies, participants worked
on very different percentages of the snippets, with peaks at 50%, 33%, and
25%. These correspond to frequently chosen numbers for groups or snippet
versions, namely two, three, and four. With larger snippet pools (30 and
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Figure 3.9.: Programming languages used in the experiments

more), the snippet percentage tended to be lower, even when no groups or
snippet versions were used, most likely to not exhaust participants. However,
there were also several exceptions, e.g., both Buse and Weimer (S6, 100
snippets) and Sasaki et al. (S41, 389 snippets) let each participant work on
all snippets. In summary, the average study in our sample used 25 snippets
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and let participants work on 70% of them (median: 9 snippets with 90%
snippet participation).
We further analyzed where the used snippets originated from, i.e., the

snippet source (see Figure 3.10). For 14 studies, we could not reliably
determine the source (n/a). The majority of the remaining papers used
a single source (68 studies), with 13 studies having two sources for their
snippets. The most popular source was that researchers created snippets
themselves (38 studies). In 22 studies, parts of open-source software were
used, sometimes slightly adapted. 21 papers simply reused snippets from
previous studies, and 8 papers relied on textbooks, e.g., from computer
science education. Only three studies used closed-source code from industry.
Lastly, two papers sourced from programming contests. Overall, the majority
of snippets were self-made or from open-source software, with snippets from
proprietary industry projects playing no major role.
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Figure 3.10.: Sources for code snippets

Finally, we extracted the snippet criteria, i.e., the requirements researchers
had for the selection or creation of code snippets and how they motivated
snippet usage. In total, we identified 17 criteria (see Tables 3.3 and 3.4).
Studies were labeled with between 0 and 8 criteria, with a median of 2

and a mean of 2.6. While 6 of the 95 studies did not specify any criterion
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Table 3.3.: Criteria for the creation or selection of experiment code snippets
(part 1/2, s. = studies)

Snippet Criterion #s. Description
balance between simplicity
and complexity

42 simple/small enough to be under-
stood in a reasonable time, but com-
plex/large enough to require some
effort and to be realistic

homogeneity concerning
potential confounders

29 minimize the influence of unrelated
factors such as naming styles, LoC,
line length, formatting, or indenta-
tion

novice friendliness 25 common beginner programming
tasks, typical text book problems or
algorithms known to students such
as shell sort or binary search

taken/adapted from exist-
ing studies

21 (partially) using/adapting snippets
from existing studies against the re-
sults can be compared

real-world code 19 taken/adapted from open-source or
industry code

self-contained functional-
ity

19 no additional context or external
functions necessary, e.g., a function,
static method, main method, test
class, etc. with a determinable pur-
pose

heterogeneity concerning
the targeted constructs

18 differences in code metrics, con-
trol structures, method chains, com-
ments, etc. to increase variance and
generalizability

requires bottom-up com-
prehension

15 obfuscate identifiers, remove bea-
cons and comments, etc. to force
line-by-line understanding

thematic heterogeneity 13 a different algorithm, domain, etc.
per snippet to avoid learning effects
or to increase generalizability
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Table 3.4.: Criteria for the creation or selection of experiment code snippets
(part 2/2, s. = studies)

Snippet Criterion #s. Description
no unnecessary cognitive
load

12 small inputs, simple arithmetic, no
recursion, no non-deterministic or
non-portable code, low computa-
tional complexity, no advanced OO,
etc.

no special domain knowl-
edge necessary for under-
standing

10 avoid specific domains to reduce bias
due to participant (in)experience,
use familiar use cases like Pacman

written in a popular/famil-
iar programming language

9 mainstream language or familiar to
participants, e.g., Java, C, Python

n/a 6 not explicitly specified in the paper
small enough to avoid ex-
tensive scrolling

5 code fits completely on screen, es-
pecially important for, e.g., fMRI or
eye-tracking studies

random sampling 5 snippets are randomly drafted from
a pool

no extensive usage of
(rare) APIs

4 avoid specific APIs to reduce bias due
to extensive language experience

never seen before by par-
ticipants

3 self-created/adapted to be new to
participants

code written by partici-
pants

1 participants needed to be familiar
with the code and should have writ-
ten it themselves

(n/a), 22 studies provided 4 or more rationales. As examples, Dolado et al.
did not provide any motivation why they used these snippets in S7, whereas
Siegmund et al. used nearly a full page to describe their snippet rationales
with admirable details in the dedicated subsection “Designing and Selecting
Code Snippets” (S84, labeled with 8 criteria). Snippet criteria fell into one of
three categories: a) related to experiment design, b) related to generalizability,
and c) related to participants.
Experiment design: By far the most used criterion (42 of 95 studies)
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was that snippets needed to fulfill a delicate balance between simplicity and
complexity. They had to be simple and small enough so that participants
could understand them within a reasonable timeframe of the experiment
yet, simultaneously, they had to be large and complex enough to require a
minimum of effort and to not lose all realism. What this meant in practice,
however, could be very different depending on the studied constructs and
the experiment design: Hansen et al. (S39) only used snippets between
3 and 24 LoC, Scalabrino et al. (S5) aimed for between 30 and 70 LoC,
while Castelhano et al. (S10) argued that between 50 and 100 LoC would
be ideal for their experiment. Another prominent dichotomy was that snip-
pets should possess both homogeneity concerning potential confounders (29)
and heterogeneity concerning the targeted constructs (18). In this sense, re-
searchers normalized unrelated factors in their snippets, e.g., naming styles
or formatting, but created differences within their studied constructs such as
code metric ranges or control structure usage to increase variance or gener-
alizability. A special case to avoid confounders was the conscious elimination
of unnecessary cognitive load (12). Researchers removed or avoided, e.g.,
complex arithmetic, recursion, or high computational complexity to allow
participants to focus on the comprehension of the essential parts of the study.
In 19 studies, it was important for researchers that snippets represented
self-contained functionality with a determinable purpose. These were, e.g.,
complete functions, static methods, or main methods. Additionally, 15 stud-
ies ensured that a snippet requires bottom-up comprehension by obfuscating
identifiers and removing beacons and comments, thereby forcing line-by-line
understanding. Lastly, five studies ensured that a snippet was small enough
to avoid extensive scrolling because some fMRI or eye-tracking experiments
required that snippets fit completely on screen.

Generalizability: The most prominent criterion in this category was using
snippets taken or adapted from existing studies (21) to build on previous
knowledge and to make results comparable. Similarly, several papers re-
quired real-world code (19), i.e., that snippets were taken or adapted from
either open-source projects or proprietary industry projects to be realistic. A
few studies combined this with random sampling (5) from a large corpus
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of open-source projects. Furthermore, 13 studies prioritized the thematic
heterogeneity of snippets and used, e.g., different algorithms or application
domains per snippet, mostly to increase generalizability, but sometimes also
to avoid learning effects.
Participants: Since a large portion of the studies relied on students as

participants, a prominent snippet criterion was novice friendliness (25). There-
fore, common programming tasks for beginners and typical problems or
algorithms from text books were selected. Similarly, some researchers also
ensured that no special domain knowledge was necessary for understanding
(10) to not be limited to participants from certain backgrounds. In some
cases, popular use cases or applications were chosen, e.g., Yu et al. used
the game Pacman in S20. To increase their sampling pool, researchers also
prioritized code written in a popular programming language (9) that was
familiar to their participants (e.g., Java, Python, or C) and avoided extensive
usage of (rare) APIs (4). Lastly, three studies ensured that their snippets were
never seen before by participants and a single study (S42 by Sedano) required
code written by participants so that they were very familiar with it.

3.2.3.7. Comprehension Tasks and Measures

The core of any code comprehension study, at least from the participant’s
point of view, is the actual code comprehension task. Such a task, sometimes
several in a single study, provides data for the analysis of a participant’s code
comprehension performance. The precise nature of this analysis and the
data collected for it are defined by comprehension measures. In this section,
we first look at the variety of designed comprehension tasks, then at the
variety of comprehension measures, and finally at how comprehension tasks
and comprehension measures co-occur.

Comprehension Tasks. Table 3.5 shows the variety of comprehension tasks
and how many studies implemented which type of task. The classification
is a refinement of the division used by Oliveira et al. [OBMC20] to group
comprehension and reading tasks in their study. All tasks could be assigned
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to four overarching task categories (Tc): provide information about the code
(Tc1), provide personal opinion (Tc2), debug code (Tc3), and maintain code
(Tc4).

81% of all papers (77/95) use at least one task that requires participants
to provide information about a code snippet to be understood (Tc1). Among
these, 67.5% exclusively used tasks from Tc1. Three tasks in particular
stand out as most frequently used: answering comprehension questions (33),
determining the output of a program (26), and summarizing code verbally
or textually (22).
27 (28.4%) of the papers were interested in a personal assessment of

the participants (Tc2), of which 7 exclusively used tasks of this category.
Preferably queried was a rating for the perceived code comprehensibility, in
two cases for one’s own code comprehension, four times for the confidence
in one’s own comprehension, in five papers the difficulty of the task was
to be assessed, and in four papers code snippets were compared or ranked
regarding the comprehensibility of other code snippets in these studies.
In 7 studies, subjective evaluations were requested, which differ from all
others and are therefore listed under “other subjective indications” (e.g.,
S46: provide opinion of identifier type importance, or S78: identify most
helpful code lines).
For 11 studies, a debug task (Tc3) was used to derive statements about

code comprehension. Five of them exclusively considered this task category.
In seven papers, and thus most frequently in Tc3, participants had to find a
bug. In three studies, a bug had to be fixed. One study required a judgment
about whether the code was correct or not.
We identified eight papers that asked participants to complete a mainte-

nance task (Tc4). In three cases, a Cloze test was used, a test in which gaps
in the code must be filled. In three studies, code had to be extended, and in
two studies, code had to be refactored. An example of the latter case is from
Bois et al. (S82), who investigated the differences in the comprehension
effectiveness between refactoring code and reading code.
While 66 of the 95 papers used exactly one task category, it was three

for S4, S33 and S38. In two studies (S18 and S19), we could not find any

104 3 | Forty Years of Designing Code Comprehension Experiments



Table 3.5.: Comprehension tasks that participants had to work on
Comprehension Task Studies

Tc1: Provide information about the code
Answer comprehension
questions

S5, S8, S31, S32, S33, S34, S36, S37,
S43, S44, S45, S51, S52, S54, S56,
S62, S63, S67, S68, S69, S71, S76,
S77, S80, S81, S82, S83, S86, S89,
S90, S91, S92, S93

Determine output of
a program

S1, S2, S5, S7, S9, S11, S12, S13,
S14, S15, S16, S17, S23, S25, S37,
S39, S48, S50, S57, S59, S60, S68,
S70, S77, S84, S88

Summarize code verbally
or textually

S4, S11, S20, S24, S29, S35, S36,
S37, S38, S42, S46, S47, S49, S58,
S61, S72, S75, S77, S79, S87, S94,
S95

Recall (parts of) the code S29, S44, S61, S66, S72, S73, S74
Determine code trace S35
Match with diagram or
similar code

S77, S84, S85

Tc2: Provide personal opinion
Rate code comprehensibility S4, S6, S34, S36, S42, S49, S53, S69,

S70, S75
Rate own understanding S5, S31
Rate task difficulty S12, S14, S23, S38, S51
Rate confidence in answer S23, S24, S33, S94
Compare or rank snippets S21, S22, S40, S78
Other subjective indications S21, S22, S33, S41, S46, S78, S85

Tc3: Debug code
Find a bug S3, S10, S28, S38, S55, S64, S87
Fix a bug S26, S27, S77
Determine if code is correct S33

Tc4: Maintain code
Cloze test on code S4, S30, S74
Extend the code S21, S26, S27
Refactor code S65, S82
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information about the comprehension tasks in the paper. Perhaps the most
unusual comprehension task was reported by Gilmore and Green (S90),
who presented their comprehension questions as crimes that a detective had
to solve based on information from an informant. The peculiarity of this
study was that the sample consisted of non-programmers, and therefore an
interesting scenario had to be created.

Comprehension Measures. Almost all studies have measured how well par-
ticipants perform in comprehension tasks. The three studies S16, S17 and
S54 were the exception; participants had to understand code, but there
was no attempt to quantify how well they understood it, since, for example,
the focus was on the observation of psycho-physiological responses only. In
all other cases, the comprehension measures used can be divided into six
categories: correctness, time, subjective rating, physiological, aggregation of
the former, and others.
Figure 3.11 shows the percentage of comprehension measures to the

number of papers in each period. In all decades, the share of papers that
measured at least correctness was highest. Before 2000, correctness was even
measured in all published papers, but the share decreased to 65.6% in 2010–
2019. The proportion of papers that asked for subjective self-assessments
or measured time increased over the years. Most notable, however, is the
increase in the use of physiological measures, which were used in over a
quarter of publications in 2010–2019.
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Figure 3.11.: Comprehension measures used relative to number of papers
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Of the 95 papers, only 37 measure code comprehension in a single way.
36 papers rely on 2, 15 papers rely on 3, and 4 papers rely on 4 measures
from different categories. The measurement of correctness and time was
the most frequent combination of measures with 23 papers, if more than
one measure was collected. In the period 2010–2019, we also identified for
the first time four papers that not only measured multiple comprehension
measures in their study, but even aggregated them. This involved combining
correctness and time in three studies (S9, S26, S27). Scalabrino et al. (S5)
aggregated correctness, time, and subjective ratings in different ways: by
combining correctness and time, but also correctness and subjective ratings,
and time and subjective ratings.
At this level of granularity, it is possible to summarize very well which

trends there have been over the years and which way of measuring code
comprehension seems to be the most popular. It is also closest to the termi-
nology used in the primary studies themselves for the various measures if an
abstraction of the specific calculation is used in the report (e.g., “The metrics
used to investigate these questions are time and correctness [. . . ]” [AWF18]).
A closer look, however, reveals that almost every paper differs in the concrete
implementation of the measures.
Consider correctness as an example. With 70 papers (73.7%), it is the

most prominent comprehension measure in our dataset. Our primary studies
often measured it via the relative or absolute number of correct answers to
comprehension questions or bug finding tasks. However, we also found the
usage of f-measures (e.g., S63, S65), number of correctly recalled identifiers
or statements (e.g., S29, S73), number of fails until a correct answer was
given (e.g., S28), number and severity of errors (e.g., S48), as binary variable
(e.g., S61, S62), manually rated functional equivalence of recalled code (e.g.,
S73), automatically or manually rated code changes (e.g., S20, S26), and
manually rated free-text or oral answers (e.g., S24, S29, S36, S39, S79,
S94).
For the measurement of time and subjective ratings, there is a similarly

large variance in the concrete implementation. For more detailed insights,
we refer the interested reader to our dataset [WBW22]. At this point, we
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would rather elaborate on the measurement of code comprehension via
physiological measures, since these are still relatively novel in the field of
code comprehension as a whole.

The category of physiological (or psycho-physiological) measures includes
the measurement of code comprehension via responses of the human body
or brain to performing code comprehension tasks. In our dataset, we en-
countered the measurement of fMRI data (brain activation regions, concen-
tration levels, brain activation strength, cognitive load, blood oxygen level
dependent), fNIRS data (regional brain activity), and eye-tracking data
(visual/mental effort, e.g., on gaze behaviors such as number of fixations
and their duration).

The primary studies that use such measures already provide initial findings
on physiological responses in code comprehension, but are currently still
largely to be understood as feasibility studies. For example, they investigate
correlations with conventional comprehension measures (see, e.g., S1, S12–
S19 and also Section 3.2.3.2). In the medium term, psycho-physiological
measures could provide more objective information about the process and
performance of an individual during code comprehension [Fak18] and, e.g.,
help to investigate “the role of specific cognitive subprocesses, such as atten-
tion, memory, or language processing” [S17].
Finally, we note that we could not assign measures to the categories

described above in only five cases. These measures ended up in the “other”
category. S21 and S59 used code metrics to measure code comprehension,
S28 visual focus via a sliding window (not via physiological measures), S47
the number of animation runs of a code visualization tool, and S81 the
number of times an algorithm was brought into view. However, none of the
five corresponding papers exclusively used these measures, so they are also
represented in at least one of the other measure categories.

Combinations of tasks and measures. Counterintuitively, comprehension
tasks and comprehension measures were rarely mutually dependent in their
selection. Almost all comprehension measures, or at least the categories pre-
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sented, can be applied to all types of comprehension tasks that we identified
in this mapping study. Nevertheless, some combinations occur significantly
more often than others.
The combination of correctness and Tc1 (provide information about the

code) appears most frequently; about two thirds (66.3%) of all papers use
at least this combination of measure and task, and 16.8% of all papers use
this combination exclusively. If debugging tasks (Tc4) are used, then at least
correctness is measured in all cases. If, in contrast, tasks from Tc2 (provide
personal opinion) are used, correctness only occurs in 55.6% of these cases
in the paper. Tc2 tasks are mainly evaluated by subjective ratings (96.3%
of all tasks in this task category appeared in papers at least with subjective
rating measures).

Summary. In summary, there has been a change in the use of measures
over time, both in terms of increasing variety and decreasing dominance
of individual measures. The concrete design of comprehension tasks is in
itself very diverse. Moreover, there are almost unlimited possibilities for
combining tasks and measures, which makes almost every paper unique in
its way of measuring how well a participant understood source code. We
discuss the consequences of this observation in Section 3.2.4.

3.2.3.8. Reported Limitations

We extracted study design limitations described by the authors of the primary
studies. Already in the extraction of the limitations, we have only extracted
those limitations that the authors themselves also considered as such and
not aspects that the authors explicitly assume not to be threats because,
for example, they have been mitigated. The extracted threats were then
analyzed qualitatively and quantitatively in several steps, which we describe
below.

Each limitation was labeled, and the resulting label was assigned to a class
of validity threats. The classification is one that is usually used for reporting
empirical experiments in software engineering [JCP08; WRH+12]: internal,
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external, construct, conclusion, and other validity threats. If the authors
themselves have made use of this classification, we have followed their
distinctions (which was the case for 30 papers). Otherwise, we have classified
the labels ourselves by following the descriptions provided by Jedlitschka
et al. [JCP08]:

• “Internal validity refers to the extent to which the treatment or inde-
pendent variable(s) were actually responsible for the effects seen to
the dependent variable.”

• “External validity refers to the degree to which the findings of the
study can be generalized to other participant populations or settings.”

• “Construct validity refers to the degree to which the operationalization
of the measures in a study actually represents the constructs in the
real world.”

• “Conclusion validity refers to whether the conclusions reached in a
study are correct.”

• “Other threats than those listed above may also need to be discussed,
such as personal vested interests or ethical issues regarding the se-
lection of participants (in particular, experimenter-subject dependen-
cies).”

The individual labels are similar in part because different studies report
similar limitations. We therefore categorized the labels to better grasp the
diversity of limitations. The work by Siegmund and Schumann [SS15],
who compiled a list of confounding parameters in program comprehension
studies, builds the basis for these categories.

Since Siegmund and Schumann focused on confounders, their categories
and descriptions are mainly focused on the consequences for internal (and
construct) validity. We nevertheless tried to stay close to this list to allow
for comparability of results. To accomplish this, we have slightly renamed a
few categories and added missing categories as needed. Existing category
descriptions were rewritten so that they answered the question of how the
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authors of a primary study think that an aspect of validity of their study
could be limited or threatened. All category descriptions are part of our
supplemental materials [WBW22].

The specific aim of this review of reported limitations is to assist researchers
in designing new studies by providing them with a list of threats that other
researchers have previously reflected on for their design. We therefore
considered it useful to group the categories according to different design
aspects. For example, when selecting code snippets, one can specifically
look at the list of threats found under “code snippet selection”, and when
designing a comprehension task, consider the threats under “task design”.
In such a phase of the study design, all potential threats have to be assessed
anyway, regardless of how their consequences can be classified. Therefore,
threats to internal, external, construct, and conclusion validity can be equally
represented behind the respective categories.

Results. Of the 95 studies, 79 reported threats to validity. Interestingly,
for the other 16 (16.8%), no correlation with publication year or venue
can be found. Nine papers were published up to 2006, so they tend to be
older. However, the remaining seven papers without threats to validity were
published since 2017, i.e., in the past five years. Moreover, 13 of them
are either journal or conference articles. Only three are workshop papers,
where one can assume that space limitations are the reason for not reporting
limitations.

The analysis resulted in 376 labels, which is equivalent to 376 individual,
non-unique threats to validity that have been reported. As can be seen
in Figure 3.12, most of the labels are equally distributed between internal
(39.4%) and external (40.7%), followed by construct validity threats (15.4%)
and rare cases of conclusion validity threats (4.3%). One can assume that at
least one internal or one external threat is reported in a paper if threats to
validity are reported. Nevertheless, at least one construct validity threat is
reported in 46.8% and at least one conclusion validity threat in 17.7% of
the papers that report any threats to validity.
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The only label we assigned to the other class was a threat from study
S17, which can be described as a high data drop-out due to the chosen
comprehensionmeasures (fMRI and eye tracking) in a proposedmethodology.
Since this class of other threats did not occur significantly often, we will
only discuss internal, external, construct, and conclusion threats in further
reporting for simplicity.

# of papers# of labels

threat classification

200

150

100

50

0
internal external construct conclusion other

Figure 3.12.: Number of labels and papers within the threat classification

Tables 3.6 and 3.7 constitute the main contribution of this section. It lists
52 threat categories, 33 of which come from the study by Siegmund and
Schumann [SS15]. For each category, the number of assigned labels and the
distribution of the labels among the threat classifications are provided. In
the following, we highlight some interesting findings.
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Table 3.6.: Frequency of reported threat categories. For each category, a
stacked bar chart indicates the share of threats assigned to one
of the four classes (internal, external, construct, conclusion)

Threats Related To #Labels
Participants

Individual background
Color blindness 0
Culture 2
Gender 3
Intelligence 1
Background (generic) 5

Individual knowledge
Ability 3
Domain Knowledge 1
Education 4
Familiarity with study object & context 7
Familiarity with tools 3
Programming experience 23
Reading time 0

Individual circumstances
Fatigue 5
Motivation 5
Treatment preference 0
Stress 1
Affective state 1

Selection
Sampling strategy 43

Data analysis
Data consistency 4
Mortality and Study-object coverage 2
Subjectivity in evaluating data 16
ML data and model 2
Data quality 12
Preliminarity of exploratory results 2

114 3 | Forty Years of Designing Code Comprehension Experiments



Table 3.7.: Frequency of reported threat categories (continued). Bar chart
colors: internal, external, construct, conclusion

Threats Related To #Labels
Materials

Code snippet selection
Content of study object 35
Programming language 18
Layout of study object 2
Size of study object 22
Number of study objects 7
Snippet sampling strategy 7

Code environment
Code editor 7
Snippet context 2
Code environment (generic) 1
Supporting materials and resources 1

Task design
Difficulty 8
Time limit 2
Task procedure 14
Task description / study introduction 5

Operationalization and measures
Instrumentation 39
Mono-method bias 1
Mono-operation bias 4
Construct operationalization 9

Research design, procedure and conduct
Learning effects 12
Ordering 1
Experimenter-subject interaction 1
Evaluation apprehension 3
Hawthorne effect 3
Process conformance 5
Technical issues 3
Causal model 15
Concentration impairment 2
Diffusion or imitation of treatments 2
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First, we did not assign labels to three categories that we adopted from Sieg-
mund and Schumann [SS15]: Color blindness, Reading time, and Treatment
preference. This may be explained by our restriction to bottom-up source
code comprehension studies, which means that we only consider a subset of
the program comprehension papers that Siegmund and Schumann [SS15]
analyzed and that these threats happened to be discussed only in the other
papers. Threats in these three categories also occurred comparatively rarely
in the analysis by Siegmund and Schumann [SS15]. We nevertheless left
these categories in the table for ease of reference.

Second, many discussed threats are reported quite generically in our pri-
mary studies, i.e., without a clear description of what the actual threat is
and without an explanation, why a certain design property is a limitation.
For example, with 43 label occurrences, the rather generic category Sam-
pling strategy is the largest threat category in our dataset. It contains, e.g.,
descriptive statements of the resulting participant sample of a primary study,
such as all participants being students, and that it is unclear whether such a
sample can be generalized to industrial professionals. Labels in this category
do not provide a rationale for why such a threat would exist, although we
identified 17 other participant-related categories that would allow for more
nuanced assumptions. Speaking of assumptions, it is furthermore striking
that hardly any studies explicitly cite any evidence at all for the suspected
threats to validity. We address the issue of potential evidence gaps and the
need for more intensive reflection on the threats to one’s own primary study
in our discussion.

Third, in some cases, threat classes dominate individual aspects of a study
design. For example, the selection and design of thematerials predominantly
has a presumed influence on the external validity of a study. Researchers
often discuss that their code snippets are relatively short (size of study object)
and therefore the generalizability to longer snippets is unclear. By contrast,
when it comes to research design, procedure and conduct, consequences for
internal validity are discussed almost exclusively: learning effects and general
threats to ensure causal relationships (causal model) are the categories with
the most labels here.
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At the same time, these are examples of threat categories that mutually
affect each other. More extensive code snippets would lead to more variance
in the snippet features, and thus to more potentially uncontrolled influences
that make causal inferences difficult. The researcher must now balance
between strengthening internal validity and strengthening external validity.
Fourth and finally, measuring how well someone has understood code is

apparently difficult. It is not only the case that researchers in code com-
prehension studies have to deal with potential threats to validity from over
50 categories. In the end, 39 labels were assigned to the instrumentation
category and another 9 to the construct operationalization category, two
categories that both directly address the fundamental question of how the
performance or process of code comprehension is operationalized and mea-
sured. In the respective papers (e.g., S4, S9, S63, S69), it is sometimes
discussed quite openly that there is uncertainty about whether the chosen
way to operationalize the construct of understanding, e.g., via time and cor-
rectness, is adequate at all, and that the used measurement instruments have
validity issues. Such insights point to the need for the research community to
achieve more certainty in the design of code comprehension studies through
discourse and research in the future, and strengthen our motivation for this
work to take a step in this direction with a synthesis of the state-of-the-art.

3.2.4. Discussion

One of the motivations for our systematic mapping study was to provide
researchers with confidence in their study designs by highlighting what is
considered acceptable by the research community. This should not only
serve as a helpful overview for newcomers to the field, but may also enrich
the perspective of seasoned researchers on this topic, e.g., by providing
insights into trends and identified shortcomings. To summarize which design
decisions have dominated the research field in the past, we therefore start
this section with a description of the typical code comprehension experiment.
On the one hand, there are certain design options that are taken more

frequently than others. For example, the majority of studies examine the
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impact of a construct on code comprehension, using one-at-a-time within-
subject designs. There are usually fewer than 50 participants sampled, of
which at least some are students. The used code snippets are often specifically
created for the study, Java is clearly the programming language of choice,
and participants are shown the snippets on a screen. When it comes to
understanding the snippets, participants are required to provide information
about the code, e.g., by answering comprehension questions or determining
the output for a given input. The typical evaluation assumes that the faster
participants provide the correct answer, the better their understanding. Last
but not least, researchers are aware that every study design comes with
limitations, which is why almost all papers discuss threats to validity.
On the other hand, it also became clear that ‘the typical code compre-

hension experiment’ does not exist. Each study in our dataset is unique.
For example, there is an incredible variance in the design of the concrete
comprehension tasks and measures. Almost all studies come up with their
own individual task design, even though all of them ‘only’ try to measure how
well a participant understood a certain code snippet. Why does every study
develop its own code comprehension tasks? Are existing study designs not
convincing, or does every research question actually require an individual
approach?
We suspect that part of the variance is due to uncertainty. The most

important driver in the design of code comprehension studies is currently the
intuition of the researchers behind the studies. There is a lack of theoretical
foundations on which all code comprehension studies could be built. Such
foundations should offer (1) a common definition of code comprehension,
(2) a mental model describing how code is represented in a developer’s mind
and (3) a cognitive model that explains the process of code comprehension.
A strong theory with these three parts would greatly help with anchoring
new research designs and integrating empirical findings. Without such
foundations, you almost cannot help but rethink every design decision to
answer a research question, as it is simply not apparent from existing primary
studies whether assumptions made and views held about an underlying code
comprehension model are consistent with your own. In other words, so far,
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everyone has been doing it in a way they think is reasonable — after all, no
one really knows what is reasonable at the moment.
In the 1980s and 1990s, several cognitive models have been proposed

for code comprehension (see Section 2.1). We expected that these models,
in particular the integrated model [VV95], would be the basis to inform
hypothesis development and experiment design for code comprehension
studies. Yet, in most experiments, this seems not to be the case. Regarding
the hypotheses and study purposes of the primary studies, we partly found
concepts of comprehension theories, although often without explicitly stating
this connection. Semantic cues and mental models are important concepts
in the integrated model. Likewise, code structure and visual characteristics
are relevant for the theory of program model structures. Yet again, these
concepts were most often not directly related to the respective theory, and
hence, do not act as rationales for the chosen design. The major exception is
S84, a study by Siegmund et al., who explicitly used the concepts bottom-up
comprehension, semantic comprehension, and programming plans to motivate
their experiment design.

The study themes we identified in the primary studies are also only partly
related to comprehension theories. Examples of theoretical concepts are
beacons, while identifier naming or control structures are at least related
to theoretical concepts. Similarly, the often used experience is related to
program-domain knowledge in the integrated model.
Concerning the code snippets used in the studies, grounding their prop-

erties in theoretical concepts seems especially important for an empirical
investigation. For example, the integrated model assumes rules of discourse
about how code is usually written, and that deviating from these rules will
make comprehension more difficult. Hence, we would expect an evaluation
of this characteristic for the used snippets. However, in our sample, we rather
saw discussions whether open-source code or artificially generated code
is used. This is related, but not the same concept. As a positive example,
there was usually a clear reference to theory when researchers obfuscated
identifiers or removed beacons to force bottom-up comprehension.
In our opinion, the most pressing issue in this area is that the selection
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of tasks and measures is not based on the integrated (or any other) theory.
Measures like the correctness of answers to comprehension questions are
somewhat related to the mental model of the participant. Yet, in the inte-
grated model, we have top-down structures, program model structures, and
situation model structures. Are the questions covering all three of them, or
only one? How does this impact the results of the study? A study could,
e.g., explicitly aim for understanding the impact of certain semantic cues in
the code only on the situation model. We found only [Shn77] evaluating
explicitly the developer behavior theory proposed in [SM79] by using recall
measures. All other studies seem not to rely on a theoretical foundation for
their tasks and measures.

Again, we consider diversity in study designs to be important for address-
ing research questions from multiple perspectives. However, each study
design in itself should be based on logically sound design decisions. This
is not currently possible, or at least difficult to evaluate, as basic research
on code comprehension has diminished significantly since the 2000s. The
earlier drivers of such research, e.g., on the distinction between bottom-up
and top-down comprehension, have not progressed to the point where we
could already support entire study designs with their models. We will come
back to this when we conclude this section with specific calls to action to
the research community. Before we do so, however, we will discuss a few
other peculiarities that we noticed when reviewing code comprehension
experiments of the past forty years. Note that the following points all draw
on our empirical findings, but we deliberately refrain from citing specific
negative examples because we do not consider this necessary. Instead, we
highlight positive examples where available.

Lack of studies investigating the impact of code comprehension on other con-
structs. In our sample, not a single study investigated the effects of un-
derstanding code on something else. During study selection, we also did
not find such studies that we had to exclude, e.g., due to a lack of human
participants or a focus on top-down comprehension. Most may agree that
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high code comprehensibility is a desirable goal in itself, but, for others, it
may become even more tangible and important if consequences of good or
bad code comprehensibility were known for developers and management.
Examples are how code comprehension impacts the motivation to work on
the code, general job satisfaction, or accuracy in the effort estimation for
code modifications. This type of experiment seems extraordinarily rare, even
though some studies exist that analyze this for higher-level constructs that
(partly) include code comprehension, e.g., the impact of technical debt on
developer morale [BGMB20].

No definitions for the studied construct(s). For the majority of our primary
studies, the authors do not provide a clear definition or description for the
central construct(s) that they want to measure. Rare shining examples are S1,
where Peitek et al. clearly describe the differences between bottom-up and
top-down comprehension, and S5, where Scalabrino et al. do the same for
understandability and readability. As a consequence, some authors call their
construct ‘readability’, despite clearly measuring comprehension. Likewise,
several studies use the older andmore general term ‘program comprehension’,
even though they measure bottom-up source code comprehension. This state
of inconsistency makes it very hard for primary studies to compare their
findings with those of others, and severely increases the required effort for
secondary studies in this field, e.g., we spent countless hours figuring out
whether studies were actually measuring bottom-up comprehension.

No clear operationalization for the construct. In several studies, the re-
searchers did not explicitly state how they collected a measure like ‘correct-
ness’. Sometimes, they also collected multiple measurements, but did not
explicitly state which of those measurements are used to operationalize the
construct during the analysis. For a study that measures, e.g., the time to
read code and the time to answer comprehension questions, it must become
clear if only one of the measures or a combination of both was used in
the analysis. A good example is again provided in S5, where Scalabrino
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et al. clearly describe their aggregations of correctness, time, and subjective
ratings to evaluate their construct.

Unsuitable comprehension tasks. While there is no consensus (yet) on opti-
mal tasks for code comprehension experiments, there are definitely some
tasks that seem less suitable than others. Several studies used a recall task,
where participants had to recite the (exact) line-by-line code snippet to judge
their comprehension. Comprehending means to form a mental structure that
represents the meaning of code. From research on text comprehension, we
know that “whatever mental structure is incidentally generated in the process
of comprehension also serves as a retrieval structure” [Kin98]. Shneiderman
similarly hypothesizes that developers who perform better on a recall task
have a better understanding of the program [Shn77]. However, this is not a
sufficient criterion for assessing comprehension. An evaluation with recall
tasks must be designed very carefully because being able to recite something
flawlessly from memory is not the same as truly comprehending its meaning
or purpose. Likewise, participants unable to remember the exact lines of
code may still have understood what the snippet accomplishes. In this sense,
we share Feitelson’s sentiment that “failure in recalling code verbatim from
memory may identify totally wrong code or code that does not abide by
conventions, not necessarily hard to understand code” and that such a task
is far removed from what developers do in their daily work [Fei21].
In addition, we also found multiple studies that used tasks that do not
measure comprehension in isolation but include much more, e.g., fixing
a bug, refactoring code, or extending code. This type of problem-solving
differs from mere comprehension in the way that problem-solving is a “con-
trolled, resource-demanding process involving the construction of problem
spaces and specialized search strategies”, whereas comprehension can be
simplistically summarized as an automatic process [Kin98]. In the extreme
case of S73, Sheppard et al. even let their participants write functionally
equivalent code for a snippet. While these tasks certainly require a certain
degree of comprehension, they also introduce many more confounders and
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potential biases, and would be more suitable if the studied constructs were
maintenance or refactoring.

Incomplete reporting of experiment design characteristics. Several studies
omit important details of their experiments in the reporting, sometimes
information so basic or essential that its absence was very surprising to us.
For example, we could several times not reliably infer whether snippets were
self-made or taken from somewhere else (14 papers), which programming
language was used (7), whether the study was conducted remote or onsite
(7), whether snippets were shown on screen or paper (6), why the respective
snippets had been chosen (6), what type of participants were used (4), or
how many snippets were used in total and per participant (4). Many of these
details are important to judge the soundness of the design or to interpret
the results, e.g., concerning generalizability.

Lack of closed-source code snippets from industry. Only 3 of the 95 primary
studies used code snippets from proprietary industry projects. While open-
source or constructed snippets may provide sufficient realism or industry
relevance for many bottom-up code comprehension results, it is still notewor-
thy that basically no findings in this field are validated with closed-source in-
dustry code and that generalization is assumed. Today, many companies are
involved in some projects in open-source repositories. Still, given the known
differences between proprietary industry and open-source projects [PSE04;
RF10], it would be highly unlikely that all findings are fully transferrable.
Even if it seems plausible for the majority of scenarios, we simply do not
know the extent. We are aware that it is difficult to obtain closed-source
industry code that can also be used with minimal modifications in experi-
ments. Additionally, this might also make sharing the code snippets with the
publication impossible. For now, though, it would at least be desirable to find
out more about the influence of the differences between proprietary industry
and open-source snippets on code comprehension and thus contribute to a
more informed discussion about generalizability.
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Inconsistent usage of categories for threats to validity. While 79 of 95 studies
included a description of threats to validity and many authors classified
them into the typical categories, several instances of incorrect classifications
made our aggregation more difficult. For example, Bavota et al. assigned
potential confounding factors to construct validity instead of internal validity
(S63), and Saddler et al. associated the lacking representativeness of their
code snippets with internal validity instead of external validity (S68). This
may be due to different definitions of the validity categories, but since most
authors did not provide appropriate explanations or a reference for the used
classification, we cannot say for sure. At least, the inconsistent and partly
incorrect categorization of threats to validity does not seem to be an issue
exclusive to code comprehension studies (see, e.g., [ABA+19]).

Implicit or shallow reporting of threats to validity. Many studies report both
threats that were consciously mitigated and threats that remain. This ob-
servation is in line with that of another literature study by Sjøberg and
Bergersen [SB22] on reporting construct validity threats in software en-
gineering. Sometimes, however, it was difficult to distinguish between
these two types because the authors did not explicitly mark the threats
accordingly. Therefore, interpreting the limitations of such studies becomes
difficult. Hofmeister et al. present a good solution to avoid this issue in S3:
they report how they consciously addressed common threats in their study
design section, while the remaining threats are discussed separately at the
end. Moreover, a few papers reported very generic threats that give the
impression of simply pre-empting criticism from readers, or initially from
reviewers of the manuscript. For example, if the sample consists exclusively
of students, it seems almost obligatory to mention this as a limitation (see
Section 3.2.3.8). However, it is rarely explained in the specific study context
which student characteristics could actually threaten validity regarding the
research questions. Authors of primary studies that predominantly sampled
students often cast doubt on the generalizability of their findings to the
population of professional software developers, but do not explain why. That
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such generalizability should not be questioned per se is shown at least by the
existence of controversial discussions concerning student samples [FZB+18].
How it could be done instead is shown by the authors of S26 and S82, who
discuss, e.g., that the students in their sample may be influenced by the
teaching assistant’s coding style requirements or may not be representative
because they signed up for the particular course due to their particular
interest in it.

To counteract some of these identified shortcomings, we propose several
calls to action for the research community in the final section below.

3.3. Conclusion

We conducted a systematic mapping study to structure the research from
95 primary studies on source code comprehension published between 1979
and 2019. Through this review of the past 40 years, we arrived at some
interesting findings that should motivate changes for the future. Below,
we have focused on what we believe are the five most important action
items that we should address as a code comprehension research community
moving forward.

1. Work on a definition for code comprehension and provide such a
definition in every primary study. Code comprehension is a complex
construct, making it all the more important to define what you intend
to measure. While there are a few program comprehension models
and a few vague definitions of what it means to understand a program,
the landscape of contemporary definitions for code comprehension
is unfortunately quite limited (see Chapter 2 and in particular Sec-
tion 2.5). A definition of code comprehension must not only be clear
in describing the construct itself. It should also clearly distinguish
code comprehension from other related constructs. Without such a
reusable definition, we burden each primary study with the task of
defining and separating code comprehension from other constructs,
which ultimately leads to a situation in which hardly any primary study
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defines what it actually intends to measure. Consequently, speculating
based on the properties of the comprehension tasks is often the only
way to assess whether two experiments intended to study the same
construct.

2. Research the cognitive processes of code comprehension. In short,
we needmore theory. Basic research on the cognitive processes involved
in code comprehension, e.g., to discover different comprehension
strategies and involved cognitive processes in the brain, is necessary
to theoretically motivate a study design. Almost none of our primary
studies linked their design to a comprehension theory that would
justify, e.g., the used tasks and measures. Basic research on program
comprehension is currently gaining momentum; the use of neuro-
physiological measures to “develop a neuroscientific foundation of
program comprehension”1 is particularly promising.

3. Conduct research on the comparability of different design char-
acteristics. We have seen that each of our 95 primary studies used a
unique design to answer its research questions. We lack evidence on
the consequences of particular design decisions, such as the choice of
particular comprehension measures or experimental materials. We can
only meaningfully compare primary studies and synthesize results in
meta-studies if we know whether and how different design decisions
affect study outcomes differently.

4. Gather evidence of commonly assumed consequences of discussed
threats to validity. Related to the previous point, we also lack evidence
in discussing limitations of study designs. The catalog of potential
threats to validity is too long to discuss in a primary study. Accordingly,
the focus should be on those threats to validity that actually affect
the results for a specific study design. However, to assess for which
threats this is the case, we need more research on the influence of
assumed confounding factors and generalization issues. Existing lit-

1https://www.se.cs.uni-saarland.de/projects/BrainsOnCode/
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erature supporting the influence of specific design decisions on study
results should then be referenced appropriately in the discussion of
primary studies on code comprehension.

5. Agree on a set of design characteristics that must not be omitted
when reporting a primary study. Finally, we have a suggestion for
improving the future reporting of code comprehension studies. As
much as we desire to grant everyone their creative freedom in the
organization of their papers, we nevertheless note that it was very
cumbersome to extract the relevant design characteristics from some
primary studies. Although we read all the papers from start to end, the
relevant information was scattered throughout the report, sometimes
ambiguous, not always where one would expect it to be, and sometimes
missing completely. We would like to highlight S3 and S27 as positive
examples that present a tabular overview of the “main factors” of
the conducted study. This form of concise presentation is not only
interesting for those conducting meta-studies [Woh14b], but in our
opinion also helps every reader to better understand the study design.
As a community, we can discuss which specific design characteristics
need to be included in such a table. For a start, the primary studies
mentioned above as well as most categories of our Table 3.1 provide a
good starting point.

The research field is currently flourishing in terms of the number of new
publications and number of researchers involved. We are personally pleased
to see this because we consider it an important field of research. This makes
it all the more important for us to emphasize at this point that, in our opinion,
much of the design and reporting of code comprehension experiments is
already of good quality. The emphasis on the previous pages on what we
could improve in the future is not intended to slow down the growth in this
field. On the contrary, the five concrete action items are meant to encourage
the community to use the momentum and engage even more deeply with
code comprehension studies at the meta-level.
In this thesis, we focus on action items 3 and in particular 4, which aim
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to provide evidence for more clarity in the design and evaluation of study
designs. We begin with the following chapter, in which the presumed influ-
ence of intelligence and personality on code comprehension is empirically
investigated for the first time.
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How Individual
Characteristics Influence

Code Comprehension

The influence of individual characteristics of software developers on their
behavior and performance in various software engineering activities has been
demonstrated in several primary studies. However, the influence of individual
characteristics on code comprehension has been limited to a few characteris-
tics in the past, most notably developer experience (see Section 2.2). Yet,
this did not prevent researchers from speculating what other individual
characteristics might be potential confounding factors in their studies (see
Section 3.2.3.8). In this chapter, we examine the influence of two constructs
previously hypothesized to influence code comprehension: intelligence and
personality.
This chapter contributes to answering RQ2, which investigates how indi-

vidual characteristics influence developers in code comprehension. It extends
our journal publication [WW22]. The presented study should be exemplary
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for evidence providing studies on individual characteristics, of which we
expect more in the future. Such studies help, for example, to discuss con-
founding factors as threats to validity in an evidence-based manner or even
to control them in the study design and conduct.

4.1. Context and Goals

Program comprehension is a cognitive psychological process in which, in
addition to the characteristics of the code to be understood, the capacities
of the person who wants to understand the code play a role. Accordingly,
researchers suspect that intelligence, for example, has an impact on program
comprehension performance [SS15]. Since measuring intelligence with vali-
dated questionnaires would often exceed the intended time frame of studies,
researchers discuss this potential confounding parameter in code comprehen-
sion studies as a threat to validity [SS15]. However, these discussions have
so far been conducted without a solid understanding of whether intelligence
is actually a significant influencing factor on program understanding. A
study on this question is missing so far.
The situation is similar with the personality of developers. Although

personality has not been discussed as a potentially confounding parameter in
code comprehension studies yet [SS15], there are several related studies that
have shown that different personality traits affect developers’ performance in
software engineering activities [CSC15; DG07; KMG13; SNA09; WGW19].
When designing studies, insights into the influence of intelligence and

personality on program comprehension can provide a useful basis for design
decisions, which can ultimately lead to greater confidence in the validity
of the results and can partially counteract existing uncertainty about what
constitutes a good empirical study [Sie16; SSA15]. For this reason, we
conducted the first large-scale empirical evaluation to answer the following
research questions:

RQ2.1 Is there a relationship between code comprehension performance
and intelligence?
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RQ2.2 Is there a relationship between code comprehension performance
and specific personality traits?

4.2. A Study of Intelligence and Personality

4.2.1. Background and Related Work

A confounding variable or confounder “is an extraneous variable whose
presence affects the variables being studied so that the results do not reflect
the actual relationship between the variables under study” [PBV12]. For
example, in code comprehension experiments the most frequently discussed
confounders are the programming experience and familiarity with the study
object [SS15].1 Not identifying and controlling such factors poses a threat
to internal validity due to potential false positive errors [PBV12].
The literature survey by Siegmund and Schumann of program compre-

hension papers published between 2001 and 2010 shows that 11 studies
mentioned intelligence as a confounding parameter, but its influence was
analyzed only once [SS15]. Several other individual background variables
were identified, both in their study and in our systematic mapping study
(Chapter 3), but personality is so far not one of them. The present study
aims to provide specific evidence whether the list should be extended to
include the variable personality and whether intelligence actually has the
presumed impact on performance in code understanding.

We investigate the influence of intelligence and personality in a joint study
because both are individual characteristics that share similar traits, such as
remaining relatively stable over a lifetime [Cas00; DWL+00], yet represent
distinct constructs. In addition, their joint measurement integrates well into
our planned study design, ultimately saving resources for us and potential
participants by not conducting multiple separate studies.

1Usually, confounders are distinguished from covariates, which are also related to the
outcome, but are otherwise not related to the treatment variable. Since the terms are often
used interchangeably and the distinction is not relevant for the motivation of this work, we
follow [SS15] and use confounder as an umbrella term for extraneous variables that are
relevant for the interpretation of an observed relationship between two other variables.
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4.2.1.1. Intelligence in Software Engineering

In the context of our study, intelligence as a construct is defined by the
test used to measure it [KLH13], and we elaborate on the test further in
sections 4.2.2.5 and 4.2.2.6. At this point, it is sufficient to understand
that our assumptions (and those of the test) are based on John Caroll’s
Three-Stratum Theory of intelligence [Car+93; Car05]. A series of subtests
administered to participants in our study operationalizes first-order factors
and allows the measurement of four second-order factors, i.e., crystallized
intelligence, fluid intelligence, visual perception, and cognitive speed. All test
performances combined serve to estimate general intelligence, also called
g factor, as a third-order factor. Figure 4.1 visualizes the used intelligence
test in the structure of the three-stratum theory. Three dots in the middle
indicate the presence of other second-order factors that determine general
intelligence but are not measured by the LPS-2, i.e., memory and learning,
auditory perception, retrieval ability, and processing speed.

When researchers refer to intelligence as a potential confounding parame-
ter in discussions of their code comprehension studies [SS15] and do not
further specify intelligence as a construct, we suspect that this is deliberately
left open. Whether the g factor, certain dimensions of intelligence, or a com-
bination of both could be responsible for some developers understanding
code more easily than others is difficult to assume as long as we still know
too little about the concrete cognitive processes in the brain of a developer
or even concrete studies on the research question, such as the present one,
exist.
Fortunately, in recent years there has been a trend towards more neu-

roscience and physiological studies in the field of program comprehen-
sion [Fak18; PSP+18; SPB+20], for example, using fMRI scanners to inves-
tigate the active brain regions and cognitive processes of developers during
source code comprehension. Peitek et al. [PSA+18] found in an fMRI study
with 17 participants and subsequent replication with 11 participants that
bottom-up program comprehension involves activation of five brain regions
that are related to working memory, attention, and language processing. Ac-
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Subtest 1: general knowledge

GC: Crystallized Intelligence

• general knowledge
• lexical and
• orthographic knowledge
• letter processing

Subtest 2: anagrams

Gf: Fluid Intelligence

• logical and
• deductive reasoning

Subtest 3: figure sequences

Subtest 4: number sequences

Subtest 5: letter sequences

Subtest 6: mental rotation

Subtest 7: area number

Subtest 8: line patterns

GV: Visual Perception

• mental image processing
• visualization ability
• pattern recognition

GS: Cognitive speed

• attention and
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Figure 4.1.: Simplified representation of LPS-2 for measuring intelligence,
depicted in the structure of the three-stratum model by Car-
roll [Car+93; Car05]. Figure based on [KLH13].
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cordingly, we suspect that at least the intelligence factors cognitive speed and
crystallized intelligence should also correlate positively with performance in
code comprehension in our study.
While such studies with new ideas for measurement methods already

provide us with interesting early research findings, their implementation
currently still represents an evaluation of these very measurement methods.
To the best of our knowledge, there is no large-scale study that is directly
aimed at investigating the relationship between program comprehension
performance and intelligence. However, there are a few studies in software
engineering which measured intelligence as part of their design.
Ko and Uttl [KU03] conducted an exploratory experiment with 75 un-

dergraduates and measured, among other individual characteristics, verbal
intelligence with the Vocab27 test as well as problem-solving ability with
a problem-solving test consisting of items from various intelligence tests.
These individual differences did not appear to correlate with the success in
debugging a program in an unfamiliar programming system.
Mindermann and Wagner [MW20] found in an experiment with 76 un-

dergraduates that the successful usage of cryptographic libraries in terms
of effectiveness, efficiency and satisfaction with the help of examples is
not related to the participants’ fluid intelligence. Fluid intelligence can be
summarized by the ability for logical and deductive reasoning, which is why
the non-existent influence on effectiveness and efficiency of task processing
were surprising for the authors of the study.

4.2.1.2. Personality in Software Engineering

Since there are many definitions of the term personality, we are guided by
what Ryckman describes as a consensus among investigators, that is, “the
dynamic and organized set of characteristics possessed by a person that
uniquely influences his or her cognitions, motivations, and behaviors in
various situations” [Ryc12].

This definition was also the basis for a systematic mapping study by Cruz
et al. [CSC15]. Their study provides us with valuable insights into forty
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years of research on personality in software engineering (1970–2010). Sev-
eral studies found that personality traits correlate with performance in
various SE tasks [CSC15; DG07; KMG13; SNA09; WGW19], others found
no significant relationship between personality and programming perfor-
mance [BHH+09, e.g.]. However, of the nine papers found in the mapping
study that could be classified under the research topic of individual per-
formance, none explicitly examined the influence of personality on code
comprehension performance [CSC15].

Karimi et al. [KBGW16] investigated how personality affects programming
styles, including the approach to code understanding. Programmers with
high conscientiousness tended to use depth-first style, and those high in
openness to experience tended to use a breadth-first style. They further
found that programmers who tended to use a depth-first approach often
showed better programming performance.

The closest to our research questions is a study by Arockiam et al. [ABUL05]
on the influence of personality traits on the correctness of comprehension
questions on C++ programs. Unfortunately, the paper lacks a comprehen-
sive description of the design that would enhance our confidence in the
validity of the results. Furthermore, the used personality model and test
seem not to be validated.
In summary, neither the influence of personality nor that of intelligence

on code comprehension performance has been sufficiently studied to date.
Since such insights would be useful for researchers in the field of code
comprehension in designing studies and ensuring validity, we are taking a
step in this direction and are beginning to fill the identified research gap.

4.2.2. Methodology

We follow the guidelines of Jedlitschka et al. [JCP08] on reporting experi-
ments in software engineering.
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4.2.2.1. Goals

The goal of the study is to analyze the impact of different facets of intelligence
as well as personality traits on the performance in understanding source
code. To this end, we formulated the following two research questions:

RQ2.1 Is there a relationship between code comprehension performance
and intelligence?

RQ2.2 Is there a relationship between code comprehension performance
and specific personality traits?

4.2.2.2. Research Design

We conducted a correlational study: We did not manipulate intelligence or
personality, but measured them as given subject characteristics. This is a
common study design in any study where the independent variable cannot
be manipulated for practical or ethical reasons [Cro57; Roh18]. With this in
mind, in Section 4.2.2.7 we describe a causal model that provides the basis
for a discussion of causal inferences from our collected data [Roh18].
We provided participants with a consent form and informed them in

writing about the aim of the study. The study took place simultaneously and
on-site for all participants at two given time slots on two days. Participants
had the opportunity to ask questions at the beginning of each session.

In the first session, the participants received a short questionnaire on their
programming experience as well as two code snippets for which they had to
answer comprehension questions under time limits. In the second session,
participants took an intelligence test and a personality test. We linked the
data of both sessions by a panel code1 that preserved the anonymity of the
participants.

A schematic representation of the research design is provided in Figure 4.2.

1Participants answered 10 questions, with each answer consisting of one to a maximum of
two characters. The concatenation of the characters results in the panel code. For example,
one question is: Your birthplace, 1st and 2nd letter. We only considered data for which there is
a matching panel code in both sessions in the analysis.
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Figure 4.2.: Schematic representation of the research design. Icons [Ico21]

4.2.2.3. Participants

We consider everyone with at least one year of Java programming experience
suitable for the experiment. Therefore, we invited a convenience sample
of students of one of our computer science programs (Computer Science,
Software Engineering, Media Informatics, Data Science) in their second year
to participate in our study. All had mandatory Java courses in their first
year. We see the sample properties of interest, namely enough experience
to comprehend medium to understand Java code, ensured by our sampling
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strategy so that the findings can be partially transferred to a population
of experienced Java software engineers. We will discuss limitations of our
sampling strategy and their implications in Section 4.2.4.1.

We recruited students enrolled in the same course to keep their academic
experience level and programming language experience similar. As part of
their study duties, students had to participate in any study offered by the
faculty. Students had the right to register for a study and then withdraw
their participation at any time without consequences.

We informed the participants in writing before the first session about the
study design, health risks, privacy and ethical issues and our contact details.
Furthermore, all goals were open, and the study contains no deceptions
of the participants. The panel code allowed the organizers to provide the
individual’s results for their personality and intelligence tests. This aspect
was intended to motivate participation in the study.

To determine the needed sample size for our analyses, we conducted an
a-priori power analysis. By convention, we used α = .05 and β = .2. We
wanted to be able to detect small effect sizes because they could still be
interesting as confounding factors in a comprehension study. Therefore, we
chose what Cohen [Coh92] considers a small effect: 0.2. Using the pwr.t.test
function of the pwr R package, we calculated an optimal sample size of 198.

4.2.2.4. Tasks

Participants were shown two independent Java methods, one after the other.
For each code snippet, five input values were given, for which the participants
were asked to specify the return values according to the Javadoc and to
determine the actual return value. Participants knew that the answers would
be rated on correctness.

Since we told our participants that there might be bugs in the code, they
could not rely on the Javadoc comment and had to understand what the
code actually does. We consider the deviation of the documentation from the
code and the inspection based on concrete values for the input parameters
to be a realistic scenario. Furthermore, the task is in line with the conceptual
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model that a developer in a maintenance scenario iteratively constructs
and tests hypotheses about the functioning of the code during program
comprehension [VV95].

There was a time limit of 12 minutes for processing each of the two code
snippets. In between, there was a short break of two minutes.

4.2.2.5. Experimental Materials

The experiment took place in both sessions in a large lecture hall. Neither
the participants nor the experimenters used electronic devices. All materials
were presented to the participants on paper. We make all experimental
materials publicly available (see Appendix B) except for the personality and
intelligence tests, which we cannot republish for legal reasons.

Code Snippets. We used a total of two Java code snippets to conduct the
study. Each code snippet consisted of exactly one method and its Javadoc
documentation. The code was highlighted as in an Eclipse IDE with default
settings.
The first code snippet to be understood was a solution to a coding chal-

lenge [WGW19], such as those given in programming contests or technical
interviews. The method comprises 15 SLOC, has two parameters and con-
tains, among other things, two nested for-loops.

The second code snippet was a method from the Apache Commons library
for converting an integer to a boolean object. The method spans 18 SLOC,
has four parameters, and is characterized by several if-else branches.

We selected the snippets in a way that no uncommon prior knowledge on,
e.g., frameworks, would be required to understand them. As a result, the
code contained mostly primitive data types and the features of newer Java
versions were avoided. Cognitive complexity, a validated metric for assessing
the comprehensibility of methods [MWW20], was 9 for the first and 8 for
the second method, corresponding to moderately difficult comprehensibility.

In our study, we considered two code snippets to be a sufficient number to
maintain a balance between appropriate time commitment from participants
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and generalizability of results. First, understanding two code snippets means
that participants already have to concentrate for 24 minutes, and second,
from an ethical point of view, no more time is taken up by participants than
is probably necessary to gain insightful knowledge. Since we have limited
ourselves in the selection of code snippets as previously described, we view
the two selected snippets as representative of code with the previously
described characteristics. We acknowledge that this is a personal view of
the authors, and different studies have handled the selection and number of
code snippets very differently so far.

Comprehension Questions. For each of the two snippets, we provided the
participants with a paper-based form which included five rows of a three-
column table that had to be filled in. The cells of the first column each
contained a method call, for example toBooleanObject("1,1,0,null").
The other two columns had to be filled with the actual return value of the
method and the expected return value according to the Javadoc.

Questionnaires. To measure programming experience, we followed the rec-
ommendations of Siegmund et al. [SKL+14] to use self-assessment questions
on general programming experience, programming experience compared to
fellow students and with the object-oriented paradigm.

For the measurement of intelligence, we searched for an intelligence test
that is established in psychology with a correspondingly good validation.
Furthermore, the test should be detailed enough to distinguish between
different intelligence factors, but also short enough to be conducted together
with the personality test in a lecture slot of 90 minutes. The latter was
important to be able to have the participants on-site and in an available
lecture hall. Furthermore, it should be a paper test, as not all participants
might carry a suitable device for an electronic test. Ideally, the tests should
be freely available to support the easy replication of our study.

We found the LPS-2 questionnaire [KLH13] to fulfill most of our criteria,
but, unfortunately, it needs to be bought from the publisher. LPS-2 mea-

140 4 | How Individual Characteristics Influence Code Comprehension



sures four different factors of intelligence: crystallized intelligence (general
knowledge, lexical and orthographic knowledge), fluid intelligence (logical
and deductive reasoning), visual perception (visualization capability, pat-
tern recognition), and cognitive speed (e.g., ability to concentrate in simple
cognitive tasks). These four factors are operationalized by eleven subtests
whose net processing time is 39 minutes. In total, about one hour should
be scheduled to conduct the test. Figure 4.1 shows how the 11 subtests
are related to the factors of intelligence. The test was validated with 2,583
participants [KLH13], showing an internal consistency in all four subfactors
between .86 and .94 with .96 for the general intelligence score in the form
we used. Construct validity was shown using confirmatory factor analy-
sis. Regarding criterion validity, its results corresponded well with other
intelligence tests.

The scores of the subtests are summed up regarding the four factors and
mapped to age-adjusted IQ values within a 95% CI. Scoring the intelligence
test is done using a set of templates and takes a few minutes per participant.
The total score for all subtests represents an estimate of overall intellectual
capacity, commonly referred to as general intelligence (g).
Similarly, as for intelligence, we looked for a validated personality test

accepted in psychology that can be done on paper in the same time slot as
the intelligence test. “There is little doubt that the Five-Factor Model (FFM)
of personality traits (the ‘Big Five’) is currently the dominant paradigm
in personality research, and one of the most influential models in all of
psychology.” [McC20] We chose the validated German version of the 100
item HEXACO Personality Inventory-Revise (PI-R) [LA18] which is a vari-
ation that adds a sixth dimension. Lee and Ashton have empirical support
for this sixth factor from principal component analysis. The questionnaire
contains 100 statements on which a participant must self-assess on a scale
from fully agree to fully disagree. HEXACO assesses six major dimensions of
personality: Honesty-Humility, Emotionality, Extraversion, Agreeableness,
Conscientiousness and Openness to Experience [AL01]. In a large valida-
tion study [LA18], the facets in the self-assessment had a mean reliability
(internal consistency) of about α = .70. Furthermore, principal compo-
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nent analyses supported the chosen facets that have low inter-correlations.
Furthermore, the test is freely available [AL01].

4.2.2.6. Hypotheses, Parameters, and Variables

The variables relevant to RQ2.1 are code comprehension performance and
the four factors of intelligence mentioned in the previous section, i.e., crys-
tallized intelligence (Gc), fluid intelligence (G f ), visual perception (Gv) and
cognitive speed (Gs). The average IQ values of university students for the
four factors are each in the range of 100 to 107 with a standard deviation
between 13 and 15 [KLH13]. We expect all factors to have a positive im-
pact on code comprehension performance. For G f we assume the highest
correlation, since code comprehension intuitively has a lot to do with logical
thinking. Similarly, we argue for the positive impact of Gs, a measure of
attention and concentration ability in simple cognitive tasks. Visual per-
ception (Gv) ability should also show a positive correlation in the data for
code that represents a visually processed form of knowledge. We assume
the weakest positive impact for Gc , on which, for example, knowledge of the
Java programming language can be mapped, which is in principle relevant
for code comprehension, but also only up to a certain degree, determined
and limited by the requirements of the tasks.
We will address the statistical relationship to general intelligence explo-

ratively in the results and discussion, and will not formulate a hypothesis.
The construct of general intelligence is less accessible than the four factors of
intelligence mentioned above, which are, first, well-defined and psychomet-
rically validated [KLH13] and, second, allow for a finer-grained analysis of
specific influences on code comprehension. It is believed that general intelli-
gence has its own impact on performance and is positively correlated with
the four factors [BKW95; KLH13]. To also simplify the causal model in rela-
tion to mediating variables [Roh18], we therefore omit general intelligence
and do not consider it for the hypothesis analysis.
Code comprehension is measured by the correctness of answers to com-

prehension questions on two independent code snippets. Correctness is one
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of the most commonly used measures to assess how well a participant under-
stood source code (see Chapter 3), and depending on the response format,
the measurement is reliable even in experiments conducted synchronously
with many participants. For each of the two code snippets, participants
could give 10 answers, each of which was scored with one point for a correct
answer. In the analysis, we noticed that for the second snippet a question
regarding the return value according to Javadoc could not be answered
unambiguously, and therefore we decided not to score the answers to this
subtask. Accordingly, code comprehension performance ranges from 0 to 19.
We deliberately refrained from using individual measurements of time for
the comprehension tasks as this would not have been practical in the lecture
hall setting, and instead introduced a general time limit.

H1: Crystallized intelligence (Gc) is positively correlated with code compre-
hension performance.
H2: Fluid intelligence (G f ) is positively correlated with code comprehension
performance.
H3: Visual perception (Gv) is positively correlated with code comprehension
performance.
H4: Cognitive speed (Gs) is positively correlated with code comprehension
performance.

To answer RQ2.2, personality was operationalized by the six dimensions
of the HEXACO personality model. In hypothesizing, we limited ourselves to
two traits for which we could find the most evidence of possible impact on
performance in scientific literature, that is, conscientiousness (range= [1,5])
and openness to experience (r = [1, 5]).
Both personality traits were found in previous studies to be associated

with performance in various software engineering activities. We suspect a
positive correlation for both with code comprehension performance, since
persons with high values for these personality traits have argumentatively
good prerequisites to also successfully work on the comprehension tasks.
People with high values for conscientiousness “organize their time and their
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physical surroundings, work in a disciplined way toward their goals, strive for
accuracy and perfection in their tasks, and deliberate carefully when making
decisions” [AL21]. Persons with low values for openness to experience tend
to “feel little intellectual curiosity, avoid creative pursuits” [AL21].

H5: Conscientiousness is positively correlated with code comprehension
performance.
H6: Openness to Experience is positively correlated with code comprehen-
sion performance.

Programming experience was rated following the recommendation in
[SKL+14] on three 10-point scales from very inexperienced to very experienced.
Experience is known as a potential covariate and was therefore measured to
control for it by subsequent analysis of its influence on code comprehension
performance [SS15].

4.2.2.7. Causal Inferences

We have already mentioned that this is a correlational study, and we could
elaborate at this point on why appropriate caution is needed in interpreting
potential correlations, that they are only cause-effect relationships with some
probability, not guaranteed. One issue is that ‘carefully crafted language
will not prevent readers–let alone the public–from jumping to causal conclu-
sions’ [Roh18]. Moreover, we strive to close the gap between observational
data and causal conclusions as good as we can, to counteract the issue of
uncertainty in the design of empirical studies motivated at the beginning
with the greatest possible certainty about the concrete nature of influence of
our independent variables.
One way to improve causal inferences based on observational data are

directed acyclic graphs (DAGs), which visually represent causal assump-
tions [Roh18]. Figure 4.3 shows the causal assumptions of the relevant
variables in our study. For example, we conjecture that a change in the
variable crystallized intelligence causally contributes to a change in code
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Figure 4.3.: Causal diagram of the experiment variables

comprehension performance.
We refer the interested reader to the work of Rohrer [Roh18], who ex-

plains in detail how such a graph can be used during study design to identify
and eliminate spurious paths, for example by statistical control. The en-
tire approach is based on the assumption that the DAG captures the true
underlying causal web, which we recognize is a very strong assumption.

We chose this method to argue with greater certainty for a causal relation-
ship among the variables in the six hypotheses. All authors of this paper were
involved in the creation of the causal diagram during the study design. The
influence of assumed confounding parameters in program comprehension
studies [SS15] was rigorously discussed and literature on known influences
on intelligence and personality was consulted.
The only notable variable that we could not control via our study design

was the motivation of the participants. It may have an influence on the results
of the intelligence test as well as on the results of the code comprehension
tasks, and thus represents a potential confounder. To obtain a proxy for
estimating participants’ motivation to complete the test seriously, we used
the number of requests for an individual participant’s test results (about
40%) as well as examined outliers in the data set. The analysis provided
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grounds to assume that a considerable proportion of participants answered
the tests seriously. The descriptive statistics at the beginning of Section 4.2.3
show that the sample performed very well on the code comprehension tasks,
and the intelligence test scores are similar to those of the population.

Unless we have not controlled for any other factor that significantly influ-
ences both treatment and outcome, it is reasonable to assume that measured
associations in hypothesis testing can be attributed to cause-effect relation-
ships. We nevertheless agree with Rohrer’s concluding remark that “the
most convincing causal conclusions will always be supported by multiple
designs” [Roh18] and call for further code comprehension studies on the
given research questions to confirm or refute our model.

4.2.2.8. Analysis Procedure

We first used descriptive statistics to describe the sample. We employed the
median (Mdn) and inter-quartile range (IQR) for ordinal data (self-assessed
experience) and mean and standard deviation (SD) for interval data (code
comprehension score). Also, intelligence and personality are considered
interval data in psychology. Therefore, we did the same in our analysis.
Second, to control for the experience of the participants, we built linear

models for each hypothesis to account for the factor affected in the hypothesis
and the experience item with the strongest correlation to the score. We
calculated standardized regression coefficients β together with their 95%
confidence intervals (CI). We interpreted these intervals before using t-tests
to calculate t-statistics and p-value as basis for statistical significance. To
check the assumption of normality for the t-test, we conducted Shapiro-Wilk
tests on the individual variables. For all but score and fluid intelligence, the
test supported a normal distribution of the data. The QQ plots as well as the
large sample size, however, make us confident that a t-test is still justified.

Because we have multiple tests, we adjusted the p-values using the Holm-
Bonferroni method [Hol79]. It is a standard method to adjust for multiple
testing but is more powerful than the often used Bonferroni method. We
compared the final p-values with the significance level α= .05.
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Third, for exploratory analysis and to get a better understanding of the
relationships of the various factors, we built further linear regression models.
In particular, we analyzed a ‘complete’ linear model that contains all intelli-
gence facets, the two personality traits also investigated in the hypotheses
and all three experience items. This shows us the influence of all factors
measured in the experiment. Furthermore, we included all measured fac-
tors (adding the other personality traits and the general intelligence to the
‘complete’ model) and conducted step-wise regression on it to get to the
best model for explaining the data. This gives us a smaller model with only
the most important factors. For both models, we calculated the adjusted R2

as a measure of how much of the variance in the data can be explained by
the model, as well as standardized regression coefficients with their 95%
confidence intervals.

4.2.3. Results

4.2.3.1. Descriptive Statistics

We removed four participants from the data set because they provided data
for the intelligence test and/or the personality test, but not the compre-
hension test or the other way around. We have complete data for 117
participants, further 17 participants without an intelligence test and one
participant without a personality test.
The code comprehension performance as measured by the score concen-

trates strongly between 15 and 19, M = 17.3,Min.= 8,Max.= 19, SD= 1.9.
The code comprehension score is depicted in relation to the three experience
measures in Figure 4.4. The scatter plots show no apparent strong relation-
ships between the experience measures and the code comprehension scores.
The strongest relationship seems to be when the participants rated their
experience in comparison to others.

The three facets of experience, i.e., programming experience (PE), experi-
ence in comparison (EC) and experience in the object-oriented paradigm
(EOO), have widely distributed results over the whole spectrum with a cen-
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Figure 4.4.: Overview of experience in relation to code comprehension scores

tral tendency to slightly above the middle of the scale (MdnPE = 6, IQRPE =
2, MdnEC = 6, IQREC = 2, MdnEOO = 7, IQREOO = 2). Hence, we seem to have a
well-balanced sample in terms of experience.

In Figure 4.5, we see the relationships between the four different intelli-
gence facets with the scores. As expected with intelligence tests, the results
are distributed roughly around 100, but we also see rather low and rather
high values in all of them (MGC

= 103.6, SDGC
= 18.4, MGF

= 115.6, SDGF
=

13.9, MGV
= 105.0, SDGV

= 14.6, MGS
= 94.5, SDGS

= 16.7). There appears to
be a positive association between all the intelligence facets and the code
comprehension score.

Finally, the data for the two personality traits conscientiousness and open-
ness to experience is depicted in Figure 4.6. Both personality traits are
strongly distributed over almost their whole spectrum. For conscientious-
ness, we have a mean result of 3.5 (SD = 0.6). The mean for openness
to experience is only slightly lower at 3.2 (SD = 0.6). There appears to
be no clear association of both traits with the code comprehension scores.
Conscientiousness tends even to be slightly negatively related to the score.

148 4 | How Individual Characteristics Influence Code Comprehension



11

12

13

14

15

16

17

18

19

50 75 100 125 150
Crystallized Intelligence

Sc
or

e

n
1

2

3

11

12

13

14

15

16

17

18

19

100 120 140
Fluid Intelligence

Sc
or

e

n
1

2

3

4

5

6

11

12

13

14

15

16

17

18

19

60 80 100 120
Visual Perception

Sc
or

e

n
1

2

3

4

11

12

13

14

15

16

17

18

19

40 60 80 100 120 140
Cognitive Speed

Sc
or

e

n
1

2

3

Figure 4.5.: Overview of intelligence in relation to code comprehension
scores

4.2.3.2. Hypothesis Test

The results of the hypothesis tests of all six hypotheses are summarized in
Table 4.1. We see clear positive standardized regression coefficients between
each intelligence facet and the code comprehension scores when controlling
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for experience. They also constitute the effect size, which according to Cohen
[Coh92], we can consider as small associations. The confidence intervals are
all rather narrow so that the true coefficients will likely be a small positive
association.
For both personality tests, there are very small negative standardized

regression coefficients. The confidence intervals, however, are very large
and span from a medium negative to a medium positive association in both
cases. Hence, from our data set, it is not clear if there is an effect at all and
in which direction an effect would go.
To test the statistical significance, we use t-tests for which we report the

test statistic t as well as the corresponding p-value. Here again we see p-
values for all intelligence facets lower than 5% while both personality traits
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Table 4.1.: Results of individual linear regression models
Factor β 95% CI t p Adj. p

Crystal. Int. 0.188 [0.171, 0.206] 2.02 .0460 .1380
Fluid Int. 0.299 [0.276, 0.322] 3.30 .0013 .0078
Visual Percep. 0.261 [0.238, 0.283] 2.84 .0054 .0270
Cogn. Speed 0.247 [0.228, 0.267] 2.68 .0084 .0336
Conscientiousn. -0.096 [−0.693, 0.501] -1.11 .2710 .5420
Open. to Exp. -0.040 [−0.633, 0.552] -0.46 .6440 .6440

show p-values far greater than 5%. To account for multiple testing, how-
ever, we adjusted the p-values using the Holm-Bonferroni method [Hol79].
The adjusted p-values give us almost the same picture. Only crystallized
intelligence has now a p-value larger than 5%.
Hence, we have to reject the corresponding null hypotheses and have

support for H2, H3 and H4: There is a statistically significant, positive rela-
tionship between fluid intelligence, visual perception and cognitive speed
and code comprehension performance. Crystallized intelligence is positively
related with comprehension performance, but this relationship is not statis-
tically significant. There is no clear relationship between conscientiousness
and openness to experience with comprehension performance.

4.2.3.3. Exploratory Analysis

Table 4.2 shows the results for the complete linear model. Overall, the model
explains only almost 10% of the variance in the data (Adjusted R2 = .096).
The standardized regression coefficients show to some degree a different
picture than the individual regression models for the hypothesis tests. Fluid
intelligence and cognitive speed have slightly lower but similar regression
coefficients. The coefficient for visual perception is close to zero, and the
crystallized intelligence even has fully moved to a (very small) negative
coefficient. The confidence intervals for these coefficients also support this,
and are rather narrow. For the experience measures, surprisingly, only expe-
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rience in comparison has a positive regression coefficient. Yet, for the other
two measures, the confidence intervals show that the true values could be
positive or negative. In any case, this also supports the usage of experience in
comparison in the linear models for the hypotheses tests. For conscientious-
ness and openness to experience, the coefficients and confidence intervals
are almost the same as for individual linear models.

Table 4.2.: Complete linear model
Predictor β 95% CI b

Intercept 0.000 [−4.020, 4.020] 13.722
Crystallized Int. -0.045 [−0.070, −0.020] -0.004
Fluid Int. 0.220 [0.185, 0.254] 0.028
Visual Perception 0.057 [0.023, 0.091] 0.007
Cogn. Speed 0.154 [0.129, 0.178] 0.016
Exp. in Comparison 0.316 [0.079, 0.553] 0.278
Experience OO -0.061 [−0.308,0.185] -0.062
Program. Experience -0.147 [−0.454,0.162] -0.163
Conscientiousness -0.103 [−0.697, 0.491] -0.327
Openness to Exp. -0.051 [−0.642, 0.540] -0.160

When looking at the non-standardized parameters, we see that the model
has a large non-standardized intercept because most of the code compre-
hension scores are in the area above 13 points. All the intelligence facets
have very small regression coefficients (b). Both personality traits have small
to medium strength negative regression coefficients. Only experience in
comparison has a considerable positive regression coefficient. So for the
direct prediction of the outcome of the results of our study, mostly experience
and the personality traits would be important.
As that model only explains 10% of the variance, we wanted to further

explore if we can find a better model. For that, we employed backward
stepwise regression starting from a model that includes all measured vari-
ables from the experiment. It reduced the variables to the model shown in
Table 4.3. This model consists of only three factors and explains more than
12% of the variance (adjusted R2 = 0.122).
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Table 4.3.: Linear model based on stepwise regression and all measured
factors

Predictor β 95% CI b

Intercept 0 [−3.07,3.07] 14.8820
General Intelligence 0.305 [0.285, 0.325] 0.033
Exp. in Comparison 0.174 [0.013, 0.335] 0.152
Conscientiousness -0.157 [−0.754, 0.439] -0.511

General intelligence has the strongest standardized regression coefficient
with a narrow confidence interval in this model. The other two factors
have roughly half the standardized regression coefficient, experience in
comparison with a positive influence and conscientiousness with a negative
influence. Both have wider confidence intervals. Especially, the confidence
interval of conscientiousness goes from a large negative to a medium positive
value.

In summary, the exploratory analysis supports the results that fluid in-
telligence, visual perception and cognitive speed are positively related to
code comprehension performance. It also supports the use of experience in
comparison as the best subjective measure for experience. Yet, it also shows
that crystallized intelligence might actually be negatively related to code
comprehension performance when taking all factors into account. Further-
more, there is indication that general intelligence might actually have the
strongest relationship, and personality traits could also play a role when
considering interactions between different factors.

4.2.4. Discussion

Literature in the field of code comprehension suggested that intelligence and
personality might have an impact on code comprehension. We were able
to demonstrate such a relationship of correct answers to questions on code
comprehension tasks to intelligence and personality traits. The nature of
these relationships must be considered separately for each factor, since some,
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such as fluid intelligence, appear to represent an independent influence on
code comprehension performance, and others, such as conscientiousness,
appear to explain some of the variance only with other factors.
Fluid intelligence (β = 0.299), visual perception (β = 0.261), and cog-

nitive speed (β = 0.247) showed significant association with code compre-
hension performance and can be preliminarily ranked in that order in their
influence. Cognitive speed could be of greater importance in scenarios where
there is greater time pressure. Crystallized intelligence showed the weakest
standardized coefficient (β = 0.188) and might be of lesser importance in
code comprehension.

Our study is underpowered with 135 participants at a calculated optimal
sample size of 198, which could mean that in a higher powered experiment,
more effects could be detected by reducing the type 2 error. Crystallized
intelligence might be statistically significant because it has already had an
only positive CI in our experiment. Yet, the exploratory analysis pointed in the
opposite direction: a negative association with comprehension performance.
Hence, this relationship remains unclear from our experiment. Similarly,
a larger sample size might help to narrow the confidence intervals for the
personality traits and make their influence clearer.

An exploratory analysis of age-adjusted general intelligence shows a mod-
erate positive standardized coefficient of β = 0.312 and at the same time
general intelligence is the best predictor in the linear model based on step-
wise regression (see Table 4.3) with a very small confidence interval. This
suggests that a combination of several high values for different intelligence
facets is useful for the successful performance in code comprehension tasks.
We further noticed during the analysis that adding general intelligence

to the linear model in Table 4.2 increases R2 from 9.7% to 12.4%, thus
explaining more of the variance in the data and supporting the common
assumption that general intelligence is an independent factor that has its
own impact on performance.
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RQ2.1: Main Findings

There is a positive relationship between individual intelligence factors
and general intelligence with code comprehension performance. The
combination of high values for different intelligence facets leads to
high general intelligence, which in turn has the greatest predictive
power for successful comprehension of code snippets.

The two personality traits examined for the hypothesis tests, i.e., conscien-
tiousness and openness to experience, showed standardized coefficients close
to 0 when controlling only for experience. A further exploratory analysis
shows similar results for agreeableness (β = 0.045) and honesty/humility
(β = −0.061). For emotionality (β = 0.161) and extraversion (β = −0.152)
we see at least small individual coefficients.

RQ2.2: Main Findings

At first glance, personality does not appear to be a particularly in-
teresting avenue for further research in the context of code compre-
hension performance. On their own, at least, individual personality
traits do not have a significant impact on performance. However, we
see that conscientiousness does play a predictive role in interaction
with other factors. The linear models suggest that there may be
other factors that interact with conscientiousness and may determine
whether this personality trait has a positive or negative effect on code
comprehension.

For the design of our study, we used a causal diagram (see Figure 4.3)
that helped us identify spurious paths and covariates, for example. One such
covariate is programming experience, and it was confirmed in our data to
have a significant impact on performance in code understanding. Of the
three experience measures proposed in [SKL+14], experience in comparison
is best suited to predict performance, although the CI is wide and thus the
actual impact unclear. At least the CI is all positive, and in a homogeneous
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sample it might already be sufficient to query this one item as a proxy for
the experience of a participant.
Siegmund et al.’s study [SKL+14] is comparable in terms of participant

and task characteristics. They had a homogeneous student sample of 128
participants whose task consisted largely of having to mentally simulate
code to determine the output of that code. Moreover, code comprehension
was measured via correctness in these tasks. Their final recommendation
that in a student population, experience in comparison might be sufficient
to reliably measure programming experience is supported by our data. Our
data differ in that the experience measures ‘programming experience’ and
‘experience with object-oriented languages’ are not positive factors influenc-
ing performance. We agree with their view that additional experiments are
needed to construct a valid experience measure.
What is apparent from our results is that our causal diagram may not

be complete or individual connections assumed to be causal relationships
may not be causal in nature (or at least cannot be considered isolated from
other factors). Our optimized linear model provided in Table 4.3 explains
only a small portion of the variance in the code comprehension scores, i.e.,
intelligence, experience and conscientiousness do not seem to be sufficient
to predict code comprehension performance as we have operationalized it.
We see two possible explanations for this.

First, it may be that the specific way of measuring code comprehension
affects the strength of the predictors studied. For example, the selection of
our tasks and howwe scored them led to low variance in code comprehension
scores, which in turn tends to lead to lower regression coefficients in general.
We elaborate on the relevance of task design and construct measure in the
following subsection.

Second, code comprehension could be a construct that includes skills that
are not captured by intelligence tests. One might even assume a missing
individual characteristic of a developer in the causal diagram, which serves
as a predictor for code comprehension proficiency. This, in turn, argues
for measuring code comprehension via experimental procedures and tasks
tailored to code comprehension, as has been done to date, rather than
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being replaced by existing psychometric tests designed to measure related
constructs such as intelligence.

4.2.4.1. Limitations

The results of this study should be seen in the light of some limitations.
First, we invited a convenience sample of students in their second year, so

the results should only be generalized to more experienced developers with
caution. While we have a well-balanced sample in terms of self-reported
programming experience, it is clear that second-year students on average
have less experience than students in higher semesters or even graduates,
and such increased experience may lead to different results in the code
comprehension tasks. In terms of the distribution of intelligence, our sample
appears to be representative of university students, with slightly higher
mean values for fluid intelligence and slightly lower for cognitive speed in
our sample compared to the normalization sample [KLH13]. However, we
lack data to assess representativeness for all developers, regardless of their
educational background.
Given the expected sample characteristics, we limited our selection of

tasks and code snippets to those that were of easy to moderate difficulty and
thus tend to be in line with comparable code comprehension studies (see
Section 3.2.3.6). Unfortunately, in our study, this resulted in the majority of
the scores achieved in the code comprehension tasks being concentrated in a
range close to the maximum score. Thus, while we were able to distinguish
between the average participant and low performers, we were likely not able
to identify nuances in the performance of individual participants sufficiently
well. This in turn explains the low regression coefficients in the linear
model. We recommend repeating the experiment with a wider range of
code snippets of varying difficulty or changing the operationalization of code
comprehension performance.

Related to this, it is in the nature of our study that we consider code com-
prehension as an isolated process that our participants had to go through on
their own. While such a controlled setting is good for identifying individual
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influences on performance with satisfying internal validity, we are aware
that in practice, for example, code comprehension is accompanied by other
activities or even that developers sometimes read code together with their
peers. We are certain that studies in more realistic settings would provide
many additional valuable insights into the effects of conscientiousness and
individual intelligence factors on code comprehension performance and
behavior. We consider our findings to be a valuable starting point that pro-
vides evidence for the influence of two constructs on the isolated cognitive
process of code comprehension. Additional studies, including those of a
qualitative nature, are needed to shed light on our research questions from
other interesting angles.

Code comprehension as a construct has been measured solely by the cor-
rectness of answers to comprehension questions. While there is no validated
measure of code comprehension so far, we suspect that correctness alone
does not capture all facets of code comprehension. It would therefore be
interesting to see which additional information we would gain if, for exam-
ple, comprehension efficiency (see, e.g., [SBV+19; WPGW21]) or cognitive
load [Fak18] were instead used as proxies for code comprehension. Due
to our study design with a large number of participants, in presence and
synchronous execution, we were limited in this respect, but aim for comple-
mentary studies in the future. Apart from that, we found that conducting
our study synchronously with a three-digit number of participants worked
smoothly. This type of code comprehension measurement scales very well,
provided that large rooms are available to the study leaders.
Compared to the measurement of code comprehension, research on the

measurement of personality and intelligence is more advanced. We were able
to use validated questionnaires for their measurement, but like code com-
prehension, they are latent variables that only approximate what currently
corresponds to (parts of) our definition of them. Accordingly, we would like
to note that our conclusions on the influences of personality and intelligence
in this work are to be considered under the assumptions and definitions that
the respective tests establish for these constructs. In this specific case, we do
not consider this to be a significant limitation, since the used instruments
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are well-established questionnaires whose results can usually be compared
with those of other studies on personality and intelligence.

4.2.4.2. Implications

Since several intelligence factors correlate significantly with developers’ code
comprehension performance, researchers have so far probably been correct
in their assumption that not controlling intelligence in their study design
is a potential threat to validity [SS15]. For example, if one of two experi-
mental groups has a significantly higher mean intelligence value, this will
have a positive effect on the code comprehension performance of that same
group and, as is common for confounding variables, may lead to false conclu-
sions about the influence of the independent variable that is actually being
measured. This situation remains even if our assumptions about the causal
relationship are refuted in the future. The measured correlations remain
valid and explain some of the variance in code comprehension performance.

However, these findings do not mean that previous research on code
comprehension performance is invalidated, but only that intelligence may
have had an impact on the measured code comprehension data in some
cases. Moreover, for now, the limitations of the transferability of our results
to studies that also have a sample of university students apply.
As for the influence of personality traits, we see great potential for more

in-depth studies examining the specific nature of the relationship to code
comprehension and the interplay with other factors. Conscientiousness
seems to play a role in predicting code comprehension performance, but
apparently only with other factors and probably with some we did not
measure in our study.
Consequently, what should be considered in the design of future code

comprehension studies? Code comprehension studies in which intelligence
and personality might play a role and which do not control for these con-
structs by design risk bias in their results. If intelligence and personality
traits are not explicitly controlled by, e.g., matching or post hoc analysis
because it would not be feasible to have every participant take an intelli-
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gence and personality test, then other control techniques should be used.
One mentioned by Siegmund and Schumann [SS15] is randomization and
the notable advantage of this technique is that one may also control for
additional, possibly even unknown extraneous variables.
We see alternatives like using validated, reduced IQ or personality tests,
which take only a fraction of the time of full-scale tests, but at the same time
are a useful approximation. Further, we suggest a more solid discussion of
threats to validity based on data about the influence of potential confounders.
For example, in a quantitative study of the influence of syntax highlighting
on code comprehension in which intelligence was not controlled, if the effect
size is large enough, it can at least be argued that the measured influence of
syntax highlighting is larger than that expected in groups with significantly
different intelligence distributions.

Independent of controlling for a potential confounding factor, we consider
it to be necessary and at the same time equally interesting for a study to
measure intelligence and personality to examine their individual influences
in the context of a specific research question and thus enrich our more
abstract results. While we consider intelligence and personality as potential
confounding variables in the context of this study, they are in the end also
given individual characteristics of each developer, and if we could better
understand their influence on the work of those same developers, we can
support developers outside controlled experiments through, for example,
appropriately customizable tools and consideration of individual capabilities.
Examples include targeted support for learning programming languages,
meaningful partnering in pair programming, and assignment of specific tasks
based on individual characteristics. However, these are potential implications
for SE practice that are at best not derived based on the results of a single
study. Accordingly, future work can build on our findings to explore their
concrete consequences in practice and, eventually, to develop measures, if
necessary, to counteract potentially negative consequences of inequalities in
given individual characteristics.
Finally, the present study has shown that a potential influence of intelli-

gence discussed in the literature not only actually has an impact on perfor-
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mance, but also provides insight into the direction and strength of individual
facets. We appreciate that it has now become the norm to discuss threats
to validity in code comprehension studies. Backing these discussions up
with evidence in the future should be the next step in the maturation of
the research field, and for this it needs further studies that identify new
confounders or confirm or refute assumed ones.

4.3. Conclusion

We have seen in Chapter 3 and in the work of Siegmund and Schumann
[SS15] that the list of suspected confounding parameters on program com-
prehension is long. Taking them all into account in the design of valid studies
remains a challenge. It is therefore essential that we obtain certainty about
the extent and the nature of the relationship of each parameter to code
comprehension through empirical studies, for example, to better evaluate
alternative study designs.
We investigated the influence of intelligence and personality on code

comprehension performance in a study with 135 university students. While
personality traits showed no association with performance on their own,
we found significant small to moderate positive association between code
comprehension performance and the intelligence factors fluid intelligence,
visual perception and cognitive speed. We found a weak relationship of per-
formance to crystallized intelligence, which was not statistically significant.
An exploratory investigation further showed a moderate positive relationship
of performance with general intelligence and that it is the variable with the
greatest predictive power in our linear model.
Given our sample size, the measured regression coefficients are large

enough for intelligence to be a noteworthy potential confounding variable,
especially from a researcher’s perspective. The results indicate that the
control of intelligence in code comprehension experiments is necessary for
valid conclusions from obtained study data. We draw a similar conclusion
for the personality trait conscientiousness, although the specific nature of
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the relationship to code comprehension requires further research. At the
same time, the results should be considered in light of the selected tasks,
sample characteristics, and code comprehension measures, which is why
we encourage further studies on the relationships between intelligence
and personality with code comprehension performance to enhance our
understanding of these relationships. The more in-depth investigation of
potential confounding parameters, be it intelligence, personality or any
other variable, will eventually lead to more confidence in the validity of code
comprehension studies.
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How Contextual Factors
Influence Code
Comprehension

In the previous chapter, we showed that the human factor is essential in
understanding code comprehension. We keep the focus on the human, but
shift a bit of our perspective to contextual conditions that can affect the
developer in understanding code (see Section 2.3 for background).

In this chapter, we addressRQ3, which seeks to understand how contextual
factors influence developers in code comprehension. We have published
two primary studies on the topic. In the first, we found that developers
can be easily biased in their subjective code comprehension by a made-
up displayed code comprehensibility metric [WPGW21]. We sought to
overcome some of the limitations of that study, so we subsequently designed
a reproduction study that confirmed the results with a slightly modified
study design [WMG22a].
This chapter contributes to the goal of the thesis in two ways: first, the
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studies presented provide evidence that can help in the design of code
comprehension experiments. Second, we demonstrate the importance of dif-
ferent study designs to answer the same research question. The second study
provides valuable additional insights and contributes to a more complete
overall picture.

5.1. Context and Goals

Development teams strive to make their code as understandable as possi-
ble and base their activities on the results of static code analysis tools to
identify areas of code that are still difficult to understand. Most of the met-
rics reported by such tools are either not validated [NAG19], or have been
empirically shown not to measure what they claim to measure [SBV+19].
The latter issue seems especially prevalent in the field of code comprehensi-
bility [MWW20; SBV+19]. In other words: several metrics do not reflect
what they are supposed to measure. Yet, they are considered when making
decisions and change course of what developers think of their source code.

“ The mind is a powerful place / And what you
feed it can affect you in a powerful way ”— NF, The Search (song). 2019.

Feeding the mind with a belief influences it and causes changes that
might go beyond the mind itself. Crum and Langer [CL07] divided a sample
of room attendants at different hotels into two groups. To the first one
only, the researchers presented the supposed positive effects of work-related
physical activities on their health. After four weeks, the informed group
felt that they received significantly more exercise than the second group.
Not just that: Weight, blood pressure, and body fat of the informed group
significantly decreased compared to the non-informed one—without any
detected change in workload, outside work physical activity, or eating habits.
If the consequence of a treatment is not attributed to the treatment itself,
but to pure beliefs and expectations of its effectiveness, we call it the placebo

164 5 | How Contextual Factors Influence Code Comprehension



effect [Sha68]. This effect occurs in many ways. Placebos are administered
in clinical trials in the form of sham drugs to distinguish the pharmaceutical
effect of a drug from the placebo effect. The placebo effect can go beyond the
subjective perception of an affected person and provide measurable effects.
The room attendants were specifically manipulated by the researchers and a
desirable effect was achieved.

Various contextual factors can also influence our reasoning and decision-
making, some of which make us deviate from beneficial results. Many
of these factors are cognitive in nature [Hil12]. Software engineering is
no exception. In a recent systematic mapping study on cognitive biases in
software engineering, 65 articles were identified that provide evidence for the
presence of cognitive biases of at least eight different categories [MST+18].
Negative consequences of such biases are, for example, overly optimistic
effort estimates or insufficient software modifications.
A cognitive bias which is related to estimates and adjustments is the an-

choring effect, introduced by Tversky and Kahneman [TK74]. The anchoring
effect means that an initial value is insufficiently adjusted so that “differ-
ent starting points yield different estimates, which are biased toward the
initial values” [TK74]. The anchoring effect is one of the most robust cog-
nitive biases [FB11] and, in the context of software engineering, the most
studied [MST+18].
In the following, we present two studies. The first one is a randomized,

double-blind experiment in which we divided 45 software engineering stu-
dents into two groups. Participants in both groups were asked to work on
a source code comprehension task on code snippets. We showed the two
groups a metric value that represents the understandability of the code
snippets. One group saw a value that indicates an easy understandability
of the source code. The other group saw one that indicates a hard under-
standability of the source code. Unbeknownst to the participants, tasks and
snippets were the very same for both groups. Also, the metric is not real
and placed there to anchor them. We formulated three research questions,
which are further framed later in Section 5.2.1 and in Section 5.2.2.5:
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RQ3.1 Does the value of a shown code comprehensibility metric influence
subjective ratings of code comprehensibility?

RQ3.2 Does the value of a shown code comprehensibility metric influence
the actual code understanding?

RQ3.3 To which extent do selected individual characteristics correlate with
the deviation of the subjective rating from the shown metric value?

The second study is again a controlled experiment and its design is based
on that of the other experiment on RQs 3.1 – 3.3. It modifies and improves
upon the first experiment in several ways, which we discuss in more detail
in Section 5.3.1. The most considerable differences are that we now have
a much more heterogeneous and larger sample with 206 students and 50
professionals, and that the displayed metric value for anchoring participants
is shown before the code comprehension task (not during it). The second
experiment addresses the following research question:

RQ3.4 Does specific information available in advance about a code snippet
influence developers in their subjective assessment of the code’s
comprehensibility?

In the context of this thesis, understanding the consequences of displaying
ametric value on a developer’s code comprehensibility ratings brings valuable
insights. If the presence of a single metric value significantly influences a
developer’s rating, this would be a strong call to meticulously control code
comprehension experiments for potential confounding variables that could
bias a developer’s judgement or to advise against this measurement method
altogether.
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5.2. A Study of Displaying a Metric to Affect Code
Comprehension

5.2.1. Background and Related Work

In this section, we define two central constructs of this work, namely the
placebo effect and the anchoring effect, and place the work in the context
of related code comprehension literature.

5.2.1.1. Placebo Effect

One of the most quoted definitions of placebo comes from Shapiro [Sha68],
who studied the etymology and semantics of the word to provide a basis for
an appropriate definition and to address the diversity of opinion about the
meaning of the term. The proposed definition is as follows:

“ A placebo is defined as any therapy (or that com-
ponent of any therapy) that is deliberately used
for its nonspecific psychologic or psychophysi-
ologic effect, or that is used for its presumed
specific effect on a patient, symptom, or illness,
but which unknown to therapist and patient is
without specific activity for the condition being
treated. ”— A.K. Shapiro [Sha68]

The placebo effect is defined as “the nonspecific psychologic or psychophys-
iologic effect produced by a placebo” [Sha68]. The introduction of the term
in medical literature was accompanied by “the widespread introduction
of controlled methodology in the evaluation of treatment” [Sha68] and it
became standard to control for the placebo effect in clinical trials. In this
paper, we follow Shapiro’s definition. We would like to point out that the
placebo effect, however, is not limited to the medical context and can be
applied to everyday aspects, as numerous studies have shown.
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In a study on placebo sleep [DE14], participants had to report their previous
night’s sleep quality. One group was then told after a supposedly reliable
measurement that their sleep quality was above average, and the other group
was informed that their sleep quality was below average. The assigned sleep
quality, but not the self-reported sleep quality, significantly predicted, among
others, the auditory information processing speed of the participants. The
authors conclude that mindset can influence cognitive performance both
positively and negatively [DE14].
Other studies show, for example, that smelling a supposedly creativity-

enhancing odorant actually results in a creativity-enhancing effect [RMI+17],
that non-invasive sham brain stimulation improves learning performance
[TBG+18], and that different forms of placebos have an effect on the per-
formance of athletes [BKSB11].

Investigations of the placebo effect in software engineering research have
rarely been conducted so far. One recent study deals with the influence of a
three-minute breathing exercise on the perceived effectiveness of stand-up
meetings in agile project teams [HKS17]. A placebo group was added to
compare the effect with a non-meditative form of relaxation, i.e. listening to
classical music. They conclude that the breathing exercise has an immediate
positive impact on meetings in agile teams. Another study [SAY+18] investi-
gates how the subjective evaluation of an automatically generated solution is
positively influenced by involving the decision maker in the process but not
considering their decisions at all. They conducted a placebo-controlled study
with 12 software engineering practitioners and found an increase of 68%
in the subjective evaluation of an automatically generated but supposedly
decision influenced solution is due to a placebo effect. We are not aware of
any study investigating a potential placebo effect on performance in code
understanding activities.

5.2.1.2. Anchoring Effect

In our behaviors, we act within a specific context. Such context provides
us with cues, verbal suggestions, and social information that influence our
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expectations, appraisals and memories, which in turn influence our behav-
ior and reported experiences [WA15]. Consequently, parts of the placebo
effect on subjective assessments are attributed to various forms of decision
bias [WA15].
A systematic mapping study on cognitive biases in software engineering

highlights that the everyday life of a software engineer is also full of situa-
tions in which their decisions are subconsciously manipulated [MST+18].
Mohanani et al. [MST+18] identified 65 articles in the context of software
engineering that investigated 37 cognitive biases of at least eight different
categories. In the worst case, such bias leads to systematic deviations from
optimal reasoning, such as overly optimistic effort estimates or insufficient
software modifications [MST+18].
The specific cognitive bias that we investigate is called anchoring effect,

which we defined in the introduction to this chapter. According to the afore-
mentioned mapping study, it is the most frequently investigated cognitive
bias in the context of software engineering [MST+18]. For example, one
study used SQL queries as an anchor for query formulation tasks. They found
that while subjects complete the tasks more quickly when modifying a query
instead of writing it from scratch, accuracy decreases and overconfidence
in the results increases [AP06]. Another example where anchoring plays a
role is planning poker. In planning poker, it is considered as positive that all
effort estimates remain initially hidden from view, so that no one is anchored
in their initial estimate by the estimates of their colleagues [Hau06].

The anchor would not even have to be relevant for the estimate [FB11] and
could, for example, result from the previous turning of a wheel of fortune
with numbers between 0 and 100 [TK74]. Since we are interested in the
transfer of the anchoring effect to a realistic software engineering scenario,
we have decided to display a code comprehensibility metric value.

Limited literature is available that has shown that individual character-
istics of the participant may influence the strength of the anchoring effect.
Furnham and Boo [FB11] argue in their literature review on the anchoring
effect that previous research “neglected individual differences variables be-
cause people tend to look for a universal rule that would predict reactions or
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behaviour”. Nevertheless, they could identify a total of 17 studies that consid-
ered the influence of experience, personality, mood, motivation and cognitive
abilities. We aim to contribute to this investigation in the context of RQ3.3
and explored the influence of experience, personality, happiness and disposi-
tional optimism and pessimism on the anchoring effect. All these constructs
are also associated in literature with the placebo effect [GWF+10; MWEJ09;
PAL+13; WA15]. In 5.2.2.4 and 5.2.2.5 we describe the used questionnaires
and how we have operationalized and measured the constructs.

5.2.1.3. Code Comprehensibility Metrics and Subjective Ratings

Many factors impact the comprehensibility of source code. For example, one
study has shown that shorter identifiers take longer to comprehend [HSH17],
and another that a number of certain code patterns lead to an increased rate
of misunderstanding [GIY+17b].
Static code analysis tools attempt to measure code understandability

automatically to efficiently point out sections of the code that are difficult to
comprehend and should therefore be refactored. Not only are most of the
metrics in static code analysis tools not validated [NAG19], but in addition,
there seems to be only one metric that is validated and positively correlates
with measures of source code comprehensibility [MWW20; SBV+19].

Scalabrino et al. [SBV+19], for example, investigated 121 metrics that
would measure source code understandability. Code snippets were evaluated
with 63 developers and various proxy variables that are related to the time
and correctness required to complete comprehension tasks. According to
their results, none of the investigated metrics showed a significant correlation
with the measured source code comprehensibility.

In one of our own studies [MWW20]we empirically evaluated the Cognitive
Complexity, a newly introduced metric that claims to measure source code
understandability [Cam18]. The metric evaluates code syntactically and
assigns each method a calculated value on a ratio scale. For Java methods,
the authors of the metric suggest a threshold value of 15 above which a
snippet should be refactored. The authors of the evaluation study conclude
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that the metric is a reliable predictor of the required understanding time
and the subjective comprehensibility rating of developers [MWW20]. Both
aspects encouraged us to consider the metric when selecting code snippets
for the present study (see 5.2.2.4; they all had a value of 19).
Displaying non-validated metrics can lead to confusion and unnecessary

effort due to improper prioritization of development efforts. It becomes
especially problematic if the displayed metric value actually has an influence
on developers, even if only in their subjective perception of the code because
this would mean that they are subconsciously manipulated and are very
unlikely to resist this circumstance since the anchoring effect is one of the
most robust cognitive processes [FB11].
Finally, in experiments like ours, we do not intend to measure how un-

derstandable source code is, but the degree to which a participant has
understood the given source code. It is in the nature of our study to in-
vestigate selected influences on code comprehension, and not to compare
variants of source code for their comprehensibility. As we know from the
mapping study presented in Chapter 3, the most common measures for this
purpose are time and correctness in processing comprehension questions,
subjective ratings and physiological measurements such as eye tracking. We
also learned there and via Siegmund and Schumann’s study that numerous
potential threats to validity and confounding variables are suspected to
influence code comprehension [SS15]. A handful of these are related to
cognitive biases. One example is the Hawthorne effect [MWI+07; RD03],
which describes that participants in experiments would behave differently
because they were observed. With the present study, we close a research gap
and investigate whether we should add the anchoring effect as an entry to
the catalog of confounding variables on code comprehension, particularly if
code comprehension is operationalized through subjective self-assessments.

5.2.2. Methodology

We follow the guidelines of Jedlitschka et al. [JCP08] on reporting experi-
ments in software engineering.
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5.2.2.1. Goals

The goal of our study is to analyze the effect of showing a specific code
comprehensibility metric on measures of a software engineer’s code under-
standing to identify a potential cognitive bias and placebo effect. To this end,
we formulated the three research questions 3.1–3.3 given in the introduction
to this chapter (Section 5.1).

5.2.2.2. Participants

We invited a convenience sample of students of a software engineering
M.Sc. study program in Germany to participate in the study. Convenience
sampling is controversial because it threatens generalizability [BR22], but
at the same time appropriate for our goal of studying universal phenomena
such as the anchoring effect. Additionally, we limited participants to those
with good knowledge of Java and German, as the study was conducted in
German; in both aspects we relied on the self-assessment of the participants.
We see the sample properties of interest, namely enough experience to
comprehend medium to hard to understand Java code, ensured by our
sampling strategy so that the findings can be transferred to a population of
experienced Java software engineers. Limitations of our sampling strategy
and their implications are discussed in Section 5.2.4.1.
As part of their study duties, students had to participate in any study

offered by the faculty. Students had the right to register for a study and then
withdraw their participation at any time (including before the start) without
consequences, with course organizers being unaware of their withdrawal.
We reminded them about this during the informed consent phase, which
included a partial design disclosure, health risks, privacy and ethical issues,
and our contact details. Consent was obtained in written form.

Participants knew that we aimed to investigate factors that influence the
understanding of source code, and that they would have to work on short
methods written in Java and calculate the results for given input values.
They were not aware of the metric manipulation.
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5.2.2.3. Tasks

Participants were shown three independent Java methods, one after the other.
For each code snippet, five input values were given, for which the participants
were asked to specify the return values according to the Javadoc and to
determine the actual return value. Since we told our participants that there
might be bugs in the code, they could not rely on the Javadoc comment and
had to understand what the code actually does. We consider the deviation
of the documentation from the code and the inspection based on concrete
values for the input parameters to be a realistic scenario. Furthermore, the
task is in line with the conceptual model that a developer in a maintenance
scenario iteratively constructs and tests hypotheses about the functioning of
the code during program understanding [VV95].
Right after determining the return values, the participants were asked

to rate the comprehensibility of the method on a scale of 0 (very easy) to
10 (very hard) and fill out questionnaires on their individual characteristics
(details in section 5.2.2.7).

5.2.2.4. Experimental Materials

Environment. The tasks were all solved on a laptop provided by us. Code
snippets were presented in a web environment specially developed for this
study. The look and feel of the web environment is based on the Eclipse
IDE default look. Tooltips for variables and functions were displayed as
typically expected in IDEs when hovering them. Syntax highlighting and
line numbers were available. Selecting a variable highlights all occurrences
of that variable. Next to the source code, the comprehensibility value of the
method was displayed. A screenshot of the environment is shown in Fig. 5.1.

Code Snippets. We used a total of five Java code snippets to conduct the
study, two of which were used to introduce the study and explain the task,
and the remaining three had to be understood by the participants. All
participants received the same Java code snippets, regardless of treatment.
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Figure 5.1.: Look and feel of the development environment that all partici-
pants used for the code comprehension tasks.

Each code snippet consisted of exactly one class with exactly one method.
The method was documented via Javadoc.

The three task-related snippets were taken from either the Apache Com-
mons Lang or Apache Commons Collection project. We selected the snippets
in a way that no uncommon prior knowledge on, e.g., frameworks, would
be required to understand them. As a result, the code contained mostly
primitive data types and the features of newer Java versions were avoided.
The snippets were slightly modified, either to introduce a bug or to make sure
that all task snippets have the same cognitive complexity, an indicator for the
comprehensibility of the method, which is particularly reliable regarding the
subjective rating of developers [Cam18; MWW20]. This allowed us to weigh
the answers to the three tasks equally and limited potential confusion or loss
of trust in the displayed metric if the same metric value was displayed (by
design) but very different difficulties were perceived. The three task snippets
had a cognitive complexity score of 19, which is considered moderate to
difficult to understand for Java methods.

Comprehension Questions. For each of the three tasks a participant was
provided with a paper-based formwhich included five rows of a three-column
table that had to be filled in. The cells of the first column each contained
a method call, for example toBooleanObject("ofo"). The other two
columns had to be filled with the actual return value of the method and the
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expected return value according to the Javadoc.

Questionnaires. Participants had to fill out several questionnaires. Related
constructs are detailed in the next section.

To assess happiness, we use the Scale of Positive and Negative Experiences
(SPANE) [DWT+10] which quantifies the frequency of positive (SPANE-P)
and negative (SPANE-N) affective experiences, and the happiness overall
of our participants (SPANE-B). The questionnaire was successfully used
(and fully described) in other studies of behavioral software engineering,
e.g., [GFWA17; GWA14]. To appraise personality traits, we use the Big Five
Inventory [Dig90; MJ92]. To measure dispositional optimism and pessimism,
we use the Life Orientation Test (LOT-R) [SCB94].

All measurement instruments have been psychometrically validated in
several large-scale studies and show good psychometric properties [BJ98;
CMB16; Jov15; LBW13; SC13; SCB94; Sum14], including consistency across
full-time workers and students [SC13]. For all questionnaires we used a
further psychometrically validated German version, i.e. [RHS17] for SPANE,
[LLA01] for the Big Five Inventory and [GHKH08] for LOT-R.

5.2.2.5. Hypotheses, Parameters, and Variables

The independent variable relevant to RQ3.1 and RQ3.2 is the displayed met-
ric value (DMV). We developed the DMV to express the understandability
of the source code. The DMV ranges from 0 (very easy to understand) to
10 (very hard to understand). The choice was driven by how natural it is
for human beings to rate a concept from 0 to 10. The individual participant
only saw three values for the metric. For the two introductory examples to
explain the study tasks, we have chosen the values 1 (a very easy task) and 9
(a very hard task) to show possible extremes for coding snippet understand-
ability. For all three experiment tasks, a participant either saw a value of 4
(moderately easy) or 8 (moderately hard), to cause the anchoring effect into
two opposed directions (easy and hard).
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Regarding RQ3.1, the relevant dependent variable is perceived under-
standability (PU). Perceived understandability is defined as the sum of a
participant’s ratings for the three code snippets. The rating of each code
snippet ranges, identical to the DMV, from 0 (very easy to understand) to
10 (very hard to understand). Accordingly, the value for PU is in the range
of 0 to 30.

H10: There is no significant difference in perceived understandability (PU)
between the two anchoring directions of a displayed metric value (DMV ).
H1A: There is a significant difference in perceived understandability (PU)
between the two anchoring directions of a displayed metric value (DMV ).

Regarding RQ3.2, we consider two common measures for code compre-
hension, which are time needed to complete all three tasks and correctness
of the answers to the comprehension questions. The time was recorded for
each task and summed up at the end. Correctness is the sum of correct
answers to the comprehension questions of all three tasks, including both
correct answers to actual return values and correct answers to return values
according to the documentation. Therefore, the value for correctness is in
the range of 0 to 30. To answer the research question, we combine time
and correctness, as Scalabrino et al. [SBV+19] did, for example, to score
participants higher that are both fast and correct. This results in timed
actual understanding (TAU), a participant’s performance score obtained
by combining correctness and time. Equation (5.1) provides the calculation
for TAU, which ranges from 0 (the worst possible) to 1 (the best possible)
and in which tmax is the time of the participant who took the longest.

TAU(cor rectness, t ime) =
cor rectness

30
∗
�

1−
t ime
tmax

�

(5.1)

H20: There is no significant difference in timed actual understanding (TAU)
between the two anchoring directions of a displayed metric value (DMV ).
H2A: There is a significant difference in timed actual understanding (TAU)
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between the two anchoring directions of a displayed metric value (DMV ).

The investigation of RQ3.3, the extent to which individual characteristics
influence the deviation from the displayed metric value, is exploratory re-
search. Therefore, no hypotheses were formulated for this research question.
Themetric deviation is defined as mean absolute deviation of a participant’s
rating from the displayed metric value and calculated as shown in (5.2),
where PUi is the perceived understandability for task i.

|PU1 − DMV |+ |PU2 − DMV |+ |PU3 − DMV |
3

(5.2)

The individual characteristics of interest in this study are experience
with Java, personality, happiness and dispositional optimism and pessimism.
Java experience was measured in years. Personality was operationalized
by the five dimensions of the Five Factor model, i.e., extraversion range =
[0, 32], agreeableness r = [0,36], conscientiousness r = [0,36], neuroticism
r = [0, 32] and openness to experience r = [0,40]. The higher the value,
the more pronounced is the respective personality facet of a participant.
The range of SPANE-P (positive affect) and SPANE-N (negative affect) is
r = [6, 30], from low frequency to high frequency of positive and negative
experiences, respectively. SPANE-B, or happiness, has a range r = [−24,24],
the negative pole refers to unhappiness and the positive one to happiness.
Dispositional optimism and pessimism are independent constructs rather
than a bipolar trait. Both are in the range r = [0,12], from low to high
degree of optimism and pessimism, respectively.

5.2 | A Study of Displaying a Metric to Affect Code Comprehension 177



5.2.2.6. Experiment Design

The experiment was a between-subject design with two treatment groups.
Assignment to a treatment was double-blind and random.1 None of the
authors knew which participant, even as an anonymous data point, was in
which treatment group until the data was evaluated.

One group saw a DMV of 4 next to all code snippets. We call this group
the easy group from this point on. The other group saw a DMV of 8. We
refer to this group as the hard group from this point on. There were no
further differences in the treatment of the two groups.

The reader might notice an absence of a control group, which does not see
any DMV . This is intentional and suggested in literature on the anchoring
effect, which we discuss in more detail in Section 5.2.4.1.
Following Wohlin et al.’s guidelines [WRH+12] for conducting experi-

ments in software engineering, we had the study design reviewed by two
peers in two iterations and conducted a pilot test. Furthermore, we have
identified and implemented a number of measures that we believe contribute
to mitigating threats to validity. Limitations of our final study design, that is,
what affects the interpretation of our results, are discussed in Section 5.2.4.1.

Measures to Address Construct Validity. We used psychometrically validated
questionnaires for assessing individual characteristics. Regarding the opera-
tionalization of code understanding, we have oriented ourselves on how the
construct was measured by our peers in peer-reviewed research [MWW20;
SBV+19]. With time and correctness, we measured two argumentatively
important and objective aspects of code understanding and combined them
with equal weight, similar to what Scalabrino et al. [SBV+19] did.

We designed a plausible scenario to justify the display of the metric value
and developed an experiment description for participants which did not re-
veal the essence of the experiment to prevent hypothesis guessing [WRH+12].

1We agree, to some extent, with Baltes and Ralph [BR22] that random should be used
sparingly, so we will add here that participants were assigned to a condition based on the time
slot they signed up for. When assigning treatment conditions to a time slot, it was ensured that
the conditions were distributed equally over different times of day.
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The description did not present false information, but hid only the objective
of the anchoring effect. Closely related, we prevented the threat of experi-
menter expectations [WRH+12] by double-blind assignment of participants
to treatment groups.

To prevent evaluation apprehension [WRH+12] and unnecessary stress we
always tried to have exactly two participants simultaneously in the room, the
experimental supervisor could not look over the shoulder of the participants,
and it was emphasized several times that the answers were anonymous.
Due to their intimate nature, the Big Five and LOT-R questionnaires were
completed only after the code comprehension tasks had been completed.
Both participants in the same time slot were also in the same treatment
group to avoid diffusion or imitation of treatments [WRH+12] by one of the
two participants making a comment on the displayed metric value.

Measures to Address Internal Validity. We discussed every variable listed in
Siegmund and Schumann [SS15]’s mapping study on confounding variables
in code comprehension experiments. Of the 37 variables listed, only two
remained even after thorough planning of the experiment, which we see
as potential threats to validity: the Hawthorne effect and selection (the
generalizability of student participants). We discuss both in 5.2.4.1.
Of the potential confounders that we have explicitly controlled, we high-

light the following two. First, we selected several code snippets that a partic-
ipant had to understand to reduce the influence of individual data structures
and program semantics. Snippets were also neither too difficult nor too
easy according to a validated code comprehensibility metric [MWW20], and
moreover of comparable comprehensibility. Second, we implemented a tool
to view and interact with the code in the tasks. This gave us full control
over the environment and allowed us to reduce the displayed elements to
a minimum to increase internal validity. In addition, no participant had
an advantage, since no one was more familiar with the environment than
everyone else.
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Measures to Address External Validity. We used code snippets taken from
real-world, actively developed famous open-source projects and avoided
removing comments or obscuring method or variable names to force code
understanding. Instead, we have created a realistic software maintenance
scenario in which the developer needs to understand code that does not
necessarily fit the documentation and that may contain a bug, requiring
the developer to check what the actual output values are for certain input
values.

Measures to Address Conclusion Validity. Regarding reliability of treatment
implementation [WRH+12], we used a strict protocol and double-blind
condition assignment to ensure that each participant received the same
information and was treated equally. The same investigator conducted the
experiment with all 45 participants. The DMV of either 4 or 8 was displayed
the same for all participants in a treatment group, as it was an automatic
display in an environment controlled by us.
To prevent random irrelevancies in experimental setting [WRH+12] we

reserved the room two weeks in advance and for the entire day on each day
the study was conducted. We were prepared to document irregularities, but
did not have to do so.

5.2.2.7. Procedure

The following steps took place once a participant arrived in the room re-
served for the experiment at the agreed time. Participants were provided
with a consent form and were informed verbally about the aim of the study.
They were shown the laptop and the files on the laptop. Then they had to
fill out two questionnaires, one on demographic data and on their happiness
(SPANE). The instructor made the participants save and close the question-
naires on their own after completing them so that they did not feel observed
by the instructor.
The instructor explained the task, the scenario and the development

environment to the participants. Thereby, the participants were shown a
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filled out task sheet for one method as an example and the solution was
exemplified for the first two input values. The visualization of the metric
and its display for supposedly informative reasons was explained and a
second introductory example, which was significantly harder to understand
than the first one, demonstrated that the metric works well. When asked,
the instructor told that the metric was developed by experts, similar to
what Draganich and Erdal [DE14] did in their placebo sleep experiment.

The instructor summarized the task and mentioned that the employer
in the task scenario wants them to work efficiently but also correctly. Par-
ticipants then had the opportunity to ask questions before starting with
the tasks. The time recording was done per task and the recorded value
was stored in a spreadsheet without the participants noticing it. After all
three tasks had been completed, the participants finally had to fill out the
questionnaires on individual characteristics.

5.2.3. Results

5.2.3.1. Descriptive statistics and dataset preparation

45 students participated in the study1. Two of them did not submit complete
data for RQ3.3 (e.g., missing an item for the SPANE questionnaire). We
decided to exclude them from the dataset to enhance our confidence in
how serious all participants were in completing all tasks. We thus had an
overall sample size of n= 43 participants (41 male, 2 female). Mean age was
24.47 (SD = 2.84), average declared experience with the Java programming
language was 5.83 years (SD = 2.37).

Participants were randomly allocated to the easy group, n= 20, or the hard
group, n= 23. Declared experience with the Java programming language
was comparable for both groups after random assignment (M = 5.25, SD =
2.60 for the easy group, M = 6.33, SD = 2.06 for the hard group).

The easy group was shown a DMV of 4 for the three tasks, or 12 combined,
and provided a PU of 15.40 (SD = 4.17, median= 14.50). The hard group

1We cannot offer a precise acceptance rate because course attendance is not mandatory
and cannot be recorded.
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Figure 5.2.: Perceived understandability (PU) of the tasks for the easy group
and the hard group (three tasks, range 0 (easiest) to 10 (hard-
est), combined range 0 (easiest) to 30 (hardest)).

was shown a DMV of 8 for the three tasks, or 24 combined, and provided PU
of 20.83 (SD = 4.23, median= 20.00). A graphical comparison is offered in
the boxplot of Figure 5.2.
The easy group performed with an average TAU of M = .37 (SD = .17,

median= .41). The hard group performed with an average TAU of M = .37

(SD = .11, median = .36). A further boxplot comparison (included in the
supplemental material) did not suggest significant difference.
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5.2.3.2. Hypothesis testing

There was a significant difference between PU of the two groups12, t(40.318) =
−4.227, p = .000132, 95% CI [−8.02,−2.83], with a large effect size, d =
−1.29, 95% CI [−1.97,−0.61].
We thus reject H10 in favor to H1A: There is evidence for a difference

in perceived understandability between the two anchoring directions
of a displayed metric value.

There was no significant difference between the timed actual understand-
ing (TAU) of the two groups3, W = 256, p = .5385, with a negligible effect
size, d = −.006, 95% CI [−0.62, 0.61].

We do not reject H20. There is no evidence for a difference in timed ac-
tual understanding between the two anchoring directions of a displayed
metric value.

5.2.3.3. Exploratory analysis

We provide the computed correlation coefficients of the metric deviation
(calculated as in formula 5.2) with affect-related metrics and personality-
related metrics in Table 5.1. The first two rows provide the correlation
coefficients for the two experimental groups (between), while the third row
combines all participants (within).
For brevity’s sake, we will call the “metric deviation” simply “deviation”

the rest of this section. As a reminder, the wider the deviation, the bigger
the gap between the subjective rating and the shown metric value, or the
manipulation, on the easy direction or on the hard direction.

Given the exploratory nature of RQ3.3, no estimation of significance was
conducted for the correlation coefficients. As a cutoff for potentially interest-

1Welch Two Sample t-test given evidence for normality (Shapiro-Wilk test, p > .26 for both
groups) and no further assumption on the population variance.

2We are aware of the open debate on whether Likert items are ordinal data or continuous
data [Mur13]. We believe, in line with psychometric theory, to have Likert items capture
discrete points over a continuous scale. All scales that we use for individual characteristics are
psychometrically validated Likert items.

3Wilcoxon rank sum exact test given evidence for non-normality (Shapiro-Wilk test,
p = .03 for the easy group).
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Table 5.1.: Spearman’s ρ correlation coefficient of individual characteristics
with the deviation of the subjective rating. Abbrv.: Exp=Java
experience in years, Consc=Conscientiousness.

Group Exp. SPANE-P SPANE-N SPANE-B Optimism Pessimism
easy -0.28 0.11 -0.23 0.18 0.32 0.18
hard 0.24 -0.15 0.13 -0.23 0 -0.04

combined -0.03 -0.12 0.06 -0.16 0.14 0.07

Group Extraversion Agreeableness Consc. Neuroticism Openness
easy -0.1 0.08 0.46 -0.12 -0.01
hard -0.09 0 -0.09 -0.06 0.05

combined -0.13 0.08 0.14 -0.05 0.01

ing individual characteristics, we will only consider correlation coefficients
|ρ|> 0.1.

When exploring the data between the two experimental groups, we notice
that an increase in programming language experience is associated with
a decreased deviation when the manipulation suggests an easy task and
an increased deviation when the manipulation suggests a hard task. The
opposite happens with happiness (SPANE-B). An increase in happiness is
associated with an increased deviation for the easy group and a decreased
deviation for the hard group. The two major components of happiness,
SPANE-P and SPANE-N, show coherence with the aggregated happiness
score.
An increase for both optimism and pessimism is associated with a wider

deviation for the easy group, while no correlation is observed for the hard
group. Of all personality traits, an increase in conscientiousness seems to be
strongly correlated with an increased deviation for the easy group, followed
by neuroticism but with an inverse relationship. No personality trait shows
a |ρ|> 0.1 for the hard group.
When combining the two groups, in a within subject analysis, with the

assumption that the two groups are from the same population, an overall
negative relationship between happiness and the deviation is observed (hap-
pier participants deviated less). An increase in optimism is associated with
a wider deviation. Of the personality traits, an increase in optimism and
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conscientiousness were correlated with a bigger deviation, but an increase
with extraversion was correlated with a smaller deviation. Programming
experience seems not to play a role in the deviation.

5.2.4. Discussion

Metrics provide developers with quantitative insights into the quality of their
source code, but most of the metrics used in practice are not sufficiently
validated. We have investigated the extent to which developers are actually
subconsciously influenced by the value of a displayed made-up metric to
raise an awareness of responsibility in code quality reporting.
We found a significant and strong anchoring effect, which means that

developers are strongly influenced by a displayed metric value in their rating
of source code comprehensibility. This finding is consistent with over 40 years
of research on the anchoring effect [FB11], yet investigation in a specific
software engineering context is nevertheless a valuable contribution to build
the foundation for future studies, for example to investigate consequences
of the demonstrated effect.

One such potential consequence could be an improved or worsened under-
standing of the code. However, in our study we could not provide evidence
that the suggestion of simple or difficult code provokes a placebo effect, in
the sense that the beliefs concerning the comprehensibility of the source
code influences the speed and correctness with which a software engineer
answers comprehension questions. Since cognitive performance and cre-
ativity, arguably both characteristics necessary for code understanding, can
be influenced by a placebo [RMI+17; TBG+18], we would have expected
to observe such an effect. Assuming that a placebo effect for code compre-
hension can be observed theoretically, we see two possible reasons why we
could not in our experiment.
First, it could be that a displayed metric value is simply not a strong

enough influence to cause performance changes. Compared to other placebo
studies [CL07; DE14; RMI+17], we did not manipulate the participants to
claim that our treatment had specific beneficial or performance-enhancing
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effects. Instead, we displayed a metric value that indicated how easy or
difficult code is to understand. We left it up to the participants to interpret
what it means and what consequences it might have if source code is easy
or hard to understand. Accordingly, code comprehension may have actually
improved or worsened as a result of the manipulation, just not in the way
we measured it.

This brings us to the second possibility that time and correctness are not
all-inclusive proxies for code comprehension. We speculate that physiological
measurements may have led to a different result. For example, cognitive
load and stress levels at the end of task processing might have been lower
in the easy group, as they may have been more comfortable with the task.
While the question of ideal measures of code comprehension is beyond the
scope of this work, and we have not measured these variables, we argue that
they nevertheless reflect relevant dimensions of code comprehension. With
the increase in physiological measurements in the field of code comprehen-
sion [Fak18; PSP+18; SPB+20], we see much potential for future studies
to replicate our experiment with alternative measurement methods to shed
light on the matter.
Regarding individual characteristics that influence the strength of the

observed anchoring effect, our results, while exploratory and based on corre-
lations, are only partially consistent with the few relevant studies conducted
to date [FB11]. We observed that participants with low extraversion are
less subjected to the anchoring effect, which is consistent with existing lit-
erature [EC10]. However, our results indicate that participants with high
conscientiousness are less susceptible to the anchoring effect, which is con-
trary to the findings of Eroglu and Croxto [EC10]. We could not find a
positive correlation between anchoring and the personality trait openness
as McElroy and Dowd [MD07] did. Further, our results suggest that happier
people might be more subjected to the anchoring effect, which also does not
coincide with previous studies [BGL00; ES09].
We found that optimism positively correlates with the metric deviation,

which corresponds to a weaker anchoring effect. Programming experience,
on the other hand, might not play a role in anchoring, but this should be
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taken with caution, since we had a homogeneous group of experienced
developers and results could be different for inexperienced developers.

If the code comprehensibility metric shows a low value for a rather difficult
task, personality factors could play a bigger role. In particular, conscien-
tiousness might be the strongest predictor of a deviation when metrics are
too conservative in how difficult a task might be (easy group), followed by
optimism. In conclusion, our results suggest that the anchoring effect might
not be a universal rule that applies equally to all participants. The partial
deviation of our results from previous findings is an indication that more
studies are needed in this regard. The exploratory settings of RQ3.3 set basic
building blocks upon which we call our peers to conduct future research.

5.2.4.1. Limitations

A detailed description of design decisions made in advance to mitigate valid-
ity risks can be found in Section 5.2.2.6. What follows are limitations that
affect the final study design and that should be considered when interpreting
our results.
As for potential confounding variables, we could reduce a lengthy list of

known variables [SS15] to two that might have affected the results: the
Hawthorne effect and the selection of students as participants.
The Hawthorne effect [MWI+07; RD03] describes that participants in

experiments would behave differently because they were observed. While we
addressed hypothesis guessing [WRH+12] with a plausible scenario that does
not reveal the essence of the experiment, and we addressed the threat of eval-
uation apprehension [WRH+12] through privacy and data anonymization,
it cannot be ruled out that participants followed the proposed metric value
more closely than they would have done outside an experimental setting.
According to [FB11] the current dominant view of the anchoring paradigm
focuses on confirmatory hypothesis testing in the sense that information is
activated that is consistent with the anchor presented. We assume that this
also applies to our experiment and that the observed anchoring effect, if at
all, is only to a small extent due to an experimentally provoked good will of
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the participants for the metric. A future field study could provide clarity in
this respect.
As argued earlier in the description of participants (Section 5.2.2.2), we

invited a convenience sample of students of a software engineering M.Sc.
study program. In our sampling strategy, we prioritized internal validity,
which was enhanced by a homogeneous level of experience with the pro-
gramming language, paradigm, and task type. We also believe that our
results can be generalized to a population of professional software engi-
neers. In the discussion about representativeness of software engineering
students, opposing opinions have existed for the last 20 years [KPP+02;
SAA+02; Tic00]. Recent studies have shown that comparable results can
be achieved with both groups of students and professionals—as long as the
scope of the investigation is carefully considered (see, e.g., [SMJ15]). We
have confidence in the robustness and soundness of our research design.
Recent commentaries [FZB+18] have, once again, highlighted how diverse
the views are on the topic. We side with the view summarized by Rune-
son [FZB+18] as well as Baltes and Ralph [BR22] that a convenience sample
of students is justified in the investigation of central behavioral and cognitive
processes, as was the case in our study. There is evidence, for example, that
the anchoring effect is not restricted to laymen and that more experienced
people are influenced by it as well [FB11; TK74].
Then, since we did not have a control group in our experiment that was

not shown a metric value, we cannot say how a control group would have
rated the snippets. For the demonstration of the anchoring effect this is not
a limitation, and it is consistent with the body of research on the anchoring
effect to not have a no-anchor control group [CG08; ME05]. However,
regarding the placebo effect, we would like to stress that our design would
not be able to decide strictly speaking whether any observed effect is due
to the placebo, but with the design, it is still possible to demonstrate the
extent to which a displayed metric value influences code understanding in
a positive or negative direction. Our study is based on a comprehensive
body of research that has provided evidence for the placebo effect, so we
assumed that the effect would also exist in our scenario and opted for the
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study design described above.
Finally, we are aware that the way in which the metric value was displayed

is very prominent. We argue that developers are used to static code analysis
tools reporting metric values in similar ways, and IDEs increasingly offer the
possibility to display code quality metrics directly in the source code. Even
if this situation is not as common, we refer to Critcher and Gilovich [CG08]
and related works showing that for the anchoring effect to work, much more
inconspicuous anchors, which do not even have to be highlighted, are usually
sufficient. Again, a field study with realistic IDE plugins and existing metrics
could be an option to repeat the investigation of the effects in an industrial
environment.

5.2.4.2. Implications

Since developers are influenced by a shown metric value in their subjective
evaluation of a code snippet’s comprehensibility, we highlight the following
implications.

First, those responsible for reporting code quality metrics should be aware
of their responsibility that non-validated metrics lead to unwarranted manip-
ulation of developers, the consequences of which we do not know yet. Future
studies can build on our results and investigate possible consequences.

Second, since it is a common practice in code understanding studies to ask
developers for a subjective rating, such studies should ensure that individual
participants are not anchored by context factors such as displayed metric
values. It may already be sufficient that the instructor or the task description
hint at something about the complexity of a code snippet to be examined.
Also, for example, different amounts of time available for processing different
code snippets could lead to an anchoring of the participants in their subjective
assessment. If the study cannot be controlled with certainty in this regard,
the measure of subjective ratings should not be used.
We echo the call of Mohanani et al. [MST+18] and propose a debiasing

technique for the anchoring effect. The debiasing here is about developing
validated metrics (or validate existing ones) before showing their values to
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software developers.
We do not consider it an issue when developers are anchored in their

subjective judgement by a validated metric that may be able to consider
more factors and evaluate code more objectively than a developer could. We
are aware that, for example, static code analysis tools do not intentionally
lie, and that many of the metrics seem to make intuitive sense. It becomes
problematic, however, when developers interpret quality aspects into metrics
that were not intended to be measured by the metric, or when the metric
is no more than an implemented, albeit well-thought-out, idea. Therefore,
tools should describe very precisely what the metric intends to measure and
support this measurement with systematic research.
A number of previous studies already called for more effort to be put

into disseminating research findings among practitioners so that they can
rely on evidence rather than forming biased and error-prone conclusions
based on personal impressions [DZB16; KDJ04]. Especially regarding the
clearly shown anchoring effect, validated metrics should have an easy time
anchoring developers where they should be anchored evidence-wise and
overcome the circumstance that developers sometimes tend to prefer their
own opinions over empirical evidence [RHB03].
We consider the negative results on RQ3.2 to be good results under the

circumstances described above. Since the situation is unlikely to change in
the near future, it is at least good to know that a few random numbers may
not have a negative impact on a developer’s understanding time and correct-
ness during maintenance. Whether other aspects of code understanding can
be influenced by a placebo will need to be investigated in future studies.

5.3. A Study of Anchoring Developers Through Task
Descriptions

We learned from the previously described study that developers can be
anchored and therefore influenced in their code comprehensibility judgments
if they are shown a metric value during the code comprehension task. To

190 5 | How Contextual Factors Influence Code Comprehension



remain in the usual linguistic style and not to cause too much confusion
by constantly referring to a first and a present study, in this section we
refer to the present study as ‘ours’ and reference the publication of the
first study [WPGW21] in third person as if it were from a different author
team.1 Our goal now is to replicate the findings in a more realistic setting
and overcome some of the limitations of the previous study. In particular,
we now attempt to manipulate study participants by displaying a code
comprehensibility cue to them only at the beginning of the study.
Thinking about what you tell participants at the beginning of your study

matters — at least if your concern is to produce a study design with high
validity and reduce the probability of biased results. Consider the following
scenario. Caroline is a developer who wants to take part in an advertised
study to research the influence of code comments on source code compre-
hensibility. On site, the study leader explains the study process to her. She
would have to look at a source code snippet and rate its comprehensibility.
Caroline is a little nervous, but the study leader instinctively reassures her
that the code will not be too difficult to understand. The study leader has
good intentions here, yet there might be unattended consequences for this
action.
The reader might start seeing, at this point, the internal validity of the

fictitious study threatened, since the assessment of code comprehensibility
was most likely influenced at that moment by the words of the study leader.
The introduction to a study should strictly follow a predefined script. The
Standards for Educational and Psychological Testing enlist several recommen-
dations to assemble and present instructions to administer a test, including
the instructions presented to test takers so that “it is possible for others to
replicate the administration conditions under which the data on reliability,
validity [...] were obtained” [APA14][p. 90]. Additionally, by following a
predefined script, experimenter expectancies can be avoided [WRH+12].
We share this sentiment, and yet, from the researchers’ perspective, it does

1In fact, the author teams are not identical, but they overlap. The reader will notice when
looking at the publication on the present study that we also reported there in third person
about the first one, which was primarily due to the double-blind review process.
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not always turn out to be that simple to control for any external influences
on subjective assessments.
Subjective code comprehension assessments are a common measure in

code comprehension studies because of their simplicity. At the same time, we
know from more than forty years of research on the anchoring effect [FB11;
TK74] that even inconspicuous environmental factors are sufficient to influ-
ence people in their estimation [CG08].
If we could confirm the findings of the previously described study in

Section 5.2, the presence of an anchoring effect would imply that subjective
ratings should only be used when contextual factors can be controlled for
with a high degree of certainty for all participants, thus minimizing the
risk of anchoring individual participants and biasing the experiment results.
In any case, additional insights on the influence of scenario descriptions
on subjective code comprehension ratings provide a useful basis for design
decisions, and can partially counteract existing uncertainty about what
constitutes a good empirical study [Sie16; SSA15].

5.3.1. Background and Related Work

We covered the anchoring effect and the studies on it in Section 5.2.1.
Here, we will focus on how the present study builds on that of Wyrich et al.
[WPGW21].

They showed in their experiment that displaying different values of a made-
up code comprehensibility metric significantly anchored study participants
in their subjective ratings of source code comprehensibility. Participants
were assigned to one of two groups and saw three code snippets one after
the other, which they had to understand and evaluate in terms of their un-
derstandability. All participants were shown a supposedly validated metric
next to the code snippets, which, however, displayed a different value de-
pending on the treatment group (either 4 or 8) and was intended to anchor
the participants in this way. The observed anchoring effect was significant
(p < .01) with a large effect size (d = −1.29).

The experiment by Wyrich et al. [WPGW21] is closest to ours, but differs
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decidedly in some respects, which is why we do not refer to ours as a
replication study. Wyrich et al. [WPGW21] anchored the participants by
displaying the anchor, i.e., the numeric value for the metric, during the code
comprehension task, next to the code snippets, thus much more prominently
than we do. We study the anchoring of experiment participants at the
beginning of the study using a description of the expected code snippet,
hence, displayed before showing the coding snippet. Our choice is based
on the limitation discussed by Wyrich et al. [WPGW21] that showing the
anchoring element during the code comprehension task might be unusual.
We sought to verify that the results still hold true when we were closer to
realistic scenarios, some of which we discuss in Section 5.3.4.
Other differences in design characteristics between the two studies are

outlined in Table 5.2. Nevertheless, similar to a reproduction study1, we build
on the work by Wyrich et al. [WPGW21] to make both studies as comparable
as possible and thus contribute to a common overall picture.

Table 5.2.: Comparison of experiment characteristics
Wyrich et al. [WPGW21] Our study

Scenario
presentation

next to code snippet,
metric only

prior to code snippet,
metric and snippet details

Metric values
(scenarios)

4, 8 3, 8, none

Comp. task determine output and rate
understandability

rate understandability

Participants 43 students 206 students,
50 professionals

Setting onsite, code on screen remote, code on screen

5.3.2. Methodology

The goal of our study is to investigate the effect of the presence and content
of information about a code snippet at the beginning of a scientific study on

1https://www.acm.org/publications/policies/artifact-review-badging
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the participant’s rating of the comprehensibility of that code snippet. To this
end, we formulated research question 3.4 given in the introduction to this
chapter (Section 5.1).

5.3.2.1. Research Design

We conducted a controlled and randomized between-subjects experiment
with 3x2 factorial design. Each participant was assigned to one of three
scenario groups and had to understand one of two code snippets. A schematic
representation of the research design is provided in Figure 5.3.

The experiment took place online via a self-hosted instance of LimeSurvey,
and participation was entirely anonymous. Participants first confirmed that
their consent to participate was informed and agreed to the data and privacy
policy. On the next page, participants saw a description of the task that
awaited them in the next step. Depending on the randomly assigned group,
this description included information about the code comprehensibility rating
of a fictitious expert system. Then, each participant had to understand one
randomly selected code snippet and provide their code comprehensibility
rating. Finally, a demographic data questionnaire concluded the study.
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Control Group Treatment Group 1 Treatment Group 2

Easy Code Hard Code

“Java snippet ...
20 to 30 lines ...”

“Java snippet ... 
20 to 30 lines ...
3/10 difficulty ...”

“Java snippet ... 
20 to 30 lines ...
8/10 difficulty ...”

Survey

Figure 5.3.: Schematic representation of the research design. Participants
are randomly assigned to one of three groups that provide differ-
ent information about the code snippet to be understood next.
Each participant then randomly sees exactly one from a pool of
two snippets, either an easy one or a difficult one. A survey that
is the same for all concludes the experiment.
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5.3.2.2. Experimental Materials

Scenarios. All participants saw a textual scenario description of the expected
code comprehension task. The wording of this description was the same for
all three groups, but one of three paragraphs was not shown to the control
group, and there was a hint to Treatment Groups 1 and 2 for a value of
either 3 (easy) or an 8 (hard) as a comprehensibility score by the expert
system. The description was as follows:

You will look at a Java code snippet in a bit. The only information
that we provide you about the snippet is the following: The code
snippet is between 20 and 30 lines long and tests a String, a
sequence of characters, for a criterion.

〈〈Begin Treatment Group text snippet〉〉
We developed an expert system to rate the understandability
of code based on multiple metrics. This system rated the code
snippet you will look at in a few moments as
〈〈Treatment Group 1〉〉 a 3 out of 10.
〈〈Treatment Group 2〉〉 an 8 out of 10.

The system uses a scale from 1 to 10, where 1 is very easy and
10 is very hard to understand.
〈〈 End Treatment Group text snippet〉〉

Your only task is to judge its understandability on a scale from 1
to 10, where 1 is very easy to understand and 10 is very hard
to understand. The code is fully functioning and bug-free. You
will have unlimited time to look at the code snippet. Feel free to
rate the code snippet whenever you think you have an adequate
impression to judge its understandability.

Code Snippets. Since the influence of a scenario description on anchoring in
source code comprehensibility ratings might depend on the actual difficulty
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of the code snippet, we were interested in studying both an easy and a hard
snippet in the study.

Every developer has a slightly different idea of how understandable certain
code is. Therefore, we pre-selected five Java code snippets and invited eight
software developers to assess their comprehensibility. The pre-selected
snippets all met the criteria that no domain knowledge is necessary for
understanding and that they are neither too long to be displayed in full on
a screen nor too trivial to be understood after just a few seconds. In pre-
selecting functions that are rather complex, we, like Wyrich et al. [WPGW21],
used the cognitive complexity metric [Cam18], which has been shown to
correlate in particular with subjective evaluations by developers [MWW20].
Through this preliminary evaluation, we were able to identify one easy

and one difficult code snippet that we subsequently used in our study. The
easy code snippet is a method from the apache commons-lang StringUtils
class and checks if a given character sequence contains both uppercase and
lowercase characters. The difficult code snippet is the solution to a coding
challenge [WGW19] to find the longest palindromic substring within a string.
Both code snippets are included in the supplemental materials [WMG22b].

Questionnaire. The experiment was completed by a short demographic
questionnaire, which asked about the current main occupation of the partici-
pant. The choices were Student, IT professional, Researcher and Other (with
the possibility to specify the occupation). We then clarified the specific intent
of our study and again listed ways to contact us with potential questions or
comments.

5.3.2.3. Participants

We invited a convenience sample of software professionals and computer
science university students to take part in our study. To disseminate the
invitation, we used social media and asked personal contacts to draw atten-
tion to the study in their software companies. Computer science university
students (software engineering curriculum, B.Sc. and M.Sc.) were asked
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to participate in the study, for example to fulfill course requirements to
participate in scientific studies. We ensured the participants of anonymity,
and they could withdraw from the study at any time or not participate at all,
and still fulfill their requirements. The only requirement for participation
was a basic understanding of the Java programming language.

We encouraged participation with the low amount of time commitment of
10 to 15 minutes for the entire study. Furthermore, we pledged to donate €5
to a good cause for every participant among the software professionals that
completed the study. Subjects could choose between three charity projects
on different topics, or split the donation evenly among the three projects.
Following the goal-setting theory of motivation [LL02], we also invited

participants with the clear goal of assessing the comprehensibility of a
particular code snippet. Setting such a specific and challenging goal may
lead to increased effort and persistence, which is desirable for completing
the study. Our purpose in doing so was to pique the interest of developers
who want to demonstrate their ability to understand code.

5.3.2.4. Conceptual Model

We build on the study by Wyrich et al. [WPGW21] by developing the con-
ceptual model of Figure 5.4, which summarizes all variables and their hy-
pothesized relationships graphically. We investigate whether the anchoring
effect is confirmed in the form that a Scenario description, which controls for
information presented at the beginning of the study about the code snippet
to be understood, influences Perceived Code Comprehensibility (H1). In our
model, we introduce two other factors that we theorize to have an effect on
Perceived Code Comprehensibility. The Code Snippet Difficulty will influence
the Perceived Code Comprehensibility (H2). Wyrich et al. [WPGW21] se-
lected the code snippets for their study to be of comparable complexity to
control for the potential influence of snippet complexity in this way. We now
want to understand the extent to which an easy or a hard task affects the
Perceived Code Comprehensibility, and we argue that this influence will be
stronger than the one provided by the Scenario.
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H12

H2

Code Snippet
Difficulty

H13
H3

Role

H1Scenario Perceived Code
Comprehensibility

Figure 5.4.: Conceptual model for the study (dashed arrows = moderators)

Table 5.3.: Assignable values for the variables of the model
Variable Values
Scenario {baseline, easy, hard}
Code Snippet Difficulty {easy, hard}
Role {student, professional}
Perceived Code Comprehensibility [1.. 10]

Furthermore, Wyrich et al. [WPGW21] had only students as participants
in their study. Much discussion has happened in the literature on differences
between students and professionals [FZB+18] in terms of productivity, per-
formance, and software quality, with some claiming or finding that there are
little to none [SMJ15, e.g.], others that there are [SAA+02, e.g.]. Wyrich et
al. [WPGW21] themselves discuss this circumstance as a potential limitation
of their study, although literature suggest that the anchoring effect is not
restricted to inexperienced people [FB11; TK74]. We avoid any debate and
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investigate whether a Role influences the Perceived Code Comprehensibility
(H3).

Finally, given the absence of prior literature, we want to test for the
influence that these factors have with each other. The interaction between
Scenario and Code Snippet Difficulty (H12) as well as the interaction between
Scenario and Role (H13) are further modeled asmoderators1 on the influence
that Scenario has on Perceived Code Comprehensibility. Investigating the
moderators will enable us to better characterize a potential anchoring effect
of Scenario on Perceived Code Comprehensibility.
Table 5.3 provides a summary of the values that can be assigned to each

of the four variables in the conceptual model. Due to the small number
of six self-identified researchers, we decided to combine them with the 44
software professionals into one group for the analysis. We still consider that
a meaningful distinction can be made between students and professionals.
Nevertheless, we will discuss the potential consequences of this design
decision in Section 5.3.4.2.

5.3.2.5. Analysis Procedure

The data violated at least one assumption of most of the commonly used
modelling techniques2, and it also presented evidence for non-normality on
the dependent variable (Shapiro-Wilk Test, W = 0.97, p < .00001).
We thus opt for a Partial Least Squares Structural Equation Model (PLS-

SEM). PLS-SEM was recently introduced to the discipline by Russo and Stol
[RS21] as part of the SEM statistical technique family for causal-predictive
approaches in the behavioral sciences. We direct readers to Russo and Stol’s
work [RS21] for an introduction but, in short, PLS-SEM is suited for testing
a theoretical framework from a prediction perspective, when the structural
model is complex, and when distribution issues are a concern [HRSR19].

1A variable w is called a moderator when the relationship between other two variables A
and B is influenced by w, and it is modelled as interaction effect [CCWA13].

2Including linear regression models, methods from the various ANOVA families with
applied data transformation techniques, and ordinal logistic regression methods. The latter
could not be applied because of proportional odds violation.
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We model the factors of Figure 5.4, as defined in Section 5.3.2.4, as a
PLS-SEM in R 4.1.2 [R C21] and SEMinR 2.2.1 [RDC21]. The output will
provide us with statistics on the predictive power and significance of the
relationship between the factors1.

5.3.3. Results

We recruited 256 participants, of which 206 were students and 50 were
professional software developers (see Section 5.3.2.3).

Table 5.4 provides descriptive statistics for the Perceived Code Comprehen-
sibility (PCC) grouped by factorial assignment condition and role. Students
and professionals were overall very close or identical in their median PCC
for the same scenario and code snippet. The code snippet we considered
easy was actually perceived by participants as easier to understand than
the snippet predicted to be perceived harder to understand, regardless of
scenario and role. Participants provided the highest median PCC ratings for
the combination of hard scenario and hard code snippet (a median value of
7 and 7.5 from students and professionals). For the easy code snippet, the
scenario seems to have had a smaller overall impact on the PCC ratings.

In Table 5.5 we show the results of the statistical analysis for each hypoth-
esis. We find a significant path from Scenario to Perceived Code Comprehen-
sibility (path coefficient2 β = 0.165, p < .001) confirming the presence of
the anchoring effect (H1). Code snippet difficulty had the expected strong
influence on PCC (H2; β = 0.418, p < .001), but, furthermore, seems not
to be a moderator of the relationship between Scenario and PCC (H12;
β = 0.076, p > .10). The paths from Role to PCC (H3) and the moderating
effect of Role on the path from Scenario to PCC were insignificant (H13).
Thus, our results support H1 and H2; they do not support H12, H3 and H13.

1Readers familiar with SEM will notice that we are applying PLS-SEM as an analysis
technique to estimate single-item indicators. That is, we rely on PLS-SEM robustness to
perform a ‘regression job’ instead of using the technique for its intended psychometric
purposes. We elaborate on these issues in the limitations section.

2Path coefficients are expressed as standardized regression coefficients in terms of
standard deviations; see, e.g., [HRS11].
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Table 5.4.: Descriptive statistics and group assignment. CSD = Code Snippet
Difficulty, n = group size, PCC = Perceived Code Comprehensi-
bility, M = mean, SD = standard deviation, Mdn = median.

CSD Role n PCC M PCC SD PCC Mdn
Scenario: baseline

easy
student 35 4.0 3.33 2
professional 10 3.3 2.79 2

hard
student 32 5.25 2.05 5
professional 10 5.6 2.88 6

Scenario: easy
easy

student 25 2.56 1.94 2
professional 9 2.89 2.67 2

hard
student 33 4.67 1.49 4
professional 5 6.0 2.65 7

Scenario: hard
easy

student 32 3.25 2.90 2
professional 2 1.0 0.0 1

hard
student 49 6.22 2.05 7
professional 14 6.86 2.35 7.5

The model explains R2 = .223 of the variance in Perceived Code Compre-
hensibility. Bootstrapped heterotrait-monotrait ratio of correlations (HTMT)
are all below zero, bootstrapped loadings and weights are all approximately
1.00, all variance inflation factors (VIF) are 1.00, and all reliability coef-
ficients are 1.00. All this is expected with single item constructs that are
assumed to be fully independent.
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Table 5.5.: Estimated and bootstrapped path coefficients with 95% CI, model
explanatory power expressed as R^2 and adjusted R^2. PCC
= Perceived Code Comprehensibility. SD = standard deviation.
∗= p ≤ .10, ∗∗= p ≤ .01, ∗ ∗ ∗= p ≤ .001.
PCC Bootstrap Mean (SD) T Stat. 95% CI

H1 0.165*** 0.169 (0.049) 3.357 [0.071, 0.265]
H2 0.418*** 0.418 (0.063) 6.673 [0.293, 0.541]
H3 0.033 0.031 (0.058) 0.564 [-0.08, 0.148]
H12 0.076 0.074 (0.055) 1.384 [-0.034, 0.181]
H13 -0.013 -0.017 (0.058) -0.228 [-0.124, 0.096]
R^2 0.223
AdjR^2 0.208

5.3.4. Discussion

We can answer the research question whether specific information available
in advance about a code snippet influences developers in their subjective
assessment of code’s comprehensibility as follows: The anchoring effect is,
once again, significant. Information about the expected complexity of a code
snippet to be understood influences developers in their supposedly inde-
pendent code evaluations. Students and professionals are equally affected,
which is in line with the investigation of Wyrich et al. [WPGW21] who mea-
sured programming experiences instead of role, and found programming
experience to likely not play a role in anchoring. The finding is further in
line with the body of literature on the anchoring effect, which states that
the anchoring effect is not limited to laymen or those inexperienced in an
activity [FB11; TK74].

The choice of code snippet also has a significant impact on perceived code
comprehensibility. While this is not too surprising, nor is it the central point
of this work, it is still good to have data points that show that the choice
of code snippets for code comprehension studies should not be underesti-
mated. Studies seeking to ensure that code snippets of different tasks are of
comparable difficulty should invest effort in, e.g., a pilot study to evaluate
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appropriate snippets.
What is interesting for the characterization of the observed anchoring

effect, however, is that the complexity of a code snippet did not have an
influence on the strength of the anchoring effect (H12). Based on our results,
we suspect that a snippet must be complex enough so that PCC ratings do
not concentrate too much on the lower end of the scale. Apart from that, the
actual complexity of a snippet does not seem too important for anchoring.

5.3.4.1. Implications

We know, regarding the anchoring effect, that the specific anchor can take
many forms and does not necessarily always have anything to do with the
situation being assessed [FB11; TK74]. When designing and conducting code
comprehension studies, researchers have a lot of freedom and just as much
potential to inadvertently set anchors. In the introduction to Section 5.3,
we described a scenario in which the instructor mentioned, to encourage
the participant, that the code snippets to be assessed were not too difficult
to understand. Similarly, however, even in an online experiment without a
human instructor, many examples of potential anchors can be found.

For example, explicitly mentioning in a study description that it is a study
for novice programmers could lead to code snippets being rated as easier
to understand. Communicated time limits for the code comprehension
tasks can convey to participants how complex the tasks are supposed to be.
Presenting a code comprehensibility metric to developers will anchor them
in their own judgments when asking them whether they agree with it or
how they would assess the code instead (i.e., a conceivable study design for
validating a metric). For the latter example, we and the study of Wyrich
et al. [WPGW21] have demonstrated the anchoring effect empirically.

One can easily find further examples in which study participants would be
anchored. We see great research potential to empirically investigate these
scenarios and to find solutions for affected studies, which for example cannot
disregard subjective evaluations because they are relevant for their research
intentions. Yet, for all study designs that allow to dispense with subjective
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assessments, we recommend more reliable and objective measurements to
draw conclusions about how well a developer has understood code. Corre-
sponding tasks and measures are available for this purpose (see Chapter 3
and, e.g., [Fak18; Fei21; OBMC20]).

5.3.4.2. Limitations

With our design, we were able to overcome a number of limitations discussed
in the work by Wyrich et al. [WPGW21]. Our experiment had a much larger
and more heterogeneous sample of developers, a less prominent presentation
of the anchor, and we had a control group that allowed us to measure the
perceived code comprehensibility for participants who were not explicitly
anchored. Still, the results of our study should be seen in the light of some
limitations.

A confounding factor for the assessment of the code snippets’ understand-
ability might be diverse understandings of what constitutes comprehensible
code between the participants. We discussed, while designing the study,
whether to provide a definition of understandability at the beginning of the
survey. However, since there exists neither an agreement in the literature
nor does it seem realistic that developers all share the same view on under-
standability, we decided against it. On the one hand, it might be possible
that participants in one group share similar views on what constitutes under-
standable code, while participants in other groups differ. On the other hand,
the randomized assignment of participants to scenario and code snippet
should have mitigated this threat.

Regarding the generalizability of our results, we would like to emphasize
that the scope clearly lies on the evaluation of individual code snippets
and participants applied a comprehension process commonly referred to
as bottom-up code comprehension (see Chapter 2). We see much value in
reproductions of our experiment with larger software systems to be assessed.

We conducted our experiment remotely to make the study accessible to as
many developers as possible and to minimize contacts due to the pandemic.
The context in which the participants took part in the study could therefore
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not be controlled, which could have caused individual participants to be
distracted during the conduct of the study or not to complete the study
conscientiously. We do not know what influence a potential distraction can
have on a code evaluation, but at least we think that the activity can be
resumed after an interruption. Participants who spent less than 20 seconds
viewing and rating the code snippet’s understandability were excluded from
the analysis (average time for this task was around four minutes; a total of
10 participants were excluded based on this criterion).

Apart from this, running the experiment remotely worked well, and we
are pleased to have recruited 50 software professionals as participants in
addition to students. We have previously disclosed that this experiment group
included both software professionals and six participants who identified
themselves as researchers. This could be seen as a threat to construct validity,
since software development experience might be less pronounced among
software engineering researchers than among full-time software engineering
professionals.
We assume that researchers in computer science, who hold either a re-

lated M.Sc. or a PhD, have comparable experience compared to software
professionals to be able to deal with our tasks. Yet, we repeated the statistical
analysis without the six researchers, and there was no change in the signif-
icance of the results. The path coefficients for the significant hypotheses
would be β_H1 = 0.161 and β_H2 = 0.408 (change ≤ 0.10).

Further, when designing the experiment, we took care to minimize the
time required for participation to achieve a correspondingly high response
rate. This is the practical reason why we did not measure actual code compre-
hension with additional tasks. Furthermore, Wyrich et al. [WPGW21] found
evidence for a strong anchoring effect in perceived code comprehensibility
ratings, but also that actual code comprehension was not affected by the
anchoring effect. We assume that by our random assignment of a sample
six times larger than that of Wyrich et al. [WPGW21] the absence of effect
anchoring/actual understanding still holds.
As anticipated in Section 5.3.2.5, we make use of PLS-SEM in ways that

reduce it to a simpler regression modelling tool with single-item constructs.
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That is, we use PLS-SEM to understand the relationship between variables
rather than typical reflective and/or formative constructs in structural and
measurement models. As disclosed in the same section, we were driven to
this choice because we preferred not to rely on robustness against assumption
violations of other analysis and regression tools. PLS-SEM has just a few
assumptions that our data did not violate, and it suited our needs.

Furthermore, we tested our results with an alternative model specification
and report coherent results. We fit an equivalent multilevel mixed effects
model with lme4 1.1-27.1 [BMBW15]. Relying on its robustness against
non-randomness of residuals, which is the case of our data, we find that
1. the same path coefficients that are found as significant in our PLS-SEM are
also significant in the multilevel mixed effects model, 2. the model provides
comparable explanatory power (R2 = .22 and adjusted R2 = .22). We are
thus confident in our chosen analysis tools and its results. For elaborating on
the limitations, we opted for multilevel mixed effects models based on Clark’s
report [Cla16] on their positive comparability with SEM. We still opted not
to use multilevel mixed effects models for our main analysis because of
cautiousness: the residuals are not randomly distributed.
The other related issue lies in using single item scales to represent our

underlying constructs. PLS-SEM allows for single item constructs, and it
is also used this way in information systems research [Pet13]. This use is,
however, encouraged only when no other alternatives are available since
psychometric properties of single item constructs are subject of debate of
providing low psychometric validity and low reliability [Pet13; RSS12]. We
argue that we fall within the recommendation of employing PLS-SEM for
single item constructs. First, our independent variables are experimental
groups represented by either two or three ordinal or categorical options.
Furthermore, they provide highly observable validity and reliability (e.g.,
role = student indeed represents students, and scenario = easy re-
ally represents the easy scenario). Only the dependent variable, Perceived
Code Comprehensibility, is operationalized by a single item, and the results
might indeed suffer from low psychometric validity and reliability.
Finally, the Perceived Code Comprehensibility is a variable whose scale
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we adopted by reproducing Wyrich et al.’s study [WPGW21]. This was a
deliberate choice to be able to compare results and build on their study. A
psychometrically validated multi-item scale to assess the Perceived Code
Comprehensibility would allow for a richer and better explanation for the
variance therein and offer (more) valid and reliable interpretation of its
values. Such a scale, alas, does not exist, to the best of our knowledge. We
report on this issue that is shared by most, if not all, studies that investigate
Perceived Code Comprehensibility and call for future research on more
robust ways to assess it.

5.4. Conclusion

In summary, the anchoring effect is present in software engineering and its
investigation follows not only current efforts to debias software engineer-
ing practice eventually [CNA+20; MST+18; Ral11], but also to identify
confounding factors in the context of scientific studies and thus enable the
design of valid studies.
We have shown in two studies how subjective code comprehension as-

sessments can be influenced by contextual factors. Because such contextual
factors can take many forms and are difficult to control, we conclude that
code comprehension assessments based on subjective self-assessments are
less reliable than alternative methods for measuring code comprehension
(see Chapter 3).

In general, each of the two presented studies provides valuable insights,
or evidence, on a specific question, which can help in the design of future
code comprehension experiments. The decision on how to measure code
comprehension in one’s own study can thus be made evidence-informed
by these and comparable studies. Related to this point, we consider two
thoughts to be relevant for the following chapter of the thesis.
First, we have made the observation that a second study, even one that

differs only minimally in design from an initial study on a topic, can provide
many new insights and additional certainty. At first glance, this observation
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seems quite trivial; after all, the way science works is to conduct as many
primary studies as possible on the same research question, therefore to test
the validity of previous studies, and then derive recommendations for action
based on meta-studies. In reality, however, it is easy to find papers whose
introductory motivation brags that it is about the first study on a particular
topic, as if that makes the study more valuable. Also, the introduction of
replication tracks at major software engineering conferences is only a recent
development, and one that shows that there was some urge for change.
The International Conference on Program Comprehension offered such a
track for the first time in 2019 [ICP19]. A change in thinking is slowly
taking place, at least if one looks optimistic at the development of our and
related research fields, but it will take time and active education on the
importance of replication and reproduction studies to counteract their lower
status [BGNT20]. We may even eventually move beyond the current phase of
offering separate tracks for papers that confirm or refute existing knowledge,
but consider evidence to be valuable regardless of whether someone has
already studied something similar on the same topic.

Second, a third study might provide even more new insights. Many more
studies should be conducted on the influence of the anchoring effect on
code comprehension, for example, to find out whether there are scenarios in
which the anchoring effect is not present or is less present, or, for example,
to find out by what means we can mitigate or control for the effect. Any
further studies on similar research questions will complement our overall
picture. Furthermore, any variation in a study design and any diversity of
author teams counteracts the inherent bias in the design of a study and the
interpretation of its results (see Section 1.3.2 for a philosophical discussion
of study design diversity). In the best case, however, this also means that we
will eventually reach the point where there are many studies on the same
research question. Staying with the anchoring example and the context of
the thesis, these could all be studies that investigate whether it is better to
avoid using subjective comprehension measures when designing one’s own
code comprehension experiment. This will lead to many pieces of evidence,
some of which may be contradictory. Even with the best efforts to make
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evidence-based study design decisions, it can then become difficult to keep
track of the literature, especially considering that there are numerous other
decisions to be made in addition to choosing a comprehension measure.
The following chapter will address this particular issue of synthesizing

evidence on a research question to support researchers in the design of their
primary studies.
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Evidence Profiles for
Validity Threats in Code

Comprehension
Experiments

Up to this point, we have come a long way toward our goal of evidence-based
study design decisions. This includes presenting an overview of findings
from the code comprehension literature in Chapter 2, discussing the various
options for design decisions in code comprehension experiments and the
challenges of making reasonable choices in Chapter 3, as well as providing
our own evidence for evaluating design decisions and potential factors
influencing code comprehension in Chapters 4 and 5.

This chapter will contribute most to answering our main research question,
how available evidence can be used pragmatically to evaluate the validity of
code comprehension experiments. We will take an exemplary look at the
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three most frequently discussed threats to validity in code comprehension
experiments, or more precisely, what the evidence of their influence actually
looks like and thus provide an answer to RQ4. Our approach for answering
RQ4 is at the same time a proposal for a concrete methodology to synthesize
evidence in secondary studies to facilitate the work of authors of primary
studies. The contents of this chapter extend our publication [MWGW23].

6.1. Context and Goals

Searching for clues, gathering evidence, and reviewing case files are all tech-
niques used by criminal investigators to draw sound conclusions and avoid
wrongful convictions. Similarly, medicine has a long tradition of evidence-
based practice, in which administering a treatment without evidence of
its efficacy is considered malpractice. In software engineering (SE), study
designs that are based on evidence enable sound methodologies, including
the mitigation of validity threats. The SE body of knowledge is, however,
missing out on evidence of validity threats.
In 2013, Wohlin [Woh13] published a paper on evidence profiles for

software engineering research and practice. Wohlin motivates the work with
the increasing importance of evidence-based software engineering (EBSE).
For example, critical decisions, such as the introduction of a new tool that
could affect software quality or developer productivity, should be based
on scientific evidence. Wohlin proposes a model by which evidence from
different studies could be evaluated in a manner similar to criminal law
investigations. Practical conclusions could be drawn by putting the individual
pieces together in an evidence profile.

Researchers have long been in the dark about the consequences of design
decisions in code comprehension experiments. In the corresponding papers,
researchers regularly discuss and speculate about the threats to validity of
their experiments. Two meta-studies have categorized these threats, coming
up with more than 50 different threat categories [SS15; WBW23]. Moreover,
papers that do not discuss threats to validity in code comprehension exper-
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iments are rather the exception today [SKSL17a; WBW23]. At the same
time, hardly anyone is sure about the actual extent of the discussed threats,
and almost no paper cites evidence on the assumed threats [WBW23]. This
makes it difficult to evaluate study designs in an evidence-based manner.
Researchers have to decide which of the more than 50 potential threat cat-
egories do, in fact, threaten the validity of a study design, execution, and
interpretation, and to which extent they should be disclosed and elaborated
on.

In the following section, we apply Wohlin’s methodology of evidence pro-
files [Woh13]. We echo our own call to provide more evidence in the design
of empirical program comprehension studies (see Section 3.3, action item
4). To that end, we examined the threats to validity in code comprehension
experiments to collect evidence of their existence, to understand the context
and nature in which they occur, and to ultimately assist researchers in design-
ing controlled experiments with high validity. Specifically, we extracted the
threats to validity reported in 95 code comprehension experiments through
thematic synthesis. Then, focusing on the three most frequently mentioned
threat categories, we collected evidence that contradicted or supported the
influence of the threat, using systematic literature searches and snowballing.
Finally, we individually scored the evidence that passed our filtering criteria
to create an evidence profile, serving as an overview of the evidence for each
of the three threat categories.

6.2. A Study of Evidence Profiles for Validity Threats

6.2.1. Background and Related Work

Medicine has a long tradition of evidence-based practice, in which adminis-
tering a treatment without evidence of its efficacy is considered malpractice.
Sackett et al. [SRG+96] describe evidence-based medicine as “the conscien-
tious, explicit, and judicious use of current best evidence in making decisions
about the care of individual patients”.
In software engineering, attempts have been made to establish similar
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approaches to help practitioners make informed decisions in their daily
work [DKJ05]. Proponents of evidence-based methods emphasize the im-
portance of using evidence when adopting new technologies and when
understanding and identifying problems in existing development processes.
Making uninformed decisions may lead practitioners to favor ineffective
solutions over better alternatives, resulting in financial losses or even harm
to humans.
Since the first calls for evidence-based software engineering in the early

2000s [DKJ05; KDJ04], investigative methods from EBSE found widespread
usage. There has been a significant increase in the number of secondary
software engineering studies [BB22; KPB+10] and educators are actively
incorporating EBSE in their university curricula [JDK05; OC09; RB08].
However, recent discussions highlight difficulties in the application of evi-
dence gained from primary and secondary research [HCKH14; SS13]. In
response, more tools and structured approaches are being introduced in an
attempt to address the slow transfer of knowledge from research to practice
(e.g., evidence profiles [Woh13], evidence briefings [CPVS16], and rapid
reviews [CPS20]).

While evidence-based approaches may assist practitioners in making deci-
sions, Kitchenham et al. [KDJ04] also describe how these approaches place
additional requirements on researchers when developing experimental pro-
tocols. Ideally, researchers can maximize the range of application of a study’s
results while minimizing potential threats to validity.
We consider evidence to be “the available body of empirical knowledge

indicating whether a belief or proposition is true or valid” [Ste10]. Further,
we consider validity to be the degree to which we can trust the results of an
empirical study [KBB15]. In our study, a threat to validity refers to deliberate
design decisions and uncontrolled extraneous factors that may impair the
validity of experimental results. These two definitions of the terms have
guided us in this specific study. A philosophical discussion of the concepts of
evidence and validity can be found in Section 1.3.
When readers are explicitly informed about validity threats of a study,

they can, e.g., better assess the context in which the study results may be
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applied. Consequently, they are empowered to understand what difficulties
may arise when they attempt to replicate the study design or plan a similar
study of their own.

There have been several meta-studies to summarize and categorize com-
mon threats to validity in software engineering research. Petersen and
Gencel [PG13] compared validity threats with different worldviews. They
assumed that researchers have a subconscious tendency to choose methods
based on their worldview. Likewise, Devanbu et al. [DZB16] found in a
case study that programmers tend to hold strong beliefs based on personal
experience rather than empirical evidence. The main implication of these
studies is that researchers and practitioners make biased decisions based
on their intuition, which is at odds with the main goals of evidence-based
methods. Rather, they should address the discrepancy between the evidence
and their perceptions and reconsider their decisions accordingly. Petersen
and Gencel [PG13] suggest that the literature needs to be further analyzed
regarding the threats and mitigation techniques mentioned therein and that
inquiries need to be made into what worldviews dominate in the various
sub-disciplines of software engineering.
Biffl et al. [BKE+14] followed this suggestion and created a knowledge

base of threats to validity in software engineering experiments to assist
researchers in planning their studies. They found that only a small fraction
of validity threats are reported in most studies and that, instead, the vast
majority of threats are too specific to be generalized outside the particu-
lar research area they occur in. These findings highlight the complexity
of managing threats to validity, as even switching between different sub-
disciplines of software engineering introduces a whole new set of potential
threats that must be considered. They conclude that there is a need for
an overview of threats to validity as they are reported in specific areas of
software engineering research.

Managing threats to validity is particularly difficult in code comprehension
experiments, where researchers seek to uncover the underlying processes
of how developers understand code and evaluate ways to support that
comprehension process scientifically [RC97]. This complexity is reflected in
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the wide variety of different methodologies researchers use to address the
potential validity threats in their experiments [WBW23].
For example, Siegmund and Schumann [SS15] surveyed the literature

to obtain information on confounding parameters in studies of program
comprehension. Themain insights they gained were that each paper reported
only a small subset of all confounding factors, and that researchers used
different methods to mitigate the same factors. They recommend that other
researchers include the identification of confounding parameters in their
experimental design and explicitly report the relevant parameters and how
their influence is controlled.
We previously built on the findings of Siegmund and Schumann by ana-

lyzing the threats to validity of 95 source code comprehension experiments
and how they were reported (see Chapter 3). There we noted that, currently,
researchers tend to rely on intuition when designing their experiments be-
cause of how difficult it is to reliably measure a person’s understanding of
code. Researchers have to deal with potential threats to validity from over 50
categories, and sometimes question whether their measure of understanding
is adequate at all.

These meta-studies illustrate the complexity of designing valid code com-
prehension experiments, considering potential confounding factors and other
threats to validity [SS15; WBW23]. Rather than choosing methods based on
intuition, researchers should make informed decisions based on empirical
evidence. Previous research has outlined a need for common knowledge
bases of validity threats and collections of evidence backing up both the
existence of threats and the effectiveness of their mitigation techniques. The
first step in solving these issues is to identify where evidence is lacking.
Surveying the evidence landscape on any particular issue can be quite

daunting. For this purpose, Wohlin [Woh13] proposes the creation of evi-
dence profiles to gain an overview of both the amount and the direction of
evidence. By scoring each individual piece of evidence in the context of an
explicit research question, researchers are assisted in identifying sufficient or
missing evidence. This approach shares similarities with other meta-studies,
such as meta-analyses, in that it aims to summarize and combine the results

216 6 | Evidence Profiles for Validity Threats in Code Comprehension Experiments



of multiple studies. Evidence profiles differ in their method of synthesis,
however, as meta-analyses take a quantitative approach in composing ef-
fect sizes, whereas evidence profiles use multiple reviewers to qualitatively
evaluate the studies by scoring them.

6.2.2. Methodology

We first investigate which threats to validity are most frequently discussed
in the program comprehension literature (Section 6.2.2.1). The frequency
of discussion, however, should only be considered as an indicator of what
researchers are most often concerned about, not of the threats’ evidence.
Therefore, in a second step, we will examine the scientific evidence for the
most frequently discussed threats (Sections 6.2.2.2 and 6.2.2.3).
Figure 6.1 provides a schematic overview of the research methodology.

The research questions that guided us in our endeavor are as follows:

RQ4.1 Which validity threat categories are most often discussed in primary
studies of code comprehension?

RQ4.2 What are the evidence profiles for the three most commonly reported
threats to validity in code comprehension studies?
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Figure 6.1.: Schematic representation of the research methodology.

6.2.2.1. Scoping the Relevant Threats

To answer RQ4.1, we surveyed existing studies of code comprehension and
identified which threats were most frequently mentioned by researchers.
In particular, we extracted the threats to validity reported in 95 code com-
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prehension experiments found in the systematic mapping study that we
reported in Chapter 3 (due to different author teams, we reference the study
in this chapter as Wyrich et al. [WBW23]). The search protocol included em-
pirical studies of bottom-up code comprehension with human participants,
published in a peer-reviewed journal, conference, or workshop before 2020.
While Wyrich et al. [WBW23] reviewed the threats to validity to some extent,
we opted to repeat the coding and categorization activities to enable a more
fine-grained classification of threats with the explicit goal of gaining insights
into the reporting of validity threats as a whole. Moreover, we performed this
bottom-up coding activity to stay closer to the data, building a foundation
for the subsequent evidence searches.
We examined the list of primary papers, categorizing and summarizing

each threat to validity reported in the full text. Specifically, we adopted a
thematic synthesis [CD11] approach to identify the individual threats to
validity and, if given, the mitigation techniques mentioned by the study. For
this, we extracted relevant text areas using inductive coding [CS08] to find
and describe the passage. In inductive coding, codes are formulated during
the review process as the corresponding concepts become evident. Through-
out the coding process, these codes are refined and reapplied, improving
their quality through iteration. Upon the completion of code assignment,
we categorized threat codes into high-level categories and themes. Further,
in some cases, papers already contained evidence of a threat in the form of
references to other studies and consequently, those were also documented.
Finally, we count the number of papers that mention a threat for each threat
category, so we can see which threat categories are most often discussed.

In summary, the review process consisted of the following individual steps:

1. Extraction of relevant text passages on threats to validity, mitigation
techniques, and evidence.

2. Inductive coding, in which each threat is assigned a descriptive code.
3. Categorization of threat codes and composition into higher-order

themes.
4. Counting the number of papers mentioning each threat category.
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6.2.2.2. Evidence Collection

At this point, we had a list of threat categories, how frequently they were
reported, and in some cases, a pool of starting evidence. Due to the large
number of different threat categories, we could not collect evidence for
each individual one. Instead, we focused on the three categories that were
mentioned most frequently. These threat categories were the level of pro-
gramming experience of participants, the length of the programs used in the
experiment, and the measures that were used as a proxy for the concept of
comprehension.

To answer RQ4.2, we conducted systematic searches for each of the three
threat categories, collecting evidence on their influence. The steps described
in this section and in Section 6.2.2.3 were repeated for each individual
category.

Search Protocol. Our search protocol utilized four different sources to search
for potentially relevant papers. We describe each of these sources and list the
filtering criteria applied to the literature found within them. Furthermore,
we describe how we used snowballing [Woh14a] as a technique to further
extend the search. Backward snowballing in this context means including
the reference list of a paper, while forward snowballing means including
papers that cite the paper in question.
a) Primary Papers: The 95 papers with primary research on program

comprehension may already examine the threat in question as part of their
study. Consequently, we evaluated them as potential evidence. Forward
snowballing was less likely to yield relevant results, as investigating the
threat in question was not the main focus of these papers. Unless the threat
was the main subject of a primary study, other studies examining the threat
are unlikely to cite the primary study in the context of discussing the threat.
Backward snowballing for this set of papers was not required because the
evidence cited in the primary papers was already a separate source, as we
describe in the next paragraph.

b) Evidence Cited in the Primary Papers: As part of the analysis described
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in Section 6.2.2.1, we identified and documented all references in the primary
papers that were cited to support assertions made about a threat to validity.
We analyzed and filtered this list of references in the same manner as the
primary papers. The evidence from this source did not necessarily focus
on the threat as their primary object of research. Forward snowballing was
therefore not used, as it was less likely to yield relevant results. However,
we performed backward snowballing, as the papers may refer to similar
evidence when comparing their results with other works.
c) Evidence Found Through the Title Search: To further enrich the

dataset with research from sources independent of the primary papers, we
also conducted additional systematic searches. While the literature search by
Wyrich et al. [WBW23] already captured code comprehension experiments
up to 2020, we were able to extend the range of our search to additionally
include literature published between 2020 and 2022. Furthermore, we
focused this search on studies that mention the particular threat to validity
in their title using the following search strings in Google Scholar:

• Programming Experience - allintitle: (experience OR novice OR ex-
pert) (code OR software OR program) (understandability OR com-
prehension OR comprehensibility OR readability OR analyzability OR
‘cognitive load’)

• Program Length - allintitle: (size OR length OR short OR long OR
LOC OR "lines of code") (code OR software OR program) (understand-
ability OR comprehension OR comprehensibility OR readability OR
analyzability OR ‘cognitive load’)

• Comprehension Measures - allintitle: (measure OR measures OR
measurement) (code OR software OR program) (understandability OR
comprehension OR comprehensibility OR readability OR analyzability
OR ‘cognitive load’)

Each search string was composed by combining terms describing a threat (e.g.
experience, novice, expert) with terms related to program comprehension
experiments (e.g. code, understandability, comprehension). Both backward
and forward snowballing was considered valuable here, as the studies found
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in the title search were likely to have the threat in question as the main
subject of their research.
d) Evidence Found Through Snowballing Snowballing is helpful to

further emphasize relevant work by including their reference list as an addi-
tional search source. By exploiting clusters of related research, snowballing
can identify relevant literature with high precision, but tends to miss some
papers [BWP15]. Therefore, we use a hybrid approach to complement dis-
advantages of snowballing with a database search and vice versa. Backward
snowballing was applied to the evidence cited in the primary papers, while
backward and forward snowballing were used on the evidence from the title
search. In all three cases, we did one iteration of snowballing.
All papers found in the sources a) to d) were filtered according to the

following four inclusion criteria and only included if all of them were fulfilled:

I1 The paper reports a primary study measuring program comprehension.
I2 The paper reports an analysis of the threat in question.
I3 The paper is published in a peer-reviewed journal or conference pro-

ceeding.
I4 The paper’s full text is available in English.

6.2.2.3. Evidence Profiles

After collecting all available evidence of a particular threat, we evaluated
the evidence itself. To this end, we employed the evidence profile proposed
by Wohlin [Woh13]. This profile is a model for evaluating evidence based
on criminal law. Each piece of evidence is judged individually and rated
with a corresponding level of strength, from 1 (lowest) to 5 (highest). This
way, evidence strength is represented by an ordinal scale with no zero. In
addition, the profile distinguishes between positive and negative evidence,
with positive evidence supporting the theory in question and negative evi-
dence contradicting it. It is important to stress that evidence of low quality
is not synonymous with negative evidence. Negative evidence can be of
high quality, but it opposes the notion that a threat has an influence on the
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validity of a primary study. For example, negative evidence with a score
of -5 has the same evidence strength as positive evidence with a score of 5.
Thus, a score close to zero indicates the strength of a piece of evidence is
low, while a negative or positive score indicates the outcome of the study.
Table 6.1 describes the different levels of strength for evidence. Due to

the flexible nature of the evidence profile, the descriptions do not match
the ones provided by Wohlin word-for-word. Wohlin emphasizes that the
evidence profile should be adapted to the context in which it is used. For
example, quality aspects such as vested interest and the aging of evidence
do not play a major role when collecting evidence on threats to validity,
unless the threat pertains to a specific technology or approach that may
influence experiment results. By contrast, the methodological rigor captured
in the quality of evidence as well as the relevance of the evidence is of utmost
importance and strongly influenced the descriptions of the different levels
of evidence strength.
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Table 6.1.: Types of evidence according to the evidence profile. Higher
values mean stronger evidence. Positive values support the threat,
negative values contradict it.

Score Level of
Strength

Description

+5/-5 Strong ev-
idence

Studies that focused on the threat in question as
the main subject of their investigation or conducted
an in-depth analysis of the threat as part of their
overall approach and show significant results. Or:
systematic reviews that examined the threat in ques-
tion and provided a conclusion.

+4/-4 Evidence Studies that did not have the threat as their main
focus but still included it in their analysis. These
studies may have more uncontrolled confounding
factors, which is why they should be considered
separate from strong evidence.

+3/-3 Circum-
stantial
evidence

Similar to evidence, studies that are considered
circumstantial evidence did not have the threat as
the main focus of their study. Furthermore, they
showed additional methodological shortcomings
that reduced the reliability of the study and de-
creased its strength as evidence in our evaluation.

+2/-2 Third-
party
claim

Studies that made claims about the threat in ques-
tion but only provided a slim level of empirical back-
ing for said claim. They may have deferred to other
sources of information or given general impressions
about the influence of the threat in their study, but
provided no dedicated statistical analysis of their
own to support their claims.

+1/-1 First- or
second-
party
claim

Studies that made a claim about the threat in ques-
tion but did not provide any empirical backing. This
could have been, for example, references to “com-
mon knowledge” or speculation.
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The placement of a study on a particular level is based on its adherence
to the factors described in the level description, as well as on the previously
mentioned quality aspects. Therefore, a study may be placed in a lower
category if it has significant shortcomings regarding any of the quality
aspects. The concrete definitions of what each level of strength means were
established before the evaluation process began. Because the evaluation of
evidence is a largely subjective process, we involved two researchers in this
step. Once both researchers had scored a piece of evidence, they compared
their scores and discussed possible disagreements. In these discussions, each
researcher explained their reasoning for their score, and, together, they
decided on a single final score. Where the initial scores were identical, the
final score was set to the same value without discussion. We documented the
score of each study and the motivation behind its placement, which can be
used to paint an overall picture of the evidence landscape for each threat. We
documented scoring and agreement in our replication package [MWGW22].
Based on each evidence profile, we provide conclusive recommendations to
researchers.

6.2.3. Results

We first present the results of extracting and categorizing validity threats
from 95 primary studies. This provides us with the answer to RQ4.1, which
validity threats are most frequently discussed in primary studies on code com-
prehension. We then answer RQ4.2 by presenting the evidence profiles for
the three most frequently reported threats to validity in code comprehension
experiments.

6.2.3.1. Validity Threats in Code Comprehension Experiments

Among the 95 papers, 81 (85 %) mentioned at least one threat to validity,
with 45 (47 %) reporting them in a dedicated section and 33 (35 %) dif-
ferentiating between different types of validity, such as internal or external
validity. The largest concentration of studies was published in the period
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from 2012 to 2019, with a total of 63 of the 95 studies (66 %), while only
covering 7 years (18 %) of the entire 40-year span. The first study to include
a dedicated ‘threats to validity’ section was published in 1997.
In total, we found 409 individual threat mentions. Out of the 409 threat

mentions, 198 (48 %) included an explanation of a possible mitigation tech-
nique, but only 31 (8 %) were reported with supporting evidence. The 31
references to supporting evidence were found in 20 out of 95 studies (21 %).
The 409 threat mentions were then assigned 215 unique threat codes, which
captured the different nuances of how a threat was mentioned in a study.
Multiple threat mentions could receive the same code, which is why the num-
ber of unique codes is lower than the number of total threat mentions. To
better analyze related threat codes, we additionally categorized them, which
resulted in 81 unique threat categories. For example, the threat category
Programming Experience included threat codes such as “Missing diversity
in participants’ programming experience leads to limited generalizability”
and the opposite code “Diversity in participants’ programming experience
confounds treatment effects.” The two individual threat codes differed in nu-
ance, but they both emphasized the importance of programming experience
as a threat to validity. When we counted the number of threat mentions in
the prioritization, each occurrence of either threat code would increase the
category’s rank.
Table 6.2 highlights the threat categories with more than five reported

threat mentions and shows the themes to which the categories were assigned.
Both categories and themes are presented with the total number of threat
mentions. All mentions from categories with less than five mentions are
counted in ‘Other Categories’ under their respective themes. ‘Theme: Other’
contains mentions of threat codes that did not fit into any given theme. The
three most common threat categories (i.e., Programming Experience, Program
Length, and Comprehension Measures) are highlighted in blue. Overall, most
threats were related to the characteristics of the code snippets, the individual
factors of the participants, or general threats in experimentation.
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Table 6.2.: Number of threat mentions per theme and category for categories
with more than five threat mentions
Theme and Category Count
Theme: Code Snippets 112

Program Length 26
Complexity 16
Code Selection 13
Programming Language 9
Synthetic Samples 9
Familiarity 6
Other Categories 33

Theme: Participant Factors 101
Programming Experience 44
Number of Participants 16
Programming Skills 10
Other Categories 31

Theme: Experimentation 89
Learning Effect 18
Lab Experiment 11
Fatigue 9
Code Presentation 7
Cheating 6
Other Categories 38

Theme: Measurement 67
Comprehension Measures 22
Eye-Tracking 20
Instrumentation 9
Other Categories 16

Theme: Comprehension Tasks 21
Type of Comprehension Task 7
Task Difficulty 6
Other Categories 8

Theme: Data Analysis 14
Statistics 10
Other Categories 4

Theme: Other 5
Total 409
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RQ4.1: Main Findings

• 85 % of code comprehension experiments report at least one threat
to validity.

• Only 8 % of threat mentions are supported with referenced evi-
dence.

• The three most commonly reported threat categories are program-
ming experience, program length, and comprehension mea-
sures.

6.2.3.2. Evidence Profiles

We selected the three threat categories that were most frequently reported
and collected evidence on their influence on study validity. These categories
are programming experience, program length, and comprehension measures.
We provide the complete evidence lists, including rationales for the placement
of studies in the different evidence categories of an evidence profile, in our
replication package [MWGW22].

Programming Experience. In this analysis, we examine the effect a partici-
pant’s programming experience has on their code understanding in compre-
hension experiments. We collected evidence in the form of studies that mea-
sured the programming experience of participants and determined whether
it had a significant influence on program comprehension. Table 6.3 shows
how many papers we found in each step of the evidence collection and how
many we excluded because they did not meet the inclusion criteria. Overall,
most evidence was found in the primary papers, followed by snowballing. We
excluded 12 of 13 (92 %) documents cited in the references of the primary
papers, as they did not meet the filtering criteria. The reasons for exclusion
varied and are described in more detail in Section 6.2.4.

After filtering, 60 papers remained and were evaluated as potential pieces
of evidence to be used in the evidence profile. In this evaluation, 11 additional
papers were discarded as they did not meet the criteria to be considered
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Table 6.3.: Overview of the evidence analyzed and filtered in each step of
the evidence collection for programming experience

Source Analyzed Excluded Final

a) Primary Papers 95 -52 43
b) Cited in Primary Papers 13 -12 1
c) Title Search 54 -52 2
d) Snowballing 276 -262 14
Evidence Profile 60 -11 49
Total 438 -389 49
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Contradicting Evidence

Figure 6.2.: Evidence Profile 1: Programming experience influences code
comprehension
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evidence. For example, one paper was excluded because it was not peer-
reviewed and multiple papers were excluded because they either did not
measure programming experience or they did not use the gathered expe-
rience data in their analysis. Figure 6.2 presents the final evidence profile.
The result largely indicates that programming experience influences code
comprehension. In total, 37 (76 %) pieces of evidence were rated as positive
evidence and 12 (24 %) were rated as negative evidence. Furthermore, there
were 11 pieces of strong positive evidence and no strong negative evidence.

Program Length. In this analysis, we examine how the length of a program
affects program comprehension. We gather evidence in the form of studies
that measure the length of a program and examine its impact on program
comprehension. Table 6.4 shows how many papers we found in each step
of the evidence collection and how many we excluded because they did
not meet the inclusion criteria. The only evidence was found in the list of
primary papers. All documents cited in the references of the primary papers
were excluded as they did not meet the filtering criteria. Moreover, as we
found no relevant papers in b) and c), no snowballing was performed.

After filtering, 17 papers remained and were evaluated as potential pieces
of evidence using the evidence profile. In this evaluation, 4 more papers
were discarded as they did not meet the criteria to be considered evidence.
The final evidence profile is shown in Figure 6.3. We found conflicting results
regarding the influence of program length on program comprehension. In
total, 6 (46 %) pieces of evidence were rated as positive evidence and 7
(54 %) were rated as negative evidence. Furthermore, there were 2 pieces
of strong positive evidence and no strong negative evidence.

Comprehension Measures. In this analysis, we investigate whether common
comprehension measures are associated with distinct aspects of comprehen-
sion. We gather evidence in the form of comparative studies that analyze
correlations between commonly used comprehension measures. Positive
evidence describes that if different comprehension measures were used in a
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Table 6.4.: Overview of the evidence analyzed and filtered in each step of
the evidence collection for program length

Source Analyzed Excluded Final

a) Primary Papers 95 -78 17
b) Cited in Primary Papers 3 -3 0
c) Title Search 29 -29 0
d) Snowballing 0 0 0
Evidence Profile 17 -4 13
Total 127 -114 13
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Figure 6.3.: Evidence Profile 2: Program length influences code comprehen-
sion
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primary study, one would arrive at a different conclusion. Table 6.5 shows
how many papers were found in each step of the evidence collection and
how many were excluded because they did not meet the inclusion criteria.
Overall, we found most evidence in the primary papers, with slightly less
evidence found in both the title search and through snowballing. All docu-
ments cited in the references of the primary papers were excluded as they
did not meet the filtering criteria.

After filtering, 12 papers remained and were evaluated as potential pieces
of evidence using the evidence profile. In this evaluation, 5 more papers were
discarded as they did not meet the criteria to be considered evidence. The
final evidence profile is shown in Figure 6.4. Most evidence supported that
the commonly used comprehension measures do measure distinct aspects of
program comprehension and are not correlated. But overall, only a small
amount of evidence was found. In total, 5 (71 %) pieces of evidence were
rated as positive evidence and 2 (29 %) were rated as negative evidence.
Furthermore, there were 3 pieces of strong positive evidence and no strong
negative evidence.

Table 6.5.: Overview of the evidence analyzed and filtered in each step of
the evidence collection for comprehension measures

Source Analyzed Excluded Final

a) Primary Papers 95 -88 7
b) Cited in Primary Papers 3 -3 0
c) Title Search 53 -51 2
d) Snowballing 134 -131 3
Evidence Profile 12 -5 7
Total 285 -278 7
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Figure 6.4.: Evidence Profile 3: Different comprehension measures do not
correlate with each other

RQ4.2: Main Findings

• Programming experience:
37 positive and 12 negative evidence

• Program length:
6 positive and 7 negative evidence

• Comprehension measures:
5 positive and 2 negative evidence

• 94 % of cited evidence in the primary papers did not meet our
criteria for evidence and was excluded.

• No evidence was categorized as strong negative evidence (-5).
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6.2.4. Discussion

We will first consider the results of the evidence profiles on the three most
frequently discussed threats to validity.

Overall, the first evidence profile confirms that, often, programming ex-
perience does influence the comprehension performance of programmers. In
multiple cases, experienced programmers showed different comprehension
behavior when compared to novices [Ade84; YTA19] and this difference
could be measured in their performance [MLA+19; OB17; Wie85]. In con-
trast, however, we also found credible evidence contradicting those assertions.
Twelve studies reached the conclusion that programming experience does not
influence code comprehension. One explanation for this contradiction could
be the specific contextual factors of each study. Siegmund et al. [SKL+14]
found that depending on how programming experience is measured and op-
erationalized, its predictive power varies. Moreover, some negative evidence
still found correlations with very specific types of experience measures such
as self-estimated Java knowledge [PSA+18] or correlations for only specific
comprehension measures such as the number of eye fixations [JWAL21]. In
other cases, the range of programming experience was quite limited, for
example due to only including students as participants [HCM02; PSA+18].
These results imply that mentioning programming experience as potential
threat alone is insufficient when publishing experiment results. Researchers
should instead discuss the threat within the context of their study and discuss
how and why they adapted procedures, measures, and artifacts to mitigate
it.

The second evidence profile indicates that an influence of program length
on code comprehension behavior or performance should not be assumed
blindly in every context. We found conflicting evidence for this potential
threat to validity. Ribeiro and Travassos [RT18b] discuss similarly conflicting
evidence on program length in their study. Even after conducting a follow-up
study, they were unable to reach a clear conclusion. Novices and experts had
differing opinions regarding program length and its influence on comprehen-
sibility and readability. They also mention that differences in the procedures
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and tools used to measure lines of code may affect the comparability of re-
sults from different studies. While the overall number of samples is small, we
can identify some patterns when comparing positive and negative evidence.
All studies rated as positive evidence included students as participants, one
of them included both students and experts. Every study that only included
experts was rated negative. This pattern suggests that while program length
may influence the comprehension performance of novices, experts appear to
perform consistently, regardless of program length.
The results of the third evidence profile mostly support the notion that

the commonly reported comprehension measures are not correlated. The
three supporting pieces of evidence found no correlations between the time
and accuracy of comprehension task performances, suggesting that they
measure different effects, aspects, or dimensions of comprehension task
difficulty [AWF18; BLMM09; Ise88]. However, both pieces of negative evi-
dence found correlations between the time and accuracy of comprehension
tasks [GG84; HZ86]. Furthermore, the two studies that compared physio-
logical measures with other measures found no correlation with subjective
ratings [YYZD21] and time and accuracy of comprehension tasks [FRM+20;
YYZD21]. The significance of this finding becomes more apparent when one
considers that of the 95 primary papers, more than one third (37) used only
a single measure to assess the comprehension performance of participants.
Depending on the study context, this may cause them to miss aspects of
code understanding that would have been uncovered if they had analyzed
more than one measure. If different proxy measures are associated with
different aspects of program comprehension, this poses further difficulties for
meta-studies of comprehension experiments. For example, two studies might
obtain different results because they measured comprehension performance
in different ways and not due to other intrinsic factors. Using the results
from this work, we were unable to identify concrete patterns in the context
factors which would suggest why comprehension measures correlate in some
instances and not in others. A dedicated follow-up study, solely focused on
comparing different comprehension measures, may shed more light on this
question. For now, combining studies with different comprehension mea-
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sures should be avoided until we better understand the way they measure
different aspects of comprehension.
In comparison, we found much less evidence overall for the influence of

program length and the comparability of comprehension measures than for
the influence of programming experience. Even though program length and
comprehension measures are the second and third most discussed threats to
validity in code comprehension experiments, there are few studies examining
their influence. With the little evidence we found, we nevertheless arrived
at similar results to the first evidence search: The extent of all three validity
threats is context-dependent. The influence of a validity threat varies for
each individual study and must, as such, be interpreted in the light of the
contextual factors surrounding it. When seeking patterns to explain the
contradiction of evidence, we found that the way a threat impacts the result
of a study can depend on how a confounding factor is measured, what the
sample population is, and how the experiment is designed in general.
While this conclusion might sound obvious at first, we often find generic

statements about a potential threat in primary studies. For example, a study
might solely mention that their experiment sample consisted of students
without further elaboration. Discussing a study characteristic this way, how-
ever, does not clarify why that design decision might constitute a threat
to the validity of that specific study. This issue is problematic regardless
of whether references are used to back up assumptions, as generic threats
are used in place of more nuanced discussions that take the study-specific
context factors into account. Evidence should be cited as an additional
layer to further support the explanations. For example, Jbara and Feitelson
[JF17] show how evidence from past studies can be used when discussing
the threats to validity of their study.

Minor Observations

Besides this main finding, we also made some further observations. First,
the studies used in the primary papers to support claims about threats to
validity were, with one exception, almost entirely dismissed as evidence.
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Studies were mostly excluded because they either did not relate to program
comprehension, solely cited another mention of the threat, or they were not
relevant at all. This pattern was consistent over all three evidence searches.
Second, the results of our review of how threats to validity are reported

match the broader investigation by Wyrich et al. [WBW23]. In general,
researchers in program comprehension tend to focus on threats relating to
the code snippets and the study participants the most. The factors we investi-
gated in our evidence search, programming experience, program length, and
comprehension measures are among the most frequently mentioned threats
in both studies. The terms used to describe these threats differ between
the works. For example, the category named ‘comprehension measures’ can
be found in the category ‘instrumentation’ in Wyrich et al. and ‘program
length’ is named ‘program size’. Looking at the bigger picture, the results for
program comprehension studies are in line with reporting in SE in general.
Siegmund et al. [SSA15] found that in SE, 51 % (47 % in our study) of
papers discussed threats to validity in a dedicated section and 23 % (35 %
in our study) differentiated between different types of validity.
Third, we found that, overall, there was less evidence for less common

threats to validity. This is in line with what would be expected intuitively, if
fewer researchers deem that a threat poses a danger to a study’s validity then
corollary, fewer will investigate whether that assumption holds. Meta-studies
such as this one can highlight which threats are less frequently examined
and provide directions for further experimentation.

Fourth, we observed that throughout the entire evidence collection process,
not a single study was classified as a ‘-5’, which would represent strong
negative evidence. While we do not have a conclusive reason for this, it is
common for researchers to experience difficulties publishing negative results.
Obtaining negative results can be disheartening, but publishing them is
nonetheless crucial and provides value to the scientific community [Bor18;
PCE17; Wei16].
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6.2.4.1. Implications

The results presented in this study lead us to concrete suggestions for the
larger research community. First, threats to validity are dependent on
individual context factors of a study. Researchers should therefore explicitly
discuss the influence of each threat within the context of their study. Merely
listing off potential threats alone is not sufficient. Second, context discussions
for validity threats should be supported by existing evidence, rather than
relying on intuition or speculation. Meta-studies provide the appropriate
evidence base for this endeavor, as they analyze the influence of a threat in
multiple different study contexts.
While both aspects could be ensured at an appropriate point in the peer

review process, we believe that the authors of a manuscript should them-
selves have an intrinsic interest in making an evidence-based case for their
study design. In this way, a differing intuitive view of the reviewer may
be prevented and the validity of a study design is assessed more strongly
based on evidence rather than personal views. Peer review decisions will
thus hopefully be less biased. In addition, replication studies that seek to
overcome limitations of the original study can prioritize such limitations that
are backed up with evidence.

6.2.4.2. Limitations

Evidence profiles are created by qualitative evidence evaluation from hu-
man reviewers, and thus may contain bias. To mitigate this threat, two
researchers independently rated the evidence and then compared their
results to reach an agreement. The threat extraction, categorization, and
subsequent evidence collection was done by only one researcher, which again
might incur a bias and threaten the internal validity of our study. However,
when comparing the threat categories and number of occurrences with a
previous systematic review on confounding factors in program comprehen-
sion studies by Siegmund and Schumann [SS15], we find mostly similar
results regarding threat codes and their frequencies.
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When developing the evidence profiles, we decided to focus on threat
categories instead of individual codes. For example, rather than searching
for evidence of programming experience as threat to internal or external
validity, we combined the two into the category of programming experience.
A finer distinction was not necessary for our purpose, as evidence for the
influence of programming experience on code comprehension is equally
relevant for all validity types. Further, a finer distinction would have been
difficult to make. As previously noted, validity threats in primary studies are
currently not discussed in a way that makes clear what type of validity the
authors believe their study characteristics would affect.
We focused on threats to validity from code comprehension experiments.

Evidence profiles for validity threats in code comprehension studies using
other research methodologies can, provided equal or similar epistemological
stances, help similarly well in making informed design decisions. Whether
using evidence to design studies other than experiments makes sense de-
pends on the epistemological stance one takes and how one understands the
concept of evidence. We leave this discussion to future work.
Another limitation in the external validity of our study is that due to the

amount of effort required to systematically collect evidence, we were able to
analyze only three of dozens of different validity threats. We focused on the
most frequently mentioned threats, as we expected them to provide the most
value for the widest range of program comprehension studies. It is possible
that repeating the same methods for the remaining threats will uncover new
idiosyncrasies of program comprehension. As such, generalizing the results
obtained in this work to other threats should be done with care.
Finally, when analyzing our data, we found a rather strong bias in the

number of studies with quantitative data from experiments over qualitative
data. Even though we did not explicitly exclude any papers on the grounds
of them being a qualitative study, the results still heavily favored quantitative
experiments. In numbers, 68 out of 69 (99 %) pieces of evidence in the
evidence profiles were from some form of experiment. However, we suspect
that potentially undetected evidence from qualitative studies would have
only minimally changed the emerging evidence profiles in our study. To
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avoid such bias in future studies, we recommend formulating descriptions of
evidence profiles in a more method-neutral terminology (e.g., avoiding terms
such as confounding factors, which are primarily indicative of experiments).

6.3. Conclusion

In this chapter, we investigated threats to validity in code comprehension
experiments. First, we analyzed the state of the art by reviewing the reported
validity threats in 95 papers of primary research. We found that while most
studies mentioned threats to validity, few supported themwith corresponding
evidence. Furthermore, only in one case did the cited evidence support the
validity of a threat and meet our quality criteria to be included in an evidence
profile. Next, we searched for evidence regarding the three most frequently
mentioned threat categories. Our evidence collection yielded both positive
and negative evidence for each threat category.

After looking closer into the collected evidence and comparing the charac-
teristics of the different studies, we concluded that validity threats are highly
context-dependent. Even the threats that are intuitively expected to affect
program comprehension, such as programming experience, depend on how
they are measured, the sample population, comprehension tasks, and other
context factors. Therefore, we must consider all individual characteristics
of a study when assessing potential validity threats to develop methodolo-
gies that use evidence as a basis for implementing appropriate mitigation
techniques. Furthermore, discussions of validity threats in papers need to
explicitly address context factors and researchers should use evidence to
support these discussions.

We encourage the usage of threat catalogs and recommend the adherence
to reporting guidelines for threats to validity to improve the reproducibil-
ity and comparability of study results. Structured guidelines for reporting
threats to validity need to be established further to inform researchers on how
they can incorporate evidence into their validity assessments. We need more
knowledge documentation on which threats exist, the evidence supporting

240 6 | Evidence Profiles for Validity Threats in Code Comprehension Experiments



them, the context in which they occur, and which mitigation techniques
can be used to address them. Previous works laid the groundwork in this
endeavor by documenting threats in software engineering studies in a knowl-
edge base and providing guidelines for controlling the influence of confound-
ing factors in program comprehension experiments, respectively [BKE+14;
SS15]. These works can be further extended by incorporating evidence and
documenting threats to validity in a common database.

We envision a future in which scientists regularly apply our methodology
to collect and summarize the evidence for additional threats to validity and
for experiments far beyond code comprehension. Even when looking at just
three of the most common threats, we found less evidence for less popular
threats, which might indicate even bigger gaps in evidence for those threats
that have yet to be analyzed. Moreover, our approach may be applied to
other domains to investigate how threats to validity affect experiments there.
To summarize, we have made progress toward our goal of helping re-

searchers design and evaluate their code comprehension study designs
through two contributions in this chapter. First, we have collected evidence
for the three most frequently discussed threats to validity and found that,
depending on the actual study parameters, these threats might actually
not always threaten the validity of a study. Second, we have piloted the
compilation of evidence using a pragmatic research methodology that we
expect will help us to synthesize even more evidence for consequences of
design decisions in the future. Yet, the methodology of evidence profiles still
bears some open challenges and limitations, which we will now address in
Chapter 7.
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Discussion

In this chapter, we first summarize our contributions by answering the
research questions, then discuss open challenges and limitations, and finally
highlight promising future research directions.

7.1. Answers to the Research Questions

We briefly answer the research questions introduced in Section 1.2. Within
these answers, we refer to the relevant sections and chapters that addressed
the research questions in more detail.

RQ1: What are differences and similarities in the design characteristics
of code comprehension experiments?

In Chapter 3, we looked at the design characteristics of 95 code compre-
hension experiments published between 1979 and 2019. The studies are
comparable in some respects. For example, the majority of them investigate
the influence of a treatment on the code comprehension performance of
the study participants. In particular, the influences of semantic cues, code
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structures, and developer characteristics on code comprehension are fre-
quently the focus of such research. Furthermore, most of the experiments
use a one-at-a-time within-subject study design and usually sample less than
50 participants for their study.

At the same time, we have found that each of the study designs we exam-
ined is unique. This is partly due to the amount of design decisions that have
to be made, but also because there are plenty of options to choose from for
each design decision. Of particular importance are the comprehension tasks
and measures used. Almost each code comprehension experiment used its
own individual task design and a suitable way to quantify the performance
of the participants. While the authors of the experiments had the same
task, i.e., to measure how well their participants understood a certain code
snippet, they sometimes followed widely differing ways to achieve this goal.
In response to this finding, we discussed whether the diversity of study

designs is a consequence of uncertainty. What can be said for sure is that each
research team puts ample thought into their study design. This can be seen,
for example, in the diversity of discussed threats to validity: We found that
authors of code comprehension experiments discuss threats to validity drawn
from no fewer than about 50 threat categories. However, it is striking that
for hardly any discussed threat to validity, evidence in the form of empirical
studies is cited. The discussions of the validity of experimental designs
therefore currently seem rather speculative. This motivated us to contribute
evidence on the actual influences of suspected confounding variables (RQ2
and RQ3) and to examine existing evidence more closely (RQ4).

RQ2: How do individual characteristics of a developer influence code
comprehension?

In Section 2.2, we have described the background to this question and
exemplified the influence individual characteristics can have on the behavior
and performance of developers in various activities. In Chapter 4, we then
took on the investigation of two concrete constructs that are supposed to
have an influence on code comprehension. These two constructs were a
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developer’s personality and their intelligence.
One hundred thirty-five students took part in our correlational study of the

relationship of personality and intelligence facets with code comprehension.
What we primarily looked at was the correctness of the study participants
in answering comprehension questions on code snippets. The participants
who scored higher in the intelligence facets fluid intelligence, visual percep-
tion, and cognitive speed were the ones who performed better in the code
comprehension tasks. The personality facet conscientiousness, in interaction
with other factors, also explains some of the variance in code comprehension
performance. Other personality factors, such as Honesty-Humility, Emotion-
ality, Extraversion, Agreeableness, and Openness to Experience, however, do
not seem to be promising predictor variables.
The answer to the question of how individual characteristics of a devel-

oper influence code comprehension can be answered as so often with: it
depends. We have shown that it depends both on the concrete individual
characteristics themselves and on their interaction. That the influence of
individual characteristics on code comprehension may also depend on the
study context itself is something we learn when answering RQ4. Accordingly,
we recommend being cautious about making general statements about the
influence of presumed individual characteristics on code comprehension.
On a related note, we understand that assumptions about certain influ-

ences seem intuitively reasonable. That more intelligent developers under-
stand code more easily hardly sounds controversial. Evidence from different
studies nevertheless helps us in any case to assess more accurately the actual
influence in a particular study context. For example, if intelligence cannot be
controlled as a confounding variable in a specific study design, it is helpful to
have studies that provide evidence on the effect size of intelligence on code
comprehension. This allows, for example, an informed discussion about the
influence of the interfering variable on the conclusion validity of obtained
study results.
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RQ3: How do contextual factors influence code comprehension?

Following on from research on the influence of individual characteristics, we
then focused on the influence of contextual factors on code comprehension.
Developers will always comprehend code under certain conditions that arise
from their current work context and setup. The question here is which
of these conditions pose constraints and which may be beneficial for code
comprehension. In Section 2.3, we laid the foundation for this question by
reviewing studies of code comprehension in virtual reality as an example.
Then, in Chapter 5, we conducted two primary studies ourselves on the
influence of contextual factors.
The contextual factor we were interested in was the presence of cues

about the difficulty of a code snippet that participants in our studies needed
to understand. In experiments with human participants, all potential en-
vironmental factors can never be known, let alone controlled. We wanted
to draw attention to this problem because some ways of measuring code
comprehension are more robust to such influences than others. Specifically,
we were able to show that subjective evaluations of the difficulty of source
code can be easily biased by, for example, subtle cues in the introduction
to the study. We found a very strong and significant anchoring effect. At
the same time, such cues had no effect on the actual code comprehension
performance of the study participants, as measured by correctness and time
in task completion.
The answer to the question of how contextual factors influence code

comprehension can therefore be answered as follows: depending on the
concrete factor, it can strongly influence a developer’s performance and
approach to code comprehension. At the same time, however, at least
performance depends on the specific way code comprehension is measured.
According to our studies, subjective self-assessments of the participants are
more easily influenced by cognitive biases than correctness and speed in
answering comprehension questions.
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RQ4: What evidence can be found for frequently discussed threats to
validity in code comprehension experiments?

In the previous Chapter 6, we addressed the question of available evidence
by looking again at the code comprehension literature. The influence of
programming experience, program length, and the selected comprehension
measures are the three most commonly discussed threats to validity in code
comprehension experiments. To analyze the evidence for these influences on
code comprehension, we mapped the findings from existing primary studies
into evidence profiles, which provide us with a visual summary of whether
most of the studies confirm or refute the corresponding hypotheses.

For programming experience, we hypothesized that experience influences
a developer’s code comprehension. 49 pieces of evidence were assessed
for their strength and included in an evidence profile. The majority of 37
studies provided supporting evidence for the influence of programming
experience on code comprehension, while 12 studies found no evidence
for the presumed influence within their study context. One reason for the
divergent results could be that programming experience is measured in
different ways, and thus the predictive power varies [SKL+14]. How exactly
one should measure experience should be discussed more intensively within
the research community. In any case, we consider it is sensible to discuss the
programming experience of your own study participants as a threat to the
validity of your experiment in such a way that it becomes clear what exactly
is meant by ‘programming experience’ and how the influence is potentially
noticeable in the concrete study context (if at all).
Then, we found considerably less evidence for the hypothesis that code

snippet length influences code comprehension. Only six papers provided
supporting evidence for this hypothesis, while seven could not show such
an influence in their data. The case here seems less clear than for the
influence of programming experience. Therefore, we looked more closely at
the individual pieces of evidence and found at least the pattern that in the
studies in which only experts participated, program length did not play a
role in their comprehension. Thus, program length primarily seems to be a
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factor to be controlled for when novices participate in the study.
Finally, we looked for evidence regarding the hypothesis that different

comprehension measures do not correlate with each other. Five studies
provided evidence to support this hypothesis, while two studies contradicted
the hypothesis. Thus, assuming that not all common comprehension mea-
sures correlate with each other, it would be at least advisable to use multiple
comprehension measures within a study to capture multiple dimensions
of comprehension. Currently, this is often not the case: of the 95 primary
studies we looked at in Chapter 3, more than a third (37) used only a single
measure to measure their participants’ code comprehension performance.
Depending on the study context, this may cause them to miss aspects of code
understanding that would have been uncovered if they had analyzed more
than one measure.

Using Evidence to Evaluate the Validity of Code Comprehension
Experiments

Overall, we can say that for the most commonly discussed threats to validity,
some evidence already exists that argues for or against their actual impact.
What struck us, however, is that almost no study cites this evidence in their
discussion of validity threats, and in 94% of the rare cases where they do,
the cited evidence provides little to no support for the claim. Unquestionably,
it is an additional effort for the authors of a primary study to first identify
among the more than 50 potential threats to validity those that could have
an influence and then to search the literature for evidence on them. Existing
evidence profiles can greatly reduce this search effort for authors of primary
studies, as they already compile and assess the available evidence.

The central research question of this thesis asks how evidence can be used
to assess the validity of code comprehension experiments. Our answer to this
question is that a few researchers need to create evidence profiles that would
then benefit the majority of researchers in the discussion of the validity
of their code comprehension experiments. We have demonstrated while
answering RQ4 that the creation of such evidence profiles for frequently
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discussed validity threats in code comprehension experiments is feasible.
Yet, there are a couple of open challenges and points for consideration that
we will discuss in the next section.

7.2. Open Challenges and Limitations

The idea of creating and using evidence profiles for an evidence-based
discussion of the validity of code comprehension experiments works under
certain assumptions and limitations. We will now reflect critically on these
to better assess the full potential of the idea and perhaps overcome some of
the limitations in the future.

On potential bias due to implicit vote counting

The idea of synthesizing research findings from multiple studies is not new.
Secondary research to compile and synthesize research findings from multi-
ple primary studies has proven useful in the past to save decision makers
time and effort in reviewing relevant research findings. One can also de-
rive practical implications from a secondary study with more confidence
than one could from a single primary study. This is due, first, to different
methodological and ideological perspectives inherent in individual primary
studies, which can be balanced in a secondary study. Second, individual
primary studies are often subject to limitations such as a small sample size
or specific contextual conditions that can be overcome in secondary studies
by combining the data and research findings.
What is new is the use of Wohlin’s evidence profiles [Woh13] for such a

synthesis. In a recent position paper, Ralph and Baltes [RB22] argue that
authors of secondary studies should identify the type of their systematic
review to move toward more mature secondary studies. They list six types
of systematic reviews: meta-analysis, meta-synthesis, case survey, critical
reviews, scoping reviews, and rapid reviews. Wohlin [Woh13] himself
remains rather vague in differentiating his methodology of evidence profiles.
He intends to consider qualitative evidence as well as quantitative evidence,
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while avoiding the difficulties and the great effort of meta-analysis and meta-
synthesis. At the same time, he distinguishes his methodology from simple
vote counting, in that the available pieces of evidence are classified according
to their meaningfulness on an ordinal scale, dependent on the context.
Why are these reflections important? Vote counting refers to drawing

conclusions by simply counting studies whose results support a hypothesis or
research question and counting studies whose results oppose it. The majority
wins. Since neither study quality nor effect size nor study heterogeneity
within the two camps are considered, classical vote counting is critical from
a scientific point of view [Hun97; Sta01].

In our view, evidence profiles provoke implicit vote counting, in the sense
that it is visually depicted for individual research questions on which side
the evidence predominates. Evidence profiles, however, have a decisive
advantage over classical vote counting: study quality, effect size, and other
properties of individual studies can become part of the evidence strength
that is qualitatively assessed by the researchers and can thus be included
in the visual presentation. Few highly meaningful studies on one side and
many less meaningful studies on the other side of an evidence profile are
thus made visible. Since a certain bias in the conclusion of the reader of an
evidence profile due to quantitative superiority of evidence on one of the
two sides cannot be excluded, we call this a limitation of evidence profiles.
Why are evidence profiles nevertheless currently advantaged over the

more common meta-analysis and meta-synthesis techniques? In the code
comprehension field, there is currently no completeness in the reporting
of statistics that would be necessary, for example, for a quantitative meta-
analysis. The problem of missing statistics is amplified when the evidence
provided was not the primary focus of a particular study. For example, this
was often the case in our investigation (Chapter 6) when we looked for
evidence on the influence of programming experience on code comprehen-
sion: many studies provide evidence for or against this influence in a casual
analysis, for example to estimate the influence as a confounding variable. In
the reporting, there are sometimes no statistics at all, but only statements
about the observed influence. Alternatively, using the raw data for analysis
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in a secondary study is hardly practicable at present, since still very few
primary studies publish their raw data. While it would be possible to increase
the focus on reporting guidelines, the chances are that they would not be
followed across the board. Moreover, such guidelines would not have a
retroactive effect on the research of the past fifty years.
Evidence profiles allow the integration of different types of evidence,

almost independently of the reporting of individual studies, and can thereby
rank those studies higher that already meet certain quality characteristics.
We would like to stress again that we do not oppose alternative research
methods in secondary studies, and are also aware of their advantages1.
However, we would argue that the methodology of evidence profiles is one
of the most pragmatic methods that is currently directly applicable in the
code comprehension research field.

The dependence on evidence for evidence

If we intend to rely more on evidence when discussing the validity of ex-
perimental designs in the future, we need to ask ourselves how good the
available evidence is. In this thesis, we have primarily looked for evidence of
factors influencing code comprehension. Such evidence is naturally found in
the results of code comprehension studies. However, we can only estimate
intuitively how valid these studies are, since they could not build on existing
evidence. Evidence for the consequences of certain design decisions thus in-
evitably comes from studies whose study design we actually seek to evaluate
in an evidence-based manner.
Breaking out of this circular dependence is theoretically possible with

some philosophy. If there are enough different study designs by enough
different authors on a research question, a less biased and overall more
complete picture of research designs on the contribution of evidence emerges
(see Section 1.3.2). When this diversity is present, we can identify which

1Ironically, much of the motivation for this dissertation arose from a situation in which we
conducted a quantitative meta-analysis [MWW20], but this endeavor was quite challenging
due to the diversity of study designs and lack of raw data in code comprehension research.
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methodological features are responsible for potential variations in the results
of individual primary studies. We can thus make retrospective evidence-based
assessments of the validity of individual primary studies.
In Chapter 4, for example, we presented one of our experiments on the

influence of intelligence on code comprehension performance. We based the
experiment design as best we could on existing theory and evidence, but it
is clear that there will always be consequences of certain design decisions
that we do not yet know. Putting our experiment and other future studies
of the influence of intelligence into an evidence profile, such an evidence
profile can itself provide evidence that certain different design decisions
affect study results.
The success of this approach (and, for that matter, the success of almost

all types of synthesizing secondary studies) depends on there being multiple
studies on the same research question. We have previously argued for the
recognition of the importance of replication and reproduction studies in
Section 5.4. At the same time, the reality that novelty is a weighty evaluation
criterion of a study in the software engineering research field, remains a
challenge for contributing additional evidence to an already studied research
question.

When and how to update evidence profiles?

The three evidence profiles we created in Chapter 6 are snapshots of the evi-
dence landscape on three research questions. We explained in Section 1.3.1
that evidence is seldom timeless and that we may need to completely recon-
sider existing evidence when paradigm shifts occur. Furthermore, it is in
the nature of science that over time, new evidence emerges. Thus, an open
question, possibly another challenge, is when and in what form evidence
profiles should be updated. We have two comments on this.

First, we think it is a great opportunity if evidence profiles are not created
from scratch every time, but only updated. The more teams of authors work
together on a single evidence profile over time and argue about individual
pieces of evidence, the more one can help reduce bias and the more likely it
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is that quality guidelines will come from a consensus. Contributing can be
straightforward, for example via a public database.
Second, however, we also believe that minimal peer review is necessary

both in the initial creation and potential update of evidence profiles. This
should ensure that the process of finding, selecting, and classifying evidence
from primary studies is at least transparently documented. Evidence pro-
files have the potential to serve as decision support in relevant controversy.
Accordingly, there is a risk that individuals may attempt to manipulate the
evidence profiles in their own interests. This is comparable to the deliberate
incorporation of misinformation into Wikipedia; here, too, it is advantageous
that updates to articles are reviewed by the community. When we created the
evidence profiles mentioned above, we therefore documented the evaluation
of each individual primary study contributing to an evidence profile trans-
parently via the supplemental materials. We consider it necessary to make
such a practice a standard when creating and updating evidence profiles.

On the generalizability of our approach

We have deliberately limited ourselves in two respects in this thesis.
For one thing, we have focused on the design of experiments. This is

because validity, for example, has a different meaning in qualitative research
methodologies and is therefore only partly comparable to validity of experi-
ments (see Section 1.2 and Section 2.5). However, if one adopts comparable
epistemological views as we have assumed for experiment designers in the
context of this thesis, the rough idea of using evidence in evaluating study
designs can be transferred. For example, in designing an interview study,
one can draw on primary studies that provide evidence on various inter-
viewer biases, that is, the bias in findings due to a particular view of the
observer. Following the evidence to prevent bias would be in the spirit of
this thesis. However, it is also clear that this way of thinking only makes
sense for a researcher who does not already assume that our knowledge
about the world is entirely constructed by the observer. Such a view seems
more common among qualitative researchers than among researchers who
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primarily conduct experimental studies. Experimental research is usually
subject to the assumption that independent researchers will obtain the same
results when replicating the experiment. Hence, there is a stronger view here
that there exists evidence independent of the observer, and this evidence
should then be followed.

For another, we have been working in the context of code comprehension
research throughout this thesis. The code comprehension field is in its
maturity and the views of the community certainly comparable to other
sub-research fields of software engineering, in which empirical research
is conducted. Points of contact can be found, for example, where there is
methodological proximity and where common guidelines are used, such as
the general book chapters on experimentation by Wohlin et al. [WRH+12]
or the experiment reporting guidelines by Jedlitschka et al. [JCP08]. The
discussion of validity threats is taking place throughout SE research, and
probably in all sub-fields with similar uncertainty, for example, about how
to deal with the trade-off between different validity dimensions [SSA15].
What existing guidelines do not yet provide is an answer to how evidence-
driven validity evaluation should be. The corresponding chapters on validity
evaluation [JCP08; WRH+12, e.g.] so far only advocate that the validity
of one’s own study should be assessed. Lists of potential threats to the
validity of experiments in general are provided [WRH+12]. As we know,
however, there is no lack of potential validity threats to discuss (see, e.g.,
Section 3.2.3.8), but rather a pragmatic method to prioritize the variety
of threats to report only those that are actually relevant. Since concrete
approaches to this issue are rarely discussed, we think that both the problem
and our proposed approach can be applied to and be useful to other SE
research fields.
Finally, regarding the internal and external validity of the studies we

conducted (Chapters 3 to 5), we would say that we have placed greater
emphasis on internal validity than on external validity. We have discussed
what implications this has for each study in the discussion sections of each
chapter. We do not see any consequences for the bigger picture here, as
we consider each of our primary studies to be building blocks (with high
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internal validity) that can only ever be combined with other building blocks
to form an overall (externally valid) picture.

7.3. Future Research Directions

Now that we have dealt extensively with the past and present situation, let us
conclude with an outlook on the future. The code comprehension research
field is flourishing. We are happy about that and if we may point researchers
to possible directions for future work, it would be the following.

Explicit Clarity: The Terminology, Theory, and Perspectives in Code
Comprehension Research

A research field can flourish to the extent that more and more researchers
take up the topic and conduct primary studies on the same subject. However,
an indicator that the field is doing well not only quantitatively but also
qualitatively would be, in our view, a notably high number of secondary
studies. The existence of secondary studies would suggest that studies build
on each other, that a scientific discourse takes place, and that individual
studies are comparable with each other. There is a need to improve in this
respect.

We have previously formulated two fundamental issues as action items in
Section 3.3: there is a need for a contemporary definition of the code compre-
hension construct and an underlying theory of people’s cognitive processes
and behavior in understanding source code. Code comprehension experi-
ments currently use different terms for the (presumably) same construct,
and different tasks and measures to operationalize code comprehension.
Whether researchers share a common underlying view of what they mean by
code comprehension is often not clear, as explicit descriptions of their own
views are missing from the papers. It would ease the work of all researchers
if we had more theoretical knowledge about code comprehension and could
synthesize it into one or more theories. Authors of primary studies could
cite the underlying theory of their research as a reference that is consistent
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with their own view and use it to justify their design decisions. Authors
of secondary studies could more easily compare primary studies with each
other that explicitly build on the same theoretical foundation. If we do
not pick up in theory building where we left off after the 1990s, the code
comprehension research field will remain in a state where an unmanageable
conglomeration of primary studies are difficult to compare with each other
and will likely have limited impact on their own.

Primary Research on Contextual Factors Influencing Code
Comprehension

The working environment of a software developer is already very diverse
today. Different tools support the work, different processes ensure optimized
workflows and different colleagues work together on the code. These are all
contextual factors that influence how and how well a developer understands
source code. And it is precisely these factors that offer vast potential for
research. Consider, for example, two developers pair programming, i.e.,
working on code together synchronously in the roles of thinker and writer.
How, for example, does a developer’s code comprehension strategy change
when he or she has to understand code in pair programming rather than
alone? How does the mental model of the code of the two developers
involved in pair programming differ? How will the code comprehension
strategy change in the future when virtual coding assistants become pair
programming peers? Answers to these questions can, for example, help to
design tools and processes in such a way that high cognitive load is prevented
and logic errors in the code are detected more reliably.

Further Advancement of the Evidence Profile Methodology

Evidence profiles for validity threats should be further developed in a way
that they can at least indicate why certain evidence was negative or positive
in a specific study setup. This allows authors of primary studies to better
assess whether a threat is actually a threat in their study, rather than only
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whether there is conflicting evidence for the influence of a particular threat
among existing studies. We have previously explained that the methodology
has its advantages and disadvantages compared to other types of secondary
studies. Therefore, in a next step, in addition to the creation of further
evidence profiles, the methodology itself should be improved. In addition
to the strength and direction of the evidence, an evidence profile could be
extended to include a third dimension that provides direct information about
relevant study parameters. Possible patterns in the overall evidence could
thus be identified and related to one’s own study context.

A second important point for the further development of the methodology
has already been addressed in the limitations, i.e. the question of when
and how evidence profiles should be updated. At a minimum, we need to
evaluate whether we can arrive at a procedure to efficiently keep evidence
profiles up to date over time without having to develop them from scratch
each time new evidence emerges. Eventually, this question will have to be
addressed because by then our evidence profiles presented in this thesis will
be a few years old and new evidence will have been published. Quantitative
meta-analysis has the advantage that when updating the status of a research
question, new data sets can be added to the old ones and analyzed together
with the existing analysis script. In qualitative synthesis procedures, one
could take a similar approach, analyzing only the newly added evidence, and
plugging the results into an evidence profile with the previous ones. However,
the consistency in the qualitative assessment of new and old evidence could
then be lower with different author teams than if one author team or the
community classified all the existing evidence via a consistent procedure.

Exploration of the Research Community’s Views on Evidence

One may discuss the nature and role of the threats to validity section in
scientific literature itself. While we examined and reported on various
descriptive aspects of the threats reported in existing papers, we did not
inquire into why researchers chose to report and discuss specific threats in a
certain way. Furthermore, our research does not provide explicit guidance
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on how a paper author ought to write a threats to validity section. While
the position presented in this work suggests that reported threats should
be supported with evidence whenever possible, this is not necessarily a
sentiment shared by all members of the scientific community. A section on
validity threats may also be a place where researchers should be able to
speculate without concrete evidence and point out potential shortcomings as
directions for future research. This debate should be conducted within the
respective research communities, and agreements should then be recorded
and incorporated into existing guidelines for the reporting of validity threats.
Siegmund et al. [SSA15] once surveyed 79 program committee and ed-

itorial board members about their views on the importance and trade-off
between internal and external validity. The participants answered from a
reviewer’s perspective, and different personal views emerged that potentially
affect the acceptance of a manuscript. These views included even those that
would reject papers in principle if they attempted to maximize internal valid-
ity [SSA15]. Here one could proceed and similarly investigate, for example,
why researchers would (not) use evidence for the evaluation of empirical
studies, and what constitutes good evidence for them. We speculate that
views will vary as much as they did in Siegmund et al.’s survey.

Consider the following scenario. A hypothetical experimental design that
considers all available evidence is judged by one peer-reviewer to be the best
design currently possible. A second reviewer will disagree because they have
a different view of how to handle available evidence and that potentially all
available evidence is based on false paradigms. Thus, for the second reviewer,
the quality of a study design cannot be judged by whether it conforms to
existing evidence.

These two views admittedly serve the extremes on a spectrum of willing-
ness to evaluate study designs based on evidence. However, should these
two views be present in our community in this form, we can potentially gain
insights into those causes of inconsistency in peer review decisions that have
not been explored before. And then we need to consider how to deal as a
research community with the possibility that individual philosophical views
determine the publication of research findings.
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Conclusion

Walter Tichy, one of the early advocates of empirical research in computer
science [TLPH95], recently told his personal story of how he experienced
the maturing of SE research: “It took about 25 years for research in software
engineering to become evidence based” [Tic22]. The acceptance of data-
based evidence had to be championed in the early days of the field because
rationalism, i.e., deductive reasoning for the superiority of a contribution,
would have been the rule. “Today,” Tichy notes, “we have a new generation
of computer scientists for which empirical studies are the norm” [Tic22].
Evidence has taken on a prominent role in this thesis. While we could

stand on the shoulders of those who have advocated evidence-based software
engineering in the past, we now sought to bring this effort to a whole new
level. That is, by using evidence not only to make informed decisions in
practice, but also in designing the studies that provide the evidence. We
hope that it will not take another 25 years before it becomes the norm for
intuition to be complemented by evidence when evaluating a study design.

For our vision to become reality, however, there was and still is work to be
done. We made a start in the context of experimental code comprehension
research. Specifically, we mapped the landscape of design decisions and
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threats to validity, contributed our own experimental studies to provide
evidence for commonly discussed threats to validity, and piloted the evidence
profile methodology to synthesize available evidence.
Once created, such an evidence profile serves each researcher as an

overview of the evidence landscape for a specific question, such as the influ-
ence of a suspected confounding variable. Researchers can then prioritize
potential threats to validity based on empirical evidence for specific study
design parameters when designing and reporting their research. For exam-
ple, we have found that the frequently discussed influence of programming
experience on code comprehension should not be assumed across the board.
The actual influence varies depending on factors such as how experience is
operationalized and the characteristics of the participant sample.

Overall, we consider the evidence profile methodology to be a pragmatic
tool that can already today support code comprehension researchers by
reducing uncertainty in experiment design and mitigating some of the bias
in peer review. Furthermore, the profiles show for which assumptions there
is sufficient evidence at all. However, it is also worth noting that not all
researchers may share the view that evidence-based study designs are su-
perior. We have elaborated on our view in the introduction to this thesis,
and suspect that it aligns in essence with the views of those who prefer to
use experimental research methodologies to obtain new knowledge. Thus,
the key message of this thesis will certainly resonate with a few researchers.
Nevertheless, we should now consider the opinions within the research com-
munity regarding whether discussions about the validity of a study design
should be based on evidence. Such an investigation will potentially strike a
chord and bring to light different perspectives on what constitutes evidence
and how much the research community may want to rely on its own past
contributions.
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Replication Packages

Following the principles of open science in software engineering [MGWS20],
we publish our datasets and additional materials for all our studies presented
in this thesis for reproducibility and transparency. Table B.1 provides an
overview of the replication packages and their contents.
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Table B.1.: Replication package overview
Dataset Description
[WBW22] For the SMS [WBW23] described in Section 3.2:

The dataset comprises the 95 primary studies together
with the extracted data items. The dataset details which
studies were included in which step and which studies
were extracted by which authors. In addition, we publish
a large part of our data analyses, which can be used, e.g.,
to trace how characteristics of each individual study design
were labeled and categorized in specific analyses.

[WW21] For the experiment [WW22] described in Section 4.2:
We disclose code snippets, task sheets with comprehension
questions, anonymized raw data, and the R script for the
analysis openly.

[WPGW20] For the experiment [WPGW21] described in Section 5.2:
We disclose code snippets, task sheets with comprehension
questions, anonymized raw data, and the R script for the
analysis openly.

[WMG22b] For the experiment [WMG22a] described in Section 5.3:
We disclose code snippets, anonymized raw data, and the
R script for the analysis openly.

[MWGW22] For the meta-study [MWGW23] described in Section 6.2:
The dataset comprises data that emerged in intermediate
steps of the validity threat analysis. This includes extracted
text passages from the primary studies and complete lists
of threat codes, threat categories and threat themes. Fur-
ther, the dataset contains artifacts produced during the
evidence search and the creation of the evidence profiles.
We document comprehensibly, for example, how individ-
ual reviewers evaluated individual pieces of evidence and
reached a final agreement. Finally, R scripts are included.
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