
Blackbox Observability of Features and Feature Interactions
Kallistos Weis

Saarland University
Germany

Leopoldo Teixeira
Federal University of Pernambuco

Brazil

Clemens Dubslaff
Eindhoven University of Technology

The Netherlands

Sven Apel
Saarland University

Germany

ABSTRACT

Configurable software systems offer user-selectable features to tai-
lor them to the target hardware and user requirements. It is almost
a rule that, as the number of features increases over time, unin-
tended and inadvertent feature interactions arise. Despite numerous
definitions of feature interactions and methods for detecting them,
there is no procedure for determining whether the effect of a feature
interaction could be, in principle, observed from an external perspec-
tive. In this paper, we devise a decision procedure to verify whether
the effect of a given feature or potential feature interaction could be
isolated by blackbox observations of a set of system configurations.
For this purpose, we introduce the notion of blackbox observability,
which is based on recent work on counterfactual reasoning on con-
figuration decisions. Direct observability requires a single reference
configuration to isolate the effect in question, while the broader
notion of general observability relaxes this precondition and suf-
fices with a set of reference configurations. We report on a series
of experiments on community benchmarks as well as real-world
configuration spaces and models. We found that (1) deciding ob-
servability is indeed tractable in real-world settings, (2) constraints
in real-world configuration spaces frequently limit observability,
and (3) blackbox performance models often include effects that are
de facto not observable.

1 INTRODUCTION

The question of observability, that is, which properties of a system
can be determined from external observations, is fundamental in
various disciplines, including philosophy [18], applied physics [39],
control theory [56], and runtime monitoring [37]. Given a set of
observations of a system’s behavior, it is possible to infer infor-
mation about the system’s internal state and properties. The most
informative behaviors are those that expose different effects along
with different observations, enabling counterfactual reasoning and
allowing conclusions about system internals from external observa-
tions [62]. The decision problem of observability refers to the ques-
tion of whether it is, in principle, possible to make such property-
discriminating observations. This problem is of utter importance

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ASE 2024, October 2024, Sacramento, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM
https://doi.org/10.1145/nnnnnnn.nnnnnnn

for system analysis and design: If a system property is, in principle,
observable, engineers can collect and analyze a proper set of ob-
servations for which the system exhibits different properties. For
example, testing a system’s performance would involve a set of
test cases that trigger both high and low performance behavior.
Conversely, if a system property is, in principle, not observable, all
analyses of observations will lack a factual basis, and there is no
chance to ever find a set of observations that expose this property.

A premise of our work is that the observability problem is funda-
mental in designing and analyzing configurable software systems.
A configurable software system provides a set of features (e.g., con-
figuration options) that a user can select to tailor it to the target
hardware and user requirements. In fact, most non-trival software
systems today are configurable [2]. The combinatorics of selecting
features typically leads to a huge number of possible system configu-
rations [4]. The behavior and properties of a system greatly depend
on its configuration. In particular, interactions among features can
lead to undesired and inadvertent behaviors, which is known as the
feature-interaction problem [1, 6, 45]. The crux is that, due to the
often huge number of system configurations, it is infeasible or even
impossible to test all system configurations covering all potential
feature interactions [1, 6, 26, 45].

A further complication is that there are typically constraints
among features that must be satisfied for them to be selectable
(e.g., a feature requires another), rendering only the system con-
figurations as valid that fulfill such constraints [4]. For an invalid
configuration, the corresponding software cannot be deployed in
practice and thus can never provide observations for analysis. The
observability of the effects of individual features and interacting
features is hence fundamentally limited by the constraints imposed
on valid configurations. For example, consider a database system in
which an authentication feature requires an encryption feature to
be enabled. In this case, it is impossible to observe any interaction
between the authentication feature and any other feature of the
system in a blackbox manner. While such observability questions
naturally arise [15, 46, 65], we are not aware of any foundational
method to deciding observability in configurable systems.

In this paper, we address the fundamental question of whether
and how effects arising from individual features and feature inter-
actions can be, in principle, observed without internal knowledge
of the system—knowledge that might be unavailable or hard to
obtain. Our goal is to establish a decision procedure that, given the
constraints on valid configurations, decides whether an effect could
be observed by running and comparing observations of a set of sys-
tem configurations (e.g., by comparing the runtime of two system
configurations that differ only in the selection of one feature). As

https://doi.org/10.1145/nnnnnnn.nnnnnnn

ASE 2024, October 2024, Sacramento, USA Kallistos Weis, Leopoldo Teixeira, Clemens Dubslaff, and Sven Apel

a foundation, we formally introduce direct observability and then
extend it to the broader notion of general observability. While direct
observability requires a single configuration as a reference to render
the effect in question observable, general observability relaxes this
precondition and suffices with a set of system configurations as a
reference. We then devise a decision procedure implementing our
formal definitions of direct and general observability. To evaluate
our decision procedure, we conducted a series of experiments on
community benchmarks and real-world configuration spaces and
models to assess the feasibility of deciding observability in prac-
tice and to investigate the impact of configuration constraints on
observability. We found that (1) deciding blackbox observability is
indeed feasible in real-world settings, (2) constraints in real-world
configuration spaces frequently limit blackbox observability, and (3)
a popular class of models (blackbox performance models [32]) often
include effects that are de facto not blackbox observable, which
limits their interpretability.

Contributions. This paper makes the following contributions:
• We describe the problem of observability of features and feature
interactions in configurable systems.

• We introduce formal definitions of direct and general observabil-
ity of features and feature interactions in configurable systems.

• We devise a decision procedure that decides observability.
• We evaluate the procedure on community benchmarks and real-
world configuration spaces and models.

Supplement. The implementation of our decision procedure, the
data, and the code to run the experiments are publicly available.1

2 BACKGROUND

In this section, we provide the necessary background on config-
urable systems that is used throughout this paper. We explain the
abstract view on configurable systems that we use, as well as the
necessary notions to express and reason about variability in the
presence of constraints. We also discuss the notion of blackbox
performance models, which are used to model the performance of
configurable software systems.

Configurable Systems.A common approach to model the variabil-
ity of a software system is to use features [33] (i.e., separate units
of functionality). We denote the set of all features with F . Features
can be selected or deselected, which means that the corresponding
functionality of the software system is included in the system or
not, respectively. We abstract this behavior by treating features as
Boolean variables, where an included functionality (selected fea-
ture) is represented by ⊤, and an excluded functionality (deselected
feature) is represented by ⊥. Assigning a truth value (i.e.,⊤ or⊥) to
each feature of the software system is called a configuration. We use
V to denote the valid configuration space, that is, the set of all valid
configurations of a system, which is encoded by a feature model.

Example 2.1. Consider a simple e-mail system over the set of
features F = {𝑚, 𝑠, 𝑒, 𝑐, 𝑎, 𝑟 }, defining the base functionality of the
email system, as well as optional functionalities for signing and
encrypting with a specific encryption algorithm, Caesar, AES, or
RSA. If the Caesar encryption algorithm is not selected, then the
1https://github.com/BlackboxObservability/UatuEvaluation/

signature feature must be selected. Figure 1 shows a feature diagram
representing these features and constraints, which results in the
set of valid configurations

V = {𝑚𝑒𝑐,𝑚𝑠,𝑚𝑠𝑒𝑐,𝑚𝑠𝑒𝑎,𝑚𝑠𝑒𝑟 }.
Note that, to simplify the notation, we write a configuration as a
string of features, where a feature is included if it is present in the
string, and excluded otherwise.

email system

encryption signature

¬Caesar⇒ signatureCaesar AES RSA

Figure 1: Feature model of a small e-mail system

A partial configuration is a configuration that assigns a truth
value to only a subset of features. We use Δ(F) to denote the set of
all partial configurations over F , and Θ(F) for the set of all config-
urations. We denote by supp(𝜕) the set of all features 𝑓 ∈ F that
are assigned a value by a partial configuration 𝜕. Given a configu-
ration 𝜂 and a set of features 𝑋 ⊆ F , we denote by switch(𝜂,𝑋) a
configuration that is derived by switching the values of all features
in 𝑋 (i.e., switch(𝜂,𝑋) (𝑓) = ¬𝜂 (𝑓) for all 𝑓 ∈ 𝑋).

The semantics of a partial configuration J𝜕K is defined as the set
of all configurations that satisfy the constraints of 𝜕. We refer to all
configurations that satisfy the constraints of a partial configuration
𝜕 (that is 𝜂 ∈ J𝜕K) as configurations that are consistent with the
partial configuration 𝜕. Expanding a partial configuration 𝜕 w.r.t. a
set of features 𝑋 ⊆ F means to keep the constraints for all features
not contained in 𝑋 and remove the constraints for all features in 𝑋 .
This operation is denoted by 𝜕 ↑𝑋 , where supp(𝜕 ↑𝑋) = supp(𝜕)\𝑋
and 𝜕 ↑𝑋 (𝑓) = 𝜕(𝑓) for all 𝑓 ∈ supp(𝜕) \ 𝑋 .

Example 2.2. Consider the e-mail system from Example 2.1.
Suppose a user is interested in configurations that include the
signature feature. We can express this by the partial configura-
tion 𝜕 = {𝑠 ↦→ ⊤}. For this partial configuration, the set of valid
configurations included in J𝜕K isV ∩ J𝜕K = {𝑚𝑠,𝑚𝑠𝑒𝑐,𝑚𝑠𝑒𝑎,𝑚𝑠𝑒𝑟 }
and the support is supp(𝜕) = {𝑠}. In this example, the expansion of
the partial configuration 𝜕 (i.e., 𝜕 ↑𝑋 with 𝑋 = {𝑠}) means that the
semantics of the partial configuration is the set of all configurations
(i.e., J𝜕 ↑𝑋 K = Θ(F)).

Blackbox Performance Models. Performance (e.g., run time, la-
tency, throughout, energy consumption) is a key property of many
software systems. Modeling and predicting the performance of a
software system is already challenging, but the fact that a system
may come in many variants (i.e., configurations) considerably com-
plicates this task. In response to this challenge, researchers have
devised a range of performance modeling techniques that allow a
user to predict the performance of a configuration depending on the
selected features [25, 30, 52]. While there is a multitude of types of
models [30], a canonical representation of a performance model is

https://github.com/BlackboxObservability/UatuEvaluation/

Blackbox Observability of Features and Feature Interactions ASE 2024, October 2024, Sacramento, USA

a function, in additive form, that assigns performance influences to
each feature and feature interaction that is relevant for the perfor-
mance behavior. The performance influences are typically learned
from a set of reference configurations, which are configurations
that have been executed and measured [30].

Example 2.3. In our e-mail system a performance model could
be as follows:

Π = 5 ·𝑚 + 10 · 𝑠 + 15 · 𝑒 + 10 · 𝑠 · 𝑒 +

The variables in this model are the system features, and the coeffi-
cients are the performance influences of the corresponding features
(single variables, e.g., 𝑠) and feature interactions (multiplicative
terms, e.g., 𝑠 · 𝑒). The performance of a configuration is the sum
of the performance influences of features and interactions that are
selected in such configuration (⊤ is mapped to 1 and ⊥ is mapped
to 0). The partial configuration that corresponds to the interaction
between the features 𝑠 and 𝑒 is 𝜕𝑠𝑒 = {𝑠 ↦→ ⊤, 𝑒 ↦→ ⊤}.

It is important to note that these models have also been used for
explanation [34, 40, 41, 52, 60], besides prediction. For example, to
identify the feature that has the largest influence on performance
(𝑒 in our example). However, the learning procedure is typically
optimized for prediction accuracy, instead of explainability, which
may lead to wrong conclusions, as we discuss in Section 5.

3 BLACKBOX OBSERVABILITY

Observability is a well-studied concept in a wide variety of research
areas, such as philosophy, applied physics, control theory, and run-
time monitoring [18, 37, 39, 56]. In this paper, we address the fun-
damental question of whether effects (e.g., correctness, reliability,
or runtime) arising from individual features or feature interactions
can be observed without internal knowledge of the system. This
understanding can help us judge the interpretability of models that
use those features and feature interactions to explicate the behavior
of the system (e.g., stability, safety, or energy consumption).

In what follows, we introduce the notion of blackbox observ-
ability for individual features and feature interactions (i.e., partial
configurations) in the context of configurable systems. We start
with a formal definition of direct observability and lift it to general
observability, which is more general, as it combines direct and in-
direct observability. It is important to note that our definitions of
observability are concerned with the structural constraints between
the features of the configurable system. As such, our definitions
only make statements about the nature of the constraints of the
configuration space, not about the actual behavior of the system
and its features. This includes masking or shielding effects, which
might prevent the observation of the effect of certain features or
feature interactions when executing the system, even though they
might be generally observable.

Direct Observability. The basic reasoning task to decide whether
a partial configuration is directly observable is to check whether
there is a witness and a counter witness2 of the partial configuration. A
witness of a partial configuration is a configuration that is consistent
2A counter witness 𝜂 represents a valid configuration for which all features in the
support of a partial configuration 𝜕 are switched in configuration 𝜂. The notion of
counterfactuals is closely related but is concerned with a change of an effect induced
by a change of the feature selection [17].

with the partial configuration and a counter witness is a valid
configuration that is not consistent with any feature assignment of
the partial configuration. A partial configuration is called directly
observable if there is a configuration that fulfills all constraints of
the partial configuration and a configuration that does not fulfill
any constraints of the partial configuration, but shares all feature
assignments of the first configuration except for the features in the
support of the partial configuration.

Example 3.1 (Direct observability). Continuing with our e-mail
example from Example 2.1, let us consider the partial configuration
𝜕𝑒𝑟 = {𝑒 ↦→ ⊤, 𝑟 ↦→ ⊤} with its support 𝑆 (= supp(𝜕𝑒𝑟)) = {𝑒, 𝑟 }.
We are interested in whether or not 𝜕𝑒𝑟 is directly observable, for
example, to learn whether it is possible to detect a 2-wise feature
interaction between 𝑒 and 𝑟 via a blackbox analysis. There is only
one candidate 𝜂 in the set of valid configurations that is not in-
cluded in J𝜕𝑒𝑟 K, for a counter witness of 𝜕𝑒𝑟 : 𝜂 = 𝑚𝑠 . As we can
see, switching all features in the support of 𝜕𝑒𝑟 (i.e., 𝑆 = {𝑒, 𝑟 }) in 𝜂
(i.e., switch(𝜂, 𝑆) =𝑚𝑠𝑒𝑟) leads to a witness of 𝜕𝑒𝑟 (i.e.,𝑚𝑠𝑒𝑟). Since
𝑚𝑠𝑒𝑟 is a valid configuration (i.e.,𝑚𝑠𝑒𝑟 ∈ V), it is indeed a witness
of 𝜕𝑒𝑟 . This leads to the conclusion that 𝜕𝑒𝑟 is directly observable.
In contrast, if we only switch 𝑒 in 𝜂 (i.e., switch(𝜂, {𝑒}) = 𝑚𝑠𝑒),
we would not obtain a witness of 𝜕𝑒𝑟 , because𝑚𝑠𝑒 is not a valid
configuration (i.e.,𝑚𝑠𝑒 ∉ V) and, more importantly, by comparing
𝑚𝑠𝑒 with𝑚𝑠 , we would not be able to observe the effect of 𝑟 .

Intuitively, to decide observability of a partial configuration 𝜕,
we have to identify one configuration 𝑐1 that is consistent with the
partial configuration 𝜕 and a corresponding configuration 𝑐2 that
agrees in all feature assignments with 𝑐1 except for the features
in the support of 𝜕. For all features in the support of 𝜕, 𝑐2 has to
disagree with 𝑐1. Then, 𝑐2 is a counter witness of 𝜕, 𝑐1 is a witness
of 𝜕, and 𝜕 is directly observable.

Inspired by the concept of counterfactual reasoning [17, 38], we
define direct observability as follows:

Definition 3.2 (Direct observability). Let 𝜕 ∈ Δ(F) be a partial
configuration where 𝑆 = supp(𝜕). Then, 𝜕 is directly observable if
there is a configuration 𝜂 ∈ V \ J𝜕K with switch(𝜂, 𝑆) ∈ V ∩ J𝜕K.

In Definition 3.2, we require that there is a configuration 𝜂 (i.e.,
a counter witness) of the partial configuration 𝜕 that is a partial
inverse3 of a configuration switch(𝜂, 𝑆) (i.e., a witness) of 𝜕. We
require that 𝑆 , the basis on which we search a counter witness, is
the set of all features that are defined in 𝜕. Then, 𝜂 is a counter
witness of 𝜕, if there is a witness (switch(𝜂, 𝑆)) that disagrees with
all feature assignments of 𝜂 in the support of 𝜕.

Example 3.3 (Computation of direct observability). Let us illustrate
the decision about direct observability for the partial configuration
from Example 3.1 by Algorithm 1. The input to Algorithm 1 is
𝜕𝑒𝑟 = {𝑒 ↦→ ⊤, 𝑟 ↦→ ⊤}. In Line 1, we check whether there is a
configuration in J𝜕𝑒𝑟 K that is consistent with the constraints of
the feature model. Then, in Line 2, we compute the support of
𝜕𝑒𝑟 , which is 𝑆 = {𝑒, 𝑟 }. In Line 4, we check whether there is a
configuration 𝜂 in J𝜕𝑒𝑟 K for which the configuration switch(𝜂, 𝑆)

3By partial inverse, we refer to a configuration 𝑐1 that agrees with another configu-
ration 𝑐2 in all feature selections but the feature selections in the support of a given
partial configuration 𝜕.

ASE 2024, October 2024, Sacramento, USA Kallistos Weis, Leopoldo Teixeira, Clemens Dubslaff, and Sven Apel

Algorithm 1: Computation of direct observability
input : 𝜕 ∈ Δ(F)
output : ⊤ if 𝜕 is directly observable, ⊥ otherwise

1 if J𝜕K ∩ V = ∅ then return ⊥
2 𝑆 := supp(𝜕)
3 forall 𝜂 ∈ J𝜕K ∩ V do

4 if switch(𝜂, 𝑆) ∈ V then return ⊤
5 return ⊥

is also a valid configuration (i.e., there is a counter witness). In
our example, there is such a configuration pair (i.e., 𝑚𝑠𝑒𝑟 ∈ V
and 𝑚𝑠 ∈ V), which leads to the conclusion that 𝜕𝑒𝑟 is directly
observable.

General Observability. In Example 3.1, we have seen that the
partial configuration 𝜕𝑒𝑟 is directly observable. However, there is
not always a counter witness 𝜂 witness 𝜂 pair for a partial con-
figuration 𝜕. Even in the presence of simple constraints among
features, such as implications, it is not always possible to directly
observe arbitrary partial configurations in a system. Consider as
a small example the constraint between the Caesar algorithm and
the signing feature from our e-mail example. Because of this con-
straint, it is not possible to directly observe the partial configuration
𝜕𝑠𝑐 = {𝑠 ↦→ ⊤, 𝑐 ↦→ ⊤}, as there is no partial inverse for the only
valid configuration in J𝜕𝑠𝑐K (i.e.,𝑚𝑠𝑒𝑐) and 𝑆 = {𝑠, 𝑐}.

However, in certain cases we can indirectly observe partial con-
figurations if it is possible to split the support of the partial config-
uration such that one can observe each part on its own.

Example 3.4. Consider the partial configuration 𝜕𝑠𝑐 = {𝑠 ↦→
⊤, 𝑐 ↦→ ⊤} from our e-mail example. We saw that 𝜕𝑠𝑐 is not directly
observable, as there is no counter witness 𝜂 for the only valid
configuration𝑚𝑠𝑒𝑐 in J𝜕𝑠𝑐K. However, assume that we are able to
observe the partial configurations 𝜕𝑠 = {𝑠 ↦→ ⊤} and 𝜕𝑐 = {𝑐 ↦→ ⊤}.
We would then be able to indirectly observe 𝜕𝑠𝑐 by splitting the
support of 𝜕𝑠𝑐 into 𝑆1 = {𝑠} and 𝑆2 = {𝑐}.

Intuitively, assume we have a partial configuration 𝜕, that is not
directly observable, but we are able to split the support of 𝜕 into
smaller partial configurations 𝜕𝑖 such that we are able to observe
each 𝜕𝑖 by its own. Then, we can indirectly observe 𝜕. This leads
to the definition of general observability4, for which we recall that
a partition of a set 𝑆 is a set {𝑆0, 𝑆1, . . . , 𝑆𝑛} for some 𝑛 ≤ |𝑆 | such
that 𝑆 =

⋃
0≤𝑖≤𝑛 𝑆𝑖 , 𝑆𝑖 ≠ ∅, and 𝑆𝑖 ∩ 𝑆 𝑗 = ∅ for all 𝑖 ≠ 𝑗 ∈ [0, 𝑛].

Definition 3.5 (General observability). Let 𝜕 ∈ Δ(F) be a par-
tial configuration with support 𝑆 = supp(𝜕). Then, 𝜕 is generally
observable if there is a partition {𝑆0, 𝑆1, . . . , 𝑆𝑛} of 𝑆 , such that for
all 𝑘 ∈ [0, 𝑛] there is a configuration 𝜂𝑘 ∈ V \ J𝜕 ↑𝑆\𝑆𝑘 K where
switch(𝜂𝑘 , 𝑆\𝑆𝑘) ∈ V ∩ J𝜕 ↑𝑆\𝑆𝑘 K.

Note that if 𝜕 is directly observable, then it is also generally
observable, witnessed by the trivial partition {𝑆} and the fact that
𝜕 ↑𝑆\𝑆= 𝜕. The main difference between direct observability and
general observability is the coverage criterion over the support of
the partial configuration 𝜕. Direct observability requires that there
4General observability combines direct and indirect observability

Algorithm 2: Computation of general observability
input : 𝜕 ∈ Δ(F)
output : ⊤ if 𝜕 is generally observable, ⊥ otherwise

1 forall 𝛿 ∈ partitions(𝜕) ⊲ all possible partitions of 𝜕5

2 do

3 𝜔 := ⊤
4 forall 𝜕′ ∈ 𝛿 do

5 if directly-observable(𝜕′) = ⊥ then 𝜔 := ⊥
6 if 𝜔 = ⊤ then return ⊤
7 return ⊥

is a counter witness 𝜂 of 𝜕 that is a partial inverse of a witness
in J𝜕K. In contrast, general observability relaxes this constraint by
introducing a partition 𝑆𝑖 with 0 ≤ 𝑖 ≤ 𝑛 of the support of 𝜕.

Example 3.6 (General observability). Let us illustrate the notion
of general observability using our e-mail example from Figure 1
and the partial configuration 𝜕𝑠𝑒𝑐 = {𝑠 ↦→ ⊤, 𝑒 ↦→ ⊤, 𝑐 ↦→ ⊤}. The
constraints in our example enforce that the signature feature has to
be enabled whenever the Caesar algorithm is disabled. This leads
to the conclusion that 𝜕𝑠𝑒𝑐 is not directly observable, as there is no
counter witness 𝜂 of 𝜕𝑠𝑒𝑐 for a witness in J𝜕𝑠𝑒𝑐K (i.e.,𝑚 ∉ V).

However, let us consider the sets 𝑆1, 𝑆2 ⊆ 𝑆 = supp(𝜕𝑠𝑒𝑐) with
𝑆1 = {𝑠} and 𝑆2 = {𝑒, 𝑐} (𝑆\𝑆1 = {𝑒, 𝑐} and 𝑆\𝑆2 = {𝑠}, respectively).
The partition of 𝑆 into the two subsets 𝑆1 and 𝑆2 corresponds to
one 𝛿 in the set of all possible partitions of 𝜕𝑠𝑒𝑐 (see Algorithm 2,
Line 1). Consider the two configurations 𝜂1 =𝑚𝑒𝑐 and 𝜂2 =𝑚𝑠 .

As we can see,
switch(𝜂1, 𝑆1) =𝑚𝑠𝑒𝑐 ∈ V ∩ J𝜕𝑠𝑒𝑐 ↑𝑆\𝑆1K
switch(𝜂2, 𝑆2) =𝑚𝑠𝑒𝑐 ∈ V ∩ J𝜕𝑠𝑒𝑐 ↑𝑆\𝑆2K.

This means that all partial configurations in this partition are di-
rectly observable (see Algorithm 2, Line 4) and, therefore, 𝜕𝑠𝑒𝑐 is
generally observable (see Algorithm 2, Line 6). That is, we are able
to indirectly observe 𝜕𝑠𝑒𝑐 by splitting the support of 𝜕𝑠𝑒𝑐 into 𝑆1
and 𝑆2. By doing so, we can reason about a potential 3-wise feature
interaction between 𝑠 , 𝑒 , and 𝑐 using only blackbox observations.

4 EXPERIMENT SETUP

To evaluate our notion and decision procedure of blackbox ob-
servability, we conduct an empirical study on a set of community
benchmarks and real-world configurable software systems.

4.1 Research Questions

Our evaluation addresses three research questions: We want to
learn whether our notion of observability is effectively computable,
understand the impact of constraints on observability in practical
settings, and investigate the effect of observability on the correct-
ness of blackbox performance models learned in previous work.

Effectivity of Observability Computation. Computing the ob-
servability of partial configurations for a configurable software
system is a combinatorial problem. The number of partial con-
figurations of a system grows exponentially with the number of
5A partition of a partial configuration 𝜕 w.r.t. to its support 𝑆 = supp(𝜕) is the set of
partial configurations 𝜕1 . . . 𝜕𝑛 constructed via the partition of 𝑆 (i.e., 𝑆1, . . . , 𝑆𝑛) by
𝜕1 = 𝜕 ↑𝑆1 , . . . , 𝜕𝑛 = 𝜕 ↑𝑆𝑛 .

Blackbox Observability of Features and Feature Interactions ASE 2024, October 2024, Sacramento, USA

features. Therefore, we want to learn whether our notion of observ-
ability is effectively computable in a practical setting. By effectively
computable, we mean that the procedure for computing observabil-
ity for all partial configurations of a specific size is applicable to
community benchmarks and real-world systems.

RQ1: Can we effectively compute the observability of partial
configurations?

Observability of Partial Configurations. One characteristic
of configurable software systems is the multitude of constraints
among features, meaning that the set of valid configurations is
much smaller than the set of all feature selections [43]. We investi-
gate the impact of these constraints on the presence and prevalence
of observable partial configurations. This is especially important
for state-of-the-art blackbox analysis methods, which rely on the
assumption that all partial configurations can be used to explain the
behavior of the configurable software system. Therefore, we want
to learn how many partial configurations are observable in our
community benchmarks and real-world subject systems to evaluate
the impact of the constraints on the set of observable partial config-
urations. This provides insights into the applicability of blackbox
methods for explaining the behavior of partial configurations in
configurable software systems.

RQ2: What fraction of partial configurations is observable in
community benchmarks and real-world subject systems?

Observability of Feature Interactions. Existing blackbox defini-
tions of feature interactions inherently assume that a partial configu-
ration representing a feature interaction is observable. For example,
blackbox performance modeling methods have been successfully
used to derive performance models that calculate the performance
of a given configuration based on the contributions of individual
features and feature interactions (see Section 2). The problem is
that such performance models are typically trained by regression,
optimizing for prediction accuracy rather than interpretability –
the ability to explain the behavior of the system. So, while these
models are used to explain the system behavior [34, 40, 41, 52, 60], it
is actually not clear whether the explanations (i.e., influences of fea-
tures and feature interactions) are correct (cf. Section 2). To assess
the validity of the explanations, we determine how many feature in-
teractions are observable in state-of-the-art blackbox performance
models learned and interpreted in previous work. In contrast to
the more general question about the observability of partial con-
figurations in RQ2, we want to learn whether the features and fea-
ture interactions included in state-of-the-art performance-influence
models are actually observable.

RQ3:What fraction of features and feature interactions in state-
of-the-art blackbox performance models is observable?

4.2 Operationalization

To answer our research questions, we conduct an empirical study
on a set of community benchmarks and real-world subject systems
that we collected from the literature (see Section 4.4 for details).
Based on the subject systems’ feature models, we compute the sets

of all partial configurations of a specific size and compute the ob-
servability of these partial configurations. We limit our attention
to partial configurations of size one, two, and three, to keep the
effort for experimentation feasible. To answer RQ1, we measure
the overall time needed to compute the observability of all partial
configurations. To answerRQ2, we count the number of observable
partial configurations and relate this number to the total number
of partial configurations of the considered sizes. To answer RQ3,
we compute the percentage of observable features and feature in-
teractions in a selection of blackbox performance models from the
literature (see Section 4.4).

4.3 Implementation

To answer our research questions, we have implemented Uatu6,
a prototype to compute the observability of partial configurations
based on the definitions and algorithms given in Section 3. The
prototype is implemented in Python, relying on DD7, a library for
building and manipulating binary decision diagrams. In particular,
we use DD as an interface to the CUDD library [55].

Uatu takes as input a feature model and a set of partial configu-
rations, for which the observability shall be computed. The feature
model is represented as a propositional formula in disjunctive nor-
mal form, where each variable in the formula represents a feature
and each clause represents a valid configuration. First, we compute
the set of valid configurations that are consistent with the partial
configuration. Second, we compute the set of valid configurations
that are candidates for a counter witness of the partial configu-
ration. If there is a valid configuration in the second set that is
a partial inverse of a valid configuration in the first set, then the
partial configuration is observable.

Otherwise, the partial configuration is not directly observable,
whichmeans that there is no counter witness that is a partial inverse
of a witness of the partial configuration. Next, we have to check
whether there is a partition of the partial configuration into smaller
partial configurations of which all parts are observable. If this is
the case, then the partial configuration is generally observable;
otherwise, it is not observable. Checking all possible partitions is
computationally expensive. To reduce the computation time, we
make use of lazy evaluation and memoization (i.e., we keep track
of all previously computed observable and non-observable partial
configurations).

4.4 Subject Systems

To evaluate our notion and decision procedure of observability,
we have collected a diverse set of subject systems ranging from
popular community benchmarks to real-world systems from the
configurable systems community. We also included systems from
recent work on blackbox performance modeling [32] to evaluate
whether observability can be used to gain insight into their in-
terpretability. A concise overview of the subject systems used to
evaluate the effectivity of our notion as well as the observability of
partial configurations is given in Table 1.

6Uatu is one of the Watchers from Marvel Comics, an advanced species committed to
observe the universe.
7The library can be found on https://github.com/tulip-control/dd.

https://github.com/tulip-control/dd

ASE 2024, October 2024, Sacramento, USA Kallistos Weis, Leopoldo Teixeira, Clemens Dubslaff, and Sven Apel

Specifically, we selected the feature models of Minepump, Ele-
vator, and CFDP from Cordy et al. [11], which are used to evaluate
accompanying LTL properties on the modeled systems. From Rhein
et al. [61], we selected the feature models of Apache, Curl, Email,
h264, LinkedList, PKJab, Prevaylar, and ZipMe, which constitute
a collection of real-world systems from the configurable systems
community used for various experiments and case studies.

To include real-world subjects that have been used to evaluate
and interpret blackbox performance models, we selected the models
of two subject systems from different domains [31, 52], LLVM and
Lrzip1. This set of subject systems is complemented by the models
of two subject systems from the literature on variability-aware
probabilistic model checking: BSN [47] and VCL [13, 16].

In order to investigate the observability of partial configurations
in state-of-the-art blackbox performance models, we selected 11
different models from a recent paper on blackbox performance
modeling [32]. These models are based on the feature models of
Brotli, FastDownward, HSQLDB, Lrzip2, MariaDB, MySQL,
OpenVPN, Opus, PostgreSQL, VP8, and Z3, which cover a huge
variety of different domains and application areas.

5 RESULTS

In this section, we present the results of our experiments. First, we
discuss statistics on observability in community benchmarks and
real-world subject systems, including the computation time of our
prototype implementation (RQ1) and the number of observable par-
tial configurations of different sizes (RQ2). Second, we present the
results of evaluating observability of features and their interactions
in state-of-the-art blackbox performance models (RQ3).

5.1 Effectivity of Observability Computation

To evaluate the effectivity of our decision procedure for observabil-
ity, we implemented a prototype, Uatu, based on the definitions
given in Section 3. We used Uatu on 15 subject systems, for all
possible partial configurations consisting of one, two, and three
features. Table 1 summarizes the results of this evaluation. There,
we see that the computation time to decide observability of partial
configurations increases with the size of the partial configuration.
While the total time needed to decide observability of partial con-
figurations of size one (i.e., containing one feature) is less than a
second for the majority of the subject systems, the total computa-
tion time for partial configurations of size two and three increases
significantly for most systems (see Figure 2).

The total computation time for partial configurations of size two
ranges from less than a second to several minutes, while the total
computation time for partial configurations of size three ranges
from a few seconds to several hours. In addition to the size of
the partial configuration, the number of valid configurations and
features in the subject system influences the computation time.
For example, the computation time for partial configurations of
size three in VCL is significantly lower than in Curl, even though
the number of features in VCL is higher than in Curl. This is due
to the fact that the number of constraints in the feature model of
VCL is significantly lower than in Curl (i.e., the share of valid
configurations in VCL is significantly higher than in Curl). There
are two main reasons for the non-linear increase in computation

101 102 103 104

Valid Partial Configurations

100

101

102

103

104

Ti
m

e
[s

]

Size
1-wise
2-wise
3-wise

Experiment
Apache
BSN
CFDP
Curl
Elevator
Email
LinkedList
LLVM
Lrzip
minepump
PKJab
Prevaylar
VCL
ZipMe
h264

Figure 2: Total time required to compute the observability

of all partial configurations (PCs) of a given size (color) for

each subject system (marker shape). The x-axis shows the

number of PCs of a given size for a system. To improve plot

readability, we use a logarithmic scale for both axes.

time for partial configurations of increasing size: (1) the number of
partial configurations of size 𝑛 can be computed as | F |!

(| F |−𝑛)!·𝑛! and
(2) the procedure has to check all possible partitions of a partial
configuration into smaller partial configurations to decide general
observability.

Summarizing our findings forRQ1, we conclude that observability
is effectively computable. However, to keep the computation time
feasible, one has to limit the size of the partial configurations.

5.2 Observability of Partial Configurations

Partial configurations are a powerful abstraction of internal vari-
ables to reason about the influence of features and their interactions
on the external behavior of a system. However, configuration spaces
of software systems are often highly constrained [31] (i.e., the num-
ber of valid configurations is significantly lower than the number of
all possible configurations). This leads to the question of how many
(or what fraction of) partial configurations are actually observable
in a given subject system. In Table 1, we list the number of partial
configurations (|P |) that (1) have, at least, one valid representa-
tive (|PV |), (2) are directly observable (|DO |), (3) are indirectly
observable8 (|IO |), and (4) are non-observable (|¬O|) for partial
configurations of size one, two, and three. For almost all systems,
we see that the number of directly observable partial configurations
of any size is lower than the number of partial configurations of
size one that have, at least, one valid representative. For partial
configurations of size one, we see that there are no generally ob-
servable partial configurations. This is by design, since it is not
possible to partition a partial configuration of size one into smaller
partial configurations.

Notably, while the number of indirectly observable partial config-
urations increases with the size of the partial configuration for half

8Note: To improve interpretability of the numbers, we report the number of generally
observable partial configurations that are not directly observable, since all directly
observable partial configurations are by definition generally observable.

Blackbox Observability of Features and Feature Interactions ASE 2024, October 2024, Sacramento, USA

Table 1: Statistics of general observability experiments

System |V| |F | 1-wise partial configurations 2-wise partial configurations 3-wise partial configurations

|P | |PV | |DO | |IO | |¬O| Time |P | |PV | |DO | |IO | |¬O| Time |P | |PV | |DO | |IO | |¬O| Time

Apache 192 10 20 18 16 0 2 0.02 180 144 110 2 32 0.01 960 674 424 24 226 2.03
BSN 298 11 22 22 18 0 4 0.87 220 214 138 8 68 22.05 1 320 1 212 596 112 504 496.53
CFDP 56 13 26 23 20 0 3 0.02 312 225 134 46 45 0.23 2 288 1 261 386 574 301 5.74
Curl 768 14 28 25 16 0 9 7.96 364 286 118 0 168 218.82 2 912 1 985 544 0 1 441 5 721.79
Elevator 256 9 18 17 16 0 1 0.01 144 128 112 0 16 0.05 672 560 448 0 112 0.80
Email 40 10 20 18 8 0 10 0.05 180 137 28 0 109 0.66 960 586 60 4 522 11.60
LinkedList 204 19 38 34 6 0 28 5.42 684 521 38 2 481 166.50 7 752 4 809 144 36 4 629 5 939.70
LLVM 1 024 12 24 22 20 0 2 0.02 264 221 180 0 41 0.39 1 760 1 340 960 0 380 10.12
Lrzip1 432 20 40 38 6 0 32 10.29 760 634 114 0 520 250.41 9 120 6 262 620 0 5 642 11 469.83
Minepump 128 11 22 20 14 0 6 0.13 220 177 88 4 85 2.10 1 320 914 324 48 542 42.75
PKJab 72 12 24 20 12 0 8 0.08 264 177 60 2 115 1.79 1 760 919 166 18 735 39.66
Prevaylar 24 7 14 12 10 0 2 0.02 84 60 38 2 20 0.04 280 162 68 12 82 0.52
VCL 2 097 152 21 42 42 42 0 0 0.03 840 840 840 0 0 0.12 10 640 10 640 10 640 0 0 1.80
ZipMe 64 9 18 15 12 0 3 0.02 144 99 60 0 39 0.09 672 377 160 0 217 1.51
h264 1 152 17 34 30 14 0 16 50.95 544 416 96 0 320 1 567.02 5 440 3 542 448 0 3 094 49 977.64

For each subject system, we list the number of valid configurations (|V |) and features (| F |). Considering three sizes of partial configurations (PCs) 𝜕: |supp(𝜕) | = 1 for 1-wise PC,
|supp(𝜕) | = 2 for 2-wise PC, and |supp(𝜕) | = 3 for 3-wise PC), the second part of the table shows the number of PCs of that size (| P |), with at least one valid configuration
(| PV |), that are directly observable (|DO |), that are indirectly observable (| IO |), that are non-observable (|¬O |), and the overall time in seconds needed to compute the
observability of the PCs.

of the systems, there are no indirectly observable partial configura-
tions for the other half. For illustration, we show the share of partial
configurations that are directly observable, indirectly observable,
non-observable, and the share of partial configurations that have no
valid representative in Figure 3. There is a clear trend that the share
of directly observable partial configurations decreases with size for
almost all systems. In contrast, the share of indirectly observable
partial configurations increases with size for some systems, and the
share of partial configurations that have no valid representative
increases with the size for almost all systems. This is due to the fact
that, for constrained configuration spaces, it is more likely that a
partial configuration of a higher size has no valid representative.

Summarizing our findings for RQ2, we conclude that the majority
of partial configurations of sizes two and three are not observable,
and, even for partial configurations of size one, there is a consid-
erable share of partial configurations that are not observable.

5.3 Observability of Features Interactions

Interpretable blackbox performance models rely on partial configu-
rations to explain the behavior of a configurable software system
(see Section 2). In order to serve as an explanation (i.e., to be in-
terpretable), the features and feature interactions appearing in a
blackbox model must be observable; otherwise, the model cannot
make reliable statements about their effects. In RQ3, we verify the
observability of features and feature interactions in state-of-the-
art blackbox performance models of 11 subject systems from the
literature. We extracted all features and feature interactions from
these models (i.e., the individual terms in the model), and computed
the observability of these partial configurations. Our results are
summarized in Table 2. We see that the number of partial config-
urations used in the blackbox performance models (|P |) ranges
from only a few partial configurations (PostgreSQL includes only

Table 2: Statistics of general observability in state-of-the-art

performance-influence models

System |V | |F| | P | | PV | Max Size |DO | | IO | |¬O | Time [s]

Brotli 180 30 166 166 2 0 0 166 21.85
FastDownward 347 60 41 41 3 0 0 41 144.22
HSQLDB 864 29 21 21 3 0 0 21 201.26
Lrzip2 1 440 27 220 220 3 0 0 220 6 777.10
MariaDB 972 21 35 35 3 4 0 31 275.07
MySQL 972 21 25 25 3 4 0 21 144.08
OpenVPN 512 24 13 13 2 1 0 12 13.64
Opus 6 480 31 66 66 5 0 0 66 309 561.33
PostgreSQL 864 18 3 3 1 2 0 1 0.01
VP8 2 736 27 40 40 3 0 0 40 30 887.61
Z3 1 024 14 18 18 3 2 0 16 40.78

For each subject system, we list the number of valid configurations (|V |), features
(| F |), partial configurations (PCs) (| P |), PCs with at least one valid configuration
(| PV |), and the maximum size of PCs. The right part of the table lists the number of
PCs that are directly observable (|DO |), indirectly observable (| IO |), non-observable
(|¬O |), and the total time in seconds needed to compute the observability of the PCs.

three) to a few hundred partial configurations (Lrzip2 includes
220). Regarding size, we see that the majority of the models contain
partial configurations of sizes up to three. The only exception is
Opus, which includes partial configurations of size up to five. An
interesting fact is that, while the number of features in the subject
systems (|F |) ranges from 14 to 60, the number of valid configura-
tions (|V|) ranges only between 180 and 6 480. That is, the valid
configuration spaces are highly constrained. In terms of time for
computing the observability of the partial configurations contained
in the blackbox models (Time [s] column), it ranges from less than
a second to a few hours, except for Opus, where the computation
time is significantly higher. This is due to the fact that Opus in-
cludes partial configurations of size up to five, which consequently

ASE 2024, October 2024, Sacramento, USA Kallistos Weis, Leopoldo Teixeira, Clemens Dubslaff, and Sven Apel

Apache
BSN

CFDP
Curl

Elevator
Email
LLVM

LinkedList
Lrzip

Minepump
PKJab

Prevaylar
VCL

ZipMe
h264

1-
wi

se

16 2 2 20
18 4 22

20 3 3 26
16 9 3 28

16 1 1 18
8 10 2 20

20 2 2 24
6 28 4 38
6 32 40

14 6 2 22
12 8 4 24

10 2 2 14
42 42

12 3 3 18
14 16 4 34

Apache
BSN

CFDP
Curl

Elevator
Email
LLVM

LinkedList
Lrzip

Minepump
PKJab

Prevaylar
VCL

ZipMe
h264

2-
wi

se

110 32 36 180
138 68 220

134 46 44 87 312
118 168 78 364

112 16 16 144
28 108 43 180

180 41 43 264
38 481 163 684

114 520 125 760
88 85 43 220

60 115 87 264
38 20 24 84

840 840
60 39 45 144

96 320 128 544

0.0 0.2 0.4 0.6 0.8 1.0
Apache

BSN
CFDP
Curl

Elevator
Email
LLVM

LinkedList
Lrzip

Minepump
PKJab

Prevaylar
VCL

ZipMe
h264

3-
wi

se

424 226 286 960
596 112 504 108 1320

386 574 301 1027 2288
544 1441 926 2912

448 112 112 672
60 522 374 960

959 380 420 1760
4629 2943 7752

620 5642 2858 9120
324 542 406 1320

166 735 841 1760
68 82 118 280

10640 10640
160 217 295 672

448 3094 1898 5440

Direct observable Indirect observable Non-observable Invalid

Figure 3: For each subject system and size of partial config-

uration (PC), we show in each bar the share of PCs that are

directly observable, indirectly observable, non-observable,

and the share of PCs that have no valid representative con-

figuration. The absolute numbers of PCs of each type are

included in the corresponding bar, and the total number of

PCs of the corresponding size and system is shown right next

of the bar.

leads to a significantly higher number of partitions that have to be
checked.

While all models include only partial configurations that have
at least one valid representative (|PV |), the number of directly
observable partial configurations (|DO |) is significantly lower, even
zero for half of the models. The number of indirectly observable9

9Recall, to improve the interpretability of the numbers, we report the number of
generally observable partial configurations that are not directly observable.

partial configurations (|IO |) is zero in all models. That is, the vast
majority of the partial configurations used in our subject blackbox
models are non-observable (|¬O|), which is a surprising result that
we discuss in Section 6.

Summarizing our findings for RQ3, we conclude that the major-
ity of features and feature interactions used in state-of-the-art
blackbox performance models are not observable.

6 DISCUSSION

In this section, we discuss the implications of our results, potential
threats to validity, and related work.

6.1 Research Questions

Deciding which partial configurations of a configurable software
system are blackbox observable is a combinatorial problem, since
the number of partial configurations grows exponentially with the
number of features, in the worst case. That is, the time needed to
compute the observability of all partial configurations of a config-
urable software system may be easily infeasbile in practice. How-
ever, as our first major result shows, even for non-trivial feature
models, the observability of partial configurations of sizes up to
three covering all pair-wise and triple-wise feature interactions, can
be computed in reasonable time. Since most test analysis methods
stay within these bounds [1], we consider the decision procedure
for observability effectively computable, despite the worst-case
computational complexity (see Section 3).

A second major result is that a large fraction of partial configura-
tions is non-observable for the majority of our subject systems. This
means a large fraction of partial configurations cannot be used to ex-
plain the behavior of a given system. Given the highly constrained
nature of contemporary configurable software systems [43], this
is not surprising. What is concerning is that a growing number
of reasoning and analysis methods rely on partial configurations
to explain system behavior (e.g., the presence of a feature inter-
action). As an example, blackbox performance models [30] have
been used to explain the performance behavior of a given config-
urable software system by interpreting the coefficients of individual
model terms (cf. Section 2) as performance influences of the cor-
responding partial configurations (i.e., single features or feature
interactions) [34, 40, 41, 52, 60], which leads to the next major result.

A third major result is that a substantial fraction of model terms
(i.e., corresponding partial configurations) of state-of-the-art black-
box performance models is non-observable. This begs the question
of how reliable explanations based on influences of individual fea-
tures and feature interactions actually are. Consider the following
example, for illustration.

Example 6.1. Let us assume a configurable software system with
three features 𝑒 , 𝑟 , and 𝑠 , and two configurations 𝑐1 = {𝑒 ↦→ ⊤, 𝑟 ↦→
⊤, 𝑠 ↦→ ⊤} and 𝑐2 = {𝑒 ↦→ ⊤, 𝑟 ↦→ ⊤, 𝑠 ↦→ ⊥}. The observed
performance of 𝑐1 is 10s and of 𝑐2 is 5s. A performance model
with a minimal prediction error that is consistent with these two
observations is Π = 5 · 𝑒 + 5 · 𝑠 . Note, however, that only the partial
configuration 𝜕𝑠 = {𝑠 ↦→ ⊤} is observable, whereas 𝜕𝑒 = {𝑒 ↦→ ⊤}
is not. That is, the influence of feature 𝑒 on the system’s performance
cannot be reliably inferred from Π.

Blackbox Observability of Features and Feature Interactions ASE 2024, October 2024, Sacramento, USA

To put our results in perspective, our experiments suggest that
non-observable features and feature interactions are prevalent in
practice andmust be taken into account when interpreting blackbox
models and analysis results in this field. Our notion of observabil-
ity and effective decision procedure raises the question whether
current blackbox analysis methods and models can reliably explain
configurable software systems behavior. This may provide the ba-
sis for the development of more interpretable blackbox analysis
methods and models for configurable software systems.

Influence of Constraints on Observability.One important point
to highlight is that it is expected for configurable software systems
to have a small share of observable partial configurations. The
share of observable partial configurations tends to decrease with
the number of constraints in the feature model. This is similar to the
share of valid configurations, which also decreases with the number
of constraints. One common property of all configurable software
systems is that the share of valid configurations in the configuration
space is small. Therefore, we expect the share of observable partial
configurations in the space of all partial configurations to be small,
as well.

To illustrate this, consider our subject system PKJab as a repre-
sentative example (see Table 1). Even though it has only 12 features,
the share of valid configurations is small and consists of less than
2% of the total of possible configurations. For illustration, we com-
pute the share of observable partial configurations of size up to
three in the PKJab feature model, and compare it to the share of
valid configurations. To understand the influence of constraints on
observability, we compute the share of observable partial configu-
rations in variations of the PKJab feature model, where some (or
all) constraints are removed. We start from a version of the PKJab
feature model with no constraints, and add each constraint in a step-
wise manner, until we arrive at the actual feature model that was
used in our experiments. Figure 4 shows the results of computing ob-
servability for each step. Not surprisingly, everything is observable
and all configurations are valid on the initial model (0 constraints).
As we progress in adding constraints, such as mandatory features
and implications10, the share of valid configurations in the configu-
ration space decreases. The share of partial configurations that are
observable also decreases, and we clearly see the distinction in the
observability ratio of 1-wise, 2-wise, and 3-wise partial configura-
tions. While Figure 4 illustrates the results for PKJab only, similar
graphs can be obtained for other highly constrained systems from
our evaluation. In other words, though it might appear counterin-
tuitive that most partial configurations are non-observable, it is to
be expected that configurable software systems only have a small
share of observable partial configurations.

Scalability. Deciding whether a partial configuration 𝜕 is observ-
able according to Algorithm 1 or Algorithm 2 is inherently expen-
sive: the algorithm to check for direct observability (Algorithm 1)
iterates over all valid configurations covered by 𝜕, which could
be exponentially many. Even worse, the algorithm for general ob-
servability (Algorithm 2) iterates over all possible partitions of
the support of 𝜕, each time checking direct observability several

10First, we add all mandatory features as constraints, then all implications in their
simplest form. While other orders are possible, the general result would not change.

0 1 2 3 4 5 6 7 8
constraints

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

sh
ar

e
[%

]

1-wise obs PCs
2-wise obs PCs
3-wise obs PCs
Valid configurations

1-wise obs PCs
2-wise obs PCs
3-wise obs PCs
Valid configurations

Figure 4: The share of partial configurations (PCs) of a given

size (color) that are observable (y-axis) under the given con-

straints. To compare, we plot the fraction of configurations

that are valid (i.e., satisfy all constraints). The x-axis shows

the number of added constraints to the configuration space,

starting with no constraints. The actual results of the system

are highlighted with a gray box (#constraints = 8).

times. To render our implementations effective, we exploited bi-
nary decision diagrams (BDDs, [5]) as concise data structure to
represent partial configurations. While BDDs are usually compact
and allow for efficient manipulation, their size heavily depends on
the specific structure of partial configurations. In our experiments,
we focused on answering the research questions concerning all
possible partial configurations, which required checking observ-
ability exhaustively. We would like to highlight that in practice,
we imagine such exhaustive checks usually not being performed,
e.g., when to determine whether it is worth to run tests on a spe-
cific partial configuration where checking observability beforehand
could reduce the test space. Especially direct observability checks
performed almost instantly in our experiments, witnessing the
instance-based scalability of our approach. Dedicated algorithms
for exploiting structural BDD properties for counterfactual reason-
ing BDDs [17, 27] or parallelizing BDD operations [14, 29, 57] could
further improve scalability also for checking general observability.

6.2 Threats to Validity

Internal Validity. A threat to internal validity arises from the fact
that our decision procedure is based on the constraints provided
by the feature models of our subject systems. Therefore, the cor-
rectness of our observability results relies on the correctness of the
feature models. To mitigate this threat, we have used a diverse set
of feature models from the literature and real-world systems that
have been used in previous work. A further threat arises from the
selection of our subject systems. While we cannot rule out specific
characteristics of our subject systems that might bias our results,
our diverse set of subject systems and community benchmarks from
the literature mitigates this threat.

External Validity. While it is difficult to reliably state to what ex-
tent our results are valid for configurable software systems beyond
the ones we have considered, we are confident that our results are
representative and generalizable to a sufficient extent for scholarly
discussion. To attain a reasonable level of external validity, we have

ASE 2024, October 2024, Sacramento, USA Kallistos Weis, Leopoldo Teixeira, Clemens Dubslaff, and Sven Apel

selected a diverse set of subject systems from different areas, in-
cluding real-world systems from a variety of domains, as well as
community benchmarks from the literature. A further threat arises
from the decision to use blackbox performance models as a basis
for answering our third research question. Clearly, there are other
kinds of blackboxmodels and other types of blackbox reasoning and
analysis methods for feature interaction detection (see Section 6.3).
While the models we use are representative for a whole research
area, it is not our intention to make definitive statements about all
kinds of models and methods. Rather, we provide evidence that the
lack of observabilitymay substantially affect the results of blackbox
analysis methods and models.

6.3 Related Work

Various techniques have been proposed to analyze and reason about
the behavior of configurable software systems. Many of these tech-
niques are concerned with detecting performance regressions [35]
and feature interactions [10, 17, 53] in the systems under investiga-
tion to model their behavior, and explain their effects.

FeatureModeling. Batory was among the first to represent feature
models in propositional logic [4]. Schobbens et al. [50] survey dif-
ferent notations for feature models and establish a formal, concise,
and generic definition of feature models that encompasses feature-
oriented domain analysis, proposed by Kang et al. [33]. The goal of
Schobbens et al. is in line with the goal of Classen et al. [9], who clar-
ify the notion of a feature and feature interactions, allowing early
identification of feature interactions in the systems’ environment.
While these methods ensure interpretable models, they are costly,
time-consuming, and rely on the knowledge of domain experts.

Performance Modeling of Configurable Software Systems.

A variety of techniques have been proposed to model the perfor-
mance of a configurable software system based on the performance
influences of its features. Blackbox analysis techniques are able
to study the behavior of a system based only on observations. To
model the performance of a system, a variety of blackbox perfor-
mance modeling techniques have been proposed. These techniques
range from linear regression [32, 52, 53], regression tree-based
methods [22, 23, 48], Fourier learning [25, 66], and deep neural
networks [8, 24] to probabilistic programming [12]. A related line
of work is concerned with finding (near) optimal configurations
regarding performance [7, 28, 44, 49]. All these methods assume
that the performance of a system can be modeled by blackbox ob-
servations only. However, to the best of our knowledge, none of
these methods consider the observability of features and feature
interactions in their models; instead they rely on statistical methods
to find the best model in terms of prediction accuracy. In contrast,
whitebox analysis techniques examine the behavior of a system
based on its source code and can explain the behavior of features
and feature interactions [58, 59, 63]. However, whitebox analysis
techniques often do not scale in practice, suffer from a significant
number of false positives, or require sophisticated setups and tools.

Feature Interaction Detection. Over the years, several studies
have analyzed the state of the art of feature interactions in software
engineering and identify open research questions [1, 6, 36, 45, 54].
Apel et al. [3] explore the nature of feature interactions and their

internal and external manifestations. Our notion of observability ap-
plied to feature interactions alignswith this classification. Siegmund
et al. [52, 53] propose different heuristics to identify performance-
relevant feature interactions using blackbox measurements. A line
of research has followed in their footsteps [8, 12, 22–25, 32, 34, 40–
42, 48, 60, 66]. Some of these approaches use blackbox performance
models to explain the behavior of a system [34, 40, 41, 60].Whitebox
analysis techniques can also identify feature interactions [58, 59, 63,
64], but are outside the scope of this paper. Shaker [51] presents a
similar approach, defining a feature interaction taxonomy that uses
formally modeled product-line requirements in a world model to
detect feature interactions. Fantechi et al. [19] propose a definition
framework for functional feature interactions within which they
show that a 3 (or greater)-way functional feature interaction is
always caused by a 2-way functional feature interaction. Similarly,
Fischer et al. [20] propose a heuristics to reduce the search space
for feature interactions by focusing only on those that might be
caused by lower order feature interactions. Interestingly, Garvin
and Cohen [21] present a formal definition of feature interaction
faults that combines the advantages of blackbox and whitebox anal-
yses. They propose guiding whitebox analysis to detect feature
interaction faults based on blackbox analysis results. Dubslaff et
al. [17] propose the notion of feature causes to identify the causes of
a predefined, emergent behavior (effect) of a configurable software
system. Thereupon, they established a relation of feature causes to
feature interactions. Our notion of observability is not limited to
feature interaction detection, but can be used together with existing
methods to improve or verify their results (see Section 6.1).

7 CONCLUSION

The research community has proposed several blackbox approaches
for detecting feature interactions and inferring effects of individual
features and their interactions on system behavior. The crux is
that, without any information on the inner workings of the sys-
tem in question, it is rather difficult to pinpoint actual effects and
influences of individual features and feature interactions. Worse,
certain effects may not be observable at all, meaning they cannot
be inferred by running and comparing observations from different
configurations of the system. Combined with our empirical results,
this raises the question of to what extent blackbox analysis methods
and models actually produce interpretable results.

In this paper, we devise a decision procedure to verify whether
the effect of a given feature or potential feature interaction can be
isolated by blackbox observations of a set of system configurations.
We introduce the notion of general observability, inspired by coun-
terfactual reasoning about configuration decisions [17]. Based on
the given constraints of the configuration space, we reason and
decide whether it is possible to observe the effect of a set of features
in a blackbox fashion. Direct observability requires a single con-
figuration as a reference for observing the effect, whereas general
observability relaxes this requirement and suffices with a set of con-
figurations as a reference that jointly cover all features in the set. In
a series of experiments on community benchmarks and real-world
systems, we found that (1) general observability is indeed feasible
in real-world settings, (2) constraints in real-world configuration

Blackbox Observability of Features and Feature Interactions ASE 2024, October 2024, Sacramento, USA

spaces often limit observability, and (3) blackbox performance mod-
els often include effects that are de facto not observable.

Putting our results in perspective, our notion of observability
and our effective decision procedure lay the foundation for devel-
oping more interpretable blackbox analysis methods and models
for configurable software systems. Our empirical results suggest
that non-observable features and feature interactions are prevalent
in practice and need to be considered when interpreting blackbox
analysis results in this field.

ACKNOWLEDGMENTS

The authors are supported by the DFG through the Collaborative Re-
search Center TRR 248, project ID 389792660 (https://perspicuous-
computing.science) and Cluster of Excellence CeTI EXC 2050/1,
project ID 390696704 (https://ceti.one), the NWO through Veni
grant VI.Veni.222.431, as well as CNPq (grants 315532/2021-1 and
423125/2021-4), CAPES (88881.512952/2020-01), Alexander vonHum-
boldt Foundation, and INES11 (CNPq grant 465614/2014-0, CAPES
grant 88887.136410/2017-00, and FACEPE grants APQ-0399-1.03/17
and PRONEX APQ/0388-1.03/14).

REFERENCES

[1] Sven Apel, Joanne M. Atlee, Luciano Baresi, and Pamela Zave. 2014. Feature
Interactions: The Next Generation (Dagstuhl Seminar 14281). Dagstuhl Reports 4,
7 (2014), 1–24. https://doi.org/10.4230/DagRep.4.7.1

[2] Sven Apel, Don Batory, Christian Kästner, and Gunter Saake. 2016. Feature-
oriented software product lines. Springer.

[3] Sven Apel, Sergiy Kolesnikov, Norbert Siegmund, Christian Kästner, and Brady
Garvin. 2013. Exploring feature interactions in the wild: the new feature-
interaction challenge. In 5th International Workshop on Feature-Oriented Software
Development, FOSD ’13, Indianapolis, IN, USA, October 26, 2013, Andreas Classen
and Norbert Siegmund (Eds.). ACM, 1–8. https://doi.org/10.1145/2528265.2528267

[4] Don S. Batory. 2005. Feature Models, Grammars, and Propositional Formulas. In
Software Product Lines, 9th International Conference, SPLC 2005, Rennes, France,
September 26-29, 2005, Proceedings (Lecture Notes in Computer Science, Vol. 3714),
J. Henk Obbink and Klaus Pohl (Eds.). Springer, 7–20. https://doi.org/10.1007/
11554844_3

[5] Randal E. Bryant. 1992. Symbolic Boolean Manipulation with Ordered Binary-
Decision Diagrams. Comput. Surveys 24, 3 (Sept. 1992), 293–318. https://doi.org/
10.1145/136035.136043

[6] Muffy Calder, Mario Kolberg, Evan H. Magill, and Stephan Reiff-Marganiec. 2003.
Feature interaction: a critical review and considered forecast. Computer Networks
41, 1 (2003), 115–141. https://doi.org/10.1016/S1389-1286(02)00352-3

[7] Tao Chen and Miqing Li. 2021. Multi-objectivizing software configuration tuning.
In Proceedings of the 29th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering. 453–465.

[8] Jiezhu Cheng, Cuiyun Gao, and Zibin Zheng. 2023. HINNPerf: Hierarchical
interaction neural network for performance prediction of configurable systems.
ACM Transactions on Software Engineering and Methodology 32, 2 (2023), 1–30.

[9] Andreas Classen, Patrick Heymans, and Pierre-Yves Schobbens. 2008. What’s in
a Feature: A Requirements Engineering Perspective. In Fundamental Approaches
to Software Engineering, José Luiz Fiadeiro and Paola Inverardi (Eds.). Springer
Berlin Heidelberg, 16–30.

[10] M.B. Cohen, P.B. Gibbons, W.B. Mugridge, and C.J. Colbourn. 2003. Constructing
test suites for interaction testing. In 25th International Conference on Software
Engineering, 2003. Proceedings. 38–48. https://doi.org/10.1109/ICSE.2003.1201186

[11] Maxime Cordy, Andreas Classen, Patrick Heymans, Pierre-Yves Schobbens, and
Axel Legay. 2013. ProVeLines: a product line of verifiers for software product
lines. In Proceedings of the 17th Systems and Software Product Line Conference
(SPLC). ACM, 141–146.

[12] Johannes Dorn, Sven Apel, and Norbert Siegmund. 2020. Mastering uncertainty
in performance estimations of configurable software systems. In Proceedings of
the 35th IEEE/ACM International Conference on Automated Software Engineering.
684–696.

[13] Clemens Dubslaff, Kai Ding, Andrey Morozov, Christel Baier, and Klaus Janschek.
2019. Breaking the Limits of Redundancy Systems Analysis. In Proceedings of the
29th European Safety and Reliability Conference (ESREL). 2317–2325.

11https://www.ines.org.br

[14] Clemens Dubslaff, Nils Husung, and Nikolai Käfer. 2024. Configuring BDD
Compilation Techniques for Feature Models. In Proceedings of the 28th ACM Inter-
national Systems and Software Product Line Conference - Volume A (Dommeldange,
Luxembourg) (SPLC ’24). Association for Computing Machinery, New York, NY,
USA, 209–216. https://doi.org/10.1145/3646548.3676538

[15] Clemens Dubslaff and Maximilian A Köhl. 2022. Configurable-by-construction
runtime monitoring. In International Symposium on Leveraging Applications of
Formal Methods. Springer, 220–241.

[16] Clemens Dubslaff, Andrey Morozov, Christel Baier, and Klaus Janschek. 2020. Re-
duction Methods on Error-Propagation Graphs for Quantitative Systems Reliabil-
ity Analysis. In Proceedings of the 30th European Safety and Reliability Conference
(ESREL) and 15th Probabilistic Safety Assessment and Management Conference
(PSAM).

[17] Clemens Dubslaff, Kallistos Weis, Christel Baier, and Sven Apel. 2024. Feature
causality. Journal of Systems and Software 209 (2024), 111915. https://doi.org/10.
1016/j.jss.2023.111915

[18] C. J. Ducasse. 1926. On the Nature and the Observability of the Causal Relation.
The Journal of Philosophy 23, 3 (1926), 57–68. http://www.jstor.org/stable/2014377

[19] Fantechi, Alessandro and Gnesi, Stefania and Semini Laura. 2017. Optimizing
Feature Interaction Detection. In Critical Systems: Formal Methods and Auto-
mated Verification, Laure Petrucci, Cristina Seceleanu, and Ana Cavalcanti (Eds.).
Springer International Publishing, Cham, 201–216.

[20] Stefan Fischer, Lukas Linsbauer, Alexander Egyed, and Roberto Erick Lopez-
Herrejon. 2018. Predicting Higher Order Structural Feature Interactions in
Variable Systems. In 2018 IEEE International Conference on Software Maintenance
and Evolution (ICSME). 252–263. https://doi.org/10.1109/ICSME.2018.00035

[21] Brady J. Garvin and Myra B. Cohen. 2011. Feature Interaction Faults Revisited:
An Exploratory Study. In Proceedings of the 22nd International Symposium on
Software Reliability Engineering (ISSRE). ACM, 90–99.

[22] Jianmei Guo, Krzysztof Czarnecki, Sven Apel, Norbert Siegmund, and Andrzej
Wasowski. 2013. Variability-aware performance prediction: A statistical learning
approach. In 2013 28th IEEE/ACM International Conference on Automated Software
Engineering (ASE). IEEE, 301–311.

[23] Jianmei Guo, Dingyu Yang, Norbert Siegmund, Sven Apel, Atrisha Sarkar, Pavel
Valov, Krzysztof Czarnecki, Andrzej Wasowski, and Huiqun Yu. 2018. Data-
efficient performance learning for configurable systems. Empirical Software
Engineering 23 (2018), 1826–1867.

[24] Huong Ha and Hongyu Zhang. 2019. DeepPerf: Performance prediction for
configurable software with deep sparse neural network. In 2019 IEEE/ACM 41st
International Conference on Software Engineering (ICSE). IEEE, 1095–1106.

[25] Huong Ha and Hongyu Zhang. 2019. Performance-influence model for highly
configurable software with fourier learning and lasso regression. In 2019 IEEE
International Conference on Software Maintenance and Evolution (ICSME). IEEE,
470–480.

[26] Axel Halin, Alexandre Nuttinck, Mathieu Acher, Xavier Devroey, Gilles Perrouin,
and Benoit Baudry. 2017. Test them all, is it worth it? A ground truth comparison
of configuration sampling strategies. arXiv preprint arXiv:1710.07980, 1–8.

[27] Hans Harder, Simon Jantsch, Christel Baier, and Clemens Dubslaff. 2023. A
Unifying Formal Approach to Importance Values in Boolean Functions. In IJCAI.
ijcai.org, 2728–2737. https://doi.org/10.24963/ijcai.2023/304

[28] Christopher Henard, Mike Papadakis, Mark Harman, and Yves Le Traon. 2015.
Combining Multi-Objective Search and Constraint Solving for Configuring Large
Software Product Lines. In 37th IEEE/ACM International Conference on Software En-
gineering, ICSE 2015, Florence, Italy, May 16-24, 2015, Volume 1, Antonia Bertolino,
Gerardo Canfora, and Sebastian G. Elbaum (Eds.). IEEE Computer Society, 517–
528. https://doi.org/10.1109/ICSE.2015.69

[29] Nils Husung, Clemens Dubslaff, Holger Hermanns, and Maximilian A. Köhl.
2024. OxiDD: A Safe, Concurrent, Modular, and Performant Decision Diagram
Framework in Rust. In TACAS. Springer. https://doi.org/10.1007/978-3-031-
57256-2_13

[30] Christian Kaltenecker, Alexander Grebhahn, Norbert Siegmund, and Sven Apel.
2020. The Interplay of Sampling and Machine Learning for Software Performance
Prediction. IEEE Softw. 37, 4 (2020), 58–66. https://doi.org/10.1109/MS.2020.
2987024

[31] Christian Kaltenecker, Alexander Grebhahn, Norbert Siegmund, Jianmei Guo,
and Sven Apel. 2019. Distance-Based Sampling of Software Configuration Spaces.
In Proceedings of the 41st International Conference on Software Engineering (ICSE).
IEEE, 1084–1094.

[32] Christian Kaltenecker, Stefan Mühlbauer, Alexander Grebhahn, Norbert Sieg-
mund, and Sven Apel. 2023. Performance Evolution of Configurable Software
Systems: An Empirical Study. Empirical Software Engineering (EMSE) (2023). To
appear.

[33] Kyo Kang, Sholom Cohen, James Hess, William Novak, and A. Peterson. 1990.
Feature-Oriented Domain Analysis (FODA) Feasibility Study. Technical Report
CMU/SEI-90-TR-021. Software Engineering Institute, Carnegie Mellon University,
Pittsburgh, PA. http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=
11231

https://perspicuous-computing.science
https://perspicuous-computing.science
https://ceti.one
https://doi.org/10.4230/DagRep.4.7.1
https://doi.org/10.1145/2528265.2528267
https://doi.org/10.1007/11554844_3
https://doi.org/10.1007/11554844_3
https://doi.org/10.1145/136035.136043
https://doi.org/10.1145/136035.136043
https://doi.org/10.1016/S1389-1286(02)00352-3
https://doi.org/10.1109/ICSE.2003.1201186
https://www.ines.org.br
https://doi.org/10.1145/3646548.3676538
https://doi.org/10.1016/j.jss.2023.111915
https://doi.org/10.1016/j.jss.2023.111915
http://www.jstor.org/stable/2014377
https://doi.org/10.1109/ICSME.2018.00035
https://doi.org/10.24963/ijcai.2023/304
https://doi.org/10.1109/ICSE.2015.69
https://doi.org/10.1007/978-3-031-57256-2_13
https://doi.org/10.1007/978-3-031-57256-2_13
https://doi.org/10.1109/MS.2020.2987024
https://doi.org/10.1109/MS.2020.2987024
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=11231
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=11231

ASE 2024, October 2024, Sacramento, USA Kallistos Weis, Leopoldo Teixeira, Clemens Dubslaff, and Sven Apel

[34] Sergiy Kolesnikov, Norbert Siegmund, Christian Kästner, Alexander Grebhahn,
and Sven Apel. 2019. Tradeoffs in modeling performance of highly configurable
software systems. Softw. Syst. Model. 18, 3 (2019), 2265–2283. https://doi.org/10.
1007/s10270-018-0662-9

[35] Donghun Lee, Sang K Cha, and Arthur H Lee. 2011. A performance anomaly
detection and analysis framework for dbms development. IEEE Transactions on
Knowledge and Data Engineering 24, 8 (2011), 1345–1360.

[36] Luc Lesoil, Mathieu Acher, Arnaud Blouin, and Jean-Marc Jézéquel. 2023. In-
put sensitivity on the performance of configurable systems an empirical study.
Journal of Systems and Software 201 (2023), 111671.

[37] Martin Leucker and Christian Schallhart. 2009. A brief account of runtime
verification. J. Log. Algebraic Methods Program. 78, 5 (2009), 293–303. https:
//doi.org/10.1016/j.jlap.2008.08.004

[38] David Lewis. 1981. Counterfactuals and Comparative Possibility. Springer Nether-
lands, Dordrecht, 57–85. https://doi.org/10.1007/978-94-009-9117-0_3

[39] Yang-Yu Liu, Jean-Jacques Slotine, and Albert-László Barabási. 2013. Ob-
servability of complex systems. Proceedings of the National Academy of
Sciences 110, 7 (2013), 2460–2465. https://doi.org/10.1073/pnas.1215508110
arXiv:https://www.pnas.org/doi/pdf/10.1073/pnas.1215508110

[40] Stefan Mühlbauer, Sven Apel, and Norbert Siegmund. 2020. Identifying Software
Performance Changes Across Variants and Versions. In 35th IEEE/ACM Inter-
national Conference on Automated Software Engineering, ASE 2020, Melbourne,
Australia, September 21-25, 2020. IEEE, 611–622. https://doi.org/10.1145/3324884.
3416573

[41] Stefan Mühlbauer, Florian Sattler, Christian Kaltenecker, Johannes Dorn, Sven
Apel, and Norbert Siegmund. 2023. Analysing the Impact of Workloads on
Modeling the Performance of Configurable Software Systems. In 45th IEEE/ACM
International Conference on Software Engineering, ICSE 2023, Melbourne, Australia,
May 14-20, 2023. IEEE, 2085–2097. https://doi.org/10.1109/ICSE48619.2023.00176

[42] Daniel-Jesus Munoz, Mónica Pinto, and Lidia Fuentes. 2023. Detecting feature
influences to quality attributes in large and partially measured spaces using smart
sampling and dynamic learning. Knowledge-Based Systems 270 (2023), 110558.

[43] Sarah Nadi, Thorsten Berger, Christian Kästner, and Krzysztof Czarnecki. 2015.
Where Do Configuration Constraints Stem From? An Extraction Approach and
an Empirical Study. IEEE Trans. Software Eng. 41, 8 (2015), 820–841. https:
//doi.org/10.1109/TSE.2015.2415793

[44] VivekNair, Zhe Yu, TimMenzies, Norbert Siegmund, and SvenApel. 2020. Finding
Faster Configurations Using FLASH. IEEE Trans. Software Eng. 46, 7 (2020), 794–
811. https://doi.org/10.1109/TSE.2018.2870895

[45] Armstrong Nhlabatsi, Robin Laney, and Bashar Nuseibeh. 2008. Feature interac-
tion: The security threat from within software systems. Progress in Informatics 5,
75 (2008), 1.

[46] C. R. Ramakrishnan and R. Sekar. 2002. Model-based analysis of configuration
vulnerabilities. Journal of Computer Security 10, 1-2 (2002), 189–209. https:
//doi.org/10.3233/JCS-2002-101-209

[47] Genaína Nunes Rodrigues, Vander Alves, Vinicius Nunes, André Lanna, Maxime
Cordy, Pierre-Yves Schobbens, Amir Molzam Sharifloo, and Axel Legay. 2015.
Modeling and Verification for Probabilistic Properties in Software Product Lines.
In Proceedings of the 16th Symposium on High Assurance Systems Engineering
(HASE). IEEE, 173–180.

[48] Atrisha Sarkar, Jianmei Guo, Norbert Siegmund, Sven Apel, and Krzysztof Czar-
necki. 2015. Cost-efficient sampling for performance prediction of configurable
systems (t). In 2015 30th IEEE/ACM International Conference on Automated Soft-
ware Engineering (ASE). IEEE, 342–352.

[49] Abdel Salam Sayyad, Joseph Ingram, Tim Menzies, and Hany H. Ammar. 2013.
Scalable product line configuration: A straw to break the camel’s back. In 2013 28th
IEEE/ACM International Conference on Automated Software Engineering, ASE 2013,
Silicon Valley, CA, USA, November 11-15, 2013, Ewen Denney, Tevfik Bultan, and
Andreas Zeller (Eds.). IEEE, 465–474. https://doi.org/10.1109/ASE.2013.6693104

[50] Pierre-Yves Schobbens, Patrick Heymans, Jean-Christophe Trigaux, and Yves
Bontemps. 2007. Generic semantics of feature diagrams. Computer Networks
51, 2 (2007), 456–479. https://doi.org/10.1016/j.comnet.2006.08.008 Feature
Interaction.

[51] Pourya Shaker. 2013. A feature-oriented modelling language and a feature-
interaction taxonomy for product-line requirements. (2013).

[52] Norbert Siegmund, Alexander Grebhahn, Sven Apel, and Christian Kästner. 2015.
Performance-Influence Models for Highly Configurable Systems. In Proceedings
of the 10th Joint Meeting on Foundations of Software Engineering (ESEC/FSE). ACM,
284–294.

[53] Norbert Siegmund, Sergiy Kolesnikov, Christian Kästner, Sven Apel, Don Ba-
tory, Marko Rosenmüller, and Gunter Saake. 2012. Predicting performance via
automated feature-interaction detection. In Proceedings of the 34th International
Conference on Software Engineering (ICSE). 167–177. https://doi.org/10.1109/
ICSE.2012.6227196

[54] Larissa Rocha Soares, Pierre-Yves Schobbens, Ivan do Carmo Machado, and
Eduardo Santana de Almeida. 2018. Feature interaction in software product line
engineering: A systematic mapping study. Information and Software Technology
98 (2018), 44–58. https://doi.org/10.1016/j.infsof.2018.01.016

[55] Fabio Somenzi. 1998. CUDD: CU decision diagram package release 2.3. 0. Univer-
sity of Colorado at Boulder 621 (1998).

[56] Eduardo D. Sontag. 1984. A concept of local observability. Systems & Control
Letters 5, 1 (1984), 41–47. https://doi.org/10.1016/0167-6911(84)90007-0

[57] Tom van Dijk and Jaco van de Pol. 2017. Sylvan: multi-core framework for
decision diagrams. International Journal on Software Tools for Technology Transfer
19, 6 (2017), 675–696. https://doi.org/10.1007/s10009-016-0433-2

[58] Miguel Velez, Pooyan Jamshidi, Florian Sattler, Norbert Siegmund, Sven Apel, and
Christian Kästner. 2020. ConfigCrusher: towards white-box performance analysis
for configurable systems. ASE 27 (2020), 265–300. https://doi.org/10.1007/s10515-
020-00273-8

[59] Miguel Velez, Pooyan Jamshidi, Norbert Siegmund, Sven Apel, and Christian
Kästner. 2021. White-Box Analysis over Machine Learning: Modeling Perfor-
mance of Configurable Systems. In 43rd IEEE/ACM International Conference on
Software Engineering, ICSE 2021, Madrid, Spain, 22-30 May 2021. IEEE, 1072–1084.
https://doi.org/10.1109/ICSE43902.2021.00100

[60] Miguel Velez, Pooyan Jamshidi, Norbert Siegmund, Sven Apel, and Christian
Kästner. 2022. On Debugging the Performance of Configurable Software Systems:
Developer Needs and Tailored Tool Support. In 44th IEEE/ACM 44th International
Conference on Software Engineering, ICSE 2022, Pittsburgh, PA, USA, May 25-27,
2022. ACM, 1571–1583. https://doi.org/10.1145/3510003.3510043

[61] Alexander von Rhein, Alexander Grebhahn, Sven Apel, Norbert Siegmund, Dirk
Beyer, and Thorsten Berger. 2015. Presence-Condition Simplification in Highly
Configurable Systems. In Proceedings of the 37th International Conference on
Software Engineering (ICSE). IEEE, 178–188.

[62] Sandra Wachter, Brent D. Mittelstadt, and Chris Russell. 2017. Counterfactual
Explanations without Opening the Black Box: Automated Decisions and the
GDPR. Harvard Journal of Law and Technology 31 (2017), 841–887.

[63] Max Weber, Sven Apel, and Norbert Siegmund. 2021. White-Box Performance-
Influence Models: A Profiling and Learning Approach (Replication Package). In
43rd IEEE/ACM International Conference on Software Engineering: Companion
Proceedings, ICSE Companion 2021, Madrid, Spain, May 25-28, 2021. IEEE, 232–233.
https://doi.org/10.1109/ICSE-Companion52605.2021.00107

[64] Chu-PanWong, Jens Meinicke, Lukas Lazarek, and Christian Kästner. 2018. Faster
variational execution with transparent bytecode transformation. Proc. ACM
Program. Lang. 2, OOPSLA (2018), 117:1–117:30. https://doi.org/10.1145/3276487

[65] Franz Wotawa, Gerhard Friedrich, and Artur Andrzejak. 2018. Software config-
uration diagnosis? A Survey of existing methods and open challenges. http:
//confws.ist.tugraz.at 20th International Workshop on Configuration, ConfWS ;
Conference date: 27-09-2018 Through 28-09-2018.

[66] Yi Zhang, Jianmei Guo, Eric Blais, and Krzysztof Czarnecki. 2015. Performance
prediction of configurable software systems by fourier learning (t). In 2015 30th
IEEE/ACM International Conference on Automated Software Engineering (ASE).
IEEE, 365–373.

https://doi.org/10.1007/s10270-018-0662-9
https://doi.org/10.1007/s10270-018-0662-9
https://doi.org/10.1016/j.jlap.2008.08.004
https://doi.org/10.1016/j.jlap.2008.08.004
https://doi.org/10.1007/978-94-009-9117-0_3
https://doi.org/10.1073/pnas.1215508110
https://arxiv.org/abs/https://www.pnas.org/doi/pdf/10.1073/pnas.1215508110
https://doi.org/10.1145/3324884.3416573
https://doi.org/10.1145/3324884.3416573
https://doi.org/10.1109/ICSE48619.2023.00176
https://doi.org/10.1109/TSE.2015.2415793
https://doi.org/10.1109/TSE.2015.2415793
https://doi.org/10.1109/TSE.2018.2870895
https://doi.org/10.3233/JCS-2002-101-209
https://doi.org/10.3233/JCS-2002-101-209
https://doi.org/10.1109/ASE.2013.6693104
https://doi.org/10.1016/j.comnet.2006.08.008
https://doi.org/10.1109/ICSE.2012.6227196
https://doi.org/10.1109/ICSE.2012.6227196
https://doi.org/10.1016/j.infsof.2018.01.016
https://doi.org/10.1016/0167-6911(84)90007-0
https://doi.org/10.1007/s10009-016-0433-2
https://doi.org/10.1007/s10515-020-00273-8
https://doi.org/10.1007/s10515-020-00273-8
https://doi.org/10.1109/ICSE43902.2021.00100
https://doi.org/10.1145/3510003.3510043
https://doi.org/10.1109/ICSE-Companion52605.2021.00107
https://doi.org/10.1145/3276487
http://confws.ist.tugraz.at
http://confws.ist.tugraz.at

	Abstract
	1 Introduction
	2 Background
	3 Blackbox Observability
	4 Experiment Setup
	4.1 Research Questions
	4.2 Operationalization
	4.3 Implementation
	4.4 Subject Systems

	5 Results
	5.1 Effectivity of Observability Computation
	5.2 Observability of Partial Configurations
	5.3 Observability of Features Interactions

	6 Discussion
	6.1 Research Questions
	6.2 Threats to Validity
	6.3 Related Work

	7 Conclusion
	Acknowledgments
	References

