
The Silent Scientist
When Software Research Fails to Reach Its Audience

Marvin Wyrich1, Christof Tinnes1,2, Sebastian Baltes3, and Sven Apel1

1 Saarland University, Saarland Informatics Campus, Germany
wyrich@cs.uni-saarland.de

2 Siemens AG, Germany
3 University of Bayreuth, Germany

If software research were a performance, it would be a thoughtful theater play—
full of rich content but confined to the traditional stage of academic publishing.
Meanwhile, its potential audience is immersed in engaging on-demand experi-
ences, leaving the theater half-empty, and the research findings lost in the wings.
As long as this remains the case, discussions about research relevance and impact
lack meaningful context.

An identity crisis

For researchers, reflecting on their own work is part of good scientific practice.
This is common across all scientific disciplines, including software research.4
Though critical self-reflection is a staple in research, the software research com-
munity seems to take it further, grappling almost yearly with feelings of insignifi-
cance and entirely questioning the relevance of their work. In the past two years,
such discussions have been nearly impossible to track. Two prominent examples
illustrate this: In 2022, Lionel Briand delivered a keynote at ICSE, the largest
software engineering conference, critically discussing the impact we can expect
from software research.5 Two years later, one of the leading software journals,
the Journal of Systems and Software, launched a new column inviting software
practitioners to share their perspective on making software research more rele-
vant [1]. Apparently, the software research community has reached a new peak
in its ongoing quest to doubt its own relevance and impact.

To some extent, we understand the sentiment. Significant resources go into
software research, to improve collaboration or drive innovation. It is reasonable
to critically question how many of these research findings will be implemented

4 By “software research,” we refer to the broader research field that includes software
engineering and related disciplines focused on the theory and practice of building
and maintaining software systems. We consider this field as a case study within
computer science, where much of the research is application-oriented and should
therefore have a relatively receptive target audience. Similar calls to improve research
communication can be found in related fields, such as in information systems, where
recent discussions have highlighted the potential of citizen science [12].

5 Lionel C. Briand’s ICSE 2022 keynote on the split minds of software engineering
researchers.

https://conf.researchr.org/details/icse-2022/icse-2022-keynotes/4/Mathematicians-Social-Scientists-or-Engineers-The-Split-Minds-of-Software-Engineer
https://conf.researchr.org/details/icse-2022/icse-2022-keynotes/4/Mathematicians-Social-Scientists-or-Engineers-The-Split-Minds-of-Software-Engineer


2 Wyrich et al.

in the near or distant future. In fact, considerable resources have already been
devoted to addressing this very question, and analyses have identified concrete
examples showing how software research contributed to advancements in devel-
opment tools and methods, such as configuration management and programming
languages.6

However, in the ongoing discussions surrounding the relevance and impact
of software research, there is a notable oversight: the crucial role of science
communication. It is surprising how often this aspect is disregarded. Like a silent
scientist, quietly publishing papers and expecting their work to speak for itself,
many researchers assume their findings will naturally find their audience. This
assumption can lead to an overly self-critical misconception: that if research
lacks impact, it must be irrelevant. In this essay, we set out to challenge this
view. Research can only have impact if it reaches its target audience in the first
place, which requires making findings accessible through various communication
channels [8,15]. The tricky thing about this situation is that, so far, active science
communication has been sparse in the area of software research, and those who
have tried often find their efforts unrewarded or unsuccessful [13].

Understanding the relevance of software research

To appreciate the relevance of software research, we need to consider how differ-
ent topics resonate with different stakeholder groups—what’s impactful to one
may be irrelevant to another.

First, software research covers diverse content, which can be roughly divided
into technical advancement and (human-centered) empirical understanding. It
seeks technical improvements, such as methods to automatically find and fix
bugs, and empirical insights, such as understanding what factors influence the
productivity of software developers. Corresponding studies of the two types of
research use entirely different research methodologies, with some focusing on
technical evaluations without involving humans, while others include human
participants as primary subjects. This alone can create varied perceptions of
relevance, as some studies directly involve the people they aim to help. Addi-
tionally, measuring impact and implementing findings differ significantly. For
technological progress, impact is measured through adoption or metrics on qual-
ity and performance. Findings on practitioner collaboration require integration
into sociotechnical processes, with impact measured through changes in behavior
or improved satisfaction.

Second, different phases of the research process are of interest to different
stakeholders. A research project can span several years and progress through
various phases, at the end of which one or more publications may appear. Judg-
ing the relevance of research based on a single publication inevitably leads to
a large proportion of the readership not (yet) feeling addressed. Let us assume
6 See, for example, The Impact Project: Determining the Impact of Software Engineer-

ing Research Upon Practice, as well as international workshops on adoption-centric
software engineering .

https://www.nsf.gov/awardsearch/showAward?AWD_ID=0137766
https://www.nsf.gov/awardsearch/showAward?AWD_ID=0137766
https://insights.sei.cmu.edu/library/third-international-workshop-on-adoption-centric-software-engineering/
https://insights.sei.cmu.edu/library/third-international-workshop-on-adoption-centric-software-engineering/


The Silent Scientist 3

that we are looking for a source code quality metric that indicates the compre-
hensibility of source code. Thanks to software research, we know that most code
comprehensibility metrics do not, in practice, reflect what they are supposed to
measure [9,10]. So, we are well advised not to repeat the mistake and simply
design another metric based on our gut feeling. We start a little earlier, define
the notion of code comprehension, conduct basic research, and understand the
neuropsychological correlates of code comprehension in the brain of developers to
develop a meaningful metric in a subsequent step [11]. Will that conceptual def-
inition of code comprehension or neurophysiological lab studies with small code
snippets hold actionable insights for practice? Probably not. Are these studies
relevant at all? Absolutely, because software research has more than just the
target group of software practitioners. In this case, these early findings may help
educators better support novice programmers with code comprehension difficul-
ties, guide experimenters to design better studies and ask more targeted ques-
tions, and they eventually aid other researchers build their application-oriented
research on a solid theoretical foundation.

The point is that relevance is much more complex than is often portrayed.
What is irrelevant to one person today may be very relevant for another tomor-
row. We assure the reader that this is not just a convenient excuse that allows
researchers to retreat into an ivory tower. We ourselves see systemic difficulties
that reinforce the impression of a lack of relevance of software research. For ex-
ample, the very people we want to help with our research at any given time are
often involved too late in the research process. Researchers who have not spo-
ken and, in particular, listened to their target group risk creating an artificially
constructed problem space. Listening can take many forms, such as attending
industry meetups, conducting targeted surveys, or monitoring developer forums
and social media. Without these insights, it becomes difficult to argue for the
relevance of one’s research, and even harder to attract anyone as an audience for
science communication. Another challenge is certainly that software researchers
are incentivized by the scientific review and funding process to present solutions
to be as generalizable as possible. As a result, we hear of software practitioners
who fail to adapt published research findings because research has raised false
expectations of applicability.

Note that, taking this viewpoint, we will neither succeed in fundamentally
rethinking the academic system nor in convincing every reader of the relevance
of every single research paper. We do not even want to. There are already enough
opinions on why some software research is theoretical in nature and why other
research should be more application-oriented. There is a multitude of opinions
on what role industry–academia collaborations could play for the relevance of
research topics. And there are certainly enough opinions on how the impact
of software research could be evaluated. Our point is different: As long as the
research community does not manage to make its research accessible to the re-
spective target group at all, we do not even need to talk about relevance and
impact.



4 Wyrich et al.

No impact without science communication

The feeling of irrelevance and missing impact can often be traced back to a
communication problem: The reality is that nobody cares about your research
unless you make them care. This does not happen by itself with the publication
of a research paper. The notion that software practitioners will dive into the
academic world, eagerly browse online libraries for papers, and read them with
sparkling eyes is as romantic as it is unlikely. A far more probable scenario for
success is when researchers and practitioners build a bridge between these two
worlds through actively engaging in dialogue.

The fact that software practitioners are indeed interested in contemporary
software research is shown by a recent study that examines how these research
findings are disseminated and discussed on LinkedIn [14]. These data reveal
that the majority of individuals who post content and comment on the posts
are software practitioners. The authors of that study conclude that researchers
are not doing enough themselves. They note that some software research is so
engaging that practitioners take on the role of science communicators—a role
traditionally reserved for researchers, but inadequately filled by them in the case
of software research [14].

The good news is that researchers can do a lot to improve science commu-
nication without having to revamp the publication system or redesign research
processes. If we follow Burns et al. [4] in their definition of science communication
“as the use of appropriate skills, media, activities, and dialogue to produce one
or more of the following personal responses to science: Awareness, Enjoyment,
Interest, Opinion-forming, and Understanding”, it is difficult to find a software
research paper that cannot be brought to the target group with, at least, one
of these intentions. Therefore, post-publication science communication is some-
thing every researcher can and should engage in.

Why isn’t it happening? We see two main reasons. First, publications are
the currency of academia. Career advancement largely depends on the number
of top-tier publications, while outreach and the practical impact of research
are often secondary in university selection processes. Considering such systemic
incentives, it is understandable that researchers quickly move on to the next
project after publishing.
Second, there is a lack of evidence on the effectiveness of science communication
in software research, so it may be useful to look at other sciences. Bauer et
al.’s introduction to implementation science, i.e., “a science of implementation”,
is only 10 years old, but has since been cited over 2000 times, many times by
successful field reports [2]. In the context of clinical research, “the relatively new
field of implementation science has developed to enhance the uptake of evidence-
based practices and thereby increase their public health impact” [3]. Software
research needs similar initiatives to learn how to bring research findings into
software practice. In contrast, empirical insights on how research transfer works
in software engineering and how science communication actually affects software
engineering practice are still missing. As long as this gap persists, it is challenging
to convince researchers that the extra effort is worthwhile.



The Silent Scientist 5

In any case, what is hard to dispute is that research is unlikely to have
much impact without any communication. This can take the form of a blog
post, a social media discussion, a workshop or Dagstuhl seminar involving the
target audience, or any other channel that fits the audience [5,6]. ACM itself
offers several channels for this very purpose, such as the CACM blog and the
ACM Queue. Even something as simple as submitting a ticket in an open-source
project that you have studied in your research can help connect your work to
those who would benefit. While the software research community may not yet
know whether these efforts will lead to new collaborations, more citations, or
industry-wide change, there is reason to assume that effective communication
can make a difference. To provide, at least, anecdotal encouragement, we quote
software researcher Marcos Kalinowski, who wrote on social media [7]: “Recently
I shared the result of a PhD thesis on LinkedIn and it reached 4,000+ reactions
and 270,000+ impressions. 95% of my network is from industry. We are well
equipped to burst the academic bubble!”

Looking ahead, researchers are well advised to ensure their work reaches the
right audience by complementing traditional, high-quality academic paper pub-
lishing with efforts to make research more accessible to relevant stakeholders.
Identify your target audience to tailor your message! Use diverse communication
channels beyond papers, and actively engage with practitioners to foster dia-
logue rather than broadcasting information! This approach can spark feedback,
opening doors to new ideas and collaborations that shape future research.

If you are in software research, or any other research area for that mat-
ter, remember why you began your research journey. The silent scientist may
publish papers, but without reaching the right audience, this work risks going
unnoticed and unappreciated. We therefore urge researchers to break the silence
and actively approach those communities that stand to benefit most from the
findings.

Acknowledgments

We thank two reviewers and the associate editor for their constructive comments,
which helped to enrich the article with additional perspectives. This work has
been supported by the European Union under ERC Advanced Grant “Brains On
Code” (101052182).

Author Information

Marvin Wyrich is a Postdoctoral Researcher at the Saarland University, Saar-
land Informatics Campus, Germany. Christof Tinnes is a Senior Key Expert at
Siemens, Germany, and a PhD student at Saarland University, Germany. Sebas-
tian Baltes is a Professor of Software Engineering at the University of Bayreuth,
Germany. Sven Apel is a Professor of Software Engineering at the Saarland Uni-
versity, Saarland Informatics Campus, Germany.



6 Wyrich et al.

References

1. Avgeriou, P., Shepherd, D.C.: Dear researchers - a new column sharing the per-
spective of software practitioners. Journal of Systems and Software 213, 112044
(2024). https://doi.org/https://doi.org/10.1016/j.jss.2024.112044

2. Bauer, M.S., Damschroder, L., Hagedorn, H., Smith, J., Kilbourne, A.M.: An in-
troduction to implementation science for the non-specialist. BMC psychology 3,
1–12 (2015)

3. Bauer, M.S., Kirchner, J.: Implementation science: What is it and why should i
care? Psychiatry Research 283, 112376 (2020). https://doi.org/https://doi.
org/10.1016/j.psychres.2019.04.025, vSI:Implementation Science

4. Burns, T.W., O’Connor, D.J., Stocklmayer, S.M.: Science communication: a con-
temporary definition. Public understanding of science 12(2), 183–202 (2003)

5. Cooke, S.J., Gallagher, A.J., Sopinka, N.M., Nguyen, V.M., Skubel, R.A., Ham-
merschlag, N., Boon, S., Young, N., Danylchuk, A.J.: Considerations for effective
science communication (2017)

6. Illingworth, S.: Delivering effective science communication: advice from a profes-
sional science communicator. Seminars in Cell & Developmental Biology 70, 10–
16 (2017). https://doi.org/https://doi.org/10.1016/j.semcdb.2017.04.002,
science communication in the field of fundamental biomedical research Biology of
aging: new models, new methods

7. Kalinowski, M.: Tweet by Marcos Kalinowski from jun 22, 2023 (2023),
https://web.archive.org/web/20230929100303/https://twitter.com/prof_
kalinowski/status/1671812044146737152

8. Nisbet, M.C., Scheufele, D.A.: What’s next for science communication? promising
directions and lingering distractions. American journal of botany 96(10), 1767–
1778 (2009)

9. Peitek, N., Apel, S., Parnin, C., Brechmann, A., Siegmund, J.: Program compre-
hension and code complexity metrics: An fmri study. In: 43rd IEEE/ACM In-
ternational Conference on Software Engineering, ICSE 2021, Madrid, Spain, 22-
30 May 2021. pp. 524–536. IEEE (2021). https://doi.org/10.1109/ICSE43902.
2021.00056, https://doi.org/10.1109/ICSE43902.2021.00056

10. Scalabrino, S., Bavota, G., Vendome, C., Linares-Vasquez, M., Poshyvanyk, D.,
Oliveto, R.: Automatically assessing code understandability. IEEE Transactions
on Software Engineering (2019). https://doi.org/10.1109/TSE.2019.2901468

11. Siegmund, J., Peitek, N., Brechmann, A., Parnin, C., Apel, S.: Studying program-
ming in the Neuroage: Just a crazy idea? Commun. ACM 63(6), 30–34 (2020)

12. Weinhardt, C., Kloker, S., Hinz, O., van der Aalst, W.M.: Citizen science in infor-
mation systems research (2020)

13. Wilson, G., Aranda, J., Hoye, M., Johnson, B.: Experience report: It will never
work in theory. IEEE Software 41(03), 80–82 (may 2024). https://doi.org/10.
1109/MS.2024.3362649

14. Wyrich, M., Bogner, J.: Beyond self-promotion: How software engineering research
is discussed on linkedin. In: Proceedings of the 46th International Conference on
Software Engineering: Software Engineering in Society. p. 85–95. ICSE-SEIS’24,
Association for Computing Machinery, New York, NY, USA (2024). https://doi.
org/10.1145/3639475.3640113

15. Wyrich, M., Wagner, S.: Teaching computer science students to communicate scien-
tific findings more effectively. In: 2023 IEEE/ACM 45th International Conference

https://doi.org/https://doi.org/10.1016/j.jss.2024.112044
https://doi.org/https://doi.org/10.1016/j.jss.2024.112044
https://doi.org/https://doi.org/10.1016/j.psychres.2019.04.025
https://doi.org/https://doi.org/10.1016/j.psychres.2019.04.025
https://doi.org/https://doi.org/10.1016/j.psychres.2019.04.025
https://doi.org/https://doi.org/10.1016/j.psychres.2019.04.025
https://doi.org/https://doi.org/10.1016/j.semcdb.2017.04.002
https://doi.org/https://doi.org/10.1016/j.semcdb.2017.04.002
https://web.archive.org/web/20230929100303/https://twitter.com/prof_kalinowski/status/1671812044146737152
https://web.archive.org/web/20230929100303/https://twitter.com/prof_kalinowski/status/1671812044146737152
https://doi.org/10.1109/ICSE43902.2021.00056
https://doi.org/10.1109/ICSE43902.2021.00056
https://doi.org/10.1109/ICSE43902.2021.00056
https://doi.org/10.1109/ICSE43902.2021.00056
https://doi.org/10.1109/ICSE43902.2021.00056
https://doi.org/10.1109/TSE.2019.2901468
https://doi.org/10.1109/TSE.2019.2901468
https://doi.org/10.1109/MS.2024.3362649
https://doi.org/10.1109/MS.2024.3362649
https://doi.org/10.1109/MS.2024.3362649
https://doi.org/10.1109/MS.2024.3362649
https://doi.org/10.1145/3639475.3640113
https://doi.org/10.1145/3639475.3640113
https://doi.org/10.1145/3639475.3640113
https://doi.org/10.1145/3639475.3640113


The Silent Scientist 7

on Software Engineering: Software Engineering Education and Training (ICSE-
SEET). IEEE, IEEE (2023). https://doi.org/10.1109/ICSE-SEET58685.2023.
00017

https://doi.org/10.1109/ICSE-SEET58685.2023.00017
https://doi.org/10.1109/ICSE-SEET58685.2023.00017
https://doi.org/10.1109/ICSE-SEET58685.2023.00017
https://doi.org/10.1109/ICSE-SEET58685.2023.00017

	The Silent Scientist

