Multi-Location Software Model Completion

Alisa Welter Christof Tinnes Sven Apel
welter@uni-saarland.de christof.tinnes@siemens.com apel@uni-saarland.de
Saarland University Siemens AG Saarland University

Saarbriicken, Germany

ABSTRACT

In model-driven engineering and beyond, software models are key
development artifacts. In practice, they often grow to substantial
size and complexity, undergoing thousands of modifications over
time due to evolution, refactoring, and maintenance. The rise of
AT has sparked interest in how software modeling activities can be
automated. Recently, LLM-based approaches for software model
completion have been proposed, however, the state of the art sup-
ports only single-location model completion by predicting changes
at a specific location. Going beyond, we aim to bridge the gap to-
ward handling coordinated changes that span multiple locations
across large, complex models. Specifically, we propose a novel global
embedding-based next focus predictor, NExTFocus, which is ca-
pable of multi-location model completion for the first time. The
predictor consists of a neural network with an attention mecha-
nism that is trained on historical software model evolution data.
Starting from an existing change, it predicts further model ele-
ments to change, potentially spanning multiple parts of the model.
We evaluate our approach on multi-location model changes that
have actually been performed by developers in real-world projects.
NexTFocus achieves promising results for multi-location model
completion, even when changes are heavily spread across the model.
It achieves an average Precision@k score of 0.98 for k < 10, signifi-
cantly outperforming the three baseline approaches.

ACM Reference Format:

Alisa Welter, Christof Tinnes, and Sven Apel. 2026. Multi-Location Software
Model Completion . In . ACM, New York, NY, USA, 13 pages. https://doi.
org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

In model-driven engineering and beyond, software models help
bridge the gap between the problem domain and the implementa-
tion domain by offering multiple levels and types of abstraction,
thereby reducing overall system complexity [35]. In practice, for ex-
ample, in industrial automation and automotive engineering, where
a substantial fraction of code is generated from models, these soft-
ware models can become very large and complex [81]. For example,
a single subsystem may undergo thousands of individual modi-
fications when transitioning from the main development branch
to customized versions [81]. In general, changes tend to quickly

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

Conference’17, July 2017, Washington, DC, USA

© 2026 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-Xxxx-X/YY/MM

https://doi.org/10.1145/nnnnnnn.nnnnnnn

Munich, Germany

Saarbriicken, Germany

grow and cut across the model [14, 49, 70, 80]. Even a single, local
change may require complex adjustments in other parts to preserve
or correctly extend the system’s functionality and semantics. This
makes maintaining and evolving software models tedious, time-
consuming, and error-prone [80, 82].

To address these challenges, initial steps have been taken to
automate software model evolution, powered by the rise of Al One
area of focus is software model completion, where a (partial) soft-
ware model is provided and a tool suggests changes to the software
model. Before the advent of large language models (LLMs), pre-
vious work often relied on predefined sets of model completion
patterns and used (semi-) automated, rule-based techniques to rec-
ommend completions for software models [27, 47, 48, 50, 51, 54, 68].
However, this approach is limited, as each new project-specific
pattern requires defining additional edit rules. Specifying edit rules
typically demands expertise in both the specification and domain-
specific languages, and their evolution over time — such as through
metamodel changes — adds further complexity.

Advancements in Al have opened up new possibilities for soft-
ware modeling [18, 20, 21, 33, 82]. Recently, LLMs from the GPT
family have been used successfully for model completion [20, 21, 82].
In particular, the general inference capabilities of LLMs are useful
for handling domain concepts with few or no similar examples,
which is common in the modeling domain. They have been shown
to be effective at dealing with verbose and noisy textual compo-
nents found in domain-specific modeling data in industry, making
them valuable in scenarios where other approaches fall short [82].

Despite considerable progress, existing LLM-based approaches
are typically limited to single-location changes. That is, they modify,
extend, or add one or more elements that are directly connected
to each other at a single location in the software model [82]. In
practice, however, a single local change may require adjustments in
other parts of the model. In general, bug fixes and feature additions
may affect many different locations [8, 75]. We call these changes
multi-location software model changes. Multi-location changes are
particularly challenging to manage, as dependencies across the
model can be easily overlooked, a problem that is well understood in
the realm of code [6, 32, 46]. Applying them correctly is often error-
prone, time-consuming and requires substantial domain knowledge
to understand what needs to be changed and where — especially
given the sheer size of real-world software models.

Addressing this problem, we propose an approach for multi-
location model completion, that implicitly learns multi-location co-
change patterns from data. Given a single-location model edit (by
the user), a global embedding-based next focus predictor, NExT-
Focus, suggests further locations anywhere in the model to be
edited as well, based on similar patterns observed in the data. Tech-
nically, NExTFocus rests on a neural network with an attention

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’17, July 2017, Washington, DC, USA

layer that, given historical pairs of co-changed nodes as training
data, ranks them and suggests them to the user.

For evaluation, we investigate the performance of NexTtFocus
for multi-location model completion on a real-world dataset con-
taining 32 projects with multi-location changes that were actu-
ally performed by modelers in a real-world scenario. For this pur-
pose, we rely on standard recommendation metrics, in particular,
Precision@k. We found that NExTFocus achieves an average score
of 0.98 over all k € {1,..., 10}, significantly outperforming three
baselines. Notably, NExTFocus performs well even when changes
are spread across a software model. A manual investigation revealed
patterns that worked well and those that did not: we observed high
predictive performance, especially in structured, frequently recur-
ring patterns — such as changes involving the renaming or replace-
ment of existing types, but also the introduction of entirely new
domain concepts. On the other hand, NexTFocus (and baselines)
struggle with some cases, e.g., when the hierarchy of modeling ele-
ments was changed. Finally, we evaluate NExTFOCUSs in an iterative,
multi-location completion setting by combining it with state of the
art, LLM-based, single-location model completion [82].

In summary, we make the following contributions:

e We define the notion of multi-location model completion
based on single-location model completion [82].

e We propose a global embedding-based next focus predic-
tor for multi-location model completion, NExTFocUs, that
predicts new change locations based on historical data.

e We systematically evaluate our approach on 32 real-world
modeling projects and compare it against baselines that sug-
gest changes (i) randomly, (ii) based on historical co-change
frequency, and (iii) based on semantic similarity.

e We analyze factors contributing to NexTFocus predictive
performance, including project size, multi-location change
pattern size, and dispersion, pattern characteristics and the
effect of available historical data (cross-project setting).

o We evaluate NExTFoCUS in an iterative, multi-location com-
pletion setting by combining it with single-location model
completion [82] and compare it to single-location comple-
tion, performed N times for next focus node prediction.

The dataset as well as the source code for NExTFocus, and the
experiments are provided in our Supplement [86].

2 RELATED WORK

In this section, we provide an overview of existing work on model
completion and the relation to other modeling activities.

2.1 Model Completion (with LLMs)

Previous work explores recommending model completions using
pattern catalogs, where partial models are completed by identifying
matching changes through pattern or graph matching and then
applying the missing parts accordingly [27, 47, 48, 50, 51, 54, 68].
These approaches typically rely on domain-specific pattern catalogs
that must be manually created and maintained. As a result, they
are tied to a specific domain and modeling language, requiring new
catalogs to be created for each domain-specific context, and they
struggle with the verbose and noisy textual components found in
software models. While rule-based approaches are explicitly defined

Welter, Tinnes, and Apel

and typically complete, this completeness can become a limitation
when facing complex or underspecified scenarios, such as those
encountered in model completion tasks. As a consequence, efforts
moving beyond rigid rule-based systems have been made. While
these are more generalizable to broader applications, they focus on
single-location model completion.

Initial steps from a natural language perspective have been taken
by Agt-Rickauer et al. [2, 3], who use conceptual knowledge bases
and semantic networks built from natural language data to suggest
entity names of model elements. Lopez et al. [59] train a skip-gram
model to generate word embeddings specific to the modeling do-
main. They evaluate performance on meta-model classification,
clustering, and an entity name recommendation task. Elkamel et
al. [34] recommend UML classes using clustering over existing
model repositories, based on word-level similarities in names, at-
tributes, and operations. Burguefio et al. [16] propose word embed-
ding similarity to recommend domain concepts.

More recently, deep-learning models have been adapted to mod-
eling tasks [29]. For example, Di Rocco et al. [30] use an encoder—
decoder network to suggest element types to add in change-based
persistence (CBP) models. As CBP is less common in practice [90],
we focus on state-based modeling instead. Weyssow et al. [87]
trained a transformer-based model from scratch to suggest meta-
model concepts, however, the effectiveness of such approaches is
constrained by the limited availability of modeling data [20]. Mod-
elMate [26] is a recommender system designed for textual DSLs
based on fine-tuned language models. The approach has been eval-
uated on a modeling task (predicting EStructuralFeature names
in Ecore meta-models) and compared against existing recommender
systems [16, 28, 87]. Liu et al. [56] propose an approach for predict-
ing connections between modeling elements.

Chaaben et al. [20, 21] use the few-shot capabilities of GPT-3
to suggest new model class names, attributes, and associations by
providing examples from unrelated domains. The approach does
not scale well to larger models, as it requires multiple queries de-
pending on the model size and includes all model concepts in each
prompt. Tinnes et al. [82] concentrate on the neighborhood of the
most recently changed element, thereby addressing prompt size
limitations by restricting the scope of the LLM to a localized area.
Their method was shown to outperform the approach by Chaaben
et al. [21] on industrial, real-world data. In addition, they incor-
porate domain-specific context through similarity-based few-shot
retrieval from the software model repository.

In general, while various approaches for model completion have
been proposed [29], the focus has been on single-location changes,
with little attention to patterns that span multiple locations, possibly
cutting across the entire software model.

2.2 Supporting Other Modeling Activities

Another line of research also uses models but does not con-
sider model completion. For example, a related area concerns Chat-
GPT’s model generation capabilities, either from natural language
descriptions [18], requirements [33], or images of UML class di-
agrams [25]. Lopez et al. [60] introduce a framework for gener-
ating model queries from natural language by fine-tuning open-
source LLMs on a synthetic dataset created with ChatGPT. Other

Multi-Location Software Model Completion

approaches provide similar examples of models through collabora-
tive filtering [28] and similarity-based filtering [31], but ultimately
rely on users to apply the final model completion based on the
examples [4]. In the same vein, there is work on change impact
analysis and trace link generation between different models, model
types, and corresponding requirements artifacts, documentation,
and code [5, 9, 36, 63].

Finally, there is the research area of meta-model co-evolution,
where changes to the meta-model must be propagated to models
and model transformations to maintain consistency [24, 38]. These
approaches aim to ensure correctness according to meta-model con-
straints and synchronization across modeling artifacts. Closely re-
lated to meta-model co-evolution is model repair [13, 62], which fo-
cuses on automatically correcting inconsistencies in software mod-
els. Most approaches rely on graph transformation rules or OCL-like
constraints to automatically repair models [52, 66, 69, 70], while
others organize fixes (additionally) into repair trees [64, 76]. From
a machine learning perspective, some model repair approaches
use reinforcement learning, where rewards are based on achieving
consistency and improving model quality [11, 12, 40]. In model
completion, an oracle for checking consistency, is not available. In
contrast to model repair and meta-model co evolution, we addi-
tionally do not focus on meta-model conformance, but instead on
maintaining and extending the semantic and functional aspects of
software models during software evolution.

2.3 Code Completion and Repair

Challenges similar to multi-location model completion have been
explored for source code. Many code-centered approaches enhance
single-location code completion by incorporating repository-level
context into LLM prompts via static analysis [57, 72, 74].

Regarding code co-changes and change impact analysis, consid-
erable work has been done in recent years [39, 42, 53, 91]. For multi-
location code completion, CodePlan [10] converts a repository-level
task into a plan graph of LLM-driven edit obligations discovered
through incremental dependency and change-impact analyzes. It
applies edits, recomputes affected dependencies, and iteratively
extends the plan until all obligations are discharged. The resulting
repository is then checked by an oracle; any failures become new
input for the next cycle. A related but distinct area focuses on LLM-
based code repair [85, 88, 89], where models iteratively refine code
using feedback from an oracle [89].

It is important to note that the approaches that work for code
are not (easily) transferable to software models. Unlike source code,
software models are mostly non-executable artifacts that combine
graphical structures with verbose textual annotations. This makes
oracle-driven processes infeasible because candidate correctness
cannot be validated automatically (e.g., via tests). In general, the
field also suffers from a lack of publicly available datasets, which
significantly hinders comprehensive comparisons between different
approaches [17, 58, 67, 82]. Unlike source code, software models lack
standard languages, formats, and evaluation metrics [41], making
benchmarking difficult. In contrast, code completion benefits from
many benchmarks [73, 84] like HumanEval [22].

Conference’17, July 2017, Washington, DC, USA

3 PRELIMINARIES
3.1 Software Model Completion

We represent software models as graphs to establish a common
ground across different formats and types of software models, as is
common in the literature [45, 61, 80, 82].

Definition 3.1 (Abstract syntax graph). An abstract syntax graph
Gy, of a software model m is an attributed graph, typed over an
attributed type graph TG given by metamodel TM.

An attributed type graph TG specifies the typing for abstract syn-
tax graphs, ensuring that all elements conform to the structural and
semantic constraints specified by the metamodel TM. For our pur-
pose, we use a simplified representation of abstract syntax graphs
as labeled directed graphs, where node and edge labels correspond
to the textual names of their respective types and relations in the
abstract syntax graph.

Definition 3.2 (Labeled directed graph). A labeled directed graph
G over a label alphabet L is defined as the tuple (V, E,), where V
is a finite set of nodes, E C V X V is the set of directed edges, and
l: VUE — L assigns labels to nodes and edges [82].

In a directed graph G, direct successors of a node v € V are all
nodes that are directly reachable from v via an outgoing edge.

Definition 3.3 (Direct successor set). The direct successor set of a
node v is defined as:

succ(v) ={ueV | (vu) €E}, (1)
where (v, u) € E denotes a directed edge from v to u.

We further define the software model difference between suc-
cessive software model versions.

Definition 3.4 (Structural model difference). A structural model
difference Ap,, of model versions m and n is obtained by matching
corresponding model elements in the model graphs G,, and G,,.

The structural model difference A, contains changed elements
Ar(in = ((Vn U En) \ (Vm U Em)) U ((Vm U Em) \ (Vn U En)) and
preserved elements A5, = (V;, U Ep) N (Vi U Ey)L.

Next, we introduce local and multi-location model completions.

Definition 3.5 (Model completion). A software model completion
Y(c,s) transforms a given source model m, represented by G,,, into

a (partial) target model n, represented by G,, [82]:
Y(c,s)

m = n, (2)
such that y corresponds to the model difference A,,,. Here, c denotes
the number of elements involved in the completion change, that
is, ¢ = |A(,,fn| and s is the maximum shortest-path distance between
any pair of involved elements.

The parameter s gives an indication of how spread the involved
elements of a software model completion pattern are across the
model. A small s suggests that the change or pattern is locally
confined, whereas a larger s implies that the completion affects
distant parts of the model. Therefore, we can define single-location
changes and multi-location changes as follows:

!For simplicity, we omit the explicit matching and assume that V},, and E,, are identi-
fied with their matched counterparts, where applicable.

Conference’17, July 2017, Washington, DC, USA

Definition 3.6 (Single-location model completion). A single-location
software model completion is a model completion y(.), where
s<1.

Definition 3.7 (Multi-location model completion). A multi-location
software model completion is a model completion y(), where ¢ > 1
and s > 1.2

Examples for multi-location model completion and single-location
model completion with different s and ¢ are given in Figure 1.

T

Single-location change Single-location change
s = Owithe =1 s = 1withe = 3

Multi-location change, = Multi-location change
s = 3withe = 2 s = 4withe = 5

Figure 1: Examples of single-location and multi-location soft-
ware model changes with different values of ¢ and s, green
element mark newly added elements

3.2 Machine Learning

Next, we outline the basic machine learning concepts required to
understand our approach.

A feedforward neural network defines a mapping

y=f(x;0), ®)
where x is the input and vector 0 contains the learnable parameters.
The parameters are learned by minimizing the difference between
predicted and target values during training [37]. Neural networks
are composed of layers, where each layer applies a transformation to
its input before passing it to the next layer, forming a hierarchical
representation of the data. In classification, they map an input
x to an output category y. The learning process is guided by a
loss function, which quantifies the error between the network’s
predictions and the actual target values [37].

An embedding model is a representation learning model that
transforms natural language data or other structured data into a
lower-dimensional continuous vector space and is defined as:

$:X - RY 4
where X is the input space (e.g., words, graph nodes, model el-
ements), R? is the d-dimensional vector space, and ¢(x) is the
2Note that previous work [82] has focused on single-location model completion with

¢ < 2and s < 1; That is, at most one new node and one connection to an existing
element are added.

Welter, Tinnes, and Apel

embedding of x, capturing a subset of its properties in the lower-
dimensional space.

4 APPROACH

This section is structured as follows: we first define the general con-
cept of multi-location model completion, then provide an overview
of the NExTFocus’s workflow, followed by detailed descriptions of
the data preparation process and NExTFocus’s different phases.

4.1 Concepts

Since LLMs combined with retrieval-augmented generation have
already demonstrated strong performance for model completion
tasks, even on real-world industrial data [82], we decompose the
problem of multi-location changes into an iterative approach be-
tween single-location model completion and finding the next focus
nodes, as illustrated in Figure 2.

More specifically, a single-location, LLM-based model comple-
tion approach relying on an LLM (Figure 2, (a)) starts with a given
software model m, a slicing criterion ¢, and a set of relevant ele-
ments Cp, C Vi U E,,%. A slicing criterion ¢(Cpp, m) — CJ,, is ap-
plied to extract the elements for the LLM context.? These elements
serve as the context for the LLM that performs a single-location

software model completion: m Lo (additional steps may be re-
quired depending on the approach [20, 21, 82]). As a next step, the
global set of next focus nodes F needs to be predicted, enabling
the overall approach to perform multi-location model completion
(Figure 2, (b)), which is what we will explain next. First, we define
the concept of a focus function.

Definition 4.1. Given a source model n and partial model comple-
tion y C y., with ¢ > 1, the focus function is

f(rn) = FCVy ©)
with the set of focus nodes F in V of n.

The focus nodes F are then given back again to the slicing crite-
ria ¢(C,, := F, G,,) for single-location model completion in a new
iteration.

Y
m—n Trained on
Updated software model historical (node
— pair data)

Single-location,
model completion approach

(a) - @ @ @@ (b)

f(rm) > F
Set of next focus nodes

Embedding-based
Neural Network

Figure 2: Combined process of single-location model com-
pletion and next focus node prediction.

3Tinnes et al. [82] use recently changed elements, where Chaaben et al. [21] use a
small number of related classes(nodes)
“For example, Tinnes et al. [82] use so called simple change graphs as a slicing criteria,
but other options are also possible [21]

Multi-Location Software Model Completion

4.2 Workflow

An overview of the workflow of NExTFocuUs is given in Figure 3.
NEexTFoCUSs rests on a neural network that learns from historical
data which elements tend to change together. In the first step, the
training data is constructed (Figure 3, Step 1-4), including that each
software model’s nodes are embedded using an embedding model
(Figure 3, Step 3). Node pairs are then passed through a neural net-
work (Figure 3, Step 5) for training. For inference (Figure 3, Step 6),
the software model’s nodes are put though the embedding model
and the neural network to evaluate their probability of changing to-
gether. Afterwards the probabilities are ranked, and the nodes with
the highest scores are suggested as the next focus nodes (Figure 3,
Step 7). In what follows, we describe the key phases in detail.

4.3 Data Preparation

Following Tinnes et al. [82], we employ a model matcher - specifi-
cally EMFCompare [15] - to obtain the structural model differences
Amn between each pair of consecutive models® (Figure 3, Step 1).
These differences highlight the elements that have changed as well
as those that have been preserved. Our approach operates on a
graph-based representation of models and is thus not limited to
Ecore [82]. The extraction can always be applied to a model dif-
ference (i.e., as long as model matching and differencing can be
performed), and is therefore adaptable to a wide range of model-
ing tools. Often, model elements carry unique identifiers, making
matching straightforward. We transform the Ecore models into
graphs with networkx, iterating over the detected changes to add
them as nodes and connect them via their corresponding edges.
This yields a general, notation-independent representation. The
resulting historical change data, which consists of sequential model
versions is then prepared: the dataset is split into training, vali-
dation, and test sets, where the first is used as historical context
for training, and the last is used for testing. Details on the specific
splitting are provided in Section 5.

Given a model difference, we construct a set of node pairs and
label those that have been modified in the same commit as positive
examples (Label 1). These labeled pairs serve as ground truth for
both neural network training and evaluation (Figure 3, Step 2).
Unchanged node pairs are labeled as 0:

1, iff both vy and a direct

Mon ((vl,vz) eV x V) = successor of v € Afjn 6)

0, otherwise.

For clarity, we refer to recently changed elements in y, which
were, for example, suggested by a single-location approach, as
anchor nodes. So, in Equation 6, v, is the anchor node.

4.4 Training Phase

Given the training set consisting of model differences A,,,, we first
apply a pre-processing step to balance the number of data points per
software model. Specifically, we ensure that each model contributes
an equal amount of training data, preventing the network from
being biased towards larger software models with more data points.
Then we embed each v € V,,,, according to Equation 4 (Figure
3, Step 3). For this purpose, we have explored various embedding

5In what follows, we discarded about 0.02% of nodes due to their non-parsability.

Conference’17, July 2017, Washington, DC, USA

models, aiming to balance computational efficiency with the ability
to capture essential differences in the data. After evaluating different
options in a pilot study, we selected "text-embedding-3-small" with
an embedding size of e = 1536 from the OpenAl family. Then, we
input the embedded node representations pairs with their respective
ground truth value into the neural network (Figure 3, Step 4-5). We
use the Adam Optimizer for training.

Neural Network Architecture. Regarding the neural network ar-
chitecture, we have explored linear and non-linear networks, but
ultimately decided for an attention-based model [83] . The overall
architecture of our neural network is shown in Figure 4. The embed-
ded node representation pairs, given as the input, are first processed
by a single self-attention layer, followed by mean pooling. A final
linear layer maps the pooled representation to a single logit value
per sample. At inference time, the logit value is passed through
a sigmoid function to obtain a probability, while during training,
the raw logit values are used directly with the loss function, which
applies the sigmoid function internally.

Loss function. The neural network is trained using the binary
cross-entropy loss (BCE), /;, which combines a sigmoid layer and
the BCE loss for improved numerical stability. Given a minibatch
{(z1, yi) }fil, where z; € R is the raw model output, y; € {0, 1} is the

ground-truth label, and §; = m;_zl is the predicted probability.
I; = max(0, z;) — z;y; + log (1 + eilzil) (7)

To address extreme class imbalance, we apply a focal loss cor-
rection on top of the BCE formulation [55]. This imbalance arises
from the sheer number of negative examples (i.e., nodes that do
not change together), which are often well-classified and would
otherwise dominate the total loss. We also add the focal loss weight
to the loss term, which reshapes the loss function to down-weight
easy examples.

wi=1—(Gi-yi+ (1= (1-y)P, ®)
where f controls up-weighting of misclassified individual data
points. As a result, false negative examples — which may have
been assigned high probabilities and are harder to classify using
the standard BCE loss — contribute more to the training process,
effectively pushing them out of the set of predictions with the
highest probabilities, which will be later important for ranking.
While w focuses on individual data points, we additionally apply
a class-level balancing factor a.

ai=a-yi+(1-a)-(1-y;))

Additionally to the focal loss terms introduced by Lin et al. [55],

to optimize for our recommendation task, we add a misclassification
penalty for false negatives.

mi:(l—y,-)-yA,--).+1, (10)

where 1 is the penalty scaling factor for incorrect high-probability
negatives. Combining these components, the final focal loss func-
tion for our task of predicting next focus nodes is:

1 N
£=N;a,—~w,—~li-mi (11)

Conference’17, July 2017, Washington, DC, USA

Welter, Tinnes, and Apel

(1) Historical data Ay, (4) Training data (6) Test data
IR B = U {00600 Aa om0 [v €V} fas ¢<””@’¢(””
° . ¢ . : T ﬁ @ ° % e Multi-head self-attention
e, " p p e ® . O
LRI (3) Node embeddings (5) Neural network Mean pooling
@ 6 X — R¢ f(z;0) (7) Next focus nodes s
_ Linear layer + Sigmoid
. > e
(2) Labelled data pairs ::‘; 2e
)\Am((vl,vz) eV x V) y?[(), 1)

Figure 3: Overview of the global embedding-based next focus predictor (NExTFocus) approach.

4.5 Inference Phase

Given a model represented by a labeled directed graph G and a
partial model completion y, for example, obtained from a single-
location model completion approach (Figure 3, Step 6), NExTFocus
suggests the next focus nodes in the inference phase (Figure 3, Step
7). The anchor node v; € y that has been changed is embedded,
and NExTFocus computes the probability of each other node v € V,
where v # v;, changing together with v;. According to Equation 6,
a change is expected to occur at a (direct or indirect) successor of v,
either through addition, deletion, or modification, which then can
be suggested by a single-location model completion approach.

The node pairs (v1,v) with v € V are passed to our trained neural
network, which computes the probability f(¢(v1), ¢(v)) based on
the historical evolution of the current software model and patterns
learned from other models.

Finally, we rank all nodes v # v; based on the probability of
changing together with v; and suggest the top-k candidates as the
next focus nodes, which can then be presented to the user or be fed
into the next iteration (Figure 2, Step (a)).

5 EVALUATION

We empirically evaluated NexTFocus using historical real-world
modeling data to assess its ability for multi-location model com-
pletion. Working with historical data allows us to separate the
technical capabilities of our approach from other factors introduced
by tools, such as the optimal number of recommendations shown,
the layout and positioning of modeling elements, or tool-specific
evaluation metrics. This facilitates a reproducible and comparable
assessment of the capabilities of our approach.

In what follows, we outline our research questions, describe the
evaluation setup and data used, and present our results.

5.1 Research Questions

We are interested in whether our NExTtFocus, given a change that
has been applied (i.e., an anchor node), can effectively predict the
next focus node(s) in a multi-location model completion task. Specif-
ically, we examine whether a model trained on historical multi-
location changes is able to generalize to new, unseen changes.

RQ 1: To what extent can NExTFocus predict new focus nodes for
multi-location software model completion?

Figure 4: Neural Network architec-
ture of NExTFocUs.

To better understand the NExTFocus predictive performance, we
investigate how its performance varies with the distance between
the predicted focus node(s) and the originally changed (anchor)
node, that is, how the performance of the model completion y()
depends on s. In particular, we examine whether the model is bet-
ter at predicting single-location changes (close in terms of graph
distance) or also performs well on more global changes.

RQ 2: How does the model’s predictive performance of new focus
nodes depend on the distance (in terms of graph radius) to the
anchor node?

We also investigate the conditions under which our NexTFocus
performs well and identify scenarios in which its predictive perfor-
mance could be improved. Specifically, we examine which project
specific properties influence the model’s ability to correctly identify
new focus nodes. These properties include, for example, the overall
project size (i.e., the number of training data points), the proportion
of positive instances (i.e., data points with a ground truth of one),
and the kind and content of the change patterns. On the other hand,
we study the performance of NExTFocus in a cross-project set-
ting, that is, whether NExTFocuUs generalizes to previously unseen
projects by transferring known project-specific characteristics. This
aspect becomes particularly relevant in real-world scenarios, if no
historical data are available for a given project.

RQ 3: Which project-specific or pattern-specific properties influ-
ence the predictive performance of our model and consequently
how well does NEXTFOCUS perform in a cross-project setting?

Finally, we investigate the performance of NextFocus in a com-
plete multi-location model completion setting (not only next focus
node prediction) that is obtained by iteratively combining it with a
single-location model completion approach, as shown in Figure 2.

RQ 4: How effectively does NEXTFOCUS support iterative, multi-
location model completion?

5.2 Experiment Setup
We conducted six experiments to address the four research ques-

tions; Experiments 3 ,4 and 5 contribute to answering RQ3.

Data. For all experiments, we use a publicly available, real-world
dataset, RepairVision [70, 71], which contains versioned modeling

Multi-Location Software Model Completion

projects. This is essential for our study, as it provides us with ground-
truth information on multi-location changes that have been actually
performed by modelers in a real-world scenario®.

In total, the data set contains 41 modeling projects, with 912
commits. On average, the models contain 1285.9 nodes, and there
are 168.9 changes per commit. For our evaluation, we applied an
additional filtering step (e.g., because we required projects to have,
at least, three commits to allow for a valid train/validation/test split)
resulting in 32 projects considered in total. Detailed information
on each project and filtering is provided in our Supplement [86].
We use EMFCompare’s model matching capabilities to compute
structural model differences for all modeling projects.

Experiment 1. To answer RQ 1, we split the modeling dataset into
training, validation, and test sets while respecting the historical
timeline. More specifically, given the historically ordered struc-
tural model differences {Am,my, Amymss - - -» Dmp,_ymp, }» Where n is
the number of structural model differences in a project, we split by
commit, i.e., by structural model difference, to prevent data leakage
between sets. We define the training set as { A, my - - -» Amy,_smp_o }
, the validation set as {An,,_,m,,_, }, and the test set as {Ap,,_m, }-
Overall, this leads to a ratio of 71.88% train, 16.41% validation, and
11.70% test data points in the respective sets.” Using commit time
for splitting, rather than random sampling, mirrors a real deploy-
ment: We train on what is known, the commit history, and expect
the network to generalize to new, unknown software models in the
test set.

We begin by preprocessing the data (see Section 4) and train-
ing the neural network on the training set while tuning hyper-
parameters on the validation set. During training, we explicitly
over-sampled or under-sampled data points from each project to
a fixed size, ensuring that the neural network treats each project
equally rather than being biased toward larger datasets.

We tuned all hyperparameters using Bayesian optimization,
more information is given in our Supplement [86]. The task is
framed as a node-ranking problem: Given a recently changed (an-
chor) node, the model ranks other nodes based on the probability
of changing with this anchor node.

For evaluation purposes, we take models from the test set, which
include the latest changes in the modeling history {Ap,, ;m,}
specifically the transition from the second-to-last to the last model
snapshot. Given a recently changed element in AY , the anchor
node, and the set of already existing elements A;;, . we predict
the next focus node(s), that is, the element whose successor is ex-
pected to be changed next (see Equation 6). That is, for evaluation,
we remove the ground truth elements A,(ﬁn_ ,m,, (changes that have
been made by the modeler in a real-world scenario) from A, m,

n-1Mn

©Other datasets such as the ModelSet [58] contain only static snapshots, which would
require synthetically constructing modeling histories. This does not reflect a real-world
scenario and introduces confounding assumptions.

"To ensure realistic evaluation, we approximate a commonly used data ratio for
train-validation—test splits (around 70-80% train, 10-15% validation/test). Since each
structural model difference can contain a highly variable number of data points (node
pairs, see Equation 6), especially, in later commits, where models tend to be larger,
we had to restrict the number of structural model differences in the validation and
test set. Otherwise, those sets would have ended up with more data points than the
training set, despite covering fewer commits. On the other hand, the neural network
is trained on individual data points rather than entire commits, which leads to the
specific dataset split proportions used.

Conference’17, July 2017, Washington, DC, USA

and investigate whether NExTFocuUs is able to predict these cor-
rectly. We are particularly interested in the overall predictive per-
formance of our NExTFocus. Neural network performance is com-
monly evaluated using Precision@k on the test set [19, 65, 77, 79]%.

A prediction is considered correct if the suggested node(s) were
indeed modified in the corresponding commit in the dataset.

Let y; € {0, 1} be the binary ground-truth label for node i, where
1 indicates that i changed, we define Precision@k as the number
of true positives among the top-k predictions, normalized by the
minimum of k and the number of actual positives:

#true positives in top-k

(12)

With regard to k, the number of recommendations, prior work
consistently suggests keeping recommendation lists short and man-
ageable for human users. Therefore, we limit k to a maximum of 10,
but we report results for various values of k < 10, as well [1, 23, 51].

We compare NexTFocus against three baselines: (i) random se-
lection of focus nodes, (ii) semantic similarity based on pre-trained
embeddings, and (iii) historical co-change frequency, which priori-
tizes nodes that have frequently changed together in the past. We
selected these baselines to reflect fundamentally different strategies
for focus node prediction: (i) random selection serves as a naive
lower bound, illustrating how well the other approaches perform
compared to uninformed guessing; (ii) semantic similarity builds
on the assumption that semantically related elements tend to co-
change, a concept also used in related work [2, 3, 16, 34, 44, 45, 59]
, and (iii) historical co-change frequency builds on the assumption
that elements which changed together in the past are likely to do
so again [43, 44, 92]. Together, these baselines cover a broad range
of factors that can influence performance.

For the semantic similarity baseline, we use the same embedding
model as the one described in Section 4. Given the anchor node, we
compute the cosine similarity between its embedding and those of
all other nodes in the software model. The top-k most similar nodes
are then recommended. While there is currently no multi-location
model completion approach available that we could adopt as a
baseline, we use semantic similarity as a reference point due to its
significance in related domains. For instance, text-based similarity
has been applied for change impact analysis [44] on source code,
and in the UML model domain [45]. Prior efforts for single-location
model completion also [2, 3, 16, 34, 59] focused on similarity.

For the historical co-change frequency baseline, we construct a
co-change matrix that records how often each pair of nodes has
changed together in past commits. During inference, we identify
the top-k nodes with the highest co-change frequency with respect
to the given anchor node and recommend those. We are interested
in the overall performance, so we examine the overall distribution
of Precision@k values. Historical co-change frequency has been
frequently used on source code [43, 44, 92].

Precision@k =
@ min(k, #actual positives)

8We do not report recall, as the number of relevant items varies significantly across
cases — from over 1000 to as few as 1-2, making recall highly sensitive to the denomi-
nator and thus difficult to interpret. Instead, we focus on top-k precision, which better
aligns with our recommender system setting. The goal is to recommend the most likely
next changes first — not to recover all possible changes. We additionally include a
random baseline for comparison. Including a baseline that selects candidates randomly
provides a meaningful lower bound and allows for relative performance assessment
without relying on absolute metrics like recall.

Conference’17, July 2017, Washington, DC, USA

Experiment 2. To investigate how NexTFocus performs on multi-
location change patterns of varying size, we limit the predicted
focus nodes to a certain radius. That is, we only consider y(.) with
s < 7, where s is the maximum shortest-path distance between any
pair of involved elements in the multi-location change (Definition
3.5) and 7 is a radius threshold. This setup allows us to analyze
whether the model performs better on localized changes. By increas-
ing 7, we study whether NExTFocus maintains high Precision@k
even as changes become more spread across the model. We train
the neural network using the same setup as in Experiment 1.

Experiment 3. We investigate how specific project properties
influence the overall performance of NExTFocus. As a first step, we
examine NEXTFocus’s average performance across individual mod-
eling projects. We also analyze the influence of the overall training
set size per project and the number of positive examples included
in each project’s training set. While neural networks typically ben-
efit from more data points seen during training, we aim to under-
stand whether this correlates with higher average performance
per project. Note that we explicitly over-sample or under-sample
during training to normalize the number of data points per project.
This ensures that NExTFoCUs treats each project equally and avoids
biasing towards datasets with more training examples. The neural
network is trained as in Experiment 1.

Experiment 4. To answer RQ3, we manually analyze the graphs in
our test set to examine which change patterns work well and which
do not. We additionally summarize the change, determine whether
the single-location changes truly belong together or occurred by
coincidence, and identify the overall pattern. For additional support,
we consulted OPENAI’S GPT MODEL (03).

Experiment 5. Finally, to address the last aspect of RQ3, which
is, whether NExTFocUs generalizes to a cross-project setting, we
split the training and test sets by project rather than by historical
data within a single project. The setup follows the idea of 10-fold
cross-validation, where in each fold one project is used for testing
and the remaining projects are used for training. Further details
of the setup are given in our Supplement [86]. This setup allows
us to evaluate how well the model, trained on certain projects,
generalizes to previously unseen projects. We additionally compare
it against a setup where historical data is available (Experiment 3).

Experiment 6. To answer RQ4, we first evaluate the performance
gain of NExTFocus by comparing it against a state of the art,
single-location model completion approach. Specifically we com-
pare NExTFocus to the approach by Tinnes et al., called RaMc [82].

We assess how RaAMc performs when used iteratively for next fo-
cus node prediction on its own. For baselining, we use the same LLM,
slicing procedure, prompt structure, linearization format, which
represents the graph solely by edges, and the same database for
few-shot retrieval from Tinnes et al. [82]. The only, but crucial dif-
ference lies in the procedure of next focus node prediction, which is
either done by NexTFocus (our approach) or indirectly by the LLM
itself given via the source node of the suggested edge (approach
of Tinnes et al. [82]). We perform the model completion for each
data point, N times, set N = 10, and report the results for next
focus node prediction. For NExTFocus, we fix k = 1 to make the

Welter, Tinnes, and Apel

approaches comparable in this iterative scenario. Exact details on
the methods are provided in our Supplement [86].

Second, we combine NExTFocus with the single-location model
completion, RAMc [82] and further improve RAMc for the multi-
location setting, which we call RAMc’. This step is necessary be-
cause RAMCc is not designed for iterative, multi-location completion.
In particular, its edge-only linearization restricts the ability to repre-
sent jumps to new or isolated nodes in the model. As a result, when
the next focus node is not yet structurally connected to previously
completed regions, RAMc cannot represent this new node, leading
to a drop in performance in multi-location settings.

The multi-location model completion is performed iteratively,
interleaving the prediction of the next focus node (NExTFoCUS),
performing local model completion (RAMc or RaAMc’), and updating
the model under construction based on the completion result (see
Figure 2). The updated model is then passed to the next iteration.
We call the settings NExTFocus+RaMc and NexTFocus+RaMc’
and compare it against RAMc. RAMc’ is directly based on RaAMc,
but replaces the slicing procedure with radius-based slicing and
switches the graph serialization from EDGEL to JSON. The prompt
is slightly adapted accordingly, and we use a newer chat-based LLM
version (no major performance impact and better forward compara-
bility; see our Supplement [86]). The underlying database remains
unchanged. As evaluation metrics, we both report the correctness
of the next focus node and the resulting single-location model com-
pletion. We distinguish three levels of correctness for the model
completion according to Tinnes et al. [82]: format correctness, struc-
tural correctness (valid graph structure and connections), change
structure correctness (correct change types such as add, modify, or
remove), and type structure correctness (exact type and change type).
Exact details are on our Supplement [86].

5.3 Results

Experiment 1. We first focus on the overall Precision@k of NExT-
Focus for multi-location software model completion, comparing it
to the random selection, historical co-change frequency, and semantic
similarity baselines.

1.0 o Precision@k
k=1
0.8 / k=2
> : / k=3
@ k=4
é 0.6 k=5
> k=6
% k=7
504 k=8
g k=9
0.2 k=10
0.0

Random Historical Semantics NextFocus

Figure 5: Precision@k distribution of semantic similarity, historical
co-change frequency, random selection, and NExTFocus.

Figure 5 presents a comparison of all approaches for values of
k < 10. We calculate the overall mean of the precision@k values
for each approach by averaging across all k € {1,...,10}. Over-
all, NExTFocus performs best, achieving an average of 0.98. It is
followed by the semantic similarity baseline (0.25), the historical co-
change frequency baseline (0.07), and the random selection baseline

Multi-Location Software Model Completion

(0.07). We conducted one-sided Mann-Whitney U tests to assess
statistical significance. NExTFocUs significantly outperformed all
baselines at every k € {1,...,10} (p < 0.01). Among the baselines,
semantic similarity consistently outperformed both historical co-
change frequency and random selection across all k (p < 0.01). Exact
p-values are provided in our Supplement [86].

Summary Experiment 1: NExTFocuUs significantly outperforms
all baselines in terms of Precision@k (k < 10), with the highest
average precision of 0.98.

Experiment 2. In Figure 6, we show the performance of NExT-
Focus depending on the considered radius. We limit the radius
to the maximum values observed. Some of our graphs are discon-
nected, hence the value infinity for the distance (s = c0). We observe

107 g . Precision@k
‘if = _ X N) o k=1
L 2 ———§ i i
S s =—— ————— k=2
o 0.8 -
) \ g o k=3
,S —eo— k=4
S 0.6 o k=5
g o k=6
£0.4 k=7
g L § o k=8
. k=9
02 “u. k=10
- -m- p(TP)
0.0 [l L i T a P
' 2 3 4 5 6 7 8 9 ©

Radius

Figure 6: NExTFocus’s performance with regard to the maximum
radius considered

a generally negative monotonic relationship between radius and
Precision@k, with a Spearman’s correlation coefficient p ranging
from —0.19 (Precision@3) to —0.14 (Precision@1). This indicates
that absolute Precision@k slightly decreases with increasing radius.

We additionally plotted Precision@k for random guessing (Fig-
ure 6, p(TP)). For Precision@k, randomly selecting items yields an
expectation equal to the overall prevalence of positives, indepen-
dently of k. Since more nodes become candidates with increasing
radius, making it harder for the model to identify relevant nodes,
we additionally examined performance relative to random selection.
NexTFoCUs’s performance improves relative to the random selec-
tion baseline, as indicated by a positive monotonic relationship be-
tween radius and the ratio of Precision@k to the prevalence of pos-
itives. Spearman’s correlation coefficients for this ratio range from
p = 0.465 (Precision@1) to p = 0.625 (Precision@10) with p < 0.01.
Using the additive margin over chance (Precision@k — p(TP)), we
again observe a positive monotonic relationship with the radius,
Spearman’s p ranges from 0.424 (Precision@2) to 0.515 (Preci-
sion@10) (all p < 0.01).

Summary Experiment 2: We observe a slight negative mono-
tonic relationship between maximum radius of the multi-location
model completion and absolute Precision@k, but a positive mono-
tonic trend for the ratio of Precision@k to positive prevalence.

Experiment 3. We examine NExTFocus ’s average performance
across individual modeling projects, as shown in Figure 7, which de-
picts the distribution of the predictive performance. While the over-
all performance remains higher for the NexTFocus (0.58) than for

Conference’17, July 2017, Washington, DC, USA

the baselines, individual project outcomes vary, with some projects
performing notably better. A Kruskal-Wallis test confirms that
these differences are statistically significant across all k (p < 0.01).

We are particularly interested how the overall training set size
and the number of positive examples in the training influence model
performance. To visualize overall trends, we plot the relationship
between dataset train size and the number of ground truth label
equal to true and NExTFocUs’s average project Precision@k over
all k < 10, fitting a separate linear regression (Figure 8, 9). The
green dots indicate the average predictive performance per project.
To ensure a fair comparison across projects with varying candidate
set sizes, we choose k dynamically as a small fraction of the total
candidate count (e.g., k = [0.01 - candidates]). We find no statisti-
cally significant monotonic relationship between dataset train size
and average project Precision@k for all approaches (Figure 8).

Analyzing the correlation between the number of positive exam-
ples and performance (Figure 9), we find no significant trend for the
historical co-change frequency, NExTFocus, and random selection
(p > 0.05). Only semantic similarity shows a statistically significant
weak positive correlation (p = 0.35, p = 0.040) [78].

Summary Experiment 3: Performance significantly varies be-
tween different projects, but NExTFocUs still consistently outper-
forms the baselines across projects. No strong correlation is found
between train dataset size or ground truth label count in the train
dataset.

Experiment 4. In contrast to the baselines, NExTFocus showed
particularly strong performance in several scenarios, especially
where common patterns were applied. Notable cases of high pre-
dictive performance included changes that involved renaming or
replacing existing types, as well as identifier updates. One example
of such a case was replacing the enum ValidationSetType with a
new one AggregationType.

Some software model extensions also yielded strong results, ex-
amples include additions of entirely new modeling concepts, such
as the introduction of an IfStatement element to support if-then-
else branching. In total, there were three projects in which all ap-
proaches performed well due to the high probability of selecting the
correct target among the candidates. Examples with low precision
(below 0.2) include changes in the modeling hierarchy. NExTFocus
did not perform well on all changes that introduced entirely new
modeling concepts and performed worse on changes that shifted

1.0 Precision@k
k=1
08 k=2
> . k=3
G k=4
é 0.6 ‘ k=5
z A k=6
= 'R k=7
Qa A
§o4) k=8
° 4
& \ | k=9
0.2 f \ k=10
| \
0.0 L

Random Historical Semantics NextFocus

Figure 7: Distribution of average Precision@k per project for the
semantic similarity, historical co-change frequency, random selection
and NexTFocus approach.

Conference’17, July 2017, Washington, DC, USA

—— Historical
Random

0.8 —— NeuralNetwork

—— Semantics

Average Top-k Precision per Project

10° 10° 10° 10 10 10
Number of data point in the train set

Welter, Tinnes, and Apel

2
© 10 = Historical
< Random
“g{O.B —— NeuralNetwork
) —— Semantics
206 e
I L S
g | -==---"" 77 e ___
<04, - e ==
A T S
bo2| ______ee=mTT
> —T---ssa-==ITTO_
® | Cogos=-== oo ITIIIIooTssoosccmccmmmeeeooo
g [—— a a
10° 10' 10° 10° 10° 10° 10°

Number of data point in the train set

Figure 8: Average project Precision@k over k on the test set compared Figure 9: Average project Precision@k over k on the test set compared

to the total number of training data points per project.

the underlying meaning of elements, such as adding new behav-
ioral constructs or loosening attribute constraints, for example, the
introduction of a Trigger concept for event-action logic and the
removal of the uniqueness constraint from string-valued attributes.

Summary Experiment 4: NEXTFocUs excelles in scenarios with
recurring patterns but also performed well on some model exten-
sions. It is less effective for hierarchy-related changes. NExTFocus
outperformed the baseline approaches in almost all situations.

Experiment 5. Next, we analyse NExTFocUs ’s average perfor-
mance in a cross-project setting. Figure 10 shows the distribution
of predictive performance on test projects not seen during training.
Not unexpectedly, the performance decreases compared to the intra-
project setting — where training is performed on historical data
of the projects — from 0.58 to 0.36, on average (with Precision@k
ranging from 0.43 at k = 10 to 0.30 at k = 3).

1.0 Precision@k
k=1
k=2

0.8

2 k=3
n

c k=4
('D

806 k=5
2 k=6
E 0.4 k=7
o k=8
* 02 k=9

k=10
0.0
NextFocus

Figure 10: Distribution of average Precision@k per project in the
cross-project setting.

Experiment 6. We compare NExTFocus against a single-location,
state of the art model completion approach, RAMc.

We report in Table 1 correctness across projects, averaged per
project, following the same procedure as in Experiment 3 and 5,
since results are paired across approaches. Notably, NExTFocus
achieves significant higher correctness for next focus prediction
(63.94%) than RaAMc (30.18%) (Wilcoxon signed-rank test, p < 0.05).

To isolate the contribution of NExTFocUs, we compare NEXT-
Focus+RaMc and RaAMc: no significant difference is observed for
change structure correctness, and type structure correctness (p > 0.05)
but NexTFocus already achieves significantly higher structure cor-
rectness and format correctness (p < 0.05). As outlined in the experi-
mental setup (Section 5.2), RAMc was not originally designed for

to the number of training positives (label=true) per project.

iterative multi-location completion, which limits its performance
in NExTFocus+RaMc.

As a result, the improved multi-location model completion ap-
proach, NExtFocus+RaMc’, significantly outperforms the baseline
in next focus prediction, change structure, and structure correctness.

Table 1: Average correctness across projects for next focus node
prediction and single-location model completion (in %).

Next Change Type
Approach Focus Format Structure Structure Structure
RaMc 30.18 95.63 16.35 13.98 12.19
NexTFocus+RaMc 63.94 99.67 22.85 10.48 8.48
NextFocus+RaMc’ 60.33 96.12 40.68 21.31 16.11

5.4 Discussion

In a large, real-world software model, a local change can affect other
(distant) parts of the model, even if it is well-structured [7, 8, 75].
To support modelers in finding the relevant locations to change, we
propose NExTFocus for multi-location model completion. NEXT-
Focus learns co-change patterns from historical data and suggests
additional model locations to change.

RQ1. Our initial objective was to assess to what extent NEXT-
Focus can predict focus nodes for multi-location software model
completion; to this end, we trained, evaluated, and compared NEXT-
Focus against three baselines, semantic similarity, historical co-
change frequency, random selection. We found that NExTFocus con-
sistently outperformed the baselines, achieving an average score
of 0.98 over all k < 10, and performed well independently of the
number of recommendations. NExTFocus successfully learns pat-
terns from history, outperforming historical co-change frequency by
better capturing contextual semantics. While historical co-change
frequency alone is insufficient — since the same type of change can
occur in other elements of the same or different models - semantic
embeddings help identify such cases.

At the same time, learning from historical data proves to be effec-
tive, as witnessed by NExTFocus superior performance compared
to static semantic similarity alone. By including a random baseline,
we verified that the performance is not due to chance. Given the
different pattern characteristics — some involving a large number of
changes, others only very few — NExTFocus consistently predicted
relevant nodes, even when only a small number of correct nodes
needed to be identified from a large candidate set. Our approach

Multi-Location Software Model Completion

reliably suggests relevant new focus nodes, matching patterns that
were actually made by modelers in real-world settings.

RQ2. We investigated to what extent NExTFocus’s ability to pre-
dict new focus nodes depends on the distance between the predicted
nodes and the anchor node, examining whether NexTFocus can
predict both local and global next focus nodes. We found that, while
absolute performance slightly decreases with an increasing radius,
this trend was to be expected, as more nodes become candidates
and the probability of a node being a correct change node decreases.
This illustrates how the task becomes harder for NExTFocus in
distinguishing relevant from irrelevant nodes. Nevertheless, NEXT-
Focus keeps predictive performance high, even at longer graph
distances. The strong performance, independent of the distance,
may be due to the model not relying on graph connections but in-
stead focusing on semantic embeddings and historical co-changes.

RQ3. We were interested in the project-specific and pattern-
specific properties that influence the performance of NexTFocus.
While machine learning performance often depends on factors like
training set size and label distribution, we observed no correlation
with dataset size — some large datasets performed poorly, and some
small datasets yielded perfect predictions (Figure 8, green dots). This
suggests that even small projects with a few examples may have
benefited from other projects. The slight performance increase for
semantic similarity may result from datasets with more positives in
training also having more in testing, which raises the chance of cor-
rect focus nodes with similar semantic embeddings, despite the lack
of training. Overall, performance varied more with the nature of the
change pattern: NExTFocus performs well on recurring patterns
such as type replacements, likely because they appear frequently
in training and exhibit clear semantic cues. However, NExTFocus
predictive performance was lower for uncommon patterns and
hierarchy-related changes, though it still generally surpasses the
baselines. This may be due to the fact that such cases require an un-
derstanding of deeper structural context than NExTFocus provides.
Applying NExTFocuUs on projects that were unseen during training,
accounting for cases where historical data may not always be avail-
able in real-world scenarios, we observe a drop in performance,
which indicates that project-specific historical data indeed helps
in making more accurate predictions. Nevertheless, NExTFocus
is still able to leverage information from other projects to make
reasonable predictions on unseen data (e.g. 0.43 Precision@10).

RQ4. To assess how well NExTFocus supports iterative, multi-
location model completion in a realistic workflow, we first compare
NEexTFocus’ capabilities for next focus node prediction against
state of the art single-location completion, which is iteratively exe-
cuted. Notably, NExTFocus achieves 63.94% correctness compared
to 30.18% for RAMc (see Table 1). We additionally report correctness
at multiple levels following the metrics by Tinnes et al. [82]. As
RaMc does not support iteratively completing the model N times,
a drop in model completion correctness occurs compared to the val-
ues stated in the work by Tinnes et al. [82]. More specifically, RAMc,
does not support jumping to new focus nodes in the model due to
the edge-only linearization (EDGEL format). The improved version,
NexTFocus+RaMCc’, however, archives higher correctness, even in
an iterative setting with N = 10 (e.g. 40.68% structure correctness).

Conference’17, July 2017, Washington, DC, USA

5.5 Threats to Validity

With regard to internal validity, our evaluation relies on noisy his-
torical commit data, performed by modelers in real-world scenar-
ios, which, in some cases, may include unrelated or tool-generated
changes from EMF; for example, our manual analysis revealed
three commits for which it was unclear whether the multi-location
changes were conceptually related or simply co-occurred in the
same commit by coincidence. Additionally, the overall differences
between modeling projects sizes can influence the overall perfor-
mance, since bigger projects may dominate the performance. This
is exactly why we conducted Experiment 3, which confirmed that
NEexTFocuUs consistently outperforms the baselines across projects.
With regard to external validity, we cannot claim transferability
to all domains. However, the inclusion of 32 real-world, diverse,
open-source modeling projects, with multi-location changes that
have been performed by modelers in the real-world, provides strong
evidence for the generalizability of our findings. The lack of further
publicly available datasets currently hinders the extension of our
evaluation on more data [17, 58, 67, 82]. Due to the inherent struc-
ture of commit histories (see Section 5.2) and the need for manual
semantic analysis, we limited the evaluation to one multi-location
pattern per project — specifically, the most recent one. While this
restriction was necessary for manual investigation, future work
shall explore earlier versions of the model histories by shifting the
train-test split toward older commits. For multi-location comple-
tion, we partially reimplemented the approach by Tinnes et al. [82]
and acknowledge possible minor deviations from the original.

6 CONCLUSION AND FUTURE WORK

Software models often grow large and complex, undergoing thou-
sands of changes through evolution, refactoring, and maintenance.
With the rise of LLMs, new possibilities have opened up in the soft-
ware modeling domain. While recent approaches support single-
location model completion, we aim to extend this setting to multi-
location model completion by proposing NexTFocus. It consists
of a node embedding mechanism, an attention-based neural net-
work, and a ranking system. NExTFocus achieves promising re-
sults for multi-location model completion, even when changes are
largely spread across the model. NExTFocus significantly outper-
forms the baselines: random selection, semantic similarity, historical
co-change frequency, which reflect concepts common in similar do-
mains [2, 3, 16, 34, 43-45, 59, 92]. NExTFocus excelled in scenarios
with recurring change patterns and also performed well on some
model extensions. However, its performance was lower for less
common patterns and hierarchy-related changes. NExTFocus bene-
fits from project-specific historical data; however, if such data is not
available, it can still make use of information from other projects
to perform reasonably in cross-project settings. Finally, combining
NexTFocus with single-location completion enables effective itera-
tive, multi-location model completion, achieving 63.94% next focus
node correctness.

7 DATA AVAILABILITY

We provide the data and Python code for NExTFocus as well the
baselines in our Supplement [86], including training and evaluation
scripts to reproduce our analysis.

Conference’17, July 2017, Washington, DC, USA

REFERENCES

(1]

A

=
0

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Bhisma Adhikari, Eric J Rapos, and Matthew Stephan. 2024. SimIMA: a virtual
Simulink intelligent modeling assistant: Simulink intelligent modeling assistance
through machine learning and model clones. Software and Systems Modeling 23,
1(2024), 29-56.

Henning Agt-Rickauer, Ralf-Detlef Kutsche, and Harald Sack. 2018. DoMoRe-a
recommender system for domain modeling. In Proceedings of the International
Conference on Model-Driven Engineering and Software Development, Vol. 1. Settbal:
SciTePress, 71-82.

Henning Agt-Rickauer, Ralf-Detlef Kutsche, and Harald Sack. 2019. Automated
recommendation of related model elements for domain models. In Model-Driven
Engineering and Software Development: 6th International Conference, MODEL-
SWARD 2018, Funchal, Madeira, Portugal, January 22-24, 2018, Revised Selected
Papers 6. Springer, 134-158.

Lissette Almonte, Esther Guerra, Ivan Cantador, and Juan de Lara. 2024. Engineer-
ing recommender systems for modelling languages: concept, tool and evaluation.
Empirical Software Engineering 29, 4 (2024), 102.

Sajid Anwer, Lian Wen, Shaoyang Zhang, Zhe Wang, and Yong Sun. 2024. BECIA:
abehaviour engineering-based approach for change impact analysis. International
Journal of Information Technology 16, 1 (2024), 159-168.

Sven Apel, Don Batory, Christian Kastner, and Gunter Saake. 2013. Feature-
oriented software product lines. Springer.

Sven Apel and DeLesley Hutchins. 2010. A Calculus for Uniform Feature Com-
position. ACM Transactions on Programming Languages and Systems 32, 5 (2010),
19.

Sven Apel, Christian Kastner, and Christian Lengauer. 2011. Language-
independent and automated software composition: The FeatureHouse experience.
IEEE Transactions on Software Engineering 39, 1 (2011), 63-79.

Afef Awadid and Rémi Boyer. 2023. Supporting Change Impact Analysis in
System Architecture Design: Towards a Domain-Specific Modeling Method. In
11th International Conference on Model-Based Software and Systems Engineering
(MODELSWARD).

Ramakrishna Bairi, Atharv Sonwane, Aditya Kanade, Arun Iyer, Suresh
Parthasarathy, Sriram Rajamani, B Ashok, and Shashank Shet. 2024. Codeplan:
Repository-level coding using llms and planning. Proceedings of the ACM on
Software Engineering 1, FSE (2024), 675-698.

Angela Barriga, Rogardt Heldal, Adrian Rutle, and Ludovico Iovino. 2022. PAR-
MOREL: a framework for customizable model repair. Software and Systems
Modeling 21, 5 (2022), 1739-1762.

Angela Barriga, Adrian Rutle, and Rogardt Heldal. 2019. Personalized and au-
tomatic model repairing using reinforcement learning. In 2019 ACM/IEEE 22nd
International Conference on Model Driven Engineering Languages and Systems
Companion (MODELS-C). IEEE, 175-181.

Angela Barriga, Adrian Rutle, and Rogardt Heldal. 2022. Al-powered model repair:
an experience report—lessons learned, challenges, and opportunities. Software
and Systems Modeling 21, 3 (2022), 1135-1157.

Lionel C Briand, Yvan Labiche, and Leeshawn O’Sullivan. 2003. Impact analysis
and change management of UML models. In International Conference on Software
Maintenance, 2003. ICSM 2003. Proceedings. IEEE, 256-265.

Cédric Brun and Alfonso Pierantonio. 2008. Model differences in the eclipse mod-
eling framework. UPGRADE, The European Journal for the Informatics Professional
9, 2 (2008), 29-34.

Loli Burgueiio, Robert Clariso, Sébastien Gérard, Shuai Li, and Jordi Cabot. 2021.
An NLP-based architecture for the autocompletion of partial domain models.
In Proceedings of the International Conference on Advanced Information Systems
Engineering. Springer, 91-106. doi:10.1007/978-3-030-79382-1_6

Lola Burguefio, Davide Di Ruscio, Houari Sahraoui, and Manuel Wimmer. 2025.
Automation in Model-Driven Engineering: A look back, and ahead. ACM Trans-
actions on Software Engineering and Methodology (2025).

[18] Javier Camara, Javier Troya, Lola Burguefio, and Antonio Vallecillo. 2023. On

[19]

[20]

[21]

[22

the assessment of generative Al in modeling tasks: an experience report with
ChatGPT and UML. Software and Systems Modeling 22, 3 (2023), 781-793.
Thibaut Capuano, Houari A Sahraoui, Benoit Frenay, and Benoit Vanderose. 2022.
Learning from Code Repositories to Recommend Model Classes. J. Object Technol.
21, 3 (2022), 3-1.

Meriem Ben Chaaben, Lola Burgueiio, Istvan David, and Houari Sahraoui. 2024.
On the Utility of Domain Modeling Assistance with Large Language Models.
arXiv preprint arXiv:2410.12577 (2024).

Meriem Ben Chaaben, Lola Burguefio, and Houari Sahraoui. 2023. Towards using
few-shot prompt learning for automating model completion. In Proceedings of
the International Conference on Software Engineering: New Ideas and Emerging
Results (ICSE-NIER). IEEE, 7-12.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira
Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman,
et al. 2021. Evaluating large language models trained on code. arXiv preprint
(2021). doi:10.48550/arXiv.2107.03374

[23

[24

[25]

[26

[27

[28

[29

[30

w
=

[32

[33

(34]

&
2

[36

[37

[38

[39

[40

[41

[42

[43

[44

[45

[46

Welter, Tinnes, and Apel

Valerie Chen, Alan Zhu, Sebastian Zhao, Hussein Mozannar, David Sontag, and
Ameet Talwalkar. 2025. Need Help? Designing Proactive Al Assistants for Pro-
gramming. In Proceedings of the 2025 CHI Conference on Human Factors in Com-
puting Systems. 1-18.

Antonio Cicchetti, Davide Di Ruscio, Romina Eramo, and Alfonso Pierantonio.
2008. Meta-model differences for supporting model co-evolution. In Proceedings
of the 2nd Workshop on Model-Driven Software Evolution-MODSE, Vol. 1.

Aaron Conrardy and Jordi Cabot. 2024. From image to uml: first results of image
based uml diagram generation using llms. arXiv preprint arXiv:2404.11376 (2024).
Carlos Dura Costa, José Antonio Hernandez Lopez, and Jests Sanchez Cuadrado.
2024. ModelMate: A recommender for textual modeling languages based on
pre-trained language models. In Proceedings of the ACM/IEEE 27th International
Conference on Model Driven Engineering Languages and Systems. 183-194.
Shuiguang Deng, Dongjing Wang, Ying Li, Bin Cao, Jianwei Yin, Zhaohui Wu, and
Mengchu Zhou. 2016. A recommendation system to facilitate business process
modeling. IEEE transactions on cybernetics 47, 6 (2016), 1380-1394.

Juri Di Rocco, Davide Di Ruscio, Claudio Di Sipio, Phuong T Nguyen, and Alfonso
Pierantonio. 2023. MemoRec: a recommender system for assisting modelers in
specifying metamodels. Software and Systems Modeling 22, 1 (2023), 203-223.
Juri Di Rocco, Davide Di Ruscio, Claudio Di Sipio, Phuong T Nguyen, and Riccardo
Rubei. 2025. On the use of large language models in model-driven engineering: J.
Di Rocco et al. Software and Systems Modeling 24, 3 (2025), 923-948.

Juri Di Rocco, Claudio Di Sipio, Phuong T Nguyen, Davide Di Ruscio, and Alfonso
Pierantonio. 2022. Finding with nemo: a recommender system to forecast the
next modeling operations. In Proceedings of the 25th International Conference on
Model Driven Engineering Languages and Systems. 154-164.

Claudio Di Sipio, Juri Di Rocco, Davide Di Ruscio, and Phuong T Nguyen. 2023.
MORGAN: a modeling recommender system based on graph kernel. Software
and Systems Modeling (2023), 1-23.

Marc Eaddy, Thomas Zimmermann, Kaitlin D Sherwood, Vibhav Garg, Gail C
Murphy, Nachiappan Nagappan, and Alfred V Aho. 2008. Do crosscutting con-
cerns cause defects? IEEE transactions on Software Engineering 34, 4 (2008),
497-515.

Tobias Eisenreich, Sandro Speth, and Stefan Wagner. 2024. From requirements to
architecture: An ai-based journey to semi-automatically generate software archi-
tectures. In Proceedings of the 1st International Workshop on Designing Software.
52-55.

Akil Elkamel, Mariem Gzara, and Hanéne Ben-Abdallah. 2016. An UML class
recommender system for software design. In Proceedings of the International
Conference of Computer Systems and Applications (AICCSA). IEEE, 1-8.

Robert France and Bernhard Rumpe. 2007. Model-driven development of complex
software: A research roadmap. In Future of Software Engineering (FOSE07). IEEE,
37-54.

Dominik Fuchf3, Tobias Hey, Jan Keim, Haoyu Liu, Niklas Ewald, Tobias Thirolf,
and Anne Koziolek. 2025. LiSSA: toward generic traceability link recovery
through retrieval-augmented generation. In Proceedings of the IEEE/ACM 47th
International Conference on Software Engineering. ICSE, Vol. 25.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep Learning. MIT
Press. http://www.deeplearningbook.org.

Markus Herrmannsdoerfer, Sebastian Benz, and Elmar Juergens. 2008. Automata-
bility of coupled evolution of metamodels and models in practice. In International
conference on model driven engineering languages and systems. Springer, 645-659.
Yang Hong, Chakkrit Tantithamthavorn, Patanamon Thongtanunam, and Aldeida
Aleti. 2024. Don’t forget to change these functions! recommending co-changed
functions in modern code review. Information and Software Technology 176 (2024),
107547.

Ludovico Iovino, Angela Barriga, Adrian Rutle, Rogardt Heldal, et al. 2020. Model
repair with quality-based reinforcement learning. Journal of Object Technology
19, 2 (2020).

Maliheh Izadi and Matin Nili Ahmadabadi. 2022. On the evaluation of NLP-based
models for software engineering. In Proceedings of the 1st International Workshop
on Natural Language-based Software Engineering. 48-50.

Fehmi Jaafar, Yann-Gaél Guéhéneuc, Sylvie Hamel, and Giuliano Antoniol. 2011.
An exploratory study of macro co-changes. In 2011 18th Working Conference on
Reverse Engineering. IEEE, 325-334.

Zijian Jiang, Hao Zhong, and Na Meng. 2021. Investigating and recommending
co-changed entities for JavaScript programs. Journal of Systems and Software 180
(2021), 111027.

Huzefa Kagdi, Malcom Gethers, and Denys Poshyvanyk. 2013. Integrating con-
ceptual and logical couplings for change impact analysis in software. Empirical
Software Engineering 18 (2013), 933-969.

Dhikra Kchaou, Nadia Bouassida, and Hanéne Ben-Abdallah. 2017. UML models
change impact analysis using a text similarity technique. IET Software 11, 1
(2017), 27-37.

Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Lopes,
Jean-Marc Loingtier, and John Irwin. 1997. Aspect-oriented programming. In
ECOOP’97—O0bject-Oriented Programming: 11th European Conference Jyviskyld,
Finland, June 9-13, 1997 Proceedings 11. Springer, 220-242.

https://doi.org/10.1007/978-3-030-79382-1_6
https://doi.org/10.48550/arXiv.2107.03374
http://www.deeplearningbook.org

Multi-Location Software Model Completion

[47] Stefan Kogel. 2017. Recommender system for model driven software develop-
ment. In Proceedings of the 2017 11th Joint Meeting on Foundations of Software
Engineering. 1026-1029.

[48] Stefan Kogel, Raffaela Groner, and Matthias Tichy. 2016. Automatic Change

Recommendation of Models and Meta Models Based on Change Histories.. In
ME@ MoDELS. 14-19.

[49] Roland Kretschmer, Djamel Eddine Khelladi, Roberto Erick Lopez-Herrejon, and
Alexander Egyed. 2021. Consistent change propagation within models. Software
and Systems Modeling 20, 2 (2021), 539-555.

[50] Tobias Kuschke and Patrick Mader. 2017. RapMOD—In Situ Auto-Completion
for Graphical Models. In Proceedings of the International Conference on Software
Engineering (ICSE): Companion Proceedings. IEEE, 303-304.

[51] Tobias Kuschke, Patrick Mader, and Patrick Rempel. 2013. Recommending auto-

completions for software modeling activities. In International conference on model
driven engineering languages and systems. Springer, 170-186.

[52] Alexander Lauer, Jens Kosiol, and Gabriele Taentzer. 2023. Empowering model re-
pair: a rule-based approach to graph repair without side effects. In 2023 ACM/IEEE
International Conference on Model Driven Engineering Languages and Systems
Companion (MODELS-C). IEEE, 831-840.

[53] Bixin Li, Xiaobing Sun, Hareton Leung, and Sai Zhang. 2013. A survey of code-
based change impact analysis techniques. Software Testing, Verification and
Reliability 23, 8 (2013), 613-646.

[54] Ying Li, Bin Cao, Lida Xu, Jianwei Yin, Shuiguang Deng, Yuyu Yin, and Zhaohui

Wu. 2013. An efficient recommendation method for improving business process
modeling. IEEE Transactions on Industrial Informatics 10, 1 (2013), 502-513.

[55] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollar. 2017.

Focal loss for dense object detection. In Proceedings of the IEEE international

conference on computer vision. 2980-2988.

Haoyu Liu, Yunwei Dong, Qiao Ke, and Zhiyang Zhou. 2024. ReCo: A Modular

Neural Framework for Automatically Recommending Connections in Software

Models. In 2024 IEEE International Conference on Software Analysis, Evolution and

Reengineering (SANER). IEEE, 637-648.

[57] Junwei Liu, Yixuan Chen, Mingwei Liu, Xin Peng, and Yiling Lou. 2024. Stall+:
Boosting llm-based repository-level code completion with static analysis. arXiv
preprint arXiv:2406.10018 (2024).

[58] José Antonio Hernandez Lopez, Javier Luis Canovas Izquierdo, and Jesus Sanchez
Cuadrado. 2022. Modelset: a dataset for machine learning in model-driven
engineering. Software and Systems Modeling (2022), 1-20.

[59] José Antonio Hernandez Lopez, Carlos Dur4, and Jests Sanchez Cuadrado. 2023.
Word embeddings for model-driven engineering. In 2023 ACM/IEEE 26th Interna-
tional Conference on Model Driven Engineering Languages and Systems (MODELS).
IEEE, 151-161.

[60] José Antonio Hernandez Lopez, Maté Foldiak, and Daniel Varro. 2024. Text2vql:
teaching a model query language to open-source language models with ChatGPT.
In Proceedings of the ACM/IEEE 27th International Conference on Model Driven
Engineering Languages and Systems. 13-24.

[61] José Antonio Hernandez Lopez, Riccardo Rubei, Jestis Sanchez Cuadrado, and
Davide Di Ruscio. 2022. Machine learning methods for model classification: a
comparative study. In Proceedings of the 25th International Conference on Model
Driven Engineering Languages and Systems. 165-175.

[62] Nuno Macedo, Tiago Jorge, and Alcino Cunha. 2016. A feature-based classification
of model repair approaches. IEEE Transactions on Software Engineering 43, 7
(2016), 615-640.

[63] Bennett Mackenzie, Vera Pantelic, Gordon Marks, Stephen Wynn-Williams,
Gehan Selim, Mark Lawford, Alan Wassyng, Moustapha Diab, and Feisel Weslati.
2020. Change impact analysis in simulink designs of embedded systems. In
Proceedings of the 28th ACM Joint Meeting on European Software Engineering Con-
ference and Symposium on the Foundations of Software Engineering. 1274-1284.

[64] Luciano Marchezan, Roland Kretschmer, Wesley KG Assungéo, Alexander Reder,

and Alexander Egyed. 2023. Generating repairs for inconsistent models. Software

and Systems Modeling 22, 1 (2023), 297-329.

Duncan McElfresh, Sujay Khandagale, Jonathan Valverde, John Dickerson, and

Colin White. 2022. On the generalizability and predictability of recommender

systems. Advances in Neural Information Processing Systems 35 (2022), 4416-4432.

[66] Tom Mens, Ragnhild Van Der Straeten, and Maja D’Hondt. 2006. Detecting and
resolving model inconsistencies using transformation dependency analysis. In
International Conference on Model Driven Engineering Languages and Systems.
Springer, 200-214.

[67] Vittoriano Muttillo, Claudio Di Sipio, Riccardo Rubei, Luca Berardinelli, and
MohammadHadi Dehghani. 2024. Towards Synthetic Trace Generation of Mod-
eling Operations using In-Context Learning Approach. In Proceedings of the 39th
IEEE/ACM International Conference on Automated Software Engineering. 619-630.

[68] Patrick Mader, Tobias Kuschke, and Mario Janke. 2021. Reactive Auto-Completion

of Modeling Activities. Transactions on Software Engineering 47, 7 (2021), 1431—

1451. doi:10.1109/TSE.2019.2924886

Nebras Nassar, Hendrik Radke, and Thorsten Arendt. 2017. Rule-based repair of

EMF models: An automated interactive approach. In International conference on

theory and practice of model transformations. Springer, 171-181.

[56

[65

[69

[70

[71

[72

k=
&

(74

[75

[76

[77

<
&

[79

[80

[81

%0
&,

[83

(84

(85

[86

[87

[88

Conference’17, July 2017, Washington, DC, USA

Manuel Ohrndorf, Christopher Pietsch, Udo Kelter, Lars Grunske, and Timo
Kehrer. 2021. History-Based Model Repair Recommendations. Transactions of
Software Engineering Methodology 30, 2, Article 15 (2021). doi:10.1145/3419017
Manuel Ohrndorf, Christopher Pietsch, Udo Kelter, and Timo Kehrer. 2018. ReVi-
sion: A tool for history-based model repair recommendations. In Proceedings of the
International Conference on Software Engineering (ICSE): Companion Proceedings.
ACM, 105-108. doi:10.1145/3419017

Siru Ouyang, Wenhao Yu, Kaixin Ma, Zilin Xiao, Zhihan Zhang, Mengzhao Jia,
Jiawei Han, Hongming Zhang, and Dong Yu. 2024. RepoGraph: Enhancing
Al Software Engineering with Repository-level Code Graph. arXiv preprint
arXiv:2410.14684 (2024).

Debalina Ghosh Paul, Hong Zhu, and Ian Bayley. 2024. Benchmarks and Metrics
for Evaluations of Code Generation: A Critical Review. In 2024 IEEE International
Conference on Artificial Intelligence Testing (AlTest). IEEE, 87-94.

Huy N Phan, Hoang N Phan, Tien N Nguyen, and Nghi DQ Bui. 2024. Repo-
Hyper: Search-Expand-Refine on Semantic Graphs for Repository-Level Code
Completion. arXiv preprint arXiv:2403.06095 (2024).

Awais Rashid, Jean-Claude Royer, and Andreas Rummler. 2011. Aspect-oriented,
model-driven software product lines: The AMPLE way. Cambridge University
Press.

Alexander Reder and Alexander Egyed. 2012. Computing repair trees for re-
solving inconsistencies in design models. In Proceedings of the 27th IEEE/ACM
International Conference on Automated Software Engineering. 220-229.
Deepjyoti Roy and Mala Dutta. 2022. A systematic review and research perspec-
tive on recommender systems. Journal of Big Data 9, 1 (2022), 59.

Patrick Schober, Christa Boer, and Lothar A Schwarte. 2018. Correlation coeffi-
cients: appropriate use and interpretation. Anesthesia & analgesia 126, 5 (2018),
1763-1768.

Yan-Martin Tamm, Rinchin Damdinov, and Alexey Vasilev. 2021. Quality metrics
in recommender systems: Do we calculate metrics consistently?. In Proceedings
of the 15th ACM conference on recommender systems. 708-713.

Christof Tinnes, Timo Kehrer, Mitchell Joblin, Uwe Hohenstein, Andreas Bies-
dorf, and Sven Apel. 2023. Mining domain-specific edit operations from model
repositories with applications to semantic lifting of model differences and change
profiling. Automated Software Engineering 30, 2 (2023), 17.

Christof Tinnes, Wolfgang Réssler, Uwe Hohenstein, Torsten Kithn, Andreas
Biesdorf, and Sven Apel. 2022. Sometimes you have to treat the symptoms:
tackling model drift in an industrial clone-and-own software product line. In
Proceedings of the 30th ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering. 1355-1366.

Christof Tinnes, Alisa Welter, and Sven Apel. 2025. Software Model Evolution
with Large Language Models: Experiments on Simulated, Public, and Industrial
Datasets. In 2025 IEEE/ACM 47th International Conference on Software Engineering
(ICSE). 950-962. doi:10.1109/ICSE55347.2025.00112

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing systems 30 (2017).

Kaixin Wang, Tianlin Li, Xiaoyu Zhang, Chong Wang, Weisong Sun, Yang Liu,
and Bin Shi. 2025. Software Development Life Cycle Perspective: A Survey
of Benchmarks for Code Large Language Models and Agents. arXiv preprint
arXiv:2505.05283 (2025).

Yuxiang Wei, Chungiu Steven Xia, and Lingming Zhang. 2023. Copiloting the
copilots: Fusing large language models with completion engines for automated
program repair. In Proceedings of the 31st ACM Joint European Software Engi-
neering Conference and Symposium on the Foundations of Software Engineering.
172-184.

Welter, Alisa and Tinnes, Christof and Apel, Sven. 2026. Supplementary Website.
https://github.com/se- sic/modelcompletion_multilocations. Accessed: 5 January
2026.

Martin Weyssow, Houari Sahraoui, and Eugene Syriani. 2022. Recommending
metamodel concepts during modeling activities with pre-trained language models.
Software and Systems Modeling 21, 3 (2022), 1071-1089. doi:10.1007/s10270-022-
00975-5

Boyang Yang, Haoye Tian, Jiadong Ren, Hongyu Zhang, Jacques Klein,
Tegawendé F Bissyandé, Claire Le Goues, and Shunfu Jin. 2024. Multi-
objective fine-tuning for enhanced program repair with llms. arXiv preprint
arXiv:2404.12636 (2024).

He Ye and Martin Monperrus. 2024. Iter: Iterative neural repair for multi-location
patches. In Proceedings of the 46th IEEE/ACM International Conference on Software
Engineering. 1-13.

Alfa Yohannis. 2020. Change-Based Model Differencing and Conflict Detection.
Ph. D. Dissertation. University of York.

Daihong Zhou, Yijian Wu, Xin Peng, Jiyue Zhang, and Ziliang Li. 2024. Revealing
code change propagation channels by evolution history mining. Journal of
Systems and Software 208 (2024), 111912.

Thomas Zimmermann, Andreas Zeller, Peter Weissgerber, and Stephan Diehl.
2005. Mining version histories to guide software changes. IEEE Transactions on
software engineering 31, 6 (2005), 429-445.

https://doi.org/10.1109/TSE.2019.2924886
https://doi.org/10.1145/3419017
https://doi.org/10.1145/3419017
https://doi.org/10.1109/ICSE55347.2025.00112
https://github.com/se-sic/modelcompletion_multilocations
https://doi.org/10.1007/s10270-022-00975-5
https://doi.org/10.1007/s10270-022-00975-5

	Abstract
	1 Introduction
	2 Related Work
	2.1 Model Completion (with LLMs)
	2.2 Supporting Other Modeling Activities
	2.3 Code Completion and Repair

	3 Preliminaries
	3.1 Software Model Completion
	3.2 Machine Learning

	4 Approach
	4.1 Concepts
	4.2 Workflow
	4.3 Data Preparation
	4.4 Training Phase
	4.5 Inference Phase

	5 Evaluation
	5.1 Research Questions
	5.2 Experiment Setup
	5.3 Results
	5.4 Discussion
	5.5 Threats to Validity

	6 Conclusion and Future Work
	7 Data Availability
	References

