Object Disorientation

Marvin Wyrich, Saarland University, Saarland Informatics Campus, Germany
Johannes C. Hofmeister, Heidelberg University, Germany
Sven Apel, Saarland University, Saarland Informatics Campus, Germany

Janet Siegmund, Chemnitz University of Technology, Germany

Abstract—Despite its longstanding history, object-oriented programming (OOP)
remains a cornerstone of modern software development. While everyone

seems to have an idea of what OOP means, it is surprisingly challenging to
operationalize key concepts of OOP due to its widespread but varied perceptions.
This makes it difficult for researchers to investigate the paradigm, difficult

for practitioners to select suitable technologies, and complicates students’ transfer
of OOP knowledge across programming languages. Our study aimed to uncover

the essence of OOP—its fundamental ideas, concepts, and principles—through

a scoping review of prominent views in both academic publications

and non-academic sources, such as industry reports or practitioner blogs.

In the end, we synthesized two conceptual lines within OOP: understanding “why”
and “how” the paradigm is used. Our synthesis reveals they are complementary
yet often misunderstood as separate perspectives. Addressing this disconnect is
crucial for fostering clearer communication and effective use of OOP in practice.

hances are good that most readers have

heard of object-oriented programming (OOP).

After all, the paradigm predates many of the
programming languages currently in use. And even if
OOP may no longer be a trendy topic discussed in tech
magazines, it remains a significant part of everyday life
for many developers. For example, most modern pro-
gramming languages provide object-oriented features,
such as objects, interfaces, classes, and inheritance. In
2013, Jonathan Aldrich even went so far to call objects
“inevitable” [1].

Proponents of OOP often claim that the reason for
OOP’s success is best explained by its intuitiveness
or naturalness [2], because one would think in terms
of categories, much like one would categorize animals
or plants [3]. While OOP is a dominant paradigm, not
everybody agrees that OOP is actually the best way to
write programs. Some developers may say that OOP
can quickly lead to over-engineered solutions, requires
a lot of distracting, unnecessary code to describe
simple concepts, and thus may lead to complicated
solutions that are big, bloated, and difficult to maintain.

XXXX-XXX © 2025 IEEE
Digital Object Identifier 10.1109/XXX.0000.0000000

February

Published by the IEEE Computer Society

Given these differing perspectives, it becomes im-
portant to take a scientific approach to the matter
and empirically investigate the positive and negative
effects of using different paradigms. The only prob-
lem is that we do not really know what distinguishes
object-oriented code from code that follows a different
paradigm. If we wanted to compare, for example, how
the approach of a developer differs between OOP and
a different programming paradigm, we would fail due
to a lack of clear distinction between them.

In the 1970s, object-oriented ideas grew quickly
and were adopted by many programming-language
designers. Yet, some were critical of this fast growth:
Despite OOP’s success story, in 1982, ten years after
the term “object-oriented programming” first appeared
in the context of Smalltalk 72, Tim Rentsch expressed
his confusion: “What is object oriented programming?
My guess is that object oriented programming will be
in the 1980’s what structured programming was in the
1970’s. Everyone will be in favor of it. Every manufac-
turer will promote its products as supporting it. Every
manager will pay lip service to it. Every programmer
will practice it (differently). And no one will know just
what it is” [4].

Today, the term “object-oriented” can indeed be
found in many areas of programming and software en-

IEEE Software

gineering. Mainstream programming languages, such
as Java, C#, C++, JavaScript, Python, and Rust, sup-
port object-oriented features, and so do languages
dedicated to modeling and analysis (e.g., UML and
Alloy). The object-oriented paradigm has influenced
both research and practice: Researchers have been
exploring the ideas behind the paradigm, such as its
formal semantics, or metrics to estimate development
costs. Software engineers are routinely using object-
oriented languages for analysis, design, and imple-
mentation. And students learn about OOP in program-
ming courses. In short, the object-oriented paradigm is
unavoidable and affects large parts of a programmer’s
reality.

Yet, the programming community is still as con-
fused by different notions of anything “object-oriented”
as Rentsch was over 40 years ago. It looks like
Rentsch’s statement still holds true today: There are
many interpretations of the object-oriented paradigm,
but there is no canonical agreement on what it means
precisely. This may have been advantageous for the
successful spread of the abstract concept that OOP
is, but this disagreement also leads to some concrete
challenges.

1) Researchers cannot meaningfully investigate the
subject. Without a clear definition of what object
orientation is, there is no (easy) way to distinguish
it from other paradigms. This renders the subject
difficult to research and makes it almost impossi-
ble to demonstrate its value as a whole or in part.

2) Practitioners struggle to assess and select tech-
nologies, such as specific programming languages
or frameworks, in an informed manner. Since
software supports businesses in achieving their
economic goals, any new technology must be
evaluated to estimate its potential impact on costs.
Without a clear definition of OOP, it is impossible
to accurately evaluate the costs associated with a
technology, such as employee training expenses.

3) Students who are learning to program in an object-
oriented language may encounter difficulties when
transferring object-oriented concepts from one
language to another because it may not be clear
what the object-oriented concepts are or how they
work, independent of the programming language.

When there is no clarity on what we mean when
we use the term “object-oriented”, we may risk talking
past each other, potentially slowing down research,
practice, and learning efforts. If there was a clear
definition of OOP, implementation details would not be
open to the interpretation of programming-language
designers, and informed choices could be made about
technologies. In this essay, we go to the bottom of the

Obiject Disorientation

diversity of notions and concepts of object orientation,
specifically focusing on its role within programming
languages, and discuss implications for researchers,
practitioners, and students to improve the current situ-
ation of “object disorientation”. While object orientation
is also applied in other areas of software engineering,
such as requirement analysis, we limit our discussion
here to its interpretation within the context of program-
ming languages. Specifically, we are looking for an
answer to the following research question: What are
the differences and similarities between authorita-
tive definitions of the object-oriented programming
paradigm?

To address our research question, we conducted a
scoping review to create a thorough understanding of
object orientation. Such scoping review is a form of
systematic literature review “to understand the status
of research on a particular topic, typically by mapping
primary studies into categories” [5].

Our search strategy was a pure snowballing ap-
proach, motivated by evidence that snowballing is
similarly effective as and usually more efficient than
database searches. As the starting point for our scop-
ing review, we selected Aldrich’s Onward! 2013 essay
“The Power of Interoperability: Why Objects Are In-
evitable” [1]. We started with this essay because we
kept coming back to this article in discussions about
object orientation with members of our groups and
beyond. Furthermore, this article is often mentioned
in blogs about object orientation.” This essay led to
some highly cited papers and eventually to the 24 pub-
lications that we included in our scoping review. At this
point, we have extracted the similarities and differences
in understanding object-oriented programming, and
have reached information saturation in consideration
of our research question.

TWO PERSPECTIVES ON OBJECT
ORIENTATION

During our search for authoritative definitions of object-
oriented, we discovered that many different interpre-
tations exist. They can be roughly grouped along
two conceptual lines, which West calls the formalist

Just to mention two:
http://lambda-the-ultimate.org/node/4790/
https://www.bcobb.net/hacker-school-read-along-the-power-
of-interoperability/

February 2025

http://lambda-the-ultimate.org/node/4790/
https://www.bcobb.net/hacker-school-read-along-the-power-of-interoperability/
https://www.bcobb.net/hacker-school-read-along-the-power-of-interoperability/

and the hermeneutic interpretation [6]. Hermeneutics,
broadly defined as the theory of interpretation and
comprehending the world, focuses on understanding
why certain concepts are used and how they relate
to human needs and contexts. Applied to the sub-
ject at hand, the hermeneutic interpretation of OOP
emphasizes understanding the rationale behind us-
ing objects—such as reuse, modularity, or problem
decomposition—and how these properties align with
the broader goal of managing complexity in programs.
By contrast, “formalistic” in linguistics refers to a set
of production rules, and within this frame, objects
and object-oriented systems are discussed in terms of
their technical features. The formalist view strives for
correctness and verifiability, whereas the hermeneutic
view strives for meaning and plausibility.

We start discussing the differences between the
formalist and hermeneutic perspective with a quote
from Jonathan Aldrich: “The key design leverage pro-
vided by objects is the ability to define nontrivial
abstractions that are modularly extensible, where in-
stances of those extensions can interoperate in a first-
class way” [1].

In his essay, Aldrich argues for the empirical suc-
cess of objects and object-oriented programming. He
raises the question: Given that objects are essentially
procedural data structures, what explains their evident
success today? Aldrich reasons that objects are exten-
sible abstractions, which he calls service abstractions.

Aldrich builds on the work of Cook, which contrasts
objects with abstract data types (ADTs) [7]. ADTs
provide an implementation-independent definition of a
data type, specifying its behavior through the opera-
tions it supports. Objects and ADTs are not the same,
and while objects are more extensible than ADTs,
ADTs are easier to verify than objects. He points out
that most modern programming languages provide a
mixture of ADTs and objects, with some using classes
as static types, while others use classes as object
factories and use interfaces as static types instead.

Cook points back to Cardelli and Wegner [8] and
outlines that their article “On Understanding Types,
Data Abstraction, and Polymorphism” initiated a lot
of research on the semantics of object-oriented pro-
gramming. The astonishing number of more than 3000
citations supports this claim. Aldrich, Cook, as well as
Cardelli and Wegner discuss formal aspects of OOP,
and describe OOP as the sum of three parts (“object-
oriented = data abstractions + object types + type
inheritance” [8]), thus adopting a formalist perspective.

The hermeneutic perspective is represented by
Alan Kay, who is considered the inventor of the term
object-oriented. Kay’s essay on “The Early History of

February 2025

Smalltalk” is cited by Aldrich [1], but fragments of Kay’s
ideas are commonly mentioned in popular sources
over the Web and point to e-mails that have been
sent to various individual recipients and to mailing lists
([9], [10], [11]). Kay’s ideas are in stark contrast to
the ideas of the formalist line, as the following quote
from his essay demonstrates: “Smalltalk’s design — and
existence — is due to the insight that everything we
describe can be represented by the recursive compo-
sition of a single kind of behavioral building block that
hides its combination of state and process inside itself
and can be dealt with only through the exchange of
messages” [10].

Kay’s ideas are associated with the hermeneutic
view, while Aldrich, Cook, as well as Cardelli and
Wegner are prototypical for formalist views2. The for-
malist line focuses on technical features that define or
categorize what object-oriented programming is and
how it can be implemented (e.g., classes, inheritance),
whereas the hermeneutic line emphasizes the prob-
lems that these features are addressing (e.g., im-
prove understanding and maintenance efforts). In other
words, the first line focuses on how to apply the object-
oriented paradigm, while the second focuses on why
it should be applied.

HOW AND WHY IS OBJECT ORIENTATION
USED?

For a brief overview, we have summarized the two
conceptual views with their respective focus on specific
components in Figure 1. Our basic assumption is that
the formalist view and the hermeneutic view are two
sides of the same coin, that is, both sides describe
the same abstract concept of object-oriented program-
ming, but focus on different aspects.

2Note that, at least, Aldrich’s work [1], while rooted in
formalist definitions, connects the technical characteristics of
objects to their benefits, illustrating a bridge between the two
perspectives and underscoring their interdependence. We will
come back to this aspect in a moment in our basic assumption
that the two views represent two sides of the same coin.

Object Disorientation

_howy

formalist

view

- objects - state & encapsulation

- classes + inheritance & composition
- messaging - polymorphism

object-oriented programming

@

Why 2

reuse

modularity
problem decomposition
program comprehension

FIGURE 1. Overview of the components of the two conceptual lines (how & why) for the definition of object-oriented programming

resulting from our scoping review

The formalist view (how OOP is applied) deals with:

B Objects: Objects as units of conception to reduce
complexity and support programmers to describe
programs

B State & Encapsulation: The idea of combining
data and operations to constitute objects with
(mutable) state, and retaining the data within the
boundaries of the object

H Classes: Classes as a means of describing and
creating similar objects according to a metaphori-
cal blueprint

B Inheritance & Composition: Building hierarchies
of classes, and hierarchies of objects

B Messaging: Invoking operations by sending mes-
sages to objects that themselves are responsible
for performing an action; messages are (dynam-
ically) dispatched to the corresponding objects
based on their types

B Polymorphism: One object can be replaced by
another, as both can respond to the same set of
messages, even if in different ways (e.g. a rectan-
gle and a circle object could both react to a draw
message); based on the receiver type, messages
are dynamically dispatched to the corresponding
objects

Thus, from a formalist view, we could summarize
OORP in a technical sense as objects, which have a
state, are defined in or grouped by classes, can take
different forms and send each other messages. By
contrast, the hermeneutic view discusses the following
reasons as to why OOP is applied:

Obiject Disorientation

Reuse: Applying objects in the same or a different
context

Modularity: Defining boundaries to facilitate local
reasoning

Problem Decomposition: Identifying the
operands of the problem-solving process, and
building corresponding representations of these
operands to design a solution

Program Comprehension: Supporting program-
mers in understanding, navigating, and reasoning
about the program by facilitating mental process-
ing and problem-solving

Thus, from a hermeneutic point of view, we could
summarize OOP as a programming paradigm that
allows for reuse, modularization, problem decomposi-
tion, and program comprehension.

In our accompanying technical report®, we discuss
all of these categories in detail based on the selected
papers. There, we dive deeper into the how’s and
why’s of OOP and the way they shape our today’s
(differing) understanding of the term. As we have
already indicated, we do not regard the two views
as mutually exclusive. Rather, for example, several
object-oriented mechanisms from the formalist view
facilitate the aspects of the hermeneutic view in the first
place. The mechanisms of polymorphism, inheritance,
composition, and encapsulation, for example, enable
reuse. What we find worthy of discussion here instead
is that there is not only the theoretical separation into

Shttps://doi.org/10.5281/zenodo. 14699662

February 2025

https://doi.org/10.5281/zenodo.14699662

two conceptual lines, but there are also many different
angles within the two perspectives themselves, which
we discuss next.

TWO PERSPECTIVES, MANY ANGLES

The hermeneutic view is a view about people and
focuses on supporting people in decomposing prob-
lems, encoding them as computer programs, and com-
prehending existing programs (i.e., a view about why
OOP should be used). By contrast, the formalist view
concentrates on mechanical aspects, modeled in form
of formal semantics and object calculi, and is mainly
concerned with the static properties of object-oriented
features, such as objects, classes, and their inner
workings (i.e., a view about how OOP works and which
concepts make up OOP).

The two perspectives in themselves represent very
different points of view, but when we investigated the
differences and similarities between the definitions, we
found further disagreement about the significance for
OOP of some of the components of the respective
view. For example, some authors conclude that state
is not essential to define objects (e.g., [7], [12]), while
others disagree (e.g., [3], [13]) and define objects as
entities having state. A similar situation applies to the
concept of classes. Wegner [13], for example, de-
scribes classes as a primary means to create objects,
and regards them as essential to characterizing object-
oriented programming. Kay, however, underscores that
classes are not the central idea of Smalltalk [11],
although Smalltalk uses classes extensively. Therefore,
some see classes as fundamental to defining OOP,
whereas others do not.

The interpretation of polymorphism within object
orientation is generally consistent, yet the term itself
can cause confusion due to its broader use in pro-
gramming. Thomas describes polymorphism as “the
ability of different objects to respond differently to the
same message” [14], highlighting that objects can be
substituted for each other as long as they respond to
the same set of messages. Pierce [15] adds nuance
by distinguishing between types of polymorphism, in-
cluding parametric polymorphism, which allows gen-
eral implementations independent of concrete types,
and subtype polymorphism, which supports refining
types. These different kinds of polymorphism are rarely
kept apart, leading to confusion across communi-
ties: “The unqualified term ‘polymorphism’ causes a
certain amount of confusion between programming-
languages communities. Among functional program-
mers (i.e., those who use or design languages such as
ML, Haskell, etc.), it almost always refers to parametric

February 2025

polymorphism. Among object-oriented programmers,
by contrast, it almost always means subtype polymor-
phism, while the term genericity (or generics) is used
for parametric polymorphism” [15].

Discussions and controversies about the details
of the components of the object-oriented paradigm
are somehow limited to the elements of the formalist
view, though. We find much more consensus within
the hermeneutic view. For example, there is agreement
among various authors that objects and classes to
reuse code are very beneficial (e.g., [12], [14]). Con-
troversies are then essentially limited to the pragmatic
specifics of how exactly reuse best is achieved, for
example through concepts that we attribute to the
formalist view, such as encapsulation and inheritance.

Now, one could critically question whether the con-
ceptual elements of the hermeneutic view are per-
haps simply too abstract to cause controversy. Some
readers may even think that parts of the hermeneutic
view are not even specific to OOP, but could also
apply in this form to other programming paradigms.
This is certainly a valid concern. Nevertheless, the
two views together represent exactly what is strongly
attributed (at least) to the object-oriented paradigm in
the literature.

To summarize, there is a common ground of views
on OOP, but there is also considerable disagreement
on the specifics. Thus, the different views do not only
play out on the abstract level, where we distinguish
between the how and why; the details of the how and
the details of why also offer potential for discussion
among the authors of the literature we found. This can
potentially lead to confusion.

In the next section, we discuss potential causes for
this situation and how we should deal with the implica-
tions of a multifaceted meaning of OOP to overcome
some of the confusion that motivated this essay.

It is in the nature of abstract concepts that different
people think of them in (slightly) different ways. OOP is
one such concept, and we have observed that different
people do indeed associate very different aspects with
it, such that the importance and usefulness of specific
object-oriented features is challenged by different au-
thoritative voices. It appears that they all favor OOP,
but in different ways.

OOP can be understood as a phenomenon whose
success is probably not due to its technical superi-
ority over other paradigms. Instead, its success may
stem from its adaptability and the way it resonated

Object Disorientation

with the interests and needs of diverse individuals.
Various people contributed to, created, and discussed
notions of the object-oriented paradigm as a vague
idea rather than a formal definition of the concept.
Thus, we hypothesize that, just like in a game of
telephone, the content of what was shared changed
and evolved. At the very least, different people could
identify with and interpret it in ways that suited their
own contexts, enabling them to build upon it without
being constrained by a strict formal definition.

There appears to be no consensus on what object-
oriented programming means, and different people
may have different views on what they understand by
OOP. More importantly, there may not even have to be
a consensus. However, problems arise when people
are not aware of these differences, do not or cannot
articulate their own views, and therefore talk past each
other. This causes various problems, for example, for
researchers (like us) trying to pinpoint how OOP drives
the cognitive processes during program comprehen-
sion, practitioners trying to evaluate the usefulness of
a tool, or educators compiling a syllabus.

With our literature review and the resulting sum-
mary of the different views in Figure 1, we seek to
counteract this problem by revealing the multifaceted
nature of OOP systematically for the first time. Based
on our findings, the following five recommendations
aim to address challenges faced by various groups
engaging with OOP, including researchers, practition-
ers, and educators. While each recommendation has
a distinct focus, together they highlight the importance
of clarity, exploration, and perspective when engaging
with OOP.

RECOMMENDATION 1: Everybody, be aware of the
formalist and hermeneutic perspectives.

OOP is not just programming with a set of lan-
guage features, but might require a certain mindset
about the benefits of these very features. On the
one hand, reuse, modularity, problem decomposition,
and program comprehension mean reflecting on the
world and finding appropriate abstractions to deal with
inherent complexity. This is an abstract view of why
OOP can be beneficial. On the other hand, without
technical concepts such as objects, classes, state and
inheritance, many programmers might not be able to
achieve these benefits as effectively or even think of
the object-oriented paradigm. Certain specific features
are therefore also part of OOP, that is, a perspective
on how OOP is used. Both views are not mutu-
ally exclusive, but complement each other. Although
the object-oriented programming paradigm appears—

Obiject Disorientation

in principle, at least—to be able to unite the formalist
and hermeneutic perspectives, being unaware of the
two parts might lead people to mistaking one for the
other.

RECOMMENDATION 2: Researchers and educa-
tors, explicitly distinguish between perspectives
on OOP.

Citing sources is standard practice in scientific
research. However, it is often omitted for widely recog-
nized and common knowledge. For instance, software
researchers typically do not cite well-known program-
ming languages, much like social scientists often omit
citations for commonly used statistical tests. Knowl-
edge about these tools is simply assumed. However,
since knowledge in the context of OOP differs to a large
extent, it is important to make more explicit reference
to what is meant by the broad concept of OOP. This
counts particularly for researchers whose task is to
communicate their research intentions as precisely
as possible. But it is also important for those who
seek to educate others about OOP and shall thereby
convey that there is more than one perspective on
the matter. Textbooks on object-oriented programming
should differentiate the paradigm from others more
explicitly in this respect than is currently the case. The
formalist and hermeneutic views are usually implicitly
mixed in the form of pragmatic tips on program design
and the discussion of the advantages of such a design,
without explicitly conveying to the reader what view of
OORP is assumed on a conceptual level.

RECOMMENDATION 3: Researchers and practi-
tioners, do not mistake the parts for the whole

There are numerous alternative interpretations of
what features and concepts belong to OOP, not only
when reading and writing scientific papers about it,
but also when debating programming styles with a
developer colleague from the neighboring office. The
sum of these features and concepts makes up OOP.

For instance, a case study analyzing inheritance
in an object-oriented program might conclude that
OORP is unsuitable for large software systems due to
inheritance introducing coupling, breaking encapsula-
tion, and resulting in difficult-to-maintain code. While
these conclusions may be valid in specific cases,
we contend that such reasoning could represent an
attribution error. Concluding that OOP is “bad” because
inheritance caused problems is only valid if inheritance
is understood as an essential part of OOP. If the
maintenance of a system is difficult because of in-
heritance, the intuitive conclusion should be that there

February 2025

is a problem with inheritance or system design, not
with OOP. Clearly, OOP extends beyond mere use of
classes, objects, and inheritance. It involves analyzing
problems and structuring solutions in terms of objects,
which can significantly influence software design, for
better or worse. This holistic approach to problem-
solving encapsulates the essence of OOP.

Another example is that researchers studying a
programmer’s ability to understand object-oriented
code should carefully define what they mean by
“object-oriented” in their experiments. Instead of cre-
ating code that assumes a universal understanding of
OOP—given the varied interpretations of what OOP
entails—it is more beneficial to develop code based on
an explicitly defined subset of OOP concepts and fea-
tures. This approach aligns with the recommendations
to clearly define our terms (Rec. 2) and not mistake
the parts for the whole (Rec. 3). While creating code
that unambiguously represents all aspects of OOP may
be impractical, researchers can mitigate ambiguity by
being explicit about which aspects of OOP their code
represents.

RECOMMENDATION 4: Practitioners, explore the
breadth of object orientation.

Understanding the various aspects of the object-
oriented programming paradigm and recognizing the
debate surrounding its features provides flexibility for
adopters, allowing for the adoption of alternative per-
spectives. For instance, users of class-based lan-
guages might explore prototype-based languages. The
idea that classes are not essential and OOP can be
achieved without them could reveal new possibilities.

Another example is the long-standing awareness
among programmers that global, mutable state can
complicate reasoning about a program’s behavior and
should be avoided. Encapsulation promotes restricting
access to state from the outside, potentially leading to
more maintainable code. If implementing this proves
challenging, it may be beneficial to explore program-
ming language systems that conceptually avoid muta-
ble state, as seen in many functional languages such
as Haskell or F#.

RECOMMENDATION 5: Researchers, object-
oriented programming is not the same as
Java.

We should critically reflect on how computer sci-
ence and programming language researchers may
oversimplify the object-oriented paradigm: Research
on object-oriented programming sometimes focuses
on specific languages such as Java (or another pur-

February 2025

portedly object-oriented language). It is essential not
to conflate the general OOP paradigm with specific
implementations. Each programming language and its
ecosystem may demand, require, or promote a par-
ticular mindset when working with objects, and this
approach may not always be transferable to other
programming languages.

We set out to find a definition of object-oriented
programming that reflects how the majority of re-
searchers and practitioners think about this program-
ming paradigm. We intended to provide a common
ground for people interested in the object-oriented
paradigm to communicate their requirements efficiently
without talking past each other. By comparing formal-
ist and hermeneutic views, along with their related
components, we provide a clearer understanding of
what might be encompassed by OOP. Our five rec-
ommendations should further enhance clarity in the
future. Therefore, we believe that we have advanced
towards our goal of offering a compass and map for
researchers, practitioners, educators, and students to
navigate the multifaceted world of the OOP paradigm.
We conclude that there is no singular truth about ob-
jects; thus, when discussing anything object-oriented,
the first question should always be: What exactly do
you mean?

We thank Chris Parnin and Christian Kastner for com-
ments on an early draft. This work has been supported
by the DFG Grants AP 206/6, AP 206/14, and Sl
2045/2-2, by Grant 389792660 as part of Transre-
gio Collaborative Research Center 248 — CPEC, as
well as by ERC Advanced Grant “Brains On Code”
(101052182).

1. J. Aldrich, “The Power of Interoperability: Why Ob-
jects are Inevitable,” in Proceedings of the 2013
ACM International Symposium on New Ideas, New
Paradigms, and Reflections on Programming & Soft-
ware. ACM Press, 2013, pp. 101-116.

2. D. Robson, “Object-oriented software systems,” Byte,
vol. 6, no. 8, pp. 74-86, 1981.

3. G. Booch, R. A. Maksimchuk, M. W. Engle, B. J.
Young, and J. Conallen, Object-Oriented Analysis
and Design with Applications, 3rd ed. Boston, MA:
Addison-Wesley, 2007.

Object Disorientation

4. T. Rentsch, “Object Oriented Programming,” ACM
SIGPLAN Notices, vol. 17, no. 9, pp. 51-57, 1982.

5. P. Ralph and S. Baltes, “Paving the way for
mature secondary research: The seven types of
literature review,” in Proceedings of the 30th ACM
Joint European Software Engineering Conference
and Symposium on the Foundations of Software
Engineering, ser. ESEC/FSE 2022. New York,
NY, USA: Association for Computing Machinery,
2022, p. 1632-1636. [Online]. Available: https:
//doi.org/10.1145/3540250.3560877

6. D. West, Object Thinking. Redmond, WA: Microsoft
Press, 2004.

7. W. R. Cook, “On Understanding Data Abstraction,
Revisited,” ACM SIGPLAN Notices, vol. 44, no. 10,
pp. 557-572, 2009.

8. L. Cardelli and P. Wegner, “On Understanding Types,
Data Abstraction, and Polymorphism,” ACM Comput-
ing Surveys., vol. 17, no. 4, pp. 471-522, 1985.

9. A. Kay and S. Ram, “Re: Clarification of "Object-
Oriented",” 2003. [Online]. Available: http://www.purl.
org/stefan_ram/pub/doc_kay_oop_en

10. A. Kay, “The Early History of Smalltalk,” in Proc. Conf.
on History of Programming Languages (HOPL-II).
ACM Press, 1993, pp. 69-95.

1. —, “Prototypes VS. Classes Was:
Re: Sun’s HotSpot,” 1998. [Online].
Available: http://lists.squeakfoundation.org/pipermail/
squeak-dev/1998-October/017019.html

12. A. Snyder, “The Essence of Objects: Concepts and
Terms,” IEEE Software, vol. 10, no. 1, pp. 3142,
1993.

13. P. Wegner, Dimensions of Object-based Language
Design. New York, NY, USA: ACM Press, 1987,
vol. 22, no. 12.

14. D. Thomas, “What’s in an Object?” Byte, no. March
1989, pp. 231 — 240, 1989.

15. B. C. Pierce, Types and Programming Languages.
Cambridge, MA: MIT Press, 2002.

Marvin Wyrich is a postdoctoral re-
searcher at the Saarland University,
where he has been part of the Chair of
Software Engineering since 2023. He

£ received his Ph.D. from the University
of Stuttgart in 2023. His research interests include
empirical and behavioral software engineering, with a
focus on program comprehension, science communi-
cation, and developing sound research methodologies.
Contact him at wyrich@cs.uni-saarland.de

Object Disorientation

Johannes C. Hofmeister works as
a software developer, system admin-
istrator, and author at the Univer-
sity of Heidelberg, Germany. In his
il work, he focusses on how people ex-
press themselves when programming. Contact him at
johannes.hofmeister@psychologie.uni-heidelberg.de.

Sven Apel holds the Chair of Soft-
ware Engineering at Saarland Univer-
sity & Saarland Informatics Campus,
Germany. Prof. Apel received a Ph.D.
in Computer Science in 2007 from the
University of Magdeburg. His research interests include
the development and evaluation of methods, tools, and
theories for the construction and analysis of efficient,
reliable, maintainable, and configurable software sys-
tems. In this endeavor, he pays special attention to the
human factor and interdisciplinary research questions.
Contact him at apel@cs.uni-saarland.de.

Janet Siegmund is professor for
Software Engineering. Before, she
led the junior research group PIC-
CARD, funded by the Centre Digitisa-
tion.Bavaria. She received her Ph.D.
from the University of Magdeburg in 2012 and holds
two master's degrees (Computer Science and Psy-
chology). Her research is centered around the human
factor in software engineering. She regularly serves as
program-committee member or chair for conferences
and workshops and was in the steering committee
of the International Conference on Program Compre-
hension. Her work received several distinguished pa-
per awards (ICSE, FSE, SANER) and two Most In-
fluential Paper Awards (ICPC, GPCE). Contact her at
janet.siegmund@informatik.tu-chemnitz.de.

Lot

(L4

February 2025

https://doi.org/10.1145/3540250.3560877
https://doi.org/10.1145/3540250.3560877
http://www.purl.org/stefan_ram/pub/doc_kay_oop_en
http://www.purl.org/stefan_ram/pub/doc_kay_oop_en
http://lists.squeakfoundation.org/pipermail/squeak-dev/1998-October/017019.html
http://lists.squeakfoundation.org/pipermail/squeak-dev/1998-October/017019.html

	SEARCHING DEFINITIONS:A SCOPING REVIEW
	TWO PERSPECTIVES ON OBJECT ORIENTATION
	HOW AND WHY IS OBJECT ORIENTATION USED?
	TWO PERSPECTIVES, MANY ANGLES

	FROM OBJECT DISORIENTATION TO OBJECT ORIENTATION
	Conclusion
	ACKNOWLEDGMENTS
	REFERENCES
	REFERENCES
	Biographies
	Marvin Wyrich
	Johannes C. Hofmeister
	Sven Apel
	Janet Siegmund

