
Empirical Software Engineering manuscript No.
(will be inserted by the editor)

On the Relation Between GitHub Communication
Activity and Merge Conflicts

Gustavo Vale · Angelika Schmid ·
Alcemir Rodrigues Santos · Eduardo
Santana de Almeida · Sven Apel

Received: date / Accepted: date

Abstract Version control systems assist developers in managing concurrent
changes to a common code base by tracking all code contributions over time. A
notorious problem is that, when integrating code contributions, merge conflicts
may occur and resolving them is a time-consuming and error-prone task. There
is a popular belief that communication and collaboration success are mutually
dependent. So, it is believed that great communication activity helps to avoid
merge conflicts. However, in practice, the role of communication activity for
merge conflicts to occur or to be avoided has not been thoroughly investigated.
To better understand this relation, we analyzed the history of 30 popular open-
source projects involving 19 thousand merge scenarios. Methodologically, we
used a bivariate (Spearman’s rank correlation) and a multivariate (principal
component analysis and partial correlations) analysis to quantify their cor-
relation. In bivariate analysis, we found a weak positive correlation between
GitHub communication activity and the number of merge conflicts. However,
in the multivariate analysis, the positive correlation disappeared, not support-
ing the intuition that GitHub communication helps to avoid merge conflicts.
Interestingly, we found that the strength of this relationship depends on the
merge scenarios’ characteristics, such as the number of lines of code changed.
Puzzled by these unexpected results, we investigated each covariate, which
provided justifications for our findings. The main conclusion from our study
is that GitHub communication activity itself does not support the emergence
or avoidance of merge conflicts even though such communication is associated
only with merge scenario code changes or among developers only.

Keywords Collaborative Software Development · Version Control Systems ·
Developer Communication · Merge Conflicts

G. Vale* · A. Schimid* · A. R. Santos** · E. S. Almeida*** · S. Apel****
*University of Passau **State University of Piaúı ***Federal University of Bahia
****Saarland University
E-mail: vale@fim.uni-passau.de, angelika.schimid@uni-passau.de,
alcemir@prp.uespi.br, esa@rise.com.br, apel@cs.uni-saarland.de

2 Vale et. al

1 Introduction

Software development is a collaborative and distributed activity in which suc-
cess depends on the ability to coordinate social and technical assets [23]. In
this collaborative process, developers are often supported by version control
systems when solving tasks (e.g., bug fixing and adding new features). Ver-
sion control systems help them to manage changes to a common code base by
tracking all code contributions over time. This allows a group of developers to
address different tasks simultaneously without losing changes. After fulfilling
their tasks, developers merge the proposed changes to the main repository.

Simultaneous contributions to a common code base may introduce prob-
lems of their own during integration, often manifesting as merge conflicts. A
merge conflict occurs when changes to the same chunk of code are merged.
Merge conflicts have been attracting researchers’ and practitioners’ attention
for years, because resolving them is a difficult, time-consuming, and often
error-prone task [34]. As merge conflicts are unexpected events, they have a
negative effect on project’s objectives compromising the project success, es-
pecially when arising frequently [20] [39] [28]. On the other hand, researchers
found that a proper communication among contributors is fundamental for the
project success [7] [19] [40] [43]. For instance, Liu et al. [32] found that GitHub
communication supports a more coordinated development activity than when
developers do not use GitHub communication features, such as pull requests.
Despite the number of studies exploring merge conflicts [1] [3] [10] [20] [31] and
communication activity [11] [16] [24] [37] [42] [46], the role of communication
activity for the occurrence or avoidance of merge conflicts in practice has not
been thoroughly investigated.

Our goal is to investigate and understand the relation between GitHub
communication activity and merge conflicts. One of the reasons why commu-
nication is related to project success may be that keeping contributors aware
of what others are doing may avoid merge conflicts. Hence, to get a more
precise understanding about what kind of communication may be helpful for
avoiding merge conflicts, we use different measures of communication. For in-
stance, the communication related to the merge scenario’s code changes may
be more efficient for avoiding merge conflicts than the general communication
in the merge scenario. Or, the communication among only developers may be
more important for avoiding merge conflicts than the communication among
contributors. In this setting, contributors are all GitHub users who have con-
tributed to the project (e.g., communicating or changing the source code); a
developer is a contributor who has changed the source code.

To achieve our goal, we have conducted a large empirical study analyz-
ing the history of 30 repositories of popular software projects. In total, we
considered 19 thousand merge scenarios, 325 thousand files, and 1.5 million
chunks. For this purpose, we mined and linked contribution (Git) and com-
munication (GitHub) data. Regarding code contributions, we reconstructed
the merge scenarios that are present in the subject projects’ histories. Re-
garding communication activity, we quantified the amount of GitHub com-

On the Relation btw. GitHub Communication Activity and Merge Conflicts 3

munication in merge scenarios by means of three alternative approaches with
distinct granularity: one considering the communication of all active contribu-
tors (awareness-based), the second linking communication related to the merge
scenario’s contributions by means of pull requests and related issues (pull-
request-based), and the third considering communication mapped to artifacts
that have been changed in the merge scenario (changed-artifact-based). To ob-
tain a deep understanding of the communication activity, we also distinguished
between the communication related to contributors (contributors’ communi-
cation) and developers (developers’ communication), for each approach.

To understand the association between GitHub communication activity
and the occurrence of merge conflicts (i.e., the two covariates), we performed
three analyses. First, we analyzed the bivariate relationship between the two
covariates, as is common in empirical software engineering studies. Second,
we analyzed the multivariate relationship between the two covariates taking
confounding factors into account (e.g., the number of files changed and de-
velopers involved in the merge scenario). Third, we analyzed the moderating
influence of individual merge scenario characteristics on the strength of the re-
lation of the two covariates (e.g., the relation may be stronger in larger merge
scenarios). For these analyses, we use Spearman’s rank correlation, principal
component analysis, partial correlation, and moderation effects.

Summarizing our results, the bivariate analysis indicates a weak (< 0.3)
but highly significant positive correlation between the number of merge con-
flicts and the amount of communication. The multivariate analysis indicates no
relation between the two covariates, which suggests that the positive relation
between the two covariates (communication activity measure and number of
merge conflicts) found in the bivariate analysis is spurious under the assump-
tion that both covariates are confounded by merge scenario characteristics. In
the moderation effect analysis, we investigated the influence of three measures
on the strength of the relation of the two covariates: the number of lines of
code, the number of developers involved, and the number of days a merge
scenario lasts. Regarding number of lines of code, we found a significant mod-
erating influence on the strength of the relation between the two covariates for
the awareness- and changed-artifact-based approaches and for both communi-
cation measures. Regarding number of developers, we also found a significant
moderating influence on such relation, however, the influence lasts only for
the contributors’ communication. Regarding number of days, we found no
significant moderating influence on the strength of the investigated relation.
Note that the moderating effect analysis does not invalidate the multivariate
analysis, it only presents results for the subset of “larger” merge scenarios. In
practical terms, our results contradict the popular belief that suggests that a
high communication activity helps to avoid merge conflicts.

Puzzled by our unexpected and negative results and aiming to get deeper
into of all our covariables, we analyzed each of them separately, which supports
the robustness and reliability of our methodology. From this further analysis,
several topics for discussions arose. Most notably, (i) bivariate analysis is not
enough to investigate the complex interplay of project success, communica-

4 Vale et. al

tion, merge conflicts, and contextual factors, (ii) contributors and developers
normally communicate independently of the emergence of merge conflicts, (iii)
the size of the merge scenario’s code change is not related to the number of
developers involved, and (iv) speculative merge strategies (e.g., GitHub pull
requests) drastically reduce the number of merge conflicts.

Overall, we make the following contributions:

– We present evidence that communication activity and merge conflicts are
not related in the general case when controlling for confounding factors.

– We provide evidence that the developers’ communication has a negative
influence on the emergence of merge conflicts for the 10% largest merge
scenarios in terms of lines of code. On the other hand, contributor’s com-
munication for the same setting has a positive influence on the emergence
of merge conflicts. Therefore, developers’ communication is more efficient
for avoiding merge conflicts in the 10% largest merge scenarios than con-
tributors’ communication.

– We offer a rigorous methodological approach to multivariate analysis of
correlation structures in socio-technical repository data analysis.

– We provide evidence by a manual analysis that merge scenarios with few
developers and large changes are often related to bug fixing while merge
scenarios with many developers and small changes are often related to the
introduction of new features to the project.

– We provide evidence of the benefits of using speculative merge strategies
(e.g., GitHub pull requests) by showing that the percentage of conflicting
merge scenarios without using pull requests is 139 times greater than when
using pull requests.

– We make our infrastructure publicly available to mine fine-grained infor-
mation from software repositories.

– We make all data publicly available for replication and follow-up studies
on a supplementary Web site [48].

2 Background and Related Work

In this section, we discuss background and related work on analyzing merge
conflicts and communication among contributors and developers.

2.1 Collaborative Software Development and Merge Conflicts

Version control systems, such as Git, help developers to manage source-code
changes over time by tracking all code modifications [50]. This allows de-
velopers to make concurrent contributions without losing changes. This way,
multiple contributors may add new features or fix bugs simultaneously. After
fulfilling their tasks, developers merge the proposed changes into the main
repository. Developing software by means of merging changes into the main
repository is a widely collaborative development pattern, called the pull-based

On the Relation btw. GitHub Communication Activity and Merge Conflicts 5

Date:

left

right

1
2
3
4

1
2
3

File2

File1

Dev B
C:f5a31ed

Dev A
C:6ef51b3

1-Dev A
2
3-Dev A
4

1
2
3-Dev A

File2

File1

Dev B
C:1c4004f

1-Dev B
2
3
4

1
2
3

File2

File1

01/01/2019 01/02/2019

C
on

tr
ib

ut
io

n
La

ye
r

C
om

m
un

ic
at

io
n

La
ye

r

1-Dev B
2
3
4-Dev D

1-Dev D
2
3

File2

File1

Dev D
C:1602adc

Dev C
C:32cc0f8

1-Dev C
2
3-Dev A
4-Dev C

1-DevC
2
3-Dev A
4-Dev C

File2

File1

Issue #4

Issue #3

Issue #2

Issue #1

Dev G

Dev A Dev B

Dev C

Dev H Dev C

Dev B
I: #3

Dev B
C: 1c4004f

Dev G
I: #1

C: 6ef51b3
Dev C

C: 32cc0f8

Dev F Dev B Dev I

Dev B
C: 1c4004f

Dev D Dev B Dev D
C: 1601adc

Dev E
I: #1

Dev D
I: #1

C: 718ec42

C:718ec42

>>>>
1-DevC
====
1-Dev B
<<<<
2
>>>>
3-Dev A
4-Dev C
====
3
4-Dev D
<<<<

>>>>
1-Dev C
====
1-Dev D
<<<<
2
3-Dev A
4-Dev C

File2File1

Dev D

Fig. 1 Communication and contribution layers of a merge scenario. Light-gray boxes in the
communication layer stand for issues and white boxes inside these light-gray boxes denote
GitHub events (e.g., comments). We highlight three pieces of information: the developer
who creates the event, related commits, and related issues. Commits are highlighted by “C:”
followed by the commit hash, and issues by “I:” and the GitHub issue number. Regarding
the contribution layer, each black dot represents a commit. We highlight four pieces of
information the file name, the changed lines, the commit author, and the commit hash.
Chunks that are in conflict are in evidence by the exclamation icon.

development model [16] [17]. Figure 1 exemplifies this model. A merge sce-
nario in the pull-based model includes the whole timeline of creating a project
branch, committing changes independently to the branch, and creating a merge
commit (e.g., using a pull request). It is also called three-way merge [17] [31].

The contribution layer (bottom) in Figure 1 illustrates a merge scenario
involving four developers of which developers A and C were fixing a bug
while developers B and D were adding a new feature to the project. Devel-
opers changed four chunks of code of two files (File1 and File2). Three of
these four chunks give rise to merge conflicts. Merge conflicts are a notori-
ous problem in collaborative software development [34]. Resolving them and
making sure that unexpected behavior or bugs have not been introduced is
a time-consuming and error-prone task [31]. Hence, researchers seek to min-
imize the number of merge conflicts by proposing: (i) merge strategies (e.g.,
structured [2] or semi-structured [3]), (ii) prediction strategies (e.g., continuous
integration [20] and speculative merging [10]), (iii) awareness tools (e.g., Col-

6 Vale et. al

labVS [12], Palant́ır [39], Cassandra [28], and FASTDash [6]), (iv) studies to
understand their nature (e.g., identifying the types of code changes that lead
to conflicts) [1] [15] [31], and (v) merge conflict resolution strategies [33] [35].
Merge strategies have reduced the occurrence of merge conflicts by avoiding
conflicts resulting from formating, ordering, and renaming changes [2] [3] [31].
Prediction strategies and awareness tools avoid merge conflicts by continuous
integration [10] [20] or by making developers aware of changes of other devel-
opers [28] [39]. Studies to understand merge conflicts have identified common
patterns and types of changes that often lead to conflicts [1] [15] [31]. Merge
conflict resolution strategies, as the name suggests, investigate strategies that
developers follow to remove merge conflicts from the code [33] [35]. So, pre-
vious studies have provided mechanisms to avoid, minimize, understand, and
remove merge conflicts, but, they largely ignore the social dimension of the
problem. Since developers create, resolve, or avoid merge conflicts, our key
assumption is that, by understanding the relation of GitHub communication
practices and the occurrence of merge conflicts, we will obtain insights into the
communication practices that are useful to avoid merge conflicts. For instance,
we investigate whether the communication among developers is more efficient
for avoiding merge conflicts than the communication of all contributors in the
merge scenario.

2.2 Communication Flow

As software development often requires social interaction, it is no surprise that
software engineers spend a large part of their workday communicating with co-
workers [5]. Numerous studies highlight the importance of communication in
various software development activities. For instance, Souza et al. [43] provide
evidence that communication among contributors is required for the success of
software projects. Bird et al. [7], Grinter et al. [19], and Sedano et al. [40] stress
that the lack of communication is a critical problem in distributed software
development. So, if communication is uncertain, inaccurate, or slow, misunder-
standings among developers become likely, compromising the project budget
and schedule. In this sense, a proper communication culture is fundamental to
support stakeholders in being aware of the project progress, to avoid of merge
conflicts, for instance.

Communication channels play an essential role in supporting communica-
tion and collaboration activities within a community of practice [44]. Various
researchers have investigated developer collaboration through communication
channels and tools, such as mailing lists, IRC chat logs, issue trackers, and
social networks (e.g., GitHub and Stack Overflow) [8] [11] [16] [21] [24] [30]
[32] [37] [42] [46]. For instance, Bird et al. [8] explored the relationship between
communication structure and code modularity. They found a relation between
communication and code collaboration behavior for sub-communities. Guzzi
et al. [21] analyzed a large sample of e-mail threads from Apache Lucene’s
development mailing list. They found that developers participate in less than

On the Relation btw. GitHub Communication Activity and Merge Conflicts 7

75% of the threads, and in only about 35% of the threads source-code de-
tails are discussed. LaToza et al. [30] interviewed eleven developers to learn
about common practices in software development. They found several barri-
ers preventing e-mail usage and they highlighted advantages of face-to-face
communication and that the use of more interactive communication channels
is more desirable than e-mails. Panichella et al. [37] analyzed three commu-
nication channels (mailing lists, issue trackers, and IRCs) and code changes
of seven projects. They found that not all developers use all communication
channels, and socio-technical relationships may change when using different
communication channels and tools.

In an extensive study, Storey et al. [44] mapped different communication
tools, such as e-mail lists, IRCs, SourceForge, GitHub, and Stack Overflow.
They hypothesized that knowledge in software engineering is embedded in:
(i) people’s heads, (ii) project artifacts, (iii) community resources, such as
forums, blogs, and discussion groups, and, (iv) social networks. According to
their study, GitHub is the only tool able to represent (the last) three types of
knowledge.

The popularity of pull-based development model and GitHub has attracted
the interest of researchers. For example, Singer et al. [42] and Dabbish et al. [11]
explored the value of social mechanisms in GitHub. Both studies found that
transparency helps developers to connect, collaborate, create communities,
share knowledge, and discover new technologies. Tsay et al. [46] analyzed the
association of various technical and social measures with the likelihood of
contribution acceptance. They found that pull request acceptance is related
to: (i) the strength of the social connection between the submitter and the
project manager, (ii) the submitter’s prior interaction, (iii) the number of
comments, and (iv) the current stage of the project. Gousios et al. [16] analyzed
millions of pull requests to study the effectiveness and efficiency of contributors
handling pull requests. They discovered that the time to merge a pull request
is influenced by the developer’s previous track record, the size of the project
and its test coverage, and the project’s openness to external contributions. Liu
et al. [32] conducted a quantitative study on the specific effects of pull requests
in the project. They found that pull requests help increasing the social impact,
resulting in more coordinated development activity.

Considering experience from previous work [21] [30] [37] and the benefits,
comprehensiveness, and popularity of GitHub, we chose to rely in our study on
the GitHub platform. So, unlike related work, we use GitHub to build commu-
nication networks and use the time a merge scenario lasts to define the analysis
time span (i.e., not a predefined one). Being aware of the drawbacks of using
only one communication channel and considering that contributors may talk
about topics not related to the code changes (e.g., usability or configuration
problems), we select only projects that extensively use GitHub communica-
tion mechanism, pursue three approaches to capture communication amongst
contributors, and differentiate the communication of among all contributors
(contributors’ communication) and among developers only (developers’ com-
munication), as we will discuss in Section 3 in more detail.

8 Vale et. al

3 Building Communication Networks

In the previous section, we presented how related work have explored merge
conflicts, communication activity, as well as the pull-based development model
and the communication flow in the pull-based development model. In addition,
we presented how communication activity may be useful for avoiding merge
conflicts given the popular belief that communication and collaboration ac-
tivities are mutually dependent for the project success. Aiming at provid-
ing a clearer understanding of which GitHub communication activity may be
more relevant for avoiding merge conflicts, we create communication networks
for each merge scenario using three approaches: awareness-based, pull-request-
based, and changed-artifact-based, which vary in terms of granularity and cov-
erage. As detailed in Section 4, we used mainly the number of edges of each
graph to answer the research questions, however, having such detailed infor-
mation supported us in illustrating the merge scenario of Figure 1, as well as,
in further investigations presented in Section 6.

Communication networks are built from operational data from GitHub.
Specially, we queried the GitHub API retrieving all issue events (e.g., label-
ing, commenting, and opening) from each issue of each subject project. A
network can be formalized as a graph G = (V,E), where V is a set of ver-
tices (contributors) and E is a set of edges (communication edges), denoted
by V(G) and E(G), respectively. An edge e ε E between u ε V and v ε V is
denoted by e = {u, v}. The three communication approaches as well as their
purposes are described as follows.

Awareness-based approach. This approach links communication and contri-
bution data by means of active contributors during a merge scenario. It tries
to minimize the threat of using only one channel to capture a project’s com-
munication by building a graph of all contributors that communicate during
a merge scenario. There are six steps to build communication networks using
this approach (see Algorithm 1). For each merge scenario, we get all GitHub
events during the merge scenario time range (step 1.1) and retrieve the issues
these events belong to (step 1.2). Then, we determine all events related to
these issues (step 1.3) and exclude events that happened after the merge, be-
cause these events are out of scope since the issue has already been addressed
(step 1.4). Finally, we retrieve the set of developers who created the events
(step 1.5) and build a full graph with them (step 1.6).

Pull-request-based approach. This approach links communication and con-
tribution data by means of pull requests and their related issues. It is moti-
vated by the flow of communication in pull-based development model (see Sec-
tion 2.2). It is meant to retrieve a refined view on communication compared to
the awareness-based approach, since it considers only communication of some
issues that are related to the merge scenario and not all issues opened during
the merge scenario. There are six steps to build communication networks using
the pull-request-based approach (see Algorithm 2). For each merge scenario,
we look for a pull request with the same hash as the merge commit (step 2.1)
and mine the pull request body and comments to find related issues (step 2.2).

On the Relation btw. GitHub Communication Activity and Merge Conflicts 9

Algorithm 1 Awareness-based approach
input : MS , I . Sets of merge scenarios and issues
output : NET . A tuple with a graph for each approach and merge scenario
E ← { e | e ∈

⋃
i∈I i.events } . Get all events of all issues

for each ms in MS do
Ems ← {e | e ∈ E ∧ e.time ∈ [ms.bTime, ms.mTime]} . Step 1.1
Ims ← {e.issue | e ∈ Ems} . Step 1.2
Ems ← Ems∪ (

⋃
i∈Ims

i.events) . Step 1.3
Ems ← Ems \ { e | e ∈ Ems ∧ e.time > ms.mTime} . Step 1.4
Contribms ← {e.contributor | e ∈ Ems} . Step 1.5
Edms ← { {c1 , c2 } | c1 , c2 ∈ Contribms ∧ c1 6= c2} . Step 1.6
NET .add(ms, G(Contribms, Edms))

end for

This mining process consists of cleaning the text (removing blocks of code and
external URLs because they may refer to issues of other projects) and look-
ing for the pattern referring to other issues (i.e., #([0-9]+), e.g., #1 or
#123). As blocks of code are between three quotation marks (‘‘‘) or indented
by four spaces and, as URLs follow the pattern “char, slash (/), and char”,
we remove them. Then, we look at each remaining word of the text and check
if it contains the pattern #([0-9]+). If so, we retrieve the GitHub issue. Our
mining process is reliable since we followed instructions from the GitHub API
documentation1, tested, and we also checked whether the related issue exists in
the repository before adding it into our analysis. After that, we get all events
that happened in related issues (step 2.3), exclude the ones that happened af-
ter the merge commit (step 2.4), retrieve the set of developers that contribute
to them (step 2.5), and build a full graph with these developers (step 2.6).

Algorithm 2 Pull-request-based approach
input : MS , I . Sets of merge scenarios and issues
output : NET . A tuple with a graph for each approach and merge scenario
for each ms in MS do

pr ← { i | i ∈ I ∧ i.hash = ms.mergeCommitHash } . Step 2.1
RIms ← { i | i ∈ I ∧ (i ∈ pr .relatedIssues ∨ i = pr) } . Step 2.2
Ems ← { e | e ∈ (

⋃
i∈RIms

i.events) . Step 2.3
Ems ← Ems \ { e | e ∈ Ems ∧ e.time > ms.mTime} . Step 2.4
Contribms ← {e.contributor | e ∈ Ems} . Step 2.5
Edms ← { {c1 , c2 } | c1 , c2 ∈ Contribms ∧ c1 6= c2} . Step 2.6
NET .add(ms, G(Contribm, Edms))

end for

1 https://developer.github.com/v3/

10 Vale et. al

Algorithm 3 Changed-artifact-based approach
input : MS , I . Sets of merge scenarios and issues
output : NET . A tuple with a graph for each approach and merge scenario
E ← { e | e ∈

⋃
i∈I

i.events } . Get all events of all issues

for each ms in MS do
Fms ← { f | f ∈ ms.files } . Step 3.1
Ems ← {e | e ∈ E ∧ e.time ∈ [ms.bTime, ms.mTime]} . Step 3.2
Ims ← {e.issue | e ∈ Ems} . Step 3.3
Cms ← {c | c ∈

⋃
i∈Ims

i.commits } . Step 3.4
Cms ← {c | c ∈ Cms ∧ (c.files ∈ Fms ∨ c = ms.mC) } . Step 3.5
Ims ← {i | i ∈ Ims ∧ i.commits ∈ Cms } . Step 3.6
Ems ← Ems ∪ (

⋃
i∈Ims

i.events) . Step 3.7
Ems ← Ems \ { e | e ∈ Ems ∧ e.time > ms.mTime} . Step 3.8
Contribms ← {e.contributor | e ∈ Ems} . Step 3.9
Edms ← { {c1 , c2 } | c1 , c2 ∈ Contribms ∧ c1 6= c2} . Step 3.10
NET .add(ms, G(Contribms, Edms))

end for

Changed-artifact-based approach. The main motivation for this approach is
to obtain a finer-grained communication than the awareness-based approach
with greater coverage than the pull-request-based approach. To achieve this,
it links communication and contribution data by means of changed artifacts
(files) referred through commits in opened issues in a merge scenario. In other
words, we retrieve only communication via issues that discussed files changed
in the merge scenario. So, like the pull-request-based approach, we are able to
retrieve communication related to the merge scenario code changes, however, it
is not pull request dependent. There are ten steps to build networks using the
changed-artifact-based approach (see Algorithm 3). For each merge scenario,
we determine the set of files changed in the merge scenario (step 3.1), all events
that happened during the merge scenario (step 3.2), the issues each of these
events belongs to (step 3.3), and all commits related to these issues (step 3.4).
Commits can be related to issues in two ways: (i) contributors link the issue
ID in the commit message, hence, they will be referred to in the GitHub API
or (ii) contributors mention commit hashes in the issue’s body or comments.
After the first four steps, we refine the set of commits by keeping only the ones
that have changed files modified in the merge scenario or in the merge commit
(step 3.5). Then, we refine our set of issues related to the merge scenario by
keeping only the ones that refer to the commits that changed files modified
in the merge scenario (step 3.6). Next, we get a set of events that belong to
these issues (step 3.7), exclude events after the merge (step 3.8), and get a set
of contributors who created events in the remaining issues (step 3.9). Finally,
we build a full graph with the remaining contributors (step 3.10).

On the Relation btw. GitHub Communication Activity and Merge Conflicts 11

C
on

tri
bu

to
rs

C

om
m

un
ic

at
io

n
(#
co
nt
_e
ds

) A

G

H

B

D

EF

C A B

DE

A

D
E

G B

C

Awareness-based Pull-request-
based

Changed-artifact-
based

D
ev

el
op

er
s

C
om

m
un

ic
at

io
n

(#
de
v_
ed
s) A B

CD

A B

D

A B

CD

Fig. 2 Communication networks, based on the example of Figure 1.

Note that our setup for the second and third approach ensures that com-
munication is related to the merge scenario code changes. We know all GitHub
communication related to a given merge scenario. This does not mean that the
developers talked about the conflict or a potential conflict, but that they com-
municated to make others aware of their code changes. As we consider making
developers aware a key to avoid merge conflicts, we would like to know whether
communication on a merge scenario (not on something else) leads to less/more
merge conflicts. Looking at the amount of communication (e.g., the number of
GitHub commentaries) when the conflict happened hints at the merge conflicts
resolution strategies, which is a different story and not related to our research
questions (see Section 4).

Example. The top of Figure 2 shows the three networks created from the
example of Figure 1. As we can see, the awareness-based network contains
more contributors and edges than the other networks, since it includes the
communication of all four opened issues during the merge scenario. The pull-
request-based network contains only contributors from issues #1 and #2, since
issue #2 is the pull request (merge commit: 718ec42), and contributors of this
issue indicate that issue #1 is related to the problem description. The changed-
artifact-based network is between the two other networks in terms of size, since
it contains developers from issues #1, #2, and #4. Even though issue #4 is
not directly related to the merge scenario, two developers who contribute to
the merge scenario (Dev B and Dev C) refer to commits present there. Hence,
this communication may have been important to make developers aware of
the merge scenario code changes.

Note that, in this example, for all communication network approaches,
there is communication among non-developers. Therefore, to have an under-
standing about the communication among developers only, in addition to the
three approaches, we distinguish between the communication of all contrib-
utors (#cont eds) – contributors’ communication – from the communication

12 Vale et. al

Table 1 Statistics captured for each merge scenario

Measure Description
Merge conflict measure

#conflicts Number of merge (chunk) conflicts present in the merge scenario
Communication measures

#cont eds Number of pairs of contributors who communicate in a merge scenario

#dev eds Number of pairs of developers who modified the code and communicate
in a merge scenario

Context variables
#lines Number of modified lines of code in the merge scenario
#chunks Number of chunks modified in the merge scenario
#files Number of files modified in the merge scenario
#devs Number of distinct developers who contributed to the merge scenario
#commits Number of commits in the merge scenario
#days Number of days a merge scenario lasts

among developers only (#dev eds) – developers’ communication. The bottom
of Figure 2 shows the networks for each approach containing only edges among
developers. As we can see, the number of edges among developers is smaller
for each approach since the total developers’ communication is a subset of the
contributors’ communication.

4 Empirical Study

In this section, we present our empirical study, whose overall goal is to in-
vestigate and provide an understanding on the role of GitHub communication
activity for the occurrence of merge conflicts in the context of the pull-based
development model. First, we describe research questions and hypotheses fol-
lowed by explanations of how we selected subject projects. Then, we present
our approach to retrieve contribution and communication data. Finally, we
explain how we answered the research questions.

4.1 Overview of the explored relation in each research question

Table 1 describes all variables we explore in this study. Our discussion of the
literature has shown how painful merge conflicts are for the project objec-
tives and how essential communication activity is for the project success (see
Section 2). Nevertheless, despite the plausible connection between communica-
tion activity and merge conflicts, the role of communication activity for merge
conflicts to occur or to be avoided has not been thoroughly investigated. This
motivated our first research question:

RQ1: Is there a correlation between GitHub communication activity and the
occurrence of merge conflicts?

On the Relation btw. GitHub Communication Activity and Merge Conflicts 13

This research question addresses the direct relation between communica-
tion activity and merge conflicts in our subject projects. This direct correlation
between merge conflicts and communication activity may be influenced due
to the presence of confounding factors (i.e., merge scenarios’ characteristics,
such as size, number of developers, and duration), causing a spurious correla-
tion. Only if this correlation still holds true after accounting for confounding
factors, an interpretation is legitimate and we may interpret the results. This
leads us to our second research question.

RQ2: How does the correlation between Github communication activity and
merge conflicts change when taking confounding factors into account?

RQ1 and RQ2 concentrate on the correlation between GitHub communica-
tion activity and merge conflicts for all subject merge scenarios. However, it is
likely that the strength of this correlation depends on the characteristics of the
merge scenario in question. For instance, it seems reasonable to expect that the
correlation is different for small and large merge scenarios. Moderation effects
arise when a situation where a third variable determines how strong a rela-
tionship between two variables is [45]. If we provide evidence that additional
covariates influence the strength of the relation of communication activity and
the occurrence of merge conflicts, we may find, for instance, that an intensive
communication activity becomes fundamental to avoid merge conflicts only in
very large merge scenarios. This motivates our third research question:

RQ3: What is the influence of merge scenario characteristics on the strength
of the relation between GitHub communication activity and the occurrence of
merge conflicts?
To answer RQ3, we formulate the following hypotheses:
H1: The larger a merge scenario is, the stronger is the relation between GitHub
communication activity and merge conflicts.
H2: The more developers are involved in a merge scenario, the stronger is the
relation between GitHub communication activity and merge conflicts.
H3: The longer the merge scenario is, the stronger is the relation between
GitHub communication activity and merge conflicts.

Figure 3 illustrates the relationships we investigate representing research
questions by means of the measures presented in Table 1. So, as we use two
measures of communication for each out of the three communication network
approaches (see Section 3), we analyze the relation between GitHub commu-
nication activity and merge conflicts six times for each research question.

4.2 Subject Projects and Experiment Setup

Overall, we selected 30 subject projects from a variety of domains from the
hosting platform GitHub. We chose to limit our analysis to Git repositories
because it simplifies the identification of merge scenarios in retrospect. The

14 Vale et. al

Context Variables

#lines #chunks#files
#devs #commits#days

Communication Measures

#cont_eds

#dev_eds

#c
on

fli
ct

sRQ
Multivariate Analysis

2

RQ
Bivariate Analysis

1

RQ
Moderation Effect Analysis

3

#days (H)3#devs (H)2#lines (H)1

Fig. 3 Relationships investigated for each research question by means of the subject mea-
sures.

reasons why we chose GitHub are described on Section 2.2 and 3. We se-
lected the corpus as follows. First, we retrieved the 150 most popular projects
on GitHub, as determined by the number of stars [9]. Then, we applied the
following five filters: (i) projects that do not have a programming language
classified as the main language (i.e., the main file extension), (ii) projects with
less than 50 issues and 50 pull requests, (iii) projects with less than two com-
mits and two GitHub events per month in the last six months, (iv) projects in
which it was not possible to reconstruct most of the merge scenarios, and (v)
the balance of the main programming language of the subject projects.

We created these filters inspired by Kalliamvakou et al. [27]. These fil-
ters aim at selecting active projects in terms of code contributions with an
active community and at increasing internal validity. For example, the sec-
ond and third filters capture active community projects on GitHub and not
just mirror projects, such as Linux’s mirror on GitHub. The fourth filter ex-
cludes projects such as kubernetes2 and moby3 because we considered that
these projects do not mostly use the pull-based model (i.e., do not follow the
three-way merge [16]) and they could bias our analyses. Details of how we
rebuild merge scenarios are provided in Section 4.3. As most of the popular
projects are developed in JavaScript, in the fifth filter, we excluded less pop-
ular JavaScripts projects ordered by the number of stars until they accounted
for less than half of the subject projects. After applying all filters, we arrived
at 30 projects developed in 16 programming languages (i.e., a project can be
developed using more than one programming language), such as JavaScript,
CSS, and C++, containing around 19 thousand merge scenarios that involve
325 thousand files changed, 1.5 million chunks, 14 thousand contributors, and
134 thousand commits. Table 2 provides information and statistics of each sub-
ject project. More details, such as the subject project’s URLs, are available on
the supplementary Web site [48].

2 https://github.com/kubernetes/kubernetes
3 https://github.com/moby/moby

On the Relation btw. GitHub Communication Activity and Merge Conflicts 15

Table 2 Overview of the subject projects

Subject Project Name Main Prog. #Stars #MS #Files #Cont.Language

animate.css CSS 34 290 151 1 392 186
javascript JavaScript 73 792 548 1 871 727
jquery JavaScript 49 498 248 4 322 632
vue JavaScript 108 362 160 2 258 523
html5-boilerplate JavaScript 41 001 229 1 274 378
electron C++ 62 713 2 845 40 540 1 013
awesome-python Python 52 886 434 469 661
reveal.js JavaScript 41 519 612 6 617 469
Semantic-UI JavaScript 42 171 719 51 856 421
socket.io JavaScript 42 871 422 3 785 346
express JavaScript 39 339 284 2 608 455
redux JavaScript 42 784 469 6 199 883
moment JavaScript 37 973 991 24 621 831
create-react-app JavaScript 52 636 524 14 568 963
nw.js C++ 34 057 539 13 598 161
impress.js JavaScript 33 747 158 584 184
Chart.js JavaScript 33 359 669 6 603 562
flask Python 37 517 667 7 202 730
material-design-lite HTML 30 411 674 6 841 258
httpie Python 36 137 76 412 132
material-design-icons CSS 35 462 22 3 707 48
jekyll Ruby 34 899 1 464 16 703 1 068
AFNetworking Objective-C 31 328 701 4 213 657
thefuck Python 36 360 354 3 705 153
normalize.css CSS 31 763 84 353 138
requests Python 33 652 1 144 7 365 788
RxJava Java 34 395 1470 36 642 360
public-apis Python 40 317 560 887 472
lantern Go 36 312 1 616 53 472 94
awesome-machine-learning Python 34 290 408 415 343

#Stars, #MS, #Files, and #Cont. denote the number of GitHub stars, the number of
merge scenarios, the number of changed files, and the number of contributors.

We rebuilt the merge scenarios from the subject projects since their creation
until July 2018. Aiming at a fairer analysis, Table 3 presents four refinements
that we did in our merge scenario dataset: (i) keep only scenarios created after
opening the first GitHub issue of the project, because it is not possible to
recover communication from before, (ii) keep only merge scenarios from which
more than one branch has been touched, because only in these cases merge
conflicts may arise, (iii) keep only merge scenarios to which multiple developers
were contributing, because only these scenarios need to keep developers aware
of the change of others, and (iv) keep only merge scenarios that have been
integrated using pull requests. The last refinement is applied only for the
analysis using the pull-request-based approach (see Section 3). We discuss
insights from this table in Section 6 since they are important to understand
contribution activity, but not fundamental to answer our research questions.

16 Vale et. al

Table 3 Overview of the refinements applied to our dataset of merge scenarios

Refinement #MS #MS by IN #CMS #CMS by #MS

Initial number (IN) 19 232 100.00% 1 079 5.61%
Possible to communicate 18 607 96.75% 1 041 5.59%
Both branches touched 7 769 40.40% 1 041 13.40%
Multiple developers 6 487 33.73% 858 13.23%
Use pull requests 3 436 17.87% 7 0.20%

#MS and #CMS denote the number of merge scenarios and the number of
conflicting merge scenarios.

4.3 Data Acquisition

Given that software development is social in nature, we build socio-technical
relationships to obtain an authentic representation of developers’ contribution
and communication.

Code Contributions. Our strategy for contribution data acquisition con-
sists of five steps. First, we clone a subject project’s repository. Second, as
merge commits can be identified in Git when the number of parent commits
is greater than one, we identify merge scenarios by filtering commits with
multiple parent commits. Third, for each merge commit, we retrieve a com-
mon ancestor for both parent commits (i.e., the base commit). Fourth, we
(re)merge the parent commits and retrieve the measures for the metrics pre-
sented in Table 1 (except communication measures) by comparing the changes
that occurred since the base commit until the merge commit. Finally, we store
all data and repeat steps 3 to 5 for each merge scenario found in the step 2.

Note that we have excluded merge scenarios that do not have a base commit
(e.g., rebase, fast-forward, or squash integrations [26]), and we ignore binary
files, because we cannot track changes from them. For the example of Figure
1, we obtain 3 merge conflicts (#conflicts), 19 lines of code (#lines), 2 files
(#files) and 4 chunks (#chunks) changed, 4 commits (#commits), 4 developers
(#devs), and the merge scenario lasts 2 days (#days).

Communication activity. Considering experience from related work pre-
sented in Section 2.2 and the benefits, comprehensiveness, and popularity of
GitHub when compared to other communication tools and channels, we chose
to rely in our study on the GitHub platform. Another benefit is that by us-
ing GitHub, projects should follow the pull-based development model, hence,
we can use the time a merge scenario lasts to define the analysis time span
(i.e., not a predefined one). Aware of the drawbacks of using only one com-
munication channel and considering that contributors may talk about topics
not related to the code changes (e.g., usability or configuration problems), we
select only projects that extensively use GitHub communication mechanism
(see filters (ii) and (iii) of Section 4.2), pursue three approaches to capture
communication amongst contributors, and differentiate the communication of
among all contributors (contributors’ communication) and among developers
only (developers’ communication), as we presented in Section 3.

On the Relation btw. GitHub Communication Activity and Merge Conflicts 17

Framework and Data Availability. Our analysis framework (Java) and
analysis scripts (R) are open-source. All data necessary for replicating this
study are stored in a MySQL database and replicated on spreadsheets (.csv
files). All tools, links to the subject projects, and data are available at the
supplementary Web site [48].

4.4 Operationalization

We operationalize our research questions and hypotheses through several vari-
ables. In what follows, we explain how we will answer each research question.

Answering RQ1. To answer RQ1, we check whether there is a correlation
between the number of conflicts and the amount of GitHub communication. To
quantify this correlation, we compute the bivariate correlation of the number of
conflicts (#conflicts) and communication measures (#cont eds and #dev eds)
for each communication approach. As we have two measures for communi-
cation and three approaches, we compute the correlation six times. We use
Spearman’s rank correlation because it is reliable when the observed covari-
ates are count data and highly skewed. Spearman’s rank correlation is +1 in
the case of a perfect monotonic correlation, -1 in the case of a perfect reverse
monotonic correlation. Values around 0 imply no monotonic relation between
the variables [22].

Answering RQ2. To answer RQ2, we perform a multivariate analysis in-
volving principal component analysis [25] and partial correlation [29] (both
based on Spearman’s rank correlation). Using a principal component analysis,
we reduce the number of dimensions we have (i.e., one dimension for each vari-
able of Table 1) to the first two principal components that retain a maximum
share of common variance, which simplifies the discussion of the correlation
structure. We choose to use partial correlation coefficients for three main rea-
sons: (i) it is simple and straightforward, (ii) it does not require assumptions
on the distribution, as parametric models, such as regression models and struc-
tural equation models would, and (iii) it does not introduce any form of as-
sumed causality between X and Y, like a regression model would. The partial
correlation of X (i.e., the number of conflicts) and Y (i.e., the communication
measure), taking into account Z (i.e., a confounding factor) is defined by

ρXY |Z = ρXY − ρXZ · ρZY√
1− ρ2

XZ ·
√

1− ρ2
ZY

. (1)

When there is more than one variable Z like in our case (i.e., the con-
text variables of Table 1), the partial correlation is computed based on the
residual variance of X and Y after partialling out the correlations with all
the confounding factors. That is, ρXY |Z1,...Zk

is equal to the correlation of the
residuals of a regression of X and Y on Z1, . . . , Zk [29].

18 Vale et. al

Answering RQ3. To answer RQ3, we use partial correlations, as we did in
RQ2, and measure the strength of the respective moderation effects by splitting
the sample according to the number of code of lines changed (H1), the number
of developers involved (H2), and the time range (H3) of a merge scenario. As
our data are right skewed, most merge scenarios are small, short, and have few
developers involved. Hence, to get merge scenarios that are in fact large, long,
and with many developers involved, we split the sample according to the 90%
rule, as a previous study suggests [47]. The correlation significance test is based
on the maximum likelihood algorithm-based estimation, which converges only
when there is enough variation in every covariate. As result of this analysis,
no matter where we split the sample (e.g., 50%, 70%, or 90%), whenever the
algorithm converged, it led to the same general conclusions with similar levels
of significance. Specifically, the 90% rule assures a relatively equal coverage of
all projects (i.e., there is a relative homogeneity across projects) and chooses
only “large” merge scenarios (with respect to the measure for each hypothesis)
in all projects. The results of the splitting rule analysis, further details, and
data to test it can be found on our supplementary Web site [48].

P-value correction for multiple hypothesis testing. Multiple hy-
pothesis testing is a problem that can lead to erroneous conclusions. When
answering our research questions, we conduct various significance tests, ask-
ing whether the observed effects are statistically significant. In other words,
when offering multiple potential covariates to the number of merge conflicts,
we augment the chance of a type-one-error, that is, we augment the chance
of finding at least one significant relationship. To minimize this problem, we
used stricter rules, which makes the single tests less likely to be significant and
thereby reduce the probability of finding false positives. For answering RQ1
and RQ2, we test three potential covariates per hypothesis (that is one for
each communication approach). For RQ3, we test three potential partners for
four different hypotheses: correlation in upper and lower quantile, and with
#cont eds or #dev eds. Therefore, for all three research questions, the chance
of at least one type-one-error when using α = 0.05 is 1 − 0.953 ≈ 14.3%. To
be significant at a 5% level, we require the test p-values to be smaller than
1− 3
√

0.95 ≈ 1.7% [49].

5 Results

In this section, we present the results of our empirical study structured ac-
cording to our research questions.

RQ1: Is there a correlation between GitHub communication activity and the
occurrence of merge conflicts?

Table 4 presents the results of Spearman’s rank correlation analysis for merge
conflicts (#conflicts) and communication measures (#cont eds and #dev eds)

On the Relation btw. GitHub Communication Activity and Merge Conflicts 19

Table 4 Spearman’s correlation among the subject measures

Awareness-based Pull-request-based Changed-artifact-based
#cont eds #dev eds #cont eds #dev eds #cont eds #dev eds

RQ1 0 .192 ∗∗ 0 .221 ∗∗ −0 .004 0 .003 0 .237 ∗∗ 0 .222 ∗∗
RQ2 0 .012 −0 .006 −0 .011 0 .001 −0 .010 −0 .003
* p < 0.017 ∼= α = 0.05 ** p < 0.003 ∼= α = 0.01 (Correction for multiple hypothesis testing).

for each communication approach proposed. As we can see, the estimated
correlation of the number of conflicts with the contributors’ communication
is rather weak 0 .192 (awareness-based), −0 .004 (pull-request-based), and
0 .237 (changed-artifact-based). Regarding the correlation between the num-
ber of conflicts and the developers’ communication, the coefficients are 0 .221
(awareness-based), 0 .003 (pull-request-based), and 0 .222 (changed-artifact-
based). Despite being weak (smaller than 0.3), the correlation coefficients for
the awareness-based and changed-artifact-based approach measures are signif-
icant at a 99% confidence level, whereas in the pull-request-based approach
the correlation coefficients are not significant.

Comparing the correlations for the different communication measures
(#cont eds and #dev eds), the changed-artifact-based approach coefficients
are greater than the awareness-based approach coefficients. Another point to
note is that, in the case of awareness-based approach measures, the coefficient
for the developers’ communication is greater than contributors’ communication
while the opposite is true for the changed-artifact-based approach measures.

RQ1 Summary: Overall, the bivariate correlation analysis shows a signif-
icant weak positive correlation for awareness-based and changed-artifact-
based communication approaches with the number of merge conflicts. In
practical terms, more GitHub communication can be observed in merge
scenarios with more merge conflicts.

RQ2: How does the correlation between GitHub communication activity and
merge conflicts change when taking confounding factors into account?

Figure 4 shows the two dimensional output from the principal component anal-
ysis for each communication approach, which covers 71.9% (57.2% + 14.7%),
57.2% (44% + 13.2%), and 73.5% (58.4% + 15.1%) of the total variance for
the awareness-based, pull-request-based, and changed-artifact-based commu-
nication approaches, respectively. The arrows represent the weights of each
variable in the respective principal component and its color represents the
square cosine (cos2). The square cosine represents the share of original varia-
tion in the variable that is retained in the dimensionality reduction. The longer
the arrow, the larger is the share of a variable’s variance. Arrows pointing to
the same direction have a large share of common variance and can be assumed
to belong to the same group.

20 Vale et. al

Fig. 4 Principal Component Analysis of our covariables.

Figure 4 suggests to classify the confounding variables into three groups
(size, social dimension, and commit activity). The arrows representing the
#chunks, #files, and #lines measures point in to the same direction; they
represent the size of a merge scenario. Pointing to another direction, #devs
and #days correlate strongly, and it is therefore legitimate to say that usually,
merge scenarios with more developers take longer until they come to their end.
We call this group the social dimension. The variable #commits is “undecided”
between the two groups. This is not surprising because a large number of
commits can either result from the participation of many developers or from
larger merge scenarios as we will discuss in Section 6. Therefore, we keep this
variable separate, in a group named commit activity.

Table 4 presents the results of our multivariate analysis using partial corre-
lation for the three proposed approaches (below the answer of RQ1). When con-
sidering the contributors’ communication, the correlation coefficients are 0 .012
(awareness-based), −0 .011 (pull-request-based), −0 .010 (changed-artifact-
based). When considering the developers’ communication, in the same order,
the correlation coefficients are −0 .006 , 0 .001 , and −0 .003 . None of the six
values are not significantly different from zero.

RQ2 Summary: Accounting for confounding factors via partial correla-
tions, the positive correlations found in RQ1 disappear. In other words, the
multivariate analysis reveals that there is no relation between the commu-
nication measures and number of merge conflicts when taking confounding
factors into account. In practical terms, GitHub communication activity
does not correlate with the occurrence or avoidance of merge conflicts.

On the Relation btw. GitHub Communication Activity and Merge Conflicts 21

Table 5 Median splits and correlations between number of conflicts and communication
measures

Hyp. Mod. Comm. Awareness-based Changed-artifact-based
ρ̂ lower ρ̂ upper ρ̂ lower ρ̂ upper

H1 #lines #cont eds 0 .008 0 .113 ∗ 0 .016 0 .139 ∗∗
#dev eds 0 .003 −0 .097 ∗ 0 .010 −0 .097 ∗

H2 #devs #cont eds −0 .019 0 .130 ∗∗ −0 .013 0 .216 ∗∗
#dev eds −0 .038 ∗ −0 .070 −0 .035 ∗ −0 .025

H3 #days #cont eds −0 .008 0 .017 0 .007 0 .015
#dev eds −0 .005 −0 .054 0 .003 −0 .068

Hyp., Mod., Comm., ρ̂ lower and ρ̂ upper stand for hypotheses, the name of the moderator
variable, the communication measure, the estimated rank correlation for the lower and upper
split sample, respectively. * p < 0.017 ∼= α = 0.05, ** p < 0.003 ∼= α = 0.01.

RQ3: What is the influence of merge scenario characteristics on the strength
of the relation between GitHub communication activity and the occurrence of
merge conflicts?

As illustrated in Figure 4, the size measures (i.e., #lines, #chunks, and #files)
are highly correlated, so we choose the #lines measure to represent merge
scenario size when answering RQ3. Table 5 shows the results of the estimates
of the partial correlation for the awareness-based and changed-artifact-based
networks. We do not present the results for the pull-request-based approach,
because, similar to RQ1 and RQ2, they are not significant for any hypothesis.
We explain the reasons of these non-significant values for the pull-request-
based approach in Section 6.

As our hypotheses make assumptions on the upper split (i.e., about the
larger, longer, and with many developers involved in the merge scenarios),
we focus our answers only on significant values of the upper split. Overall, we
found significant values only for H1 and H2. For both approaches and hypothe-
ses, the correlation coefficients are significant and positive when considering
the contributors’ communication. Hence, we accept H1 and H2 when consid-
ering the #cont eds measure. For both approaches, the correlation regarding
developers’ communication is significant for H1. Therefore, we accept H1 as
there is a stronger negative correlation between #dev eds and the number of
conflicts in the larger merge scenarios. Even though it may seem on first sight,
our results for RQ3 do not contradict the results for RQ2. There is no global
relationship (RQ2), however, there is a relation for “larger” merge scenarios
(RQ3) in terms of changed lines of code (H1) and number of developers (H2).

22 Vale et. al

RQ3 Summary: Regarding H1, for the awareness-based and changed-
artifact-based approaches, we found a weak but statistically significant
positive correlation #cont eds measure. For the awareness-based approach,
we further found a weak but significant negative correlation when using
#dev eds measure. Therefore, for these cases, we accept H1. Regarding H2,
for both approaches, we found a weak significant positive correlation for
#cont eds measure. Therefore, for this measure, we accept H2. Regarding
H3, we did not find any significant correlation, so we reject H3 for all cases.
We can conclude that merge scenarios’ size and the number of developers
involved influence the strength of the relation between GitHub commu-
nication activity and the occurrence of merge conflicts when investigat-
ing the “larger” merge scenarios. In practical terms, (i) in the 10% larger
merge scenarios more communication activity among all contributors using
the awareness- and changed-artifact-based approaches are associated with
more merge conflicts, (ii) in the 10% larger merge scenarios more commu-
nication activity among among developers only using the awareness- and
changed-artifact-based approaches are associated with less merge conflicts,
and (iii) in the 10% merge scenarios with more developers involved, more
communication among all contributors using the awareness- and changed-
artifact-based approaches correlate with more merge conflicts. In all these
cases, we found a weak but significant correlation.

6 Discussion

Given the popular belief that communication and collaboration success are
mutually dependent (see Section 2), our results can be seen as a negative
result, finding no indication for a global monotonic relationship between the
amount of GitHub communication and the occurrence of merge conflicts for
the majority of merge scenarios (answer of RQ2). Even when considering the
“larger” merge scenarios, with the moderation effects analysis (answer of RQ3),
we found only a weak correlation. As negative results are often suspected to
be due to the failure of the research design [13] [31] [36] [38], we start with
a discussion of potential threats to validity of our study. Subsequently, we
present the implications of our study for research and practice.

6.1 Threats to Validity

External validity. External validity is threatened mainly by three factors.
First, our restriction to Git and GitHub as platform as well as to the pull-
based model. Generalizability to other platforms, projects, and development
model is limited. This limitation of the sample was necessary to reduce the
influence of confounds, increasing internal validity, though [41]. While more
research is needed to generalize to other version control systems, development
models, and communication platforms, we are confident that we selected and

On the Relation btw. GitHub Communication Activity and Merge Conflicts 23

analyzed a practically relevant platform and a substantial number of software
projects from various domains, programming languages, longevity, size, and
coordination practices. In addition, our filters applied during subject project
selection guarantee, for instance, that we sampled projects that actively use
GitHub as a communication tool and that we do not let a single programming
language dominate our dataset (see Section 4.2).

Second, developers may use informal work practices, awareness-tools, or
prediction strategies (e.g., continuous integration and rebase) that we are not
able to measure. To minimize this threat, we manually looked at 50 issues
randomly selected of each subject project searching for terms that point to
such practices and tools, but we did not find any indication. One may also
claim that rebased scenarios bias our analysis, however, since the commit(s)
that a developer wants to integrate into another branch will be added on the
top of the branch, it will make the repository’s history linear avoiding merge
conflicts. Hence, in all cases that we are not able to retrieve the common
ancestor of two (parent) commits were excluded from our analysis. Considering
that our research is only about the pull-based model (i.e., three-way merge),
together with the previous actions, there is no bias.

Third, the need of triangulation through interview data. Interviewing de-
velopers could make our analyses and findings more reliable, however, as our
results are counter-intuitive, we believe that asking developers could lead us
to wrong conclusions. To mitigate this threat and to triangulate our data, we
provided triangulation through observational data for every topic that deals
with counter-intuitive findings, as we will discuss in Sections 6.2–6.3.

Internal validity. There are two major threats to the internal validity of
our study. First, we may miss important communication since developers may
use different communication channels (e.g., e-mail lists, IRCs, Gitter, Slack).
This fact may also influence how developers communicate on the GitHub plat-
form. We mitigate this threat by using the awareness-based approach. This
communication approach retrieves the communication of all active contribu-
tors in the merge scenario even if they mostly use other channels or do not talk
about merge scenario code changes in GitHub. This is still a limitation if con-
tributors completely ignore GitHub to communicate. However, as discussed in
Section 2.2, GitHub is one of the widely-used channels [37] and together with
the filters presented in Section 4.2, we believe that we selected only projects
that extensively use GitHub to communicate.

Second, developers may talk about other topics not related to the merge
scenario code changes [4]. To mitigate this threat, we have considered two com-
munication approaches (pull-request-based and changed-artifact-based) able
to capture a focused communication (i.e., related to the merge scenario code
changes). The pull-request-based approach considers only the communication
of the merge scenario pull request and related issues. The changed-artifact-
based approach, on the other hand, considers only the communication of
opened issues during the merge scenario that contain commits that touch files
changed in the merge scenario (see Section 3 for more details).

24 Vale et. al

6.2 Insights and Implications for Researchers

Longer merge scenarios with more developers involve more GitHub
communication, but not necessarily more merge conflicts. Figure 4
illustrates that the more time and developers are involved in a merge scenario,
the more communication activity we observe. However, this does not mean
more merge conflicts. To better understand it in practice we did a manual
and random analysis. This analysis consisted of looking at 25 issues and 25
pull requests per subject project to understand how contributors interact and
what they are talking about. As result, we identified two main patterns: (i) us-
ing pull requests, developers present their questions about their on-going code
changes, and many contributors (including non-developers) help them with
their questions, and (ii) for issues (excluding pull requests), contributors nor-
mally describe bugs, new issues, or problems (e.g., problems when configuring
the tool or showing that the issue is duplicated). Therefore, we may say that
most GitHub communication in issues (excluding pull requests) happens even
before developers create or change a branch to implement the issue’s solution.
Therefore, despite being different both issue and pull-request communication
are important and related to the merge scenario code changes. Looking at is-
sues and pull requests, we saw many links among engaged conversations and
pieces of code, which is inline with previous studies [44] [42] [11].

The size of the merge scenario’s code change is not related to the
number of developers involved. It seems obvious that the more time or
developers are involved in a merge scenario, the larger the code changes will
be. However, our principal component analysis reveals that this relationship
is not so trivial. In other words, more developers and time do not mean larger
changes. To understand the context of the changes, we manually analyzed 100
merge scenarios, split into two patterns that contradicts our first thoughts: (i)
short merge scenarios, with few developers involved, and with many changes
and (ii) long merge scenarios, with many developers involved, and few changes.
Here, we present one example for each pattern. To represent the former pattern
we chose a merge scenario from project lantern4 that lasted only 4 days, with
only two developers involved. However, 156 thousand lines of code of 3 380
chunks distributed in 446 files were changed. This merge scenario is related to
solving a critical bug that came from the upgrade of a third tool that does not
work in the Safari browser. To represent the second pattern we chose a merge
scenario from project public-apis5 that lasted 96 days, with 65 developers in-
volved, however, only 130 lines of code of 39 chunks of one file were changed.
This merge scenario consisted of adding new code. For short, they only up-
dated the README.md file. Regarding GitHub communication activity, in
the first example (pattern i), very few communication either among contribu-
tors or among developers only was found. In the second example (pattern ii),
a high level of contributors’ communication activity was found, however, few

4 github.com/getlantern/lantern; commit 86be2a8
5 github.com/toddmotto/public-apis; commit 0870841

On the Relation btw. GitHub Communication Activity and Merge Conflicts 25

developers’ communication was found. This communication behavior applies
to all communication approaches. These two examples represent well the an-
alyzed set since many merge scenarios with few developers and large changes
(pattern i) were related to bug fixing while many merge scenarios with many
developers and small changes (pattern ii) were related to the introduction of
new features to the project. In a nutshell, the type and criticality of the change
may influence the characteristics of the code changes (size, time, and develop-
ers involved), as well as how contributors communicate in general. We leave
the discussion regarding merge conflicts to the next paragraph.

Are large merge scenarios conflict-prone? Against our expectations,
we did not find a strong correlation between the size of merge scenario code
changes (in term of number of files, chunks, and lines of code involved) and the
occurrence of merge conflicts. The reason may be the location of the changes
(e.g., which files, branches, and architectural layers the changes happened).
For instance, a merge scenario of the project RxJava6 changed 642 files, 10 011
chunks, involving 44 developers and took 260 days. However, it has no merge
conflicts. It is important to highlight that both branches involved complex
changes, such as removal of files and semantic changes. One thing that con-
tributed to the absence of merge conflicts is that in this example no file was
changed in both branches and most of the changes happened in one branch (44
developers changed 612 files in the target branch while 4 developers changed
30 files in the source branch). Developers that changed the source branch
also changed the target branch. Therefore, the size of the changes of a merge
scenario is not sufficient to predict merge conflicts. In this vein, Leßenich et
al. [31] tried to predict merge conflicts, but even though they have used factors
that practitioners indicated to be related to the emergence of merge conflicts
(e.g., scattering degree among classes, commit density, number of files), none
of these factors had a strong correlation with the occurrence of merge con-
flicts. This shows together with our results that predicting merge conflicts is
not trival and further investigation is still necessary.

Contributors and developers communicate regularly to keep oth-
ers informed. By differentiating the communication of contributors and de-
velopers, we also learn whether there is a difference in the effect of communica-
tion of either of the two groups on the occurrence of merge conflicts. Unexpect-
edly, neither of the two communication groups correlates with the number of
merge conflicts when taking confounding factors into account (RQ2). Figure 5
compares contributors (#cont eds) and developers (#dev eds) communication
for each merge scenario and approach. The difference in the scale of the x-axis
and y-axis, in which y-axis is much greater, means that most communication
happened between contributors that do not change the source code. On aver-
age, #cont eds is equal to 33 019 (awareness-based), 3.25 (pull-request-based)
and 2 439 (changed-artifact-based), whereas #dev eds is 11.22 (awareness-
based), 0.15 (pull-request-based), and 9.37 (changed-artifact-based). In addi-
tion, the average of #devs is 5.85 for the dataset used to the awareness-based

6 github.com/ReactiveX/RxJava; commit 25ebda

26 Vale et. al

●
●

●
●

●
●
●● ●

●

●

●

● ●

●
●

●

●
●

●

●

●
●

●

●
●

●

●●

●●

●●
●

●

●

●
●

●

●

●
●
●

●

●

●

● ●

● ●

●
●

●
●

● ●
●

●

●

●

●

●

●

● ●

●

●
●●

●

●
●

●

●

● ●

●

●

●

● ●

●
●

●

●
●

●
●

●

● ●

●● ●

●

●

●
● ●

● ●

●●

●
●

●

●●
●
● ●●●

●●

●

●
●

●

●● ●●

●

●
●●

●
●

●

●

●
●

●●

● ●
●●

●
● ●

● ● ●
●

●

● ●

●●

●●

●
●

●
●

● ●
●

●

●
●

●

●
●

●
●

●
●

●

●

●●

●

●●
●●●

●

●●

●●

●●●

●●

● ●
●

●

●

●

●

●
●

●

●
●

● ●
●●

●

●●● ●

●

●

●

●
●

●

●

●

●
●

●

●
●

● ●

●●
●

●

●

●
●

●
●

●
● ●
●

●

●

●

●

●●

●

●

●

●●

●
●●

●

●

●

●
●

●

●

●
●

●

●

●
●

●
●

●●
●

●●●●
●

●●

●
●

● ●● ●●
●
● ●●●
●

●
●●

●
●

●
●
●

●
●●
●●●
●●●●● ●●●●

●

●

●

●
●

●
●●

●●

●

●●

●

●

●

●

●

●●
●

●

●

●
●

●

● ●

●
●

●
●

●

●

●
●

●

●
●●
●●●●●
●
●●

●

●

●
●

●
●

●●

●
● ●●●●

●
●

●

●

●●●●
●

●

●
●

●

●
●

●

●

●
●●

●

●

●

●

●●●●

●●
●●●

●

●

●●
●

●
● ●

●

●
●●●

●
●● ●

●

●
●

●
●●●●
●

●

●●●

●

● ●●
●

●
●●
●

●

● ●●

●

●
●

●

●●
●

●

● ●

●

●

● ●●●●

●

●

●● ●
●

●● ● ●● ●●●
●●●

● ●

●●●
●

●
●

●●

●●

●
●
●

●●

●

●
●

●
●

●
●

● ● ●●● ●

●

●

●

●

●●
●●

●●●
●●

●●●
●
●

●●●

● ●

● ●
●

●●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●● ●
●

●
●

●●
●

●

●●

● ●

● ●

●
●

●

●●●

●

●

● ●

●

●

●●

●

●
●

●●
●
●●

●

●
●

●

●
●

●

●

●

●
●

●●
● ●●●

●

●

●
●

●

● ● ●
●

●

●

●

●

●

●●
●

●●

●

●

●
●

●
●

●
●

●

●

●

●●

●
●

●

●
●●

●●

●

●
● ●●
●●

● ●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

● ●

●●●●● ●●
●● ●

●
● ●

● ●

●

●

●
●●

●

●

●● ● ●

●
●

●●●

●●

●

●
● ●●● ●●● ●

●

●
●●●●

●

● ●
●

●●

●●

●

●

● ●●

●

● ● ●●

●
●

●

● ●
●●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●
● ●

●

●

● ●

●

●●

●
●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●●●●●●●
●
●

●● ●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●●
●

●●

●

●●

●

●
●

●●

● ● ●

●

●

● ●
●

●
●●

●

●

●

●

●●

●

●

●
●

●

●●

●
●

●
●

●

●
●●

●

●

●
●

●

●

●

●

●●
●

●

●●

● ● ● ●

●

●

●

●●
●

●

● ●

●

●
●

●

●●● ●

●

●
●

● ●

●

●●
●●●

●●●●● ●
●
●●● ●

●

●
●

●

●
●

●

●

●

●

●●
●

●
●

●

●

●●
●

●

●

●

●

●

●
●

●●
●

●

●
●

●

●

●

●

●
●

●●●

●●●

●
●

●

●

● ●

●

●

●
●
●●

●

●●●

●
●

●
● ●●

●
●
●

●

●

●
●●●

●●●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●
●

●

●

●

●

● ●
●

● ●
●

●

●

●
●●
●
●

●

●

●

●
●

●
●● ●

●

●●
●

●

●

●

●

●
●

●

●
●

●

●

●
●

●●
●

● ●

●

●

●

●●

●
●
●●
●
●

●

●

●

●
●

●

●
●●

●

●

●

●
●

●

●

●

●
●●

●
●
●

●

●●●

● ●

●

●●
●

● ●
●

●
●

●

● ●
● ●

●

●

●

●
●

●●
●●

●

●

●

●

●●●

●

●●●

●
●

●●

●

●
●●

●

●

●

●

●

●

●●
●

●

●
●

●●●

●●

●
●

●●●●● ●
●

●

●

● ●●
●

● ●

●●

●

●● ●
●

●●

●

●

●

●●

●

●
●

●

●● ●●

●

● ●●

●●●

●

●
●

●

●

●

●

●

●
●

●

●●

●

● ●

●
●●●

●
●●

●
●●

●
●

●

●
●

●

●

●

●

●

●●

●

●
●

●●

●

●
●

●

●●
●●

●

●

●

●
● ●

●

●
●

●

●

●

●

●●
●

●
●

●
●
●

●

●
●

●●

●

●
●

●
●

●

●

●

●

●

●
● ●

●

●

●
●

●

●●

●
●

●

●● ●

●
●

●

●

●

●
●

●●●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●
●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

● ●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●●

●●
● ●

●
●●

●

●

●

●

●

●

●

●

●● ●

●

●

●

● ● ●● ●●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●
●

● ●

●

●
●

●

●

●

● ●

●

●
●●●●

●

●●
●●

●

●

●●

●
●

●
●
●

●

●
●

●
●

●

●●
●

●●

●

●
●

● ●

●

●●
●●

●

●
●
●

● ● ●

●

● ●

●

●●

●

●

●
●

● ●

●

●
●

●
●●
●

●
●
●●

● ●

●

●

●●

●

●

●

●

●●

●●●

●

● ●

●

●

●●
●

●

● ●

●

●●●

●

●

●

●
●

●

●

●

●

●

●●●

●●
● ●

●
●

●●

●

●

●

●

●
●
●

●
● ●●

● ●

●

●

●●

●

●
●

●●●
●

●●

●
●

●●

●

●

●

●

●

●●●
●

●
●

●

●●
●

●

●●

●

●

●

●

●

●
●

●
●

●

●

● ●
●

●

●
●

●

●●

● ●

●●

●

●

●●

●

● ●

●●

●
●

●

●

●● ●● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●
●

●●
●

●

●

●

●

●
●

●

●

● ●

●
●

●

●
●

●

●

●

●

● ●
●

●

●●●

●● ●

●●
●

●

●

●● ● ●

●●

●

●
●
●●●

●●●

●●

●
●● ●● ●●
●

●

●●
●

●

●●
●

●

●
●●

●
●

● ●●

●

●
●

●

●

●

●

●

●

●

●●
●

●
●

● ●

● ●

●

●

●●

●●●
●

●

●

●
●● ●●●

●
● ●●

●● ●

● ●

●

●
●

●

●●
●
●

●
● ●

●

●●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●
●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●●

●

●

●●
●

●

●

●

● ●
●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●●
● ●

●
●

●
●

●
●

●

● ●

●●
●

●

●

●●
● ●

●●
●

●

●
●

●
●

●
● ●

●

●

●

●

●
●
●

●

●●

●

●

●

●●● ●
●

●
●●●●●

●

●

●
●
●
● ● ●

●

●
●

●
●

●
●

●

●
●

●

●
●

●●● ●
●

●

●

●

●

●●
●

●

●

●

●
●

●

●
●
●

●
●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●

● ●

●

●
●

●
●

●

●

● ●

● ●●●●
●

●

●●● ●

●
●

●●

●●●

●

●●
●

●
●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

● ●
●

●
●

●

●

●

●
●

●

●

●

●
●

●

● ●

●

●●

●●

●

●

●

●
● ●

●

●
●

●

●

●

●●

● ●

●

●

●

● ●

●
●

●

●● ● ●
●● ●

●

●
● ● ●

●

●●●

●

●

●

●●
● ●
●

●

●●●

●

●

●●

●●

●

●
●

●●

●

●
● ●
●

●

●

●

●

●

●

●
●
●

●

●

●

● ●

●

●●

●

●

●●●

●

●●
●

●

●

●●
● ●●● ●●

●●
●

●

● ●
●

●

●●
●●

●

●

●
●
● ●
●●●

●●●●
●

● ●

●

●

●
●●●●●

●●

●

●
●

●

●

●

●
● ●●●

●

● ●●
●

●

●

●
●

●●● ●

●
●
●●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●
● ●

●

●
●

●

●

●
● ●

●

●

●

●●●
●

●

●
●

●
●

●

●

●

●

●● ●

●
●

●
●

●●
●●

●●

●

●

● ●

●●

● ●

● ●
●

● ●

●●●●●●
●

●

●

●

●●●
●

●
●●● ●

●

●
●

●

●●

●●
●

●

●

●
●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●
●

● ●

●

●

●

●
●

●

●

●

●

●
●

●

●
●
●●●●●

●● ● ●●● ●

●●●
●

●●
●●●●●●●●●●●●

●

●

●

●●●

●● ●

●●
●●

●
●

●

●●●●●●

●
●

●●●● ●
●●●

●●● ● ● ●●
●

●●

●

● ●

●

●●●●●●●●● ●

●

●
●●●●●●●● ●●

●

●●

●

●

●
●

●● ●
●●●●

● ●
●

●
●●●●

●

●●●

●

●●●●
●

●
● ●

●●●●

●●

●

●●

●●●

●

●● ●
●●

●
●●

●

●
●
●
●

●

●

●●
●●●

●
●

●

●●●●●

● ●

●
●●●●●●●●● ●●●●

●

●●

●●
●●

●

●●● ●

●

●
●

● ●

●

●
●●

●

●

●

●

●

●

●●

● ●●
●● ●

●
●

● ●
●

●●●●●
●

●
●

●
●

●

●

●●●●●●●●●●●●●●●●

●●●

●

●

●● ●
●

●

●

●●●

●
● ●

●

●

●

●

●
●
●●

●

●

●
●

●
●

●●

● ●

● ●●

●
●

●●
●

●

●
●● ●●
●

●●● ●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●● ●

●
●

●
●

●●
●

●
●
● ●● ●

●

●
●

●

●●● ●●

●

●●●

●

●
● ●

●
●●●

●

●

●●

●
●

●
●

●●
●

●

●
●● ●
●

●● ● ●●
●●

●

●

●

●●

●
●

●

●
●

●

●●

●
●

●
●

●
●

●

●
●

●●

●

●

●

●●●

●

●
● ●

●

●
●

●

●●

●

●

●
●

●

●

●

●●●
● ●●

●

●
●
●

●
●
●
●

●●●
●

●●

●●

●

●●
●●

●
●

●●●●●

●● ●●

●
●
●●●

●●

●

●

● ●
●
●

●

●

●

●
●●

●

●● ●●

●

●

●

●●●
●

1e+01
1e+03
1e+05
1e+07

10 1000
#dev_eds

#c
on

t_
ed

s

●●●●●●

●

●

●

● ●
●

●●

●●●

●
●
●

●

●

●
●

●

●

●●●

●

●●
●

●

●

●

●

●●
●●
●

●

●

●

●

●

●

●

●●●● ●●

●

●

●

●●

●

●●●

●
●
●

●●●
●

●

●

●

●

●

●

●
●
●
●
●

●●
●

●

●

●

●

●
●

●

●

●●●●●

●

●●

●

●●●●

●
●

●●

●

●

●

●

●●
●
●●●●

●

●●

●

●

●

●●●●
●

●

●● ●
●
●●●●●

●

●
●●

●●●●●●

●
●●

●

●

●

●

●

●

●

●●

●
●

●●●

●●
●

●

●

●●

●
●

●●

●●

●

●
●
●

●

●

●

●
●

●●
●

●●●

●

●●●

●

●●●●

●●●

●

●

●
●
●

●●

●
●
●●
●
● ●●

●●

●

●●
●
●
●●
●
● ●
●●
●
●

●●

●
●
●●
●
●
●
●●

●
●

●

●●●●●
●●●●●
●●●●

●

●
●
●
●
●●

●●

●
●

●

●
●

●●
●

●
●●
●●
●●
●●

●●●
●●

●

●
●
●
● ●
●
●

●●

●
●

●

●
●
●

●
●
● ●

●
●

●
●●

●

●●

●

●

●●

●

●

●●●

●●●●
●
●●●●●
●

●●●●● ●

● ●

●●●●
●
●

●
● ●●●
●●
●●●

●●
●

●
●
●●
●
● ●
● ●
●
●

●

●●
●●●●
●

●●●●●●●●●●

●

●●

●●

●

●

●●

10 1000
#dev_eds

Pull-request-based

●

●

●

●

●

●●
● ●

●

●

● ●●

●

●

●
●

●

●

●●

●

●
●

●

●●

●
●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●
●● ●

●

●
●

● ●
●

●

●

●

●

●

●

●
●

●

● ●●

●

●
●

●

●

● ●

●
●

●

●
●

●

●

●

●
●● ●●

● ●

●
●

●

●●●

● ●

●

●
●

●

●

●●
●

●

●

●●

●●
●

●
●

●
●

●

●
●

●
●

●
●

●

●
●

●●

● ● ●●

●

●

●

●

●●

●

●

●

●●●●

●

●
●●

● ●
●

●

●
●

●

●
●

●
●

●

●

●

●●

●
●
●

●

●●

●
●

● ●

●
● ●

●

●
●

●

●●

●

●
●

●

●
●●

●

●●●
●

●

●

●

●

●●

●

●

●

●●

●
●

●
●

●

●

●

●
●

●
●

●

● ●

●

●

●
●●

●

●
● ●

●

●

●●

●

●

● ●

●
●

●

●

●

●

●●
●

●

●
●●●

●

●●

●

●

● ●● ●

●●
● ●●
●

●
●●●

●
●

●

●●●●
●●

●●
●

●

●

●

●

●

●
●

●●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●●

● ●
●

●●

●

●

●●●●●
●

●

●
●

●

●

●
●●

●● ●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●●
●

●

●

●●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●
●

●●● ●●
●●

●

●●

●

●

●
●

●
●
●

●

●
●

●
●

●
●

●
● ●
●●
●

●

●●

●

●●
●

●●
●

●

●
●

●● ●

●

●
●

●

●

● ●

●

●

●

●●●

●
●
●

●

●
●

●

●

●

●
●

● ●

●

●

●

●

●●
● ●

●● ●

●
●

●
●

●

●
●

●●

●

●

●

●●

●

●
●

●●●
●
●
●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●
●●

●

●

●

●
●

●●

●●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●
●

●● ●

●

●●
●

●

●●

●

●

●●●
● ●●● ●●● ●

●

●●●●

● ●●

●●

●

●

● ●●

●

● ●
●●

●
●

●

●

●
●

●

●

●

●
●
●

●

●
●●

●

●

●
●

●

●

●●

●●

●

●

●

●

● ●

●

● ●

●

●
●

●

●

●

●

●

●
●

●

●● ●

●

●
●

●

●

●

●●

●●
●●

●●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●●
●●

●●●●

●● ●

●

●

●

●

●●

●

●

●
●●

●

●

●

●
●

●

●●

●

● ●

●●
● ● ●

●

●

●

●

●

● ●●

●

●

● ●
●
●

●

● ●

●

●●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●●
●

●

●●

● ● ● ●

●

●

●

●●

●

●

●
●

●

●
●

●

●●
●

●

●

●
●

● ●

●

●●●●
● ● ●●●

● ●●●●● ●
●

●●

●

●
●

●

●

●

●

●●
●

●
●

●

●

●●

●

●

●

●

●
●

●●

●●
●

●

●
●

●

●

●

●

●
●

●

●

●●
●

●
●

●

●

● ●

●

●

●

●

●

●●

●

●
●

●
●

●●
●

●
●

●

●
●●●

●●

●

●

●

●●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●●

● ●
●

●

●

●●

●

●

●

●

● ●

●● ●●

●

●

●

●
●
●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●● ●

●
●

●

●
●

●

● ●

●

●

●
●●
●
●
●
●
●

●●
●●

●
●

●

●
●

●

●

●

●

●

●

●

● ●●●
●●

●

●

●
●

●

●
●●

● ●

●●

●●

●

●

●

●

●

●

●

●
●●

●
● ●
●

●

●
●●

●●

●
●

●

●
●●●

●

●

●
●

●●

●
● ●

●

● ●

●

●

●

●
●●

●

●

●●

●
●

●
●

●

●

●

●●

●
●

●

●

●●
●

● ●

● ●●

●

●

●

●

●
●
●

●

●

●

●

●
●

●

●●

●
●●

●●●●●●

●

●

●
●

●

●

●

●

●

● ●
●

●

●
●

●●
●

●●

●

●●●
●

●
●

●

●

●

●

●

●
●

●●

●●

●

●

●

●
●

●
●

●
●● ●

●

●

● ●●

●
● ●

●

●●

●
●

● ●

●
●

●●
●

●●

● ●●
●●●

●●

●
●

●
● ●

●

●●
● ●● ●

●

●

●●
●

●

●

●

●
●

●

●●
●

●

●●

●

●

●

● ●

●
●

●●

●

●

●

●

●

●

●
●

●
●

●

● ●
●●

●
●● ● ●● ●

●●
●

●

●
●

●●

●
●

●

●
●

●
●
●

●

●

●●

●●
● ●● ●● ●

●
●

●
●

●

●

●
●●●

●

●
●

●
● ●● ●

●●
●●

●
●●●

●

●

●

●

●
●

●

● ●●

●●

●●

●

●
●

●
●

● ●
●

●

●

●●

●
●

●

●●

●

●

●●

●●

●●

●

●
●

●

●
●

●

●●

●

●

●

●
●

●●●
● ●

●
●

●
● ● ●
●

● ●

●

●●

●

●
● ●

● ●
●

●
●

●

●
●
●

● ●

●

●

●●●
●

●
●
●●

●

●●

● ●
●

●●●●

● ●

●

●●●●
●

●

●
●

●

●

●

●

●

●●●

●

●●●

●

●

●●
●

●

●

●
●●●

●

● ●●

●

●

●

●

●

●

●

●
●

●
●●

●
●

●●
●

●

●

●

●

●

●●
●

●

●

●

●●●

●

●●

●

●

●

●
●

●

● ● ●●

●
●

●

●

● ●

●
●●●

●
●

●

●●

●
●

●

●

●● ●● ●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●
●
●

●
●

●
●

●●
●

●

●

●

●

●
●

●

●
● ●

●

●

●
●

●

●

●

●●
●

●

●
●● ●

●

●

●●●

●
●●●●● ●● ●
●

●

●

●

●●
●

●

● ●●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●
●

●
●

●

●

●

●
●

●●
●

●

●

●

●●●
●●

●
●

● ●●

●

● ●

●

●

●
●

●●●
●

● ● ●●

●●

●

●
●

●

●

●

●

●

●

●

●

● ● ●●

●

●

●
●

●

●
●

●

●

●

●
●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●

●

●

●●●
●

●
● ●●

●

●
●

●

●

●

●●

●
●●

●●
●
●

●

●

●

●

●
●

●
●

●

●
●

●●

●

●

●
●

●
●
●

●

●

●

●

●

●
●

●

●
●●●

●
●

●
●

●

●

● ●

●

●

●

●

●

●

●

●●
●

●●

●●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●● ●

●

●
●

●
●

●

●

●

●

●
●

●

● ●

●●

●●

●
●●

●

●

●

●

●

●

●
●
●

●●●

●

●

●

●
●

●

●

●

●

●
●●

●

●
●

●●

●●

●

●
●

●

●

●

●
● ●

●

●

●

●

●

●●

●
●

●

●

●

●●

●●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●●● ●●

●●●
●
● ●

●●

●
●

●

●●
●

●

●
●

● ●
●
●
●

●●
●●
●

● ●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●
●

●

●●
●

●

● ●●
●●

●

●
●

●● ●

●●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●
●

●
●●

●

●

●

●

●

●

●
●

●●

●
●

●

●
●

●●

●

●●

●

●

● ●

●●

● ●

●

●●

● ●

●

●
●●●●

●

●

●

●

●
●

●

●●

●
● ●●

●

● ●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●
●

●

●

●

●

●●

●
●●

●●●●●
●●

● ●●
● ●

●●●
●

●●
●

●
●●●
●●●●●●●

●●
●
●●●
●● ●

●●
●

●

●

●

●

●●
●●●

●

●
●

●
●●● ●●●●

●
●●

● ● ●● ●
●

●
● ●

●

●●

●●●●
●●● ●

●
●

●●●●●●●● ●●

●

●●●
● ●

●

●

●●●

●
●
●

●
●●

●
●●●●

●

●●●
●

●

● ●

●●●

●●
●

●●
●●●

●

●

●

●
●●

●

●●●●

●

●
●
●

●

●

●●
●
●
●

●
●●

●●●●●● ●

● ●●●●
●●●●●

●●●●
●

●●●
●

●
●

●

●●● ●

●

● ●●

●
●

●

●●

●

●
●

●

●

●
●●

● ●
●
●● ●

●
●

● ●
●

●●●●

●
●●●●●

●
●

●
● ●

●●●●●●●●●●●●●●●●

●●

●

●

●

●● ●

●

●

●

●●●

●
● ●

●
●

●

●●
●

●

●

●
●●

●●●

●●

●●

●
●

●

●

●

●

●● ●●
●

●●

●●

●

●
●
●

●
●

●

●
●

●

●
●

●
●

●
●

●

●

●

● ●

●

●
●

●
●

●
●

●●

●●
●

●
●
● ●● ●

●

●
●

●

●●● ●●

●

●●●

●

●
● ●●●●

●

●
●

●

●●

●
●

●
●

●●
●

●

●
●● ●

●
● ●●

●●
●●

●

●

●

●●

●
●

●

●
●

●●

●
●

●
●

●

●●

●
●

●●●●

●

●●
●

●

●
● ●

●

●
●

●
●●●

●

●
●

●

● ●
●●●● ●

●●●●●

●

●●●●

●
●●
●
●

●

●

●

●

●
●

●
●

●

●

●

●●●

●

●● ●
●

●

●

●

●●

●
●

10 1000
#dev_eds

Awareness-based Changed-artifact-based

Fig. 5 Contributors’ versus developers’ communication.

and change-artifact-based approach analyses and 4.23 for the dataset used for
the pull-request-based approach analysis. So, most of the GitHub communi-
cation takes place among contributors. Given the average of #devs eds for
awareness-based and changed-artifact-based, we can assume that developers
also communicate, although less than non-developers. This amount of com-
munication among contributors and also among developers only brings us to
the conclusion that in general developers and non-developers communicate to
keep others aware of their contribution in a merge scenario.

Developers’ communication is more efficient than contributors’
communication for avoiding merge conflicts. As stated by the last para-
graph, contributors and developers normally communicate. Therefore, contrib-
utors normally keep others aware of their code changes. For the general case,
there is no relation between GitHub communication and the occurrence of
merge conflicts. However, when considering the 10% larger merge scenarios in
terms of lines of code, the contributors’ and the developers’ communication
have a different behavior. While the contributors’ communication is related to
an increase in the number of merge conflicts, the developers’ communication is
related to a decrease in the number of merge conflicts. When considering that
the communication among developers will support the coordination of social
and technical assets and that such coordination may minimize the number of
merge conflicts, we may interpret that, for larger merge scenarios, develop-
ers’ communication is normally helpful for avoiding merge conflicts being also
more efficient than the contributors’ communication.

The communication approach does not change the understanding
on the occurrence of merge conflicts. We consider the three communi-
cation approaches used in this study (awareness-, pull-request-, and changed-
artifact-based) valid to measure the communication granularity they were pro-
posed to measure. Yet, independent of the communication approach, we did
not find a different relation on the occurrence of merge conflicts in the general
case (RQ2). Therefore, we cannot pinpoint which communication approach
presented in this study is best for avoiding merge conflicts.

In any event, there are three points that we can discuss: (i) as the pull-
request-based approach is dependent of GitHub pull-requests and most of the
merge scenarios are not integrated by means of pull-requests, this communica-
tion approach has a limited applicability, (ii) developers normally talk about
the changed artifacts since the average of the amount of communication of the

On the Relation btw. GitHub Communication Activity and Merge Conflicts 27

awareness-based approach (general GitHub communication) and the changed-
artifact-based approach (GitHub communication related to artifact changed)
are similar (11.22 edges against 9.37), and (iii) regarding contributors’ commu-
nication the awareness-based approach and the changed-artifact-based aproach
have a very different average (33 019 edges against 2 439).

Limitations of bivariate analysis. The bivariate analysis is simple and
intuitive, as it directly quantifies the correlation of interest. On the other
hand, the multivariate analysis takes other factors that may influence the
correlation of interest into account. Looking at the answers to RQ1 and RQ2,
our results for these two analyses are contradictory. Even though we are aware
that the bivariate analysis is not enough to investigate the complex interplay
of project success, communication, and contextual factors, our intention by
presenting both results is to highlight the limitations of bivariate analysis. In
other words, a simple and intuitive analysis may provide wrong results, hence
it is necessary to reflect on the big-picture before determining which variables
should be analyzed and modeled.

A causal perspective. Our results for RQ2 reveal a no significant relation
between GitHub communication activity and merge conflicts. Therefore, more
communication activity does not imply fewer or more merge conflicts, and
more or fewer merge conflicts does not result from a lack of communication.
Such causal analysis of the relation between GitHub communication and merge
conflicts can only be achieved with a more detailed understanding of the timely
order of events (e.g., communication before and after comits), which is out of
scope of this study. For that reason, our results are limited to determining
whether there is correlation among these covariables or not.

6.3 Insights and Implications for Practitioners

Number of commits should be used with care. As a metric, the number
of commits is often used by practitioners to obtain a feeling of the contributions
of others as well as to predict conflicts [16] [31]. However, even though this
metric correlates most with the number of conflicts in our study (compare
arrow of #commits and #conflicts in Figure 4 (a) and (c)), the correlation is
weak (≈ 0.2). Hence, this metric should be used with care, as it depends on
how developers commit their code (e.g., for each function or for each feature
implemented). For instance, in the project lantern7 there are two commits from
the same developer, but following completely different patterns. The former
has changed 527 files, 3 379 chunks, 175 458 lines of code, and it is not involved
in a merge conflict. The latter has changed only 1 file, chunk, and line of code,
but, it was involved in a merge conflict. Two points to highlight are: (i) these
commits were part of merge scenarios in which the two merged branches were
changed and (ii) the target developer made substantial semantic changes (i.e.,
not only formatting or ordering changes).

7 github.com/getlantern/lantern; commits:9d0bbbb and 6b6b534

28 Vale et. al

Pull requests lead to fewer merge conflicts. As can be seen in the
fourth row of Table 3, 6 487 merge scenarios have both branches touched and
have multiple developers contributing to it. In addition, the last row of Table
3 shows that of 3 436 merge scenarios using pull requests only 7 have 9 merge
conflicts (2 merge scenarios have 2 conflicts) of which 0.2% are conflicting
merge scenarios. Subtracting the merge scenarios that use pull requests from
the ones with both branches touched and with multiple developers, we get
3 051 merge scenarios that were merged without pull requests (e.g., by the
git merge command) of which 851 conflicting merge scenarios can be found.
Hence, these merge scenarios present a share of 27.89% of conflicting merge
scenarios. In other words, the share of conflicting merge scenarios without
using pull requests is 139 times greater than when using pull requests.

The low number of merge conflicts when integrating merge scenarios by
using pull requests is likely the reason why we did not find significant corre-
lation values when answering all research questions for the pull-request-based
approach. The reason for the low number of merge conflicts comes from the
fact the pull requests simulate the merge. With the simulation, developers
have the chance of changing the source code before merging the branches (i.e.,
avoiding merge conflicts). This raises two questions: Why are pull requests not
used in most of the merge scenarios? And, why some merge scenarios still
have merge conflicts when using pull requests? For the first question, it is nec-
essary to conduct interviews with developers, but we understand that, for some
merge scenarios, it is simpler to merge branches locally. Regarding the second
question, we manually checked each of these conflicting merge scenarios aim-
ing at discovering why developers did not remove the conflicts before merging
branches. We observed two things. First, the conflicts are in files that do not
“break” the code and are normally in files not tested, such as README.md
or .gitignore. Second, a commit resolving the conflict is added little time after
the merge by another developer. Our assumption is that, whoever merged the
code, merged because it did not fail in the test suit and another developer,
maybe more experienced, chose the “best” option later on. Given the low num-
ber of merge conflicts when using pull requests, developers should adhere to
such practice as well as to continuous integrations, and awareness tools in their
workday tasks.

7 Final Remarks and Perspectives

Software development is a collaborative activity where success depends on
the ability to coordinate social and technical assets. Software merging is a
challenging and tedious task in the practice of collaborative and concurrent
software development, mainly when merge conflicts arise. Since merge conflicts
are unexpected events, they have a negative effect on project’s objectives com-
promising the project budget and schedule, especially when they arise often.
On the other side, empirical research has found evidence for a beneficial effect
of communication on the project coordination and success. So, it is believed

On the Relation btw. GitHub Communication Activity and Merge Conflicts 29

that high communication activity helps to avoid merge conflicts. However, in
spite of such belief the role of communication activity for merge conflicts to
occur or to be avoided had not been thoroughly investigated so far.

Aiming at investigating the relation between GitHub communication and
the occurrence of merge conflicts (i.e., the two covariates), we rebuilt the
merge scenarios’ contributions and communications of 30 subject projects.
To obtain a deep understanding of communication work practices in these
projects, we used three communication approaches (awareness-, pull-request-
, and changed-artifact-based) and differentiate the communication among all
contributors and the communication among developers only. Our investigation
comprises three analyses. First, we started investigating the direct correlation
between these two covariates as is common in empirical software engineer-
ing studies. As result, we found a weak but significant positive correlation
when using the awareness- and changed-artifact-based approaches. While be-
ing simple and intuitive, this bivariate analysis does not consider the complex
interplay of project success, communication, merge conflicts, and contextual
factors, which may had led us to a misleading conclusion. Aiming at properly
exploring this interplay, we performed a multivariate analysis. In this analysis,
we found no significant relation between communication measures and number
of merge conflicts. We conclude that the results of the bivariate analysis are
spurious. Furtheremore, considering that it is likely that the strength of the
relation between the two covariates depends on merge scenario characteristics,
we performed a moderation effect analysis. As result of the moderation effect
analysis, we found that the number of lines of code and the number of devel-
opers involved in the merge scenario influences the strength of such relation.
Thus, there is no overall monotonic relation, but there is a relation for “larger”
merge scenarios.

The seemingly contradictory results from our three analyses should alert
the reader that overly simplistic bivariate analysis can lead to wrong conclu-
sions. To avoid such mistakes, it is necessary to reflect on the big-picture to
determine which variables should be analyzed and modeled when investigating
complex environments such as the collaborative software development.

Our result contradict the common belief that communication per se is
beneficial for avoiding merge conflicts. If this was the case, we would expect
a strong negative correlation between the communication activity and the
number of merge conflicts. Puzzled by our results and to ensure that they
are robust, reliable, and straightforward, we provided triangulation through a
manual investigation of the merge scenarios’ contribution and communication
activity separately.

Regarding the merge scenarios’ contribution, our discussions suggest that
(i) the number of developers do not influence the size of the code changes
in a merge scenario, (ii) more time and developers are not accompanied by
more merge conflicts, (iii) the type of the change influences the size of merge
scenarios. Bug fixing normally represents short time-life scenarios, with few
developers, and large code changes. The introduction of new code (features),
on the other hand, represents long time-life scenarios, with many developers,

30 Vale et. al

and few code changes, (iv) larger changes are not more conflicting-prone than
smaller changes (which is in agreement with Leßenich et al. [31]). It suggests
that the location of the changes are more related to the emergence of merge
conflicts than the size of the change, (v) the number of commits should be
used with care since it depends on how developers commit to the project. As
exemplified, the same developer may follow different committing patterns, and
(vi) the use of pull requests reduces the number of merge conflicts compared
to merge scenarios integrated without pull requests in 139 times.

Regarding communication activity, our discussions suggest that (i) indeed
contributors and developers normally communicate. Hence, our unexpected
results did not come from a lack of communication or because we were not
able to retrieve such communication, (ii) GitHub issue and pull-request com-
munication are both important to understand merge scenario code changes.
However, the former is more related to problem clarification and the latter is
more related to the on going code changes, (iii) the communication approach
choice (awareness-, pull-request-, and changed-artifact-based) does not change
the results of the multivariate analysis which means that one is not better than
the others for avoiding merge conflicts, and (iv) for the moderation effect anal-
ysis, the developers’ communication was shown to be more efficient than the
contributors’ communication for avoiding merge conflicts.

As future work, we suggest studies as well as further investigations on the
relation between communication activity and merge conflicts. Regarding com-
munication activity, we suggest (i) the exploration of other communication
channels, (ii) the impact of the use of GitHub communication when develop-
ers use other channels, and (iii) how contributors use GitHub facilities (e.g.,
labels, links among issues and commits). These three suggestions may over-
come limitations of our study discussed in Section 6.1 and give more detailed
insights into the topic. Regarding merge conflicts, we suggest explorations of
(i) the lack of code ownership [14] [18], (ii) the centrality of files, and (iii) the
contribution activity for each merged branch on the occurrence of merge con-
flicts. These three suggestions may explain why previous work [1] [15] [31] has
found counter-intuitive results when predicting merge conflicts. Furthermore,
we suggest three studies. First, a study using network metrics such as density,
centrality, and clustering to provide an overview of how contributors organize
and coordinate themselves over the project evolution [24]. It can be useful to
find patterns that contributes to the emergence of merge conflicts. Second,
we suggest a study that takes our data in consideration and asks developers
about specific (outlier) merge scenarios. This would provide explanations for
strange metric combinations, such as very large merge scenarios with hundreds
of developers involved, which took only one day to be integrated. Finally, we
suggest a study exploring the developer’s role in the merge scenario. Previous
studies have found that communication activity is required for the success of
software projects [7] [19] [40] [43]. However, when considering the avoidance
of merge conflicts, some developers have more responsibility on specific merge
scenarios and their communication/coordination would be enough to avoid

On the Relation btw. GitHub Communication Activity and Merge Conflicts 31

merge conflicts. In other words, is the coordination of all developers necessary
to avoid merge conflicts occurrence?

Acknowledgements This work was partially supported by CNPq (grant 290136/2015-6)
and Bavarian State Ministry of Education, Science and the Arts in the framework of the
Centre Digitisation.Bavaria (ZD.B).

References

1. P. Accioly, P. Borba, and G. Cavalcanti. “Understanding Semi-structured Merge Conflict
Characteristics in Open-source Java Projects”. In Empirical Software Engineering, vol.
23(4), Springer, pp. 1–35, 2017.

2. S. Apel, O. Leßenich, and C. Lengauer. “Structured Merge with Autotuning: Balancing
Precision and Performance”. In Proceedings of the International Conference on Automated
Software Engineering (ASE). ACM, pp. 120–129, 2012.

3. S. Apel, J. Liebig, B. Brandl, C. Lengauer, and C. Kästner. “Semistructured Merge:
Rethinking Merge in Revision Control Systems”. In Proceedings of the Symposium and
the European Conference on Foundations of Software Engineering (ESEC/FSE). ACM,
pp. 190–200, 2011.

4. J. Aranda and G. Venolia. “The Secret Life of Bugs: Going Past the Errors and Omissions
in Software Repositories”. In Proceedings of the International Conference on Software
Engineering (ICSE). ACM, pp. 298–308, 2009.

5. A. Begel, Y. P. Khoo, and T. Zimmermann. “Codebook: Discovering and Exploiting
Relationships in Software Repositories”. In Proceedings of the International Conference
on Software Engineering (ICSE). ACM, pp. 125–134, 2010.

6. J. Biehl, M. Czerwinski, G. Smith and G. Robertson “FASTDash: A Visual Dashboard
for Fostering Awareness in Software Teams”. In: Proceedings of the Conference on Human
Factors in Computing Systems (CHI), ACM, pp. 1313–1322, 2007.

7. C. Bird, N. Nagappan, P. Devanbu, H. Gall, and B. Murphy. ”Does Distributed Develop-
ment Affect Software Quality? An Empirical Case Study of Windows Vista”. In Proceed-
ings of the International Conference on Software Engineering (ICSE). IEEE, pp. 518–528,
2009.

8. C. Bird, D. Pattison, R. DâĂŹSouza, V. Filkov, and P. Devanbu. ”Latent Social Struc-
ture in Open Source Projects”. In Proceedings of the ACM SIGSOFT Symposium on the
Foundations of Software Engineering (FSE). ACM, pp. 24–35, 2008.

9. H. Borges and M.T. Valente. “What’s in a GitHub Star? Understanding Repository
Starring Practices in a Social Coding Platform”. In Journal of Systems and Software
(JSS), vol. 146 (1), pp. 112–129, 2018.

10. Y. Brun, R. Holmes, M. D. Ernst, and D. Notkin. ”Proactive Detection of Collabora-
tion Conflicts”. In Proceedings of the European Software Engineering Conference and the
Symposium on Foundations of Software Engineering (ESEC/FSE). ACM, pp. 168–178,
2011.

11. L. Dabbish, C. Stuart, J. Tsay, and J. Herbsleb. “Social Coding in GitHub: Transparency
and Collaboration in an Open Software Repository”. In Proceedings of the Conference on
Computer Supported Cooperative Work (CSCW). ACM, pp. 1277–1286, 2012.

12. P. Dewan and R. Hegde. “Semi-synchronous Conflict Detection and Resolution in Asyn-
chronous Software Development”. In Proceedings of the Conference on European Com-
puter Supported Cooperative Work (ECSCW). ACM, pp. 159–178, 2007.

13. K. Dickersin, Y. Min, and C. Meinert. “Factors Influencing Publication of Research Re-
sults: Follow-up of Applications Submitted to Two Institutional Review Boards”. Journal
of the American Medical Association, vol. 267 (3), pp. 374–378, 1992.

14. M. Foucault, J.-R. Falleri and X. Blanc. “Code Ownership in Open-source Software”.
In Proceedings of the International Conference on Evaluation and Assessment in Software
Engineering (EASE), ACM, pp. 1–9, 2014.

32 Vale et. al

15. G. Ghiotto, L. Murta, M. Barros, and A. van der Hoek. “On the Nature of Merge
Conflicts a Study of 2,731 Open Source Java Projects Hosted by Github”. In Transactions
on Software Engineering (TSE), vol. 99 (1), IEEE, pp. 1–25, 2018.

16. G. Gousios, M. Pinzger, and A. Deursen. “An Exploratory Study of the Pull-based
Software Development Model”. In Proceedings of the International Conference on Software
Engineering (ICSE). ACM, pp. 345–355, 2014.

17. G. Gousios, M.A. Storey, and A. Bacchelli. “Work Practices and Challenges in Pull-
based Development: The ContributorâĂŹs Perspective”. In Proceedings of the Interna-
tional Conference on Software Engineering (ICSE). ACM, pp. 285–296, 2016.

18. M. Greiler, K. Herzig, and J. Czerwonka. “Code Ownership and Software Quality: A
Replication Study”. In Proceedings of the Working Conference on Mining Software Repos-
itories (MSR), IEEE, pp. 2–12, 2015.

19. R. E. Grinter, J. D. Herbsleb, and D. E. Perry. “The Geography of Coordination: Dealing
with Distance in R & D Work”. In Proceedings of the International ACM SIGGROUP
Conference on Supporting Group Work (GROUP). ACM, pp. 306–315, 1999.

20. M. L. GuimarÃčes and A. R. Silva. “Improving Early Detection of Software Merge
Conflicts”. In Proceedings of the International Conference on Software Engineering (ICSE).
IEEE, pp. 342–352, 2012.

21. A. Guzzi, A. Bacchelli, M. Lanza, M. Pinzger, and A. Deursen. “Communication in Open
Source Software Development Mailing Lists”. In Proceedings of the Working Conference
on Mining Software Repositories (MSR). IEEE, pp. 277–286, 2013.

22. H. Z. Jerrold. “Significance Testing of the Spearman Rank Correlation Coefficient”.
Journal of the American Statistical Association, vol. 67 (339), Taylor & Francis, Ltd, pp.
578–580, 1972.

23. M. Joblin, S. Apel, and W. Mauerer. “Evolutionary Trends of Developer Coordination:
A Network Approach”. Empirical Software Engineering, vol. 22 (4), pp. 2050–2094, 2017.

24. M. Joblin, W. Mauerer, S. Apel, J. Siegmund, and D. Riehle. “From Developer Networks
to Verified Communities: A Fine-grained Approach”. In Proceedings of the International
Conference on Software Engineering (ICSE). IEEE, pp. 563–573, 2015.

25. I.T. Jolliffe. “Principal Component Analysis”. Springer Series in Statistics, Springer,
2nd edition, p. 487, 2002.

26. S. Just, K. Herzig, J. Czerwonka, and B. Murphy. “Switching to Git: The Good, the
Bad, and the Ugly”. In Proceeding of the International Symposium on Software Reliability
Engineering (ISSRE). IEEE, pp. 400–411, 2016.

27. E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. German, D. Damian. “The
Promises and Perfils of Mining GitHub”. In Proceedings of the Working Conference on
Mining Software Repositories (MSR), ACM, 92–101, 2014.

28. B.K. Kasi and Anita Sarma. “Cassandra: Proative Conflict Minimization through Op-
timized Task Scheduling”. In Proceedings of the International Conference on Software
Engineering (ICSE). ACM, pp. 732–741, 2013.

29. S. Kim “ppcor: An R Package for a Fast Calculation to Semi-partial Correlation Coeffi-
cients”. Communication for Statistical Applications and Methods, vol. 22 (6), pp. 665–674,
2015.

30. T. D. LaToza, G. Venolia, and R. DeLine. “Maintaining Mental Models: A Study of
Developer Work Habits”. In Proceedings of the International Conference on Software En-
gineering (ICSE). ACM, pp. 492–501, 2006.

31. O. Leßenich, J. Siegmund, S. Apel, C. Kästner, and C. Hunsen. “Indicators for Merge
Conflicts in the Wild: Survey and Empirical Study”. Automated Software Engineering,
vol. 25 (2), Springer, pp. 1–35, 2017.

32. J. Liu, J. Li, and L. He. “A Comparative Study of the Effects of Pull Request on
GitHub Projects”. In Annual Computer Software and Applications Conference (COMP-
SAC). IEEE, pp. 313–322, 2016.

33. S. McKee, N. Nelson, A. Sarma, and D. Dig. “Software Practitioner Perspectives on
Merge Conflicts and Resolutions”. In Proceedings of the International Conference on Soft-
ware Maintenance and Evolution (ICSME). IEEE, pp. 467–478, 2017.

34. T. Mens. “A State-of-the-Art Survey on Software Merging”. In IEEE Transactions on
Software Engineering. IEEE, 28(5):449–462, 2002.

On the Relation btw. GitHub Communication Activity and Merge Conflicts 33

35. N. Nelson, C. Brindescu, S. McKee, A. Sarma, D. Dig. “The Life-Cycle of Merge Con-
flicts: Processes, Barriers, and Strategies”. Empirical Software Engineering, Online First,
Springer, pp. 1-44, 2019.

36. C. Olson, D. Rennie, D. Cook, K. Dickersin, A. Flanagin, J. Hogan, Q. Zhu, J. Reiling,
B. Pace, “Publication Bias in Editorial Decision Making”. Journal of the American Medical
Association. vol 287 (21), pp. 2825–2828, 2002.

37. S. Panichella, G. Bavota, M. D. Penta, G. Canfora, and G. Antoniol. “How Develop-
ersâĂŹ Collaborations Identified from Different Sources Tell Us about Code Changes”.
In Proceeding of the International Conference on Software Maintenance and Evolution
(ICSME). IEEE, pp. 251–260, 2014.

38. E. Reiter, R. Robertson, and L. Osman. “Lessons from a Failure: Generating Tailored
Smoking Cessation Letters”. Artificial Intelligence. Elsevier, vol. 144(1-2), pp. 41–58, 2003.

39. A. Sarma, D.F. Redmiles, A. van der Hoek. “Palant́ır: Early Detection of Development
Conflicts Arising from Parallel Code Changes”. IEEE Transactions on Software Engineer-
ing. IEEE, vol. 38(4), pp. 889–908, 2012.

40. T. Sedano, P. Ralph, and C. PÃľraire. “Software Development Waste”. In Proceedings of
the International Conference on Software Engineering (ICSE). IEEE, pp. 130–140, 2017.

41. J. Siegmund and J. Schumann. “Confounding Parameters on Program Comprehension:
A Literature Survey”. Empirical Software Engineering vol. 20 (4), pp. 1159–1192, 2015.

42. L. Singer, F. Figueira Filho, B. Cleary, C. Treude, M.A. Storey, and K. Schneider.
“Mutual Assessment in the Social Programmer Ecosystem: An Empirical Investigation of
Developer Profile Aggregators”. In Proceedings of the Conference on Computer Supported
Cooperative Work (CSCW). ACM, pp. 103–116, 2013.

43. C. R. B. Souza, D. Redmiles, L. Cheng, D. Millen, and J. Patterson. “How a Good
Software Practice Thwarts Collaboration: The Multiple Roles of APIs in Software Devel-
opment”. SIGSOFT Software Engineering Notes vol. 29 (6), pp. 221–230, 2004.

44. M.A. Storey, A Zagalsky, F. Figueira Filho, L. Singer, D. M. German. “How Social
and Communication Channels Shape and Challenge a Participatory Culture in Software
Development”. In IEEE Transactions on Software Engineering. vol. 43 (2), pp. 185–204,
2016.

45. T. Teo. “Handbook of Quantitative Methods for Educational Research”. SensePublish-
ers, p. 404, 2014.

46. J. Tsay, L. Dabbish, and J. Herbsleb. “Influence of Social and Technical Factors for
Evaluating Contribution in GitHub”. In Proceedings of the International Conference on
Software Engineering (ICSE). ACM, pp. 356–366, 2014.

47. G. Vale, E. Fernandes, E. Figueiredo. “On the Proposal and Evaluation of a Benchmark-
based Threshold Derivation Method”. Software Quality Journal, vol. 27(1), pp.1–32, 2018.

48. G. Vale, A. Schimid, A. Santos, E. Almeida, and S. Apel, “On the Relation Be-
tween Coordination Activities and Merge Conflicts – Supplementary Web site” Available:
https://sites.google.com/view/vale-emse2019, [Accessed: 07/30/2019].

49. S. P. Wright. “Adjusted P-Values for Simultaneous Inference”. Biometrics, Wiley, vol.
48(4), pp. 1005–1013, 1992.

50. T. Zimmermann, P. Weisgerber, S. Diehl, and A. Zeller. “Mining Version Histories to
Guide Software Changes”. In Proceedings of the International Conference on Software
Engineering (ICSE). IEEE, pp. 563–572, 2004.

