
1

Challenges of Resolving Merge Conflicts:
A Mining and Survey Study

Gustavo Vale, Claus Hunsen, Eduardo Figueiredo, and Sven Apel

Abstract—In collaborative software development, merge conflicts arise when developers integrate concurrent code changes.
Practitioners seek to minimize the number of merge conflicts because resolving them is difficult, time consuming, and often an
error-prone task. Despite a substantial number of studies investigating merge conflicts, the challenges in merge conflict resolution are
not well understood. Our goal is to investigate which factors make merge conflicts longer to resolve in practice. To this end, we
performed a two-phase study. First, we analyzed 66 projects containing around 81 thousand merge scenarios, involving 2 million files
and over 10 million chunks. For this analysis, we use rank correlation, principal component analysis, multiple regression model, and
effect-size analysis to investigate which independent variables (e.g., number of conflicting chunks and files) mostly influence our
dependent variable (i.e., time to merge). We found that the number of chunks, lines of code, conflicting chunks, developers involved,
conflicting lines of code, conflicting files, and the complexity of the conflicting code influence the merge conflict resolution time.
Second, we surveyed 140 developers from our subject projects aiming at cross-validating our results from the first phase of our study.
As main results, (i) we found that committing small chunks makes merge conflict resolution faster when leaving other independent
variables untouched, (ii) we found evidence that merge scenario characteristics (e.g., the number of lines of code or chunks changed
in the merge scenario) are stronger correlated with our dependent variable than merge conflict characteristics (e.g., the number of
lines of code or chunks in conflict), (iii) we devise a taxonomy of four types of challenges in merge conflict resolution, and (iv) we
observed that the inherent dependencies among conflicting and non-conflicting code is one of the main factors influencing the merge
conflict resolution time.

Index Terms—Merge Conflict Resolution, Collaborative Software Development, Three-way Merge

F

1 Introduction

V ersion control systems help developers to manage code
changes over time by tracking all code contributions,

especially when involving collaborations of multiple devel-
opers [66]. This allows developers to address different pro-
gramming tasks (e.g., bug fixing and adding new features)
simultaneously without losing changes. After fulfilling their
tasks, developers can merge their changes to the main reposi-
tory. A merge scenario, also called three-way merge, includes
the whole timeline of creating a project branch, committing
changes independently to the project main branch, and creat-
ing a merge commit [28], [39].

Simultaneous code changes may introduce problems of
their own during integration, often manifesting as merge
conflicts. A merge conflict occurs during the integration of
changes made by one or more developers that occurred in the
same chunk of code. In Figure 1, we present an exemplary
merge scenario resulting in three merge conflicts. While DevC
and DevD created the source branch adding a new feature,
DevA and DevB refactored the same two files in the target
branch. Practitioners and researchers seek to minimize the
number of merge conflicts, because resolving them is difficult,
time-consuming, and often an error-prone task [39], [47].

• G. Vale is with the Department of Computer Science, Saarland
University, Germany. E-mail: vale@cs.uni-saarland.de

• C. Hunsen is with the Department of Computer Science, Univer-
sity of Passau, Germany. E-mail: hunsen@fim.uni-passau.de

• E. Figueiredo is with the Department of Computer Sci-
ence, Federal University of Minas Gerais, Brazil. E-mail:
figueiredo@dcc.ufmg.br

• S. Apel is with the Department of Computer Science, Saarland
University, Germany. E-mail: apel@cs.uni-saarland.de

ff1e147 c2ecb2c0e8f458

20bbdf7923e4d5

1
2
3
4

1
2
3

1 – Dev B
2
3 – Dev A
4 – Dev B

1 – Dev B
2
3 – Dev A

1 – Dev C
2
3
4 – Dev D

1 – Dev D
2
3

35dbc8f
Dev A Dev BDev A

Dev C Dev D

Dev D

>>>>
1 – Dev B
====
1 – Dev C
<<<<
2
>>>>
3 – Dev A
4 – Dev B
====
3
4 – Dev D
<<<<

>>>>
1 – Dev B
====
1 – Dev D
<<<<
2
3 – Dev A

!

!

!

t1 t2 t3 t4 t5 t6

source

time

target

Fig. 1. Example for a merge scenario with conflicts. Four developers
contributed to two files on the branches target and source, resulting in
three merge conflicts.

Previous studies related to merge conflicts address: (i)
merge strategies (e.g., structured [5] or semi-structured [6]),
(ii) prediction strategies (e.g., continuous integration [29] and
speculative merging [12]), (iii) awareness tools (e.g., Col-
labVS [18], Palant́ır [53], Cassandra [38], and FAST-
Dash [7]), (iv) understanding the nature of merge conflicts
(e.g., identifying the types of code changes that lead to con-
flicts) [1], [24], [39], [51], and (v) strategies for merge conflict
resolution [11], [35], [45], [49].

Despite the number of studies investigating merge con-
flicts, the understanding of challenges and strategies on the
resolution of merge conflicts is limited [49]. Previous studies
have asked developers about barriers and strategies when

2

resolving merge conflicts [11], [45], [49], empirically investi-
gated developers’ choice when resolving merge conflicts [24],
or empirically investigated merge conflict resolutions in Git
rebases [35]. A study showing which factors make merge
conflicts longer to resolve is still missing. Such a study can
guide practitioners to avoid the creation of time-consuming
conflicts, to better coordinate their tasks, and to avoid de-
laying core-tasks on the project life-cycle (e.g., developing
new features and fixing bugs). So far, there is no reliable
knowledge on the factors that make merge conflict resolution
longer in practice. While previous studies provide an initial
understanding of merge conflict resolution, an empirical study
investigating factors that increase merge conflict resolution
time in practice may not only confirm and add nuances to
previous findings but also pin down the most impacting and
recurring factors. These factors together with the knowledge
acquired from previous studies may either serve as best prac-
tices for developers saving time on merge conflict resolution
or as guidelines for tool builders to better support practition-
ers. At the same time, our results outline opportunities for
researchers to improve the state of the art of merge conflicts.
Our study is guided on the overarching research question:

RQ: Which factors do make merge conflicts longer to
resolve in practice?

To answer this research question, we conduct a two-phase
study. First, we rebuild and extract information from all
merge scenarios of 66 GitHub projects, selected based on
their popularity. Inspired by previous work [24], [39], [49], we
extracted 11 variables for each subject merge scenario. These
variables include the time (in seconds) to resolve the merge
conflict, measures directly related to merge conflicts, such as
the number of conflicting chunks (#ConfChunks), the number
of conflicting files (#ConfFiles), and the complexity of code
in conflict (CodeComplexity), and measures indirectly related
to merge conflicts, such as the number of developers involved
(#Devs), the number of lines of code (#LoC), and the number
of chunks (#Chunks) of the merge scenario. We group the
independent variables into: directly and indirectly related to
merge conflicts, since we suspect that merge conflict resolution
depends not only on conflicting code but also on changes not
in conflict. In this phase, we performed three main analyses:
(1) a correlation analysis for each pair of the investigated
variables (using correlation matrix and principal component
analysis), (2) a multiple regression model analysis, and (3) an
effect-size analysis using Cohen’s f2 measuring the impact of
independent variables on our dependent variable.

Second, we conducted a survey with 140 developers from
subject projects to triangulate our results and provide a
broader understanding of the challenges on merge conflict
resolution. For short, we asked developers: (1) to describe
how they estimate how hard/time-consuming a merge conflict
is to be resolved. Therewith, we checked if our independent
variables are in line with measures used in practice, (2) a
few statements to understand their processes on merging their
contributions and resolving conflicts. The main goals of this
analysis were to minimize threats to validity of our dependent
variable and to cross-validate our results, and (3) to share
their experiences when dealing with merge conflicts to help us
understand their challenges and needs.

Summarizing our results, the correlation analysis indicates
that measures indirectly related to merge conflicts (i.e., mea-
sures related to the merge scenario changes) are stronger
correlated with merge conflict resolution time than measures
directly related to merge conflicts (i.e., merge conflict charac-
teristics). The regression model analysis reveals that #LoC,
#ConfChunks, #Devs, #ConfFiles, #ConfLoC, and #Files
have a positive correlation with merge conflict resolution time.
Surprisingly, #Chunks and CodeComplexity show a negative
correlation with merge conflict resolution time. In the effect-
size analysis, we found that #Chunks has a medium effect
on merge conflict resolution time, whereas #Devs, #LoC,
#ConfChunks, and CodeComplexity only have a small effect.
Cross-validating our results, survey participants mentioned 25
measures used to quantify how hard/time-consuming is the
resolution of merge conflicts. Measures indirectly related to
merge conflicts are among the most cited by them. In addition,
they reported that they often merge their changes right after
finishing addressing an issue, resolve conflicts right after they
occur, and usually look at changes not in conflict to resolve
merge conflicts. These results increase internal validity on the
variables used in our empirical study. Related to developers’
experience dealing with merge conflicts, survey participants
pointed out four major challenges on merge conflict resolution:
lack of coordination, lack of tool support, flaws in the system
architecture, and lack of testing suite or pipeline for continuous
integration. Indirectly, these challenges bring explanations of
why some relatively simple merge conflicts (in terms of the
subject variables in our empirical study) took a while to be
resolved.

Aiming at deeper explanations for our results, we analyzed
specific factors individually and triangulated our data with
manual analyses. These manual analyses include a comparison
of the 100 shortest and 100 longest conflicting scenarios and
observations of how developers resolved the merge conflicts,
for instance. As a major result of these analyses, we found:
(i) a dependency among conflicting and non-conflicting code,
which normally increases the time necessary for developers re-
solving merge conflicts, (ii) reasons for why it is better to com-
mit many small chunks of code instead of few large chunks,
and (iii) why characteristics of merge scenarios influence the
merge conflict resolution time more than characteristics of the
merge conflicts themselves.

Overall, we make the following contributions:

• We propose a taxonomy of challenges on merge conflict
resolution acquired by quantitative empirical data and
by surveying developers of subject projects.

• We provide evidence that #Chunks, #LoC, #Con-
fChunks, #Devs, and CodeComplexity have an effect
on merge conflict resolution time.

• We found that variables indirectly related to merge
conflicts (e.g., number of chunks changed in a merge
scenario) have a higher influence on the merge conflict
resolution time than variables directly related to merge
conflicts (e.g., the number of conflicting chunks).

• We found a positive correlation between #LoC,
#Devs, #Files, #ConfChunks, #ConfFiles, and
#ConfLoC and merge conflict resolution time and a
negative correlation between #Chunks and CodeCom-
plexity and the merge conflict resolution time.

3

• By a manual analysis of the 100 shortest and the
100 longest merge scenarios, we observed that file ex-
tension and dependencies among conflicting and non-
conflicting code make developers take longer to resolve
merge conflicts.

• We found that, in more than 50 % of the cases, devel-
opers have changed the files that are in conflict before
they resolve the merge conflicts.

• We found that despite 30 out of the 66 projects having
at least one conflicting merge scenario, due to for-
matting changes, formatting changes result in merge
conflicts in only 2.42 % of the merge scenarios.

• We make our infrastructure to mine fine-grained merge
scenario information from software repositories and all
data publicly available on our supplementary Web site
[63] for replication and follow-up studies.

2 Background and Related Work
In this section, we present a classification of merge commits
necessary to understand how we retrieve merge scenario infor-
mation and an overview on merge conflict resolution studies.

Version control systems help developers to manage source-
code changes over time by tracking all code modifications
[66]. This allows developers to construct software systems by
means of merge scenarios, which is a widely collaborative de-
velopment pattern called three-way merge [28], [39]. A merge
scenario includes the whole timeline of creating a project
branch, committing changes independently to this branch,
and creating a merge commit.

To retrieve merge scenario information, it is necessary to
rebuild each merge scenario of each subject project and get
information from each commit of a subject merge scenario.
Commits can be classified into four groups: merge commits,
base commits, parent commits, and common commits. The
merge commit is the commit that integrates the branches in
a merge scenario. The base commit is the common ancestor
among the integrated branches. Parent commits are the last
commits of each branch before integration. Common commits
are all other commits that are not the merge, base, or parent
commits. In the example of Figure 1, the base commit is the
commit on the left with hash ff1e147, the merge commit is
found on the right side with hash c2ecb2c, the two parent
commits have hashes 0e8f458 and 20bbdf7, and the other
two remaining commits with hashes 35dbc8f and 923e4d5
are common commits.

One of the main problems of collaborative software de-
velopment are merge conflicts because resolving them is dif-
ficult, time-consuming and often an error-prone task [39]. As
mentioned, there are dozens of studies investigating the whole
merge conflict life-cycle. Aiming at avoiding the emergence
of merge conflicts, studies have investigated merge strategies
(e.g., [5], [6]), prediction strategies (e.g., [12], [29]), and aware-
ness tools (e.g., [7], [18], [38], [53]). After merge conflicts occur,
studies have investigated their cause and nature to know how
they look like exactly [24], which type of code changes lead to
each type of merge conflict [1], [10], [43], and how to predict
them [19], [39], [51]. More recently, a few studies started to
investigate merge conflict resolution [11], [24], [35], [45], [49].
In the following, we discuss studies more closely related to
ours that investigate merge conflict resolution.

Ji et al. [35] investigated merge conflicts and resolutions in
Git rebases of Java repositories from GitHub. Their results
show that (i) 7.6% of pull requests have rebases, (ii) merge
conflicts arise in 24.3% – 26.2% of rebases, (iii) the likelihood
of conflicts from (Git) rebases is not significantly different
from three-way merge conflicts (git merge command), and (iv)
new code is introduced in 28.3% – 29.4% of conflict rebases.

Brindescu et al. [11] conducted an in-situ observation of
7 developers resolving 10 merge conflicts. Their results show
that developers search for information on seven sources (diff
between merged versions, commit history, source code, output
running the application, build and tests output, documenta-
tion, and colleagues), the conflicts resolution took from 40
to 2 190 seconds (36.5 minutes), developers normally follow
6 steps on the conflict resolution (1) look at external data
sources, (2) open a particular file to work on, (3) read or scroll
through the source code, (4) edit source code, (5) read a chunk
on either side, and (6) run the build or perform test. In addi-
tion, the authors observed two patterns when developers had
issues in the conflict resolution (stuck foraging and hunting
for evidence) and other two patterns when developers wanted
a quick solution (skipping directly to step 5 and skipping the
hypothesis (i.e., skip step 4).

Ghiotto et al. [24] analyzed thousands of merge scenarios
characterizing merge conflicts in terms of number of chunks,
size, and programming language constructs and analyzing
developer strategies to resolve merge conflicts. Their results
show that (i) 87 % of conflicting chunks had all the informa-
tion needed to resolve merge conflicts without writing any new
code, (ii) 94 % of these conflicting chunks involved less than
50 lines of code in each of their versions, (iii) 60 % of merge
conflicts involve multiple conflicting chunks, and (iv) 29 % of
conflicting chunks are dependent on other chunks.

Nelson et al. [49] presented an extension of the work of
McKee et al. [45]. These two studies had insights into develop-
ers’ process and perceptions on merge conflict resolution. To
achieve their goal, they investigated nine factors pointed out
by developers to measure the difficulty of resolving a merge
conflict. The factors ordered by difficulty are (i) complexity
of conflicting lines of code, (ii) expertise in area of conflicting
code, (iii) complexity of files with conflicts, (iv) number of
conflicting lines of code, (v) time to resolve a conflict, (vi)
atomicity of change-sets in conflict, (vii) dependencies of
conflicting code, (viii) number of files in the conflict, and
(ix) non-functional changes in codebase. As further results,
they found that 88 % of the surveyed developers rely on
version control systems (e.g., Git and SVN) and 21 % use
continuous integration systems (e.g., Jenkins1 and Travis
CI2) when observing merge conflicts. In addition, they found
that when developers feel that their experience is not sufficient
to resolve the merge conflict, they generally seek help from
other developers to resolve the conflicts.

Our study extends, complements, and add nuance to these
studies because by looking at factors that make merge conflict
resolution longer with an empirical analysis (Section 3), a
survey with developers (Section 4), and manual analyses
(Section 5). Despite Ji et al. [35] investigating merge conflict
resolution, their study relies on rebase scenarios which is the

1. https://jenkins.io/
2. https://travis-ci.org/

4

main difference from other studies and ours. Brindescu et
al. [11] provided a sensemaking perspective. Their approach
provides a qualitative in-depth investigation, but generaliza-
tion is limited. In any event, their findings corroborate our
discussions. Ghiotto et al. [24] and Nelson et al. [49] present
studies closer to ours, but we investigate more factors than
they investigated (see Section 5). Furthermore, while Ghiotto
et al. [24] empirically characterized merge conflicts and looked
at developer strategies for resolving them, we look at factors
that make the merge conflict resolution longer. McKee et al.
[45] and Nelson et al. [49] surveyed developers to understand
how developers estimate the difficulty of merge conflict res-
olution, the main barriers, and strategies developers follow
when resolving merge conflicts. Our study differs from theirs
because while they asked developers about subjective diffi-
culty factors, we objectively analyzed factors that make merge
conflicts resolution longer in practice and triangulated our
results asking developers from subject projects.

3 Empirical Study
In this section, we present our empirical study setup and
results. Our overall goal in this study is to investigate which
factors make merge conflicts resolution longer in the practice
of collaborative software development.

3.1 Study Settings
In what follows, we describe the experiment variables, subject
selection process, data acquisition, and statistics we use.

3.1.1 Experiment Variables
To quantify the time of resolving merge conflicts, that is, our
dependent variable, we measure the time difference between
the merge commit and the latest commit of the merged
branches (parent commits). To learn which factors may in-
fluence the time for resolving merge conflicts, we defined a set
of ten independent variables, inspired by the literature [39],
[45], [49] and described in Table 1. Note that all variables
have been suggested by developers for the investigation of
merge conflicts, although some of them were suggested for
other phases of the merge conflict life-cycle [39], [45], [49].
Our survey confirms that developers use these variables for
estimating the time/difficulty of merge conflict resolution
(Section 4).

We explain below the rationale of choosing each variable.
For a better overview, we classify the variables into three
groups: time, variables directly related to merge conflicts, and
variables indirectly related to merge conflicts.

Time. With #SecondsToMerge, we aim at capturing how
much time (in seconds) passed for resolving a merge conflict
(Table 1). Note that this is our operationalization. In our eyes,
it represents the sweet spot of accuracy that is achievable in
a post-hoc analysis. Considering that this variable is central
to our study and might not be very precise, we surveyed
140 developers (Section 4) and provided a broader discussion
about this variable in Sections 5 and 6.

Variables directly related to merge conflicts. This
group contains the majority of variables investigated in this
study. As our goal is to analyze factors that influence merge
conflict resolution time, it is reasonable to choose measures
that directly quantify the size, complexity, and the knowledge

TABLE 1
Variables of our study, along with their descriptions

Variable Description

Dependent variable
#SecondsToMerge The shortest time difference between the

parent commits and the merge commit
Independent variables, directly related to merge conflicts

CodeComplexity Sum of the cyclomatic complexity of
conflicting chunks

#ConfChunks Number of conflicting chunks
#ConfFiles Number of conflicting files
#ConfLoC Number of conflicting lines of code changed
%FormattingChanges Percentage of formatting changes of

conflicting chunks among all chunks
%IntegratorKnowledge Percentage of the sum of conflicting chunks

in files that the integrator had committed
before the merge commit among all chunks

Independent variables, indirectly related to merge conflicts
#Chunks Number of chunks
#Devs Number of developers changing code
#Files Number of files
#LoC Number of lines of code changed

of the integrator (i.e., who solved the merge conflict) on
the conflicting code: CodeComplexity (via Lizard3), #Con-
fChunks, #ConfFiles, #ConfLoC, %FormattingChanges, and
%IntegratorKnowledge. The last two variables are important
because they can control for other variables. For instance,
we may observe very large conflicting chunks, although these
chunks occurred largely because of formatting changes (i.e.,
adding/removing line breakers and changing code spacing).
Hence, these conflicting chunks would be easier and faster to
resolve than other conflicting chunks (see Section 5).

Variables indirectly related to merge conflicts. As
merge conflict resolution may depend on code changes not in-
volved in a conflict, we considered also properties not directly
related to merge conflicts (i.e., all the code changes in the
merge scenario): #Chunks, #Devs, #Files, and #LoC.

Example. In the merge scenario of Figure 1, four develop-
ers (#Devs), namely DevA, DevB, DevC, and DevD, changed
ten lines of code (#LoC), of which eight are in conflict (#Con-
fLoC). These lines of code changed four chunks (#Chunks),
of which three are in conflict (#ConfChunks). These chunks
belong to two files (#Files) and, as there are conflicts in both
files, the number of conflicting files (#ConfFiles) is two. As
DevD is the developer who solved the merge conflict (i.e., the
integrator), and she committed to both files before the merge
commit, we reason that DevD had knowledge of all changed
files (%IntegratorKnowledge). Regarding the time to resolve
the merge conflict (#SecondsToMerge), we compute the time
difference between the source branch’s parent commit (hash:
20bbdf7) and the merge commit (hash: c2ecb2c). That is,
#SecondsToMerge is equal to t6 minus t5 in seconds. As
Figure 1 is only a simple and abstract example, it is not
possible (or meaningful) to calculate %FormattingChanges
and CodeComplexity.

3. https://pypi.org/project/lizard/

5

(i) Programming projects

(ii) Active project

(iii) Possible to reconstruct most
 merge scenarios

(iv) Projects with merge
 conflicts

Final dataset

100

85

81

72

66

Initial dataset

Fig. 2. Number of subject projects after each filter

3.1.2 Subject Projects
We selected the corpus of subject projects as follows. First,
we retrieved the 100 most popular projects on GitHub, as
determined by the number of stars [8]. Then, we applied the
following four filters which we created based on the work of
Kalliamvakou et al. [37]: (i) keep only programming projects
(i.e., projects that have a programming language classified as
the main file extension), (ii) keep only active projects (i.e., at
least two commits per month in the last six months), (iii) keep
only projects in which we were able to reconstruct more than
50% of the merge scenarios (see Section 3.1.3), and (iv) keep
only projects with merge conflicts.

In Figure 2, we show the number of projects after each
filter. These filtering steps aim at selecting active projects in
terms of code contributions with an active community and
at increasing internal validity. The first filter captures only
software development projects, excluding projects that are, for
example, repositories of books and interview tips. The third
filter excludes projects such as kubernetes4 and moby5

because these projects do not mostly use the three-way merge
[27] which could bias our analyses. Details on how we rebuild
merge scenarios are in Section 3.1.3.

We restricted our selection to GitHub because it is one
of the most popular platforms to host repositories and it has
been investigated and used in prior work [17], [28], [56], [59],
[62]. We limited our analysis to Git repositories because it
simplifies the identification of merge scenarios in retrospect.

After applying all filters, we obtained 66 projects devel-
oped in 12 programming languages (e.g., JavaScript, Java,
C++, and Python), containing 81 005 merge scenarios that
involve more than 2 million files changed, 10.8 million chunks,
and 2 608 conflicting merge scenarios.

3.1.3 Data Acquisition
We rebuilt all merge scenarios from the subject projects, since
their creation. Our strategy for data acquisition consists of five
steps. First, we clone a subject project’s repository. Second, as
the integration of multiple branches can be identified in Git
when the number of parent commits is greater than one, we
identify merge scenarios by filtering commits with multiple

4. https://github.com/kubernetes/kubernetes
5. https://github.com/moby/moby

parent commits. Third, for each commit with more than one
parent, we retrieve the base commit for both parent commits.
Fourth, we (re)merge the parent commit of the source branch
into the parent commit of the target branch by using the
standard git merge command and retrieve measurement data
for the metrics presented in Table 1 by comparing the changes
that occurred since the base commit until the merge commit.
Finally, we store all data and repeat Steps 3 to 5 for each
merge scenario found in Step 2.

Note that we have excluded merge scenarios that do not
have a base commit (e.g., rebase, fast-forward, or squash
integrations [36]), and we ignore binary files, because we
cannot track their changes. In the analyses that focus on
the merge conflict resolution time, we retrieve data only for
merge scenarios that resulted in merge conflicts. Note that
the integration of two branches is not tied to pull-requests.
Once we identified an integration of one or more branches into
another, we rebuilt the merge scenario.

Framework and Data Availability. Our analysis
framework (Java and Python) and analysis scripts (R) are
open-source. All data necessary for replicating this study are
stored in a MySQL database and replicated as CSV files. All
tools, links to the subject projects, and data used in this study
are available at our supplementary Web site [63].

3.1.4 Statistical Analysis
The statistical analysis of our study is threefold. First, we
perform a correlation analysis of all covariables, using
the Spearman rank-based correlation, which is invariant for
linear transformations of covariates. This analysis is simple
and useful to understand the relation among our covariables,
to build a consistent regression model, and to support the
discussions in Section 5. Spearman rank-based correlation is -
1 in the case of a perfect negative correlation, +1 in the case of
a perfect positive correlation, and values around 0 imply that
there is no correlation between the investigated variables [34].
Note that the purpose of this first correlation analysis is data
exploration, we are not going to draw conclusions on such
correlation coefficients. So, a correction on the p-values to
account for the multiple comparisons is not necessary. In any
event, when looking at the correlation between dependent and
independent variables, we performed a Bonferroni p-value ad-
justment for each independent variable (i.e., p-value < 0.005).
Still in the first analysis, to better understand the correlations
among variables and reduce the number of dimensions (i.e.,
variables) in the regression model, we perform a principal
component analysis (PCA). PCA is important because, by
removing correlated variables from the regression model, we
avoid common pitfalls on modelling data [61].

With the insights of the first analysis, we build a multiple
linear regression model in our second analysis for under-
standing the relation between our dependent and our indepen-
dent variables. Multiple linear regression models are relatively
simple yet powerful to achieve our goal and significantly
easier to explain and interpret than other models such as
neural networks and deep learning models. Coefficients in the
regression model are interpreted similarly to the Spearman
rank-based correlation coefficients from the first analysis. The
multiple linear regression model of a y dependent variable on
the x1...n independent variables is represented by

ŷ = β0 + β1x1 + β2x2 + ...+ βnxn + ε0. (1)

6

The β coefficients measure the association between the in-
dependent variables and the dependent variable. βj can be
interpreted as the average effect on y of one unit increase
in xj , holding all other independent variables fixed [33]. To
define the used model, we compare the variance of different
models, such as the model with all independent variables and
the model with a simplified number of independent variables
and choose the model with greater variance, as suggested by
previous work [21], [26], [33] (see details in Section 3.2.3).

Finally, we performed an effect-size analysis in the
context of an analysis of variance. For short, the effect-
size analysis is necessary because independent variables may
change differently and, even with the results of the regression
model, we are not able to classify the most influencing factors.
The Cohens’s f2 for sequential multiple regression is:

f2 = R2
AB −R2

A

1−R2
AB

(2)

where B is the variable of interest, A is the set of all other
variables, R2

AB is the proportion of variance accounted for
A and B together, and R2

A is the proportion of variance
accounted only for A. By default, Cohen’s f2 effect size values
from 0.02 to 0.15 are small, from 0.15 to 0.35 are medium and
greater than 0.35 are termed large values [15]. In addition to
Cohens’s f2, we also report the η2 and ω2 values to increase
the confidence of our effect-size analysis. η2 is the proportion
of the total variability in the dependent variable that is ac-
counted for by the variation in the independent variable [40].
It is the ratio of the sum of squares for each group level to the
total sum of squares. It can be interpreted as the percentage of
variance accounted for by a variable. ω2 is widely viewed as a
less biased alternative to η2, especially when sample sizes are
small [40]. η2 and ω2 effect size values smaller than 0.01 are
very small, from 0.01 to 0.06 are small, from 0.06 to 0.14 are
medium, and greater than 0.14 are termed large values [23].

3.2 Results
In this section, we present the results of our empirical study.
First, we present an analysis in the distribution of our de-
pendent variable. Then, the rest of the section is structured
according to the three analyses presented in Section 3.1.4.

3.2.1 Dependent Variable Distribution
In Figure 3, we show two boxplots with descriptive statistics
of our dependent variable (#SecondsToMerge). The statistics
include the minimum value, first quartile, median, third quar-
tile, and maximum value in seconds. As seen, the fastest merge
conflict resolution took 30 seconds and the maximum took
45 857 805 seconds (around 530 days). This is definitely an
outlier scenario that has been forgotten by developers for one
and half years and integrated later. Median is a reasonable
measure to analyze since outlier scenarios would distorce the
mean. Looking at the median, we see that half of the merge
conflicts took up to 11 minutes to be resolved (697 seconds).
Looking at the first and third quartile, we see that 25% of the
conflicting merge scenarios took 149 seconds (≈2.5 minutes)
and 75% of the conflicting merge scenarios took up to 6 372
seconds (≈1.77 hours). In the right-most boxplot, we show
data in the interquartile range. We show this boxplot since
the box-plot with all data does not give the real idea of the

1
5

0
0

0
1

0
0

0
0

5
0

0
0

0

All data in log scale Interquartile range

Minimum Value

1st Quartile

Median

3rd Quartile

Maximum Value

30

149

697

6 372

45 867 805

Descriptive
statistics

4
6

8
1

0
1

2
1

4
1

6
1

8

Fig. 3. Dependent variable distribution in seconds

time to resolve merge conflicts. In the interquartile range the
median is 377 seconds (≈6 minutes).

Comparing to a recent study [11] that recorded the merge
conflict resolution time from seven developers resolving 10
merge conflicts, they found that these developers took from 40
to 2 190 seconds (≈36.5 minutes). Even though, the number
of conflicting scenarios in this previous study is quite limited
and our variable might not be precise on measuring the time
developers really spent resolving merge conflicts, which makes
difficult to compare these variables, it is worth to mention
that #SecondsToMerge are not far from their records. In
addition to this comparison, we provide follow-up analyses
and discussions to increase construct validity of the choice of
our dependent variable (see Sections 4.2, 5, and 6).

3.2.2 Correlation Analysis
In Figure 4, we present a correlation matrix among all co-
variables of our analysis. As expected, merge scenario size
measures (i.e., #Chunks, #Files, and #LoC) have a high
correlation among themselves (above 0.8). Merge conflict size
measures (i.e., #ConfChunks, #ConfFiles, and #ConfLoC)
show a moderate to high correlation among themselves (above
0.5). The other merge conflict related measures do not have a
strong correlation. For instance, %IntegratorKnowledge and
%FormattingChanges have a correlation coefficient smaller
than 0.1 with most of the merge conflict related measures.
The only exception is %IntegratorKnowledge with a positive
correlation coefficient with CodeComplexity (0.115).

Next, we pay more attention to the correlation between
the dependent variable and each independent variable. For
short, the correlation is significant with a confidence interval
of 99.5 % for all independent variables, except %Integrator-
Knowledge and %FormattingChanges. In Table 2, we present
the correlation coefficients for the significant ones. Note that
the correlation coefficients of these eight variables are rather
small, but significant. Also note that the top three variables
with highest correlation coefficient are variables that measure
the merge scenario size (#LoC, #Chunks, and #Files) and
not merge conflicts.

Aiming at reducing the number of dimensions and group-
ing similar variables, we performed a principal component
analysis (PCA). It reduces the number of dimensions to
the first two principal components that retain a maximum
share of common variance, which simplifies the discussion

7

Fig. 4. Correlation matrix for all pairs of variables

TABLE 2
Correlation coefficients for independent variables with the dependent

variable

Measure Coefficient Measure Coefficient

#LoC 0.308 #ConfLoC 0.206
#Chunks 0.279 #ConfChunks 0.194
#Files 0.270 #ConfFiles 0.180
#Devs 0.228 CodeComplexity 0.061

of the correlation structure. In Figure 5, we show the two-
dimensional output from the principal component analysis,
which covers 56.1 % (38.9 % + 17.2 %) of the total variance of
our data. The arrows represent the weights of each variable in
the respective principal component and their colors represent
the square cosine (cos2). The square cosine represents the
share of original variation in the variable retained in the
dimensionality reduction. The longer the arrow, the larger is
the share of a variable’s variance. Arrows pointing to the same
direction have a large share of common variance and can be
assumed to belong to the same group.

The data visualized in Figure 5 suggest to classify the
independent variables into four groups: merge scenario size,
merge conflict size, social activity, and integrator’s prior
knowledge/type of change. The arrows representing #Chunks,
#Files, and #LoC point to the same direction; they represent
the size of a merge scenario. Pointing to another direction,
#ConfLoC, #ConfFiles, and #ConfChunks represent the
merge conflict size. The #Devs point to a third direction and,
hence, we call it social activity. The factors CodeComplex-
ity, %FormattingChanges, and %IntegratorKnowledge com-
pose the fourth group, which we named integrator’s prior
knowledge/type of change.

To summarize, we see that (i) by clustering our indepen-
dent variables into four groups, we do not need all of them in
our regression model which increases internal validity avoiding
overfitting and multicollinearity, as we explain in Section

Fig. 5. Principal component analysis of our variables

3.2.3; (ii) measures from the integrator’s prior knowledge/type
of change group are almost orthogonal to the merge conflict
resolution time which means a small share of variance among
these variables with the merge conflict resolution time; and,
(iii) measures from the merge scenario size and social activity
groups have a stronger relation with the merge conflict reso-
lution time than measures from the groups merge conflict size
and integrator’s prior knowledge/type of change.

3.2.3 Multiple Regression Model Analysis
All independent variables presented in Section 3.1.1 may be
in our model because there is a belief that these variables
influence the merge conflict resolution [39], [45], [49], which is
confirmed in with our survey (Section 4). However, including
all independent variables would increase overfitting (i.e., a
model that contains more parameters that can be justified by
the data) and multicollinearity (i.e., high correlation between
two or more independent variables) in our model. To minimize
overfitting and multicollinearity in our model, we perform a
transparent process, as suggested by different researchers [21],
[26], [33]. Of course, we could use a variable of each group
of the PCA analysis. Nonetheless, we do not know which
variables better fit the multiple regression model and we may
ignore hidden relationships. In our case, this process consists
of four steps: (i) create a preliminary model and learn with
this model; (ii) create further models with observations made
from the first preliminary model; (iii) compare the variance of
the created models; and, (iv) choose the model that represents
the investigated relationship most accurately. We present the
details for these models in Table 3.

The Full Model column of Table 3 presents the correlation
coefficients for the 10 independent variables that compose
our preliminary model. Looking at the correlation coeffi-
cients of this preliminary model, we can make three obser-
vations: (i) the coefficient of six independent variables (i.e.,
#LoC, #ConfChunks, #Devs, CodeComplexity, #Chunks,

8

TABLE 3
Correlation coefficients for independent variables in the multiple

regression model analysis

Measure Full Simplest Balanced
Model Model Model

#LoC 0 .2538 ∗∗∗ 0 .2268 ∗∗∗ 0 .2931 ∗∗∗

#ConfChunks 0 .1239 ∗∗ 0 .1752 ∗∗∗ 0 .1782 ∗∗∗

#Devs 0 .1221 ∗∗∗ 0 .1171 ∗∗∗ 0 .1251 ∗∗∗

CodeComplexity −0 .1067 ∗∗∗ −0 .0870 ∗∗∗ −0 .0841 ∗∗

#Chunks −0 .1013 ∗ - −0 .0783 ∗

#ConfLoC 0 .0799 ∗∗ - -
#Files 0 .0525 - -
#ConfFiles 0 .0146 - -
%FormattingChanges −0 .0048 - -
%IntegratorKnowledge −0 .0041 - -

*** p− value < 0.001, ** p− value < 0.01, * p− value < 0.05

and #ConfLoC) are significant with a confidence interval of 95
%; (ii) the four independent variables with greatest correlation
coefficients belong to distinct groups of our PCA analysis (see
Section 3.2.2); and (iii) from the two remaining variable with
coefficient significant (i.e., #Chunks and #ConfLoC), only
#Chunks provides a different view from the variable that
belongs to the same group. In other words, while #LoC has
a positive correlation coefficient in the Full Model, #Chunks
has a negative correlation coefficient. On the other hand,
#ConfLoC and #ConfChunks have a positive correlation
coefficient. Therefore, adding both does not provide a different
view to our model. Hence, choosing only #ConfChunks which
has a greater correlation coefficient in the Full Model is more
promising to avoid overfitting and multicollinearity.

Taking these observations into account, we build other two
regression models: simplest model has only the four variables
with greatest correlation coefficients (see observation ii) and
balanced model has #Chunks and all other variables in the
simplest model (see observation iii). The correlation coeffi-
cients of these models can be seen in Table 3. While the
simplest model and the balanced model minimize overfitting
and multicollinearity, the balanced model shows the hidden
relationship among #LoC and #Chunks that we did not see in
the correlation analysis. From that perspective, the balanced
model seems to be the correct model to choose, although the
analysis of variance supports a more data-oriented choice.

In the analysis of variance, a significant p-value (i.e.,
< 0.05) means that adding variables to the model, in fact, adds
relevant information to the regression model. We compare the
balanced model with the other two models because these com-
parisons allow us to find out which model better represents
the investigated relationship. The p-value of the analysis of
variance among the balanced model and the full model is 0.1.
Therefore, adding #ConfLoC, #Files, #ConfFiles, %Format-
tingChanges, and %Integratornowledge to the balanced model
do not add relevant information to it. On the other hand, the
p-value of the analysis of variance among the simplest model
and the balanced model is 0.004. Therefore, adding #Chunks
to the simplest model add relevant information to it. In
conclusion, the balanced model fits better on the investigated
relationship than both the simplest and the full model.

Once we have chosen the model that best represents the
relationship among our dependent and independent variables,
we discuss its correlation coefficients as follows. Column Bal-

anced Model of Table 3 presents the coefficients obtained
from the chosen regression model. We can see that #LoC,
#ConfChunks, and #Devs show a positive correlation with
#SecondsToMerge. Hence, if these variables increase, the time
to resolve merge conflicts also increases. On the other hand,
#Chunks and CodeComplexity have a negative correlation
coefficient with #SecondsToMerge. Increasing these two vari-
ables is associated with less time to resolve merge conflicts.
Note that #LoC, which is the variable with the highest cor-
relation in the correlation matrix(Figure 4), remains with the
highest correlation in the multiple regression model analysis.

Our regression model has a significant explanation value
at any significance level (p-value < 1/1016). It has R2 and
adjusted R2 equal to 0.122 and 0.12. Following Falk and
Miller [20] classification R2 < 0.1 is negligible and R2 ≥ 0.1
is adequate. Therefore, the R2 of our model is adequate. Our
model has a residual standard error of 706 on 2 602 degrees of
freedom. It means that on average, our estimate is 706 above
or below the observed value and it considers 2 602 out of the
2 608 conflicting merge scenarios investigated. Note that the
interpretation of our regression model needs to be associated
with the ceteris paribus concept. In other words, a correct
interpretation of the model has to account that changing the
value of one independent variable, all other variables’ values
have to be equal.

A simple way to interpret our regression model for #LoC
and #Chunks is described as follows. Adding 1 000 LoC in the
merge scenario is associated with an increase in time by ap-
proximately 293 seconds or 5 minutes to solve the merge con-
flicts, for a fixed amount of #ConfChunks, #Chunks, #Devs,
and CodeComplexity, on average. Regarding #Chunks, for
a fixed number of #LoC, #ConfChunks, #Devs, and Code-
Complexity, adding 1 000 chunks in the merge scenario leads
to a decrease in time by approximately 78 seconds or 1.2
minute. At first sight, the negative correlation coefficients for
CodeComplexity and #Chunks in the regression model seem
counter-intuitive, but, in Section 5, we discuss why it is not.

3.2.4 Effect-Size Analysis
Finally, to answer our research question and be able to
quantify the influence of the independent variables on merge
conflict resolution time, we performed an effect-size analysis.
As described in Section 3.1.4, we chose Cohen’s f2 effect size
since it is adequate when using multiple regression models
[15]. In Table 4, we present the results of our effect-size analy-
sis ordered by the highest to the lowest effect-size. We can see
that the effect-size of #Chunks, #Devs, #LoC, #ConfChunks,
and CodeComplexity are 0.298, 0.135, 0.129, 0.105, and 0.064,
respectively. Following Cohen’s classification, #Chunks has a
medium effect-size on merge conflict resolution time, while
the other four variables have a small effect-size. Interestingly,
despite #Chunks is the variable in the chosen regression model
with weak correlation, it has the highest effect-size.

Similar values are also found for η2 and ω2. #Chunks with
a medium effect-size and the other variables with a small or
very small effect-size. All variables in our effect-size analysis
has a p-value ≤ than 0.001 and our analysis has a confidence
interval level of 90%. Therefore, our analysis covers 90% of the
subject conflicting merge scenarios.

Surprisingly, the three variables with highest effect-size
(#Chunks, #Devs, and #LoC) are not directly related to

9

TABLE 4
Effect-size analysis

Measure f2 f2 GV η2 η2 GV ω2 ω2 GV

#Chunks 0.298 0.078 0.078
#Devs 0.135 0.016 0.017
#LoC 0.129 0.015 0.014
#ConfChunks 0.105 0.010 0.011
CodeComplexity 0.064 0.004 0.003
GV stands for graphical visualization of the target measure. In the case of
Cohen’s f2, it is divided into three groups: small, medium, and high effect-size.
In the case of η2 and ω2, it has an additional group very small when compared
with Cohen’s f2.

merge conflicts. By combining the results from the regression
model and effect-size analysis, we can see that the number of
chunks shows a negative correlation, whereas the other two
variables indirectly related with merge conflicts (#LoC and
#Devs) show a positive one. Hence, we conclude that more
chunks in the merge scenario leads to shorter merge conflict
resolution time with a medium effect-size. On the other hand,
more lines of code and developers lead to more time to resolve
the merge conflicts with a small effect-size.

Even though the correlation coefficients of the multivari-
able regression model are low, we obtained medium and
small effect-sizes for the targeted independent variables. It
highlights the importance of an effect-size analysis on mea-
suring the impact of independent variables on the dependent
variable. It may be an incentive for researchers to perform
similar studies that do not stop on the correlation analysis.

Note that we present results only for the variables that
compose the balanced model since it is the model that best
represents the investigated relationship. As mentioned, fur-
ther variables would only add noise to our analysis (see
Sections 3.1.4 and 3.2.3) because they are highly correlated
with variables that compose the regression model or do not
correlate with #SecondsToMerge. Anyway, some of the hidden
variables have a similar effect-size.

In Figure 6, we show an overview of our results considering
all independent variables. Full and dashed lines represent ex-
plicit and implicit relationships investigated in the effect-size
analysis, respectively. As we can see, #ConfLoC and #Conf-
Files provide a similar effect-size to #ConfChunks. Hence,
we added a dashed line from these variables to #Second-
sToMerge. Similarly, #Files is correlated with #LoC. Hence,
they have a similar effect-size with #SecondsToMerge. Since
%FormattingChanges and %IntegratorKnowledge do not have
a significant correlation with #SecondsToMerge, they also
do not present an effect-size on #SecondsToMerge. For that
reason, there is no line among them and #SecondsToMerge.
We postpone a discussion of independent variables and their
relationships to Section 5.

#SecondsToMerge

#Chunks

Merge Scenario Size Merge Conflict Size

Social Assets Type of Change

#Files

#LoC

#Devs

%IntegratorKnowledge

#ConfChunks

#ConfFiles

#ConfLoC

CodeComplexity

%FormattingChanges

 Positive Effect Negative Effect
Explicit Relationship Implicit Relationship

Fig. 6. Overview on our effect-size results

Results Summary: Our correlation analysis indicates
that some variables are strongly correlated and, for that
reason, we classified them into four groups which sup-
ported the construction of our regression model. Our mul-
tiple regression model analysis shows that #LoC, #Con-
fChunks, #Devs, CodeComplexity, and #Chunks are cor-
related with #SecondsToMerge. #Chunks and CodeCom-
plexity have a negative influence while the others show
a positive influence. Our effect-size analysis reveals that
#Chunks has a medium effect-size on the merge conflict
resolution time while #Devs, #LoC, #ConfChunks, and
CodeComplexity have a small effect-size on the merge
conflict resolution time.

4 Survey
In this section, we report on a survey of software developers
from our subject projects (Section 3.1.2). The goal of the
survey was to cross-validate our results and reduce threats to
the validity of our quantitative findings. Next, we present the
setting (Section 4.1) and results (Section 4.2) of our survey.

4.1 Settings
We created a seven-question survey, of which the first and
last questions are open-ended. The other five questions are
close-ended questions (5-point Likert-type scales). Aiming at
grouping and systematically generating a theory from the
answers of our open-ended questions, we used two Grounded
Theory techniques [58], [60]: open coding and axial coding.
We followed four steps of which two authors performed the
first three steps separately. First, we extracted data from
open-ended questions. Second, we segmented answers into
meaningful expressions and described them in a short se-
quence of words (the open coding technique). Third, we relate
short sequences of words to each other, combining inductive
and deductive thinking (the axial coding technique). Fourth,
all authors combined and discussed the outcome data repeat-
ing the second and third steps until we had a concise answer
for a given question.

The survey is divided into three parts. First, we are
interested in understanding factors that make the merge
conflict longer/harder to resolve (Q1). Then, with Q2 to Q6,
we address potential threats to validity asking developers for

10

confirmation about results in the empirical study (Section 3).
In the third part, we are interested in the experience survey
participants had when dealing with merge conflicts (Q7).

We recruited participants from subject projects that faced
merge conflicts (obtained as described in Section 3.1.3) by
directly contacting them via e-mail. We followed a learn-and-
improve approach, in which we adapt questions based on the
participants’ feedback. For instance, in the first version of the
survey, we asked about participants’ experience and team size.
However, a few developers replied to our email or reported in
their survey response that, despite their interest in the topic,
the survey was too long containing unnecessary questions
and, for that reason, they or their colleagues did not answer
the survey. Aiming at getting more informative answers, we
decided to modify/shorten the survey.

The survey was available for about 6 months. We received
140 responses (response rate around 2%). Individual parts
of the survey had varying response rates since open-ended
questions were optional. The full set of survey versions are
available at our supplementary Web site [63].

4.2 Results
We divide the discussion of the results of our survey in three
sections according to the parts as previously described.

4.2.1 Participants’ Perception of Factors that Make Merge
Conflict Longer/Harder to Resolve
To understand factors that make the merge conflict resolution
longer/harder, we asked the survey participants Q1: How do
you estimate how hard/time-consuming a merge conflict is to
be resolved? We got 89 answers for this question. In Table 5,
we present 25 measures pointed out by survey participants
sorted by the number of suggestions. Measures used in the
empirical study (Section 3) are highlighted with the acronym
in parenthesis. As seen, the top three suggested measures
are: the number of conflicting lines of code (#ConfLOC),
the number of conflicting chunks (#ConfChunks), and the
number of lines of code changed (#LOC). Notably, we used
these three measures in our empirical study (Section 3).
Interestingly, five participants mentioned they do not believe
that it is possible to measure how hard/time-consuming is the
resolution of merge conflicts.

A few participants mentioned that the difficulty/time of
resolving merge conflicts is somehow related to the files’ char-
acteristics. For instance, nine participants mentioned that it
is related to the number of files changed in the merge scenario
(#Files), other four participants mentioned that it is related
to the number of conflicting files (#ConfFiles), and another
mentioned that it is related to the frequency files are changed,
respectively. Further three participants mentioned that the
difficulty/time of resolving conflicts is somehow related to the
conflict’s location. One of them mentioned “fixing a conflict in
the view layer (i.e., referring to the Model-View-Controller
design pattern) is simpler than resolving a conflict in the
controller layer”.

First Part Summary: As expected and in line with pre-
vious work [39], [49], the measures used in our empirical
study reflect what survey participants think about merge
conflict resolution. Surprisingly, measures not directly
related to conflicts are among the most suggested ones.

TABLE 5
Measures to estimate the difficulty/time to resolve merge conflicts

Measure #Sug.

Number of conflicting lines of code (#ConfLOC) 19
Number of conflicting chunks (#ConfChunks) 16
Number of lines of code changed (#LOC) 13
Number of files changed (#Files) 9
Time between the base commit and the merge commit 5
Developer experience responsible for conflicting changes 4(∼%IntegratorKnowledge)
Number of conflicting files (#ConfFiles) 4
Frequency target file changed 4
Semantically diff between conflicting code 4
Number of active developers (#Devs) 3
Number of commits with conflicts 3
Developer knowledge on the project 3
(∼%IntegratorKnowledge)
Number of callers and callees functions in the conflicting
code 3

Conflicts location 3
Number of chunks (#Chunks) 2
Number of commits 2
Number of conflicting lines per file in conflict 1
Number of commits affecting a file 1
Number of whitespace changes (∼%FormattingChanges) 1
Code complexity of conflicting code (CodeCompexity) 1
Number of conflicts per file 1
Average size of conflicting chunks 1
Ratio number of chunks by the number of conflicting chunks 1
Number of conflicts multiplied by the average of the number 1of conflicting lines of code
Character diff 1
#Sug. stands for the number of participants suggested a target measure.

TABLE 6
Responses on 5-point Likert-type scale indicating the agreement with

questions (1 means hardly ever true, 5 means nearly always true)

#Q Description 1 2 3 4 5 x̃ x̄

Q2
The more time it takes to resolve a 3 3.4conflict, the more difficult the conflict

Q3
I merge my changes right after 4 3.9addressing an issue

Q4
I resolve merge conflicts right after 4 4.2they occur

Q5
I look at non-conflicting changes to 3 3.4resolve conflicts

Q6

I change non-conflicting code to resolve
3 2.8merge conflicts and avoid introducing

unexpected behavior to the project
#Q, x̃, and x̄ stand for questions, median, and mean, respectively.

4.2.2 Cross-validating the Quantitative Results
In the second part of our survey, we address potential threats
to validity and cross-validate our quantitative results from the
empirical study (Section 3). In Table 6, we present statements
and answers for Q2 to Q6. The 5-point Likert-type scale
means: 1 – hardly ever true, 2 – rarely true, 3 – sometimes
true, 4 – often true, and 5 – nearly always true.

As the term “difficulty” is subjective, in Q2, we asked
whether survey participants agree with the statement “the
more time it takes to resolve a conflict, the more difficult the
conflict is”. 15% of them mentioned that it is hardly ever true

11

or rarely true, 37.9% mentioned that it is sometimes true, and
47.1% that it is often true or nearly always true. In Q1, a
participant, who mentioned that this statement is rarely true,
made an interesting comment: “Time is not perfect because
there may be lots of simple changes but it’s time consuming to
rectify and potentially error prone”. Despite her mentioning
that time is not perfect, she indirectly assumes that small
changes may become a difficult task due to potential bug
introduction. Even though most survey participants agree
with time as a measure of difficulty, our study is more straight-
forward by searching for factors that make conflict resolution
longer.

With Q3 and Q4, we investigate whether survey partici-
pants merge their changes right after addressing an issue and
whether they resolve merge conflicts right after they occur.
These questions were motivated by the fact that we are not
able to detect unexpected events that happened on the merge-
conflict resolution (e.g., the developer responsible for resolving
the conflict had a break). Yet, 72.9% and 77.5% of the partic-
ipants agree that statements of Q3 and Q4 are often true or
nearly always true (median 4 and mean around 4). Of course,
this does not automatically mean that #SecondsToMerge
precisely measures the time a developer spent resolving merge
conflicts. However, with the survey answers, we have evidence
that they normally merge their changes right after addressing
an issue and resolve conflicts right after they occur.

With Q5 and Q6, we investigate whether survey partici-
pants look at non-conflicting changes to resolve conflicts and
whether they change non-conflicting code to resolve conflicts
avoiding introducing a new bug. The main motivation for
these two questions is a result of our quantitative study in-
dicating that merge conflict resolution time is strongly corre-
lated with measures not directly related to the merge conflicts
(e.g., the number of chunks changed and the number of devel-
opers active in the merge scenario). Regarding Q5, 50.7% of
the survey participants mentioned they often or nearly always
look at non-conflicting code, and 25.7% of the participants
sometimes look at non-conflicting code. Regarding Q6, 25.7%
said that they often or nearly always change non-conflicting
code and 34.3% of the participants sometimes change non-
conflicting code. We expected that developers would often
look at non-conflicting code, but change it only rarely. In
any event, scanning all changes in the merge scenario is time-
consuming and influences the merge conflict resolution. These
results provide evidence that resolving merge conflicts is much
more than only fixing lines in conflict (see Section 5).

Second Part Summary: We found evidence that de-
velopers from our subject projects usually think that, the
more time it takes to resolve a conflict, the more difficult
the conflict is. With our survey, we confirm our assump-
tion that developers usually merge after addressing an
issue and resolve merge conflicts right after they occur,
increasing construct validity of the dependent variable
of our empirical study. Finally, we found that developers
often look at non-conflicting code and sometimes change
non-conflicting code when fixing merge conflicts to avoid
bug introduction, cross-validating a not very intuitive
result from our empirical study.

4.2.3 Experience of Dealing with Merge Conflicts
In the third part of the survey, we asked participants to
share experience of dealing with merge conflicts (Q7). We got
43 responses to this part.

Challenges of merge conflict resolution. In Table 7,
we present the 4 main challenges on merge conflict resolution
brought up by our survey participants. We describe these
challenges next.

Lack of coordination. We found four sub-challenges that
deteriorate coordination: (i) lack of communication and
awareness, (ii) large commits and rare merges, (iii) moni-
toring changes at coarse-grained level, and (iv) lack of an
overall workflow. A participant mentioned “good communi-
cation might avoid most hard conflicts”. Another participant
suggested that most time-consuming conflicts arise from refac-
toring: “Code moving from place to place is also a very hard
scenario (in part because it makes diffs harder to obtain)”.
Thirteen participants reported that their strategy to avoid
conflicts is simply based on small commits and repeated
merging. Interestingly, 8 participants mentioned that they
rebase their changes often. We discuss rebase scenarios in
Section 5. Related to the third sub-challenge, a participant
mentioned “I manage changes at the chunk level (not as files)”.
Regarding lack of overall workflow, a participant mentioned
“good development processes avoid most merge conflicts”.

Lack of tool support. We identified three sub-challenges re-
lated to tool support: (i) inappropriate development environ-
ment, (ii) inappropriate tools for showing diffs and supporting
merge conflicts resolution, and (iii) mismanaging the backlog.
A participant stated “Never resolve conflicts by hand. Use a
tool”. Other six participants mentioned that merge conflict
resolution is much easier with an appropriate IDE. One of
them said: “I use the included git merge conflict tool in IntelliJ.
The ‘magic wand’ is a really powerful tool which can solve some
merge conflicts, for example if there are 20 diffs in a file that
magic wand button can usually figure out what to change, and
only leave you with one or two lines which it can’t figure out by
itself ”. Other participants mentioned tools they use to support
diffing and merge conflict resolution. The reported tools are:
P4merge6, FileMerge7, BeyondCompare8, openDiff9,
BBEdit10, Tortoise11, git diff12, and gitk13. A few of
them reported the reasons for choosing a tool. For instance,
a participant mentioned that she uses Tortoise because
it shows her changes and the remote changes side by side
and the file for merging them below. Other participants just
mentioned avoiding duplicated work (e.g., avoiding addressing
the same Jira task) and working on the same parts of the
source code at the same time.

Flaws in the system architecture. We found two sub-
challenges related to system architecture flaws: (i) highly
coupled code and (ii) technical debt introduction. A partic-
ipant mentioned that conflicting code that is highly coupled is

6. https://www.perforce.com/products/helix-core-apps/merge-
diff-tool-p4merge

7. https://developer.apple.com/xcode/
8. https://www.scootersoftware.com/
9. https://developer.apple.com/xcode/
10. https://developer.apple.com/xcode/
11. https://tortoisegit.org/
12. https://git-scm.com/docs/git-difftool
13. https://git-scm.com/docs/gitk

12

TABLE 7
Challenges on merge conflict resolution

Challenge Sub-Challenge Solution

Create communication channels for all stakeholders and channels (e.g. slack
or Microsoft teams) focused on developers or specific components (e.g.
backend and frontend developers)

Fix conflicts as soon as you are aware

Keep others aware of refactoring changes

Use adequate tool support to avoid developers working on the same region

Lack of communication and awareness

of code (see solution for the sub-challenge mismanaging the backlog)

Create minimal commits (i.e., small chunks)

Pull/push changes often (i.e., merge often)Large commits and rare merges

Create tasks/pull-requests small and focused

Monitor changes at coarse-grained level Manage code changes at fine-grained level (e.g., at method- or at chunk-level)

Create well-defined and documented development process

Lack of coordination

Lack of an overall workflow Create and document contribution rules (e.g. formatting styling)

Lack of tool support

Inappropriate development environment Use appropriate IDEs and, if possible, developers should use the same IDE

Inappropriate tools for showing diffs Some IDEs provide support for that. If it is not your case, use (ad-hoc) tools
and support merge conflicts resolution to support this task

Mismanaging the backlog Use issue trackers (e.g., GitHub or Bitbucket) and/or tools for managing
work (e.g., Jira or Asana)

Refactoring code to minimize coupling and increasing cohesion

Create an architecture that follows well-known design patterns (e.g.,Highly coupled code
Singleton, Decorator, and Observer)Flaws in the system

Always review code changes. Especially, more experienced developers shouldarchitecture
Technical debt introduction carefully review code changes from less experienced developers

Lack of testing suite Lack of tests and their maintenance

Always create test cases for new features and integrate them with existing

or pipeline for

test cases ensuring that no unexpected behavior was introduced

continuous integration
Update test cases always such that something changes in the project related
to existing test cases

Lack of continuous integration pipeline Create and maintain a pipeline for continuous integrationand its maintenance

normally harder to resolve, since this requires looking into
files that have not changed in the merge scenario or have
changed but have no conflict. Another participant comple-
mented this by mentioning that non-trivial merge conflicts
tend to be a symptom of architectural flaws that make it
difficult to apply a given change without touching a lot of
different files/systems. Regarding the introduction of tech-
nical debt, a participant suggested that the introduction of
new features/code should be reviewed by more experienced
developers aiming at reducing the introduction of technical
debt. This case is either related to the deterioration of the
system code/design or to future refactorings. As mentioned
by participants, both are prone to introduce conflicts. In
fact, previous studies have reported the relation of merge
conflicts with code smells [2], [4] and their effects on soft-
ware quality [9]. In most cases, merge conflicts deteriorate
the software quality. Furthermore, researchers [16], [50] have
found that sometimes developers may not have the expertise
or knowledge to make the right decisions, which might degrade
the quality of the merged code. This highlights the importance
of proper code review by experienced developers.

Lack of testing suite or pipeline for continuous integration.

We classified factors related to this challenge into: (i) lack of
tests and their maintenance and (ii) lack of continuous inte-
gration pipeline and its maintenance. A participant stated:
“my harder conflicts are often when integrating two different
large feature branches, the tests may at most ensure that
specific isolated scenarios keep working, not that the involved
features interact well, until newer tests are written for that
purpose”. Another participant mentioned that, when describ-
ing her process on resolving merge conflicts, she tries to merge
everything as much automated as possible. If it does not parse,
or does not build, or does not pass on tests, then she uses
reverse engineering.

Participants’ desires, needs, and alerts. Participants
articulated four desires, needs, or alerts.

Improve diffs. A participant mentioned “a semantic diff
would be amazing”, another articulated the desire of a diff
of each version against the common ancestor, and several
participants highlighted the importance of good visualiza-
tion/interfaces in diff tools.

Keep awareness when others are refactoring. As men-
tioned, keeping awareness in the project is very important.
There are some awareness tools proposed in the literature, for

13

instance, CollabVS [18], Palant́ır [53], Cassandra [38],
and FASTDash [7]. However, what called our attention is
a participant expressing the interest in a tool informing when
others are refactoring the source code. As mentioned, for some
participants, hard merge conflicts normally occur because of
refactoring changes. Related to that, Mahmood et al. [43]
found that refactoring was the most frequent change, which
often collided with other refactoring or feature introductions
and enhancements on the other branch. Furthermore, Mah-
moudi et al. [44] have found evidence that refactoring opera-
tions are involved in 22% of merge conflicts and that conflicts
that involve refactoring are more complex than conflicts with
no refactoring. Putting awareness and refactoring together,
Shen et al. [54] have proposed IntelliMerge, a graph-based
refactoring-aware merging algorithm for Java programs and
Cavalcanti et al. [13] have proposed jFSTMerge the state-of-
the-art semi-structured merging algorithm for Java programs.

Show a merge-conflict difficulty estimation. A participant
suggested a tool to show the merge conflict difficulty. We see
it as an opportunity for tool builders building tools that work
either reactively (i.e., when developers pull code from other
branches) or proactively (i.e., the tool checks changes from
other pre-selected branches periodically). Indeed we found
some studies predicting indicators for merge conflicts [19],
[39], [51], however, we did not find any tool that estimate the
merge-conflict difficulty.

Improve Git conflict message and merge strategy. We
got three opinions specific to Git. A participant complained
about Git’s conflict report: “often the most confusing parts
are the guides informing about incoming and current changes.
Literally 2 in 3 times I have to refresh my memory about
those”. Another participant reported: “sometimes the ‘differ’
erroneously show the conflict to be across two functions while
in reality just one function was changed significantly (also
happens often when merging xml files) such cases should best be
approached with a differ/merger that is aware of the underlying
semantic but detecting such cases and assigning them high
merge difficulty would be nice”. A third participant mentioned:
“The worst problems are when Git doesn’t detect a merge
conflict because the change appears to merge cleanly, but then
bugs are introduced”.

Third Part Summary: Based on the participants’
reported experience, we defined four challenges on the
merge conflict resolution: lack of coordination, lack of
tool support, flaws in the system architecture, and lack of
testing suite or pipeline for continuous integration. Fur-
thermore, we collected desires, needs, and alerts reported
by survey participants in which we classified into: improve
diffs, keep awareness when others are refactoring, show
a merge conflict difficulty estimator, and improve Git’s
conflict message and merge strategy.

5 Discussion
Aiming at achieving a deep understanding of what happens
when developers are resolving merge conflicts, we triangulate
our analyses with a manual analysis of the 100 shortest and
100 longest merge scenarios (Section 5.1). Next, we discuss
the outcome of variables individually (Section 5.2) as well as
some relationships among them (Section 5.3). After that, we

provide a comparison of our results with previous work results
(Section 5.4), followed by a reflection of the importance of any
improvement in the merge conflict life-cycle (Section 5.5).

5.1 Manual Analysis
In this section, we inspect our data deeply and manually
to understand the resolution of merge conflicts and support
further discussion points.

Is it possible to identify any difference between
the most quickly resolved conflicts and the ones that
took the longest to be resolved? To answer this question,
we manually investigated the 100 shortest conflicting merge
scenarios (Group 1) and the 100 longest conflicting merge
scenarios (Group 2) performing three analyses. First, we check
if the independent variables are statistically significant across
these two groups to confirm the results presented in Section
3.2 and to increase the internal validity of our study. Second,
we compare the file extension of the conflicting files for both
groups to see if the content of files of specific extensions
might influence the merge conflict resolution. Third, we look
at each conflicting code and observe how developers resolved
them to investigate merge conflicts resolution from a different
perspective that our independent variables might have not
been able to catch.

Regarding time, we see a huge difference: while the short-
est conflicting merge scenarios took less than 40 seconds
to be resolved, the median for longest ones is 6.62 days.
In Figure 7, we present a comparison of the two groups
for the ten independent variables investigated in the study.
Except CodeComplexity, %IntegratorKnowledge, and %For-
mattingChanges, the other variables show a statistically sig-
nificant difference for these two groups (Wilcoxon signed-
rank test with p-value < 0.001). This result is similar to the
results we presented in Section 3.2, except that there is no
significant difference for CodeComplexity. Note that, although
significant, the difference for variables measuring the merge
conflict size is small. For instance, the average number of
conflicting files is 1.06 and 1.75 for the shortest and longest
conflicting merge scenarios, respectively. In other words, the
100 shortest and the 100 longest conflicting merge scenarios
have on average around 1 and 2 files in conflict, respectively. It
explains why the correlation between the merge conflict size
measures and #SecondsToMerge is not strong, as we found
in Section 3.2. In fact, previous studies [24], [43] found that
merge conflicts are normally small. For instance, Mahmood
et. al [43] found that 28 out of 40 investigated conflicts had
only one line of code conflicting in the merge branches.

Regarding the second analysis, Table 8 presents a compari-
son of the extension of conflicting files for both groups divided
into five categories: 1) Minified files pass for a minification
process for markup Web pages and script files, for example.
Although the minification process reduces readability, it dra-
matically improves site speed and accessibility [30], [52]. This
minification process is normally automated by tools, such as
Minify14 and JSCompress15. 2) Markdown files describe the
next category of files. Markdown is a lightweight markup lan-
guage with plain text formatting syntax. 3) Package manager
files are files automatically generated to manage the project.

14. https://www.minifier.org/
15. https://jscompress.com/

14

#LOC #ConfLOC CodeComplexity %IntegratorKnowledge %FormattingChanges

#Files #ConfFiles #Chunks #ConfChunks #Devs

Group1 Group2 Group1 Group2 Group1 Group2 Group1 Group2 Group1 Group2

100

100.5

101

101.5

102

102.5

103

103.5

104

104.5

105

105.5

106

100

100.5

101

101.5

102

102.5

103

103.5

104

104.5

105

105.5

106

Group 1: shortest conflicting merge scenarios; Group 2: longest conflicting merge scenarios

Fig. 7. Violin plots distinguishing shortest and longest conflicting merge
scenarios.

TABLE 8
Comparing the number (and percentage) of conflicting files per

category in the shortest (Group 1) and the longest (Group 2) scenarios

File Extension Group 1 Group 2

Minified files 45 (42.45%) 16 (9.14%)
Markdown files 39 (36.79%) 21 (12.00%)
Package manager files 7 (6.61%) 14 (8.00%)
Programming language files 14 (13.21%) 119 (68.00%)extension
Other files 1 (0.94%) 5 (2.86%)

It includes, for instance, pom.xml and package.json files that
are used in Java and by Node.js package manager (npm),
respectively, to identify the project as well as to handle project
dependencies. 4) Programming language files are related to
software development including programming project files,
source code files, code libraries, header files, class files, and
compiled objects. They are files not included in previous
categories and have extensions, such as .js, .rb, .css, .c, .h,
.py, and .java. 5) Other files represent files without extension
(e.g., change-log files) or .gitignore files.

We argue that developers need more time to resolve merge
conflicts in files with native programming language exten-
sions because of the inherent structure including dependencies
among methods, functions, procedures, class, modules, or
components that may exist in the conflicting code of these
files. Such dependencies may not happen in plain text files
and can be automatically generated in package manager and
minified files. Survey participants mentioned that number of
callers and callees for added/removed functions and the con-
flict’s location might influence the merge conflict resolution
time (see Table 5). Furthermore, previous studies [10] [19]
investigated the diffusion changes and the conflict’s location.
Brindescu et al. [10], found that diffusion changes (e.g., the
number of files changed and the dependency among files) are

important when predicting the difficulty of merge conflicts.
Dias et al., [19] found that the likelihood of merge conflict
occurrence significantly increases when contributions to be
merged are not modular in the sense that they involve files
from the same MVC slice (related model, view, and controller
files). As we can see in Table 8, while only 13.21% of the
conflicting files in Group 1 are files with native programming
language extensions, 68.00% of the conflicting files in Group 2
are files with native programming language extensions. It
might be an indication that source code files influence the
time of resolving merge conflicts. Aiming for a more adequate
answer, we look at the conflicting code as well as at how
developers resolve merge conflicts in these files next.

Conflicts in Group 1. Looking at the conflicting code
for Group 1, we found that (i) for all 45 minified files found
with conflicts, the original file was also changed in the merge
scenario. Hence, to resolve the merge conflicts developers
only regenerated the minified files after the merge; (ii) for
all package manager files found with conflicts, the number of
the version of the document or of some dependencies were
different. Hence, developers only chose the newest version to
solve the conflicts; (iii) for the 14 files in native programming
language extension, 5 of them had a timestamp problem in
the header of the document and, hence, developers only chose
the newest timestamp. For 4 files, we found code additions
between existing methods in both branches. Hence, to remove
the merge conflicts, developers only removed the conflict
markers (e.g., “>>>>>>>”). For the remaining 5 files, we
found a combination of formatting, with small refactorings
(e.g., renaming) and fixing small issues and typos (e.g., adding
an extra condition in an existing if-statement, or changing
the background color of an object, or removing a “\9” that
appeared in a JavaScript file). In these cases, developers
chose the changes of one branch or a combination of both;
(iv) for 39 markdown files and the .gitignore file with conflicts,
conflicts were basically emerged from refactoring (e.g., rewrit-
ing phrases improving grammar) and code addition (e.g.,
adding new phrases to give more details about some topic)
without any dependency with other files. The conflicts of
these files are similar to the ones we found with the files in
native programming language extension. To resolve the merge
conflicts, developers chose one version, or removed the conflict
markers. Even without knowing the code before, with a diff
checker tool, we quickly understood why the conflict arose
and we would resolve conflicts similar to how developers did.

Conflicts in Group 2. Looking at the conflicting code
for Group 2, the longest conflicting merge scenarios, we found
that: (i) regarding the 21 markdown files, 10 of them are in
merge scenarios of which there are also merge conflicts in files
from the native programming language extension category.
Files from the native programming language extension cate-
gory might have taken longer to resolve the merge conflicts,
which might have influenced the resolution of conflicts in the
10 markdown files. The remaining 11 markdown files present
URLs for other files changed in the merge scenario or with
external links. We do not believe that this is the only reason
that developers took longer to resolve merge conflicts of these
files. However, it was a pattern that we noted; (ii) regarding
the 16 minified files, in 13 of them the original files also
changed and in 1 of these 13 files the original file also had
merge conflicts. For the remaining 3 files, the original files did

15

not change. Looking only at code changes, we could not find a
plausible reason for developers taking so long to resolve merge
conflicts in these files; (iii) regarding the 14 package manager
files, 8 of them had changes in the structure that were beyond
formatting and version of dependencies. For the other 6 files,
we found only formatting and versioning problems. However,
5 of them are in a merge scenario with other conflicting
files. Hence, the other conflicting files might be the reason
why these conflicts took so long to be resolved; (iv) the
changes in all files in the other files category were simply
code addition, although, all of them are in merge scenarios
that have additional conflicting files. These additional files
might be the reason for the long time needed to resolve their
merge conflicts; (v) for the 119 files with native programming
language, 78 have at least another file in conflict and 117
of them have at least another file that was changed in the
merge scenario. Looking at the code changes, in 79 of the
119 files, we could not understand the code changes only by
looking at the file in conflict because it contained a call to
a method, procedure, or import file or module also changed
in the merge scenario. Therefore, in 66.39% of the cases of
source code files, we found a dependency that made the merge
conflict resolution longer to resolve. For the remaining 40 files
without any explicit dependency, in 29 there is at least another
conflicting file with further dependency in the merge scenario.
Hence, at the end, 90.76% of native programming language
files are related to a non-trivial solution (i.e., involving com-
plex dependencies with libraries and other packages). Only
11 of them do not have any other file with dependency and
we could not find a plausible reason for developers needing so
much time to resolve these merge conflicts.

As shown in Section 3.2.1, merge conflicts normally take
up to 11 minutes to be resolved and this result is in line
with previous work [11]. In that study, researchers measured
the time spent resolving merge conflicts directly by observing
developers. Even looking at the 100 longest merge scenarios,
we could not find plausible reasons for why the merge conflict
resolution took so long for only 11 of them. With the survey
(Section 4), participants confirmed that they normally merge
their changes and resolve conflicts right after they arise.
Therefore, based on our manual analysis and on the answers
of survey participants, we found that extraordinary events
occur in practice, but not too often to the point of biasing
our results. These results altogether, strengthens that #Sec-
ondsToMerge is a reasonable choice as a dependent variable
for a post-hoc analysis as we presented in our empirical study.

Analysis Summary. Indeed, the longest conflicting
merge scenarios are larger and more complex than the
shortest conflicting merge scenarios for most of the in-
dependent variables, which is in line with the results
presented in Section 3.2 and with survey participants.
It shows that our choice of #SecondsToMerge as a de-
pendent variable is plausible. Our subsequent analysis
shows an indication that developers need more time to
resolve merge conflicts in programming language files.
With the follow-up analysis, we see that the content of
files with some extensions remains an indicator for the
merge conflict resolution time. However, the dependency
among the code in conflict with files changed in the merge
scenario may be a better indicator of the merge conflict
resolution time. While in the files of Group 1 we did not
find a dependency among the conflicting code, we found
such dependency for 90.76% of the programming language
files in Group 2 (see a concrete example in Section 5.3).

5.2 Investigating Non-correlated Variables
In this section, we investigate reasons of why the %Integrator-
Knowledge and %FormattingChanges are not correlated with
#SecondsToMerge.

Do integrators have knowledge of conflicting files?
Are there differences between conflicting merge sce-
narios that are resolved by integrators with previous
knowledge on the involved files and those integrators
without previous knowledge? To answer these two ques-
tions, we distinguished between merge scenarios for which
the merge-scenario integrator had previous knowledge of the
involved files from those merge scenarios that the integrator
did not have previous knowledge of. As an immediate result,
we found that about 56 % of the conflicting merge scenarios
have been integrated by a developer with some knowledge
on the files in conflict. From these scenarios, integrators
previously changed all files in conflict in about 94 % of such
cases. Therefore, more than half of the merge scenarios are
integrated by developers that already touched all files in
conflict.

For further investigation, we found that the number of
chunks tends to be higher, on average, when integrators have
some knowledge about the conflicting files (see the violin
plots in Figure 8) with a statistically significant difference
(Wilcoxon signed-rank test, p ≈ 0.001, W = 891 559). We
choose the number of chunks for this further analysis because
it is the variable with the greatest impact on the merge
conflict resolution time (see Section 3.2.4). Furthermore, as
can be seen in Figure 8, integrators with previous knowledge
seem to handle more complex merge scenarios with respect
to the other measures that represent size and complexity of
the merge scenario (e.g., #Files (p ≈ 0.001, W = 13 030),
CodeComplexity (p ≈ 0.001, W = 13 207), and #Devs
(p ≈ 0.002, W = 12 382)). Given that, we can assume that
these developers are tasked with handling merge scenarios
that spread farther across the code base and potentially
inherit more semantic changes, resulting in locally restricted
merge scenarios given to less knowledgeable developers.

Inspired by the response of survey participants (Sec-
tion 4.2) and previous work [11], [49], we see two main reasons
for this finding in the previous knowledge of the integrators

16

#LOC #ConfLOC CodeComplexity %FormattingChanges #SecondsToMerge

#Files #ConfFiles #Chunks #ConfChunks #Devs

FALSE TRUE FALSE TRUE FALSE TRUE FALSE TRUE FALSE TRUE

100

101

102

103

104

105

106

107

108

100

101

102

103

104

105

106

107

108

%IntegratorKnowledge > 0

Fig. 8. Violin plots distinguishing merge scenarios by the predicate
%IntegratorKnowledge > 0.

itself: (i) integrators that have profound knowledge of the
involved files of a merge scenario tend to ask more questions
regarding the proposed code and are able to identify more
potential semantic problems avoiding future problems [11] and
(ii) when developers feel that their experience is not sufficient
to resolve the merge conflict, they generally seek for help from
other developers to resolve the merge conflict [49]. Hence,
an integrator without previous knowledge finds the merge
conflict, but, at the end, a knowledgeable integrator that will
normally solve the problem. This transition among integrators
may take some time. Still, we cannot draw a conclusion
that prior knowledge on conflicting files supports integrators
solving merge conflicts faster than integrators without prior
knowledge mainly because of the inherent structure including
dependencies among methods, functions, class, modules, or
components that may exist in the conflicting code as discussed
in Section 5.1.

Implications for practitioners: In more than half of
the conflicting merge scenarios, integrators with previous
knowledge on the conflicting files are the ones that resolve
merge conflicts and they normally solve more complex
and larger merge scenarios. We argue that integrators
with previous knowledge on the merge scenario are rec-
ommended to resolve more complex and larger conflicting
merge scenarios because they may provide more solid
solutions. However, we cannot affirm that previous knowl-
edge makes the merge conflict resolution faster.

What is the percentage of conflicting merge scenar-
ios due to formatting changes? 2.42 % of the conflicting
merge scenarios occurred because of formatting changes. This
small percentage is likely the reason that it does not correlate
with other variables. For short, from the 66 subject projects,
30 have, at least, one merge scenario with merge conflicts
arising due to formatting changes; 15 have, at least, one merge
scenario of which all merge conflicts arose from formatting
changes. What intrigued us, was the fact that despite the
effort of researchers on proposing merge strategies [5], [6] and
that simple definitions of contribution rules (e.g., defining

expected code style) could extinguish this type of conflict,
they are still present in some subject projects. As suggested
by survey participants, formatting style from different IDEs
might be an indicator of why this kind of conflict occurs even
when contribution rules are well-defined in the project. An
investigation aiming at finding out the reasons of why the
merge conflicts due to formatting changes emerged and the
actions developers took over the evolution of the projects
would be welcome to both researchers and practitioners. As
it is far from our goal, we leave it for future work.

Implications for researchers: Our results imply that
formatting changes are not really relevant for the merge
conflict resolution time since, despite 30 (out of 66)
projects have conflicting merge scenarios due to format-
ting changes, it represents only 2.42 % of the merge sce-
narios analyzed. A deeper investigation on domains and a
temporal analysis of the contribution rules may be fruitful
to better understand the reasons why developers proposed
them and how it impacts on the occurrence of merge
conflicts as well as on their resolution time.

5.3 Investigating Relationships Among Subject Variables
In this section, we investigate relationships between subject
variables that at the first glance seem counter-intuitive.

Why merge conflict resolution time is stronger
correlated with merge scenario size measures than
with merge conflict size measures? Some merge conflicts
are not trivial to resolve and, for that reason, there are many
studies investigating it [1], [5]–[7], [12], [18], [24], [29], [38],
[39], [45], [49], [53], [64]. In some cases, unexpected results are
found. For instance, Leßenich et al. [39] aimed at predicting
merge conflicts, but even though they have used factors that
practitioners indicated to be related to the emergence of
merge conflicts (e.g., scattering degree among classes, commit
density, and number of files), none of these factors showed
a strong correlation with the occurrence of merge conflicts.
One may say that the merge conflict resolution depends on
the type of conflict [1], others say that it depends on the
language constructs that are involved in the conflict [24]. It
is reasonable to expect that resolving merge conflicts involves
much more than only taking a look at the conflicting code,
especially when there is a dependency between conflicting
and non-conflicting code introduced in the merge scenario
(see Section 5.1). Resolving merge conflicts without looking at
dependent code changes may introduce unexpected behavior
to the project, even when it passes the test suite. Hence, the
most prominent action is to understand, at least, the non-
conflicting code related to the conflicting code.

To get a concrete example, we choose a merge scenario
from project node16. Despite of being a large merge scenario
(#LoC = 36 794, #Chunks = 7 305, and #Files = 669), we
see only 86 lines in conflict (#ConfLoC) in three conflict-
ing chunks (#ConfChunks) of three conflicting files (#Conf-
Files). The developers needed around 40 hours to solve the
merge conflict. Looking at one of the three files in conflict,
”src/node crypto.cc”, we could see that this file refers to five
other non-conflicting files changed in the merge scenario. In
addition, despite this file having only one conflicting chunk,

16. https://github.com/nodejs/node – commit hash: 61ccaf

17

other 87 chunks were changed in this file. Therefore, despite
the merge conflict being small, the merge scenario changes are
quite large and we found some dependencies among conflicting
and non-conflicting code. These dependencies may explain the
large amount of time needed to resolve this small conflict. In
this direction, a recent study [11] accompanied by 7 developers
resolving 10 merge conflicts noted that developers usually first
look at files changed and then resolve the merge conflicts. Our
results give nuance to this finding in a broader perspective
and using different research methods.

Implications for researchers and tool builders:
Merge scenario characteristics impact more on the merge
conflict resolution time than merge conflict characteristics
especially when dependencies among conflicting and non-
conflicting code are found. Therefore, researchers should
pay more attention to measures related to the merge
scenario when exploring merge conflicts and tool builders
should consider them when creating solutions to support
practitioners on resolving merge conflicts.

Why does the number of chunks and the code
complexity of the conflicting code show a negative
correlation with the time needed to resolve merge con-
flicts? Before a data-driven answer, let us make an analogy.
Once you find a very long method, it might be an indicator
that this method does more than it should do. In several
cases, one or more methods can be extracted from this very
long method to make it more concise. The same is valid for
commits. Previous studies have shown that committing small
chunks of code make it easier to understand the code changes
[3], [31]. In the context of merge conflicts, thirteen survey’s
participants reported that their strategy to avoid conflicts
is simply based on small commits and merge often. As a
data-driven and simpler discussion, our arguments here focus
on three measures used in our regression model: #Chunks,
#LoC, and CodeComplexity. It is worth remembering that the
results of our regression model are valid for one variable only
when the values of the others remain the same. Therefore, by
increasing the number of chunks and keeping the same number
of lines of code and the complexity of the conflicting code, we
have small chunks which are much easier to understand and
resolve [3], [31], [49]. In other words, a fast understanding of
each chunk makes it easier to figure out which ones have a
dependence on conflicting code. Hence, integrators can focus
only on the dependent ones to resolve the merge conflict, also
avoiding unexpected behaviors. In the end, we have merge
scenarios easier to understand which will also reflect on a
faster merge conflict resolution.

As a concrete example related to the number of chunks,
we selected two merge scenarios from VSCode17 with similar
#LoC and CodeComplexity, but different values of #Chunks.
In each of these merge scenarios, developers have changed
around 10 thousand lines of code and have only one conflicting
chunk with code complexity equal 2. However, while in the
first scenario the code is divided into 1 458 chunks, in the
second it was divided into 268 chunks. Taking all arguments
into account that we discussed before, we assume that the
first merge scenario would be easier to understand. In this

17. https://github.com/Microsoft/vscode – commit hashes:
bd8108 and 44c395

particular case, it was true. The (same) integrator needed
around 9 minutes to resolve the first merge scenario while she
needed around 24 minutes to resolve the second. Looking at
the code changes, we found nested scenarios in both cases. In
other words, a developer was working in the source branch to
add a feature while other developers were working in parallel
to address other issues in other branches. At the end, their
changes were integrated into the target branch before the sub-
ject source branch. At the end, most of the changes occurred
in the target branch. As already discussed in Section 5.1, the
location, content, and dependencies among non-conflicting
code and conflicting code might have influenced the resolution
time. It is worth mentioning that in both exemplified scenarios
the changes in the source branch were quite simple, however,
the merge scenario took around one week. Extracting some
further information from GitHub, we found a possible reason
that might have made these two merge scenarios longer. In
both scenarios, the contributor was participating for the first
time in the project. As Microsoft requests a contribution
license agreement (CLA) for first-time contributors, it might
have taken some time. Note that it does not impact on the
merge conflict resolution, however, it might have influenced
the time the merge scenario lasted, opening space for other
integrations and introduction of merge conflicts.

To illustrate the code complexity of conflicting code, we
selected two merge scenarios from next.js18 with similar
#LoC (387 vs. 661), #Chunks (107 vs. 147), #ConfChunks
(9 vs. 9), and #ConfFiles (2 vs. 2), but different values of
CodeComplexity (2 vs. 20). It is more intuitive to think that
the conflicts resolution of the first scenario was faster than
the second one since it is slightly smaller and less complex
in terms of #LoC and CodeComplexity. However, while the
same integrator took 47 minutes to resolve the first scenario,
she took 18 minutes to resolve the second. Deeply looking at
the code changes, we found that in the first scenario, there
were changes in the yarn.lock and package.json files which only
some of these changes were in conflict with. Ignoring the file
content/extention/location (discussed in Section 5.1) and the
slight difference in the number of chunks discussed above,
we assume that the integrator fixed the conflicts fast and
missed some dependencies. Once rebuilding and running the
project, other dependency errors were found and she needed
more time to complete the merge. In the second scenario,
8 of the 9 conflicts were in the taskfile.js with some nested
loops. However, most of the changes are related to formatting,
renaming, addition of new functions in the same region of
code, and new parameters in asynchronous functions. All in
all, for the first scenario, we assume that non-conflicting code
influenced the long resolution time, for the second scenario,
we assume that the type of the changes supported a faster
resolution even though it looked more complicated in the
beginning.

18. https://github.com/vercel/next.js – commit hashes: f34262
and c92bde

18

Implications for practitioners: Committing small
chunks of code makes the code understanding easier and,
consequently, merge conflict resolution faster. Indeed, we
are not the first ones to recommend developers com-
mitting small chunks of code. However, to the best of
our knowledge, we did not find any study showing that
committing small chunks of code makes the merge conflict
resolution faster. Related to the code complexity of the
conflicting code, we see that changes that look more com-
plex on first sight might have simpler solutions depending
on their type and location as discussed in Section 5.1.

5.4 Comparison of Previous Work Results
What factors related to the merge conflict resolution
have been explored in the literature and how do our
results relate to them? In Section 2, we presented related
work showing the main differences of our study. Next, we
compare our results with two other studies [24], [49]. As it is
hard to quantitatively compare the results, we put all factors
into Table 9 differing them as: (i) factors that make merge
conflict resolution longer/harder (↗), (ii) factors that do
not impact on the time/difficulty of resolving merge conflicts
(→), and (iii) factors that make merge conflict resolution
faster/easier (↘).

Nelson et al. [49] investigated nine factors while Ghiotto
et al. [24] investigated four factors of which one is in both
studies (see Table 9). Our study explores six factors from
Nelson et al. and two factors from Ghiotto et al. In addition,
we explore five factors not explored by previous studies. Our
study is in-line with previous studies for most of the factors.
The only exceptions are with factors: complexity of conflicting
lines of code and expertise in area of conflicting code. We
acknowledge that our result in this case is counter-intuitive
at first sight. The justification for it is given by the setup and
results of our study. We can use the same argumentation when
explaining the negative correlation between the number of
chunks of the merge scenario and the merge conflict resolution
time (see Section 5.3). For short, in our study the increase
of the complexity of conflicting lines of code has a negative
influence on the merge conflict resolution time only when
the other variables in the regression model (#LoC, #Chunks,
#Devs, and #ConfChunks) remain fixed. This way, we would
keep with the same merge-conflict and merge-scenario size
which are factors that strongly impact the merge conflict
resolution time. In other words, since the chunks remain
small it is not a problem they are slightly more complex.
Regarding the expertise in areas of conflicting code, prior
knowledge in the conflicting files does not always help people
to resolve their tasks [25]. Hence, we believe that developers
with previous knowledge do not always resolve merge conflicts
faster than developers without prior knowledge, as discussed
in Section 5.2.

Related to the factor time to resolve a conflict, we consider
the results from our survey comparable with the results of
Nelson et al. [49]. We both asked for the developer’s agreement
with a similar statement “the more time it takes to resolve a
conflict, the more difficult the conflict” in a 5-point Likert-
type scale. Despite our developers’ set being different from
theirs, we got a median of 3 and a mean of 3.4, while they got
a median of 3 and a mean of 2.82. Therefore, we both found

TABLE 9
Comparison of our results with previous studies

Factors Nel. Ghi. Our Study
Factors directly related to merge conflicts

Complexity of conflicting lines of code ↗ - ↘
Expertise in area of conflicting code ↗ - →
Complexity of files with conflicts ↗ - -
Number of conflicting lines of code ↗ ↗ ↗
Time to resolve a conflict ↗ - ↗
Atomicity of changesets in conflict ↗ - -
Dependencies of conflicting code ↗ - ↗*
Number of files in the conflict ↗ - ↗
Non-functional changes in codebase ↗ - -
Number of chunks in conflict - ↗ ↗
Language constructs involved in - ↗ -conflicting chunks
Language constructs involving - ↗ -dependencies among conflicting
chunks
Formatting changes in the code in - - →
conflict

Factors indirectly related to merge conflicts
Number of lines of code of the merge - - ↗
scenario
Number of chunks of the merge - - ↘
Number of files of the merge scenario - - ↗
Number of developers involved in the - - ↗
merge scenario
Nel. and Ghi. stand for Nelson et al. [49] and Ghiotto et al. [24]. ”↗” means
that the factor makes the merge conflict resolution longer/harder, ”→” means
that the factor does not impact on the time/difficulty of resolving merge
conflicts, and ”↘” means that the factor makes the merge conflict resolution
faster/easier. * highlights that the conclusion for this factor came by further
analysis.

that the time of resolving merge conflicts is perceived by the
developers as a factor of difficulty of merge conflicts.

The factor non-functional changes in the code base is
similar to the factor formatting changes in the code in conflict.
We prefer to classify them separately because the formatting
changes in the code in conflict are only a subset of the non-
functional changes in the code base. We consider that non-
functional changes in the code base also include refactoring
(e.g., renaming and reordering methods). Taking into account
previous work [43] and survey participants, one of the main
changes related to merge conflicts is refactoring. We agree
with the developers surveyed by Nelson et al. [49] that non-
functional changes in the code base (when refactorings are
included) make the merge conflict resolution longer/harder.
However, when considering only formatting changes in the
code in conflict (i.e., excluding refactorings), it does not
influence the merge conflict resolution time. In any event, it
is worth remembering that the setup of our empirical study
considers all variables together while previous work [49] asks
developers individually.

Looking at Table 9 and considering the results of our
effect-size analysis, we see that most factors that only we
explore are related to the merge scenario size, i.e., not di-
rectly related to the merge conflict. In addition, #Chunks,
#Devs, and #LoC are the three factors in our study with the
highest effect on the merge conflict resolution time. Taking
into account our cross-validation surveying developers, we
are confident that, when resolving merge conflicts, developers
usually are aware of the changes in the merge scenario. Being
aware of the changes might take some time which influences
the merge conflict resolution time. Together with our previous

19

discussions it shows that, in practice, merge scenario charac-
teristics should be considered when exploring merge conflicts
resolution.

Implications for practitioners and researchers:
Merge conflict resolution theory and practice are in-line
for most of the factors involved in both types of investiga-
tion. As mentioned, researchers and practitioners should
also consider factors not directly related to merge conflicts
(e.g., #Chunks, #Devs, and #LoC) in their analyses since
these factors influence more the merge conflict resolution
time than factors directly related to merge conflicts (e.g.,
#ConfChunks and #ConfLoC).

5.5 Reflections on the Merge Conflict Life-Cycle
Is rebasing a good solution for avoiding/dealing with
merge conflicts? In our survey, 8 participants reported that
they use rebases to integrate branches, whence, it is worth
discussing this topic. Despite rebases drawn in a more linear
evolutionary history view, rebase commits change the order
code changes in fact occurred damaging the project history.
Therefore, rebase should be used with care. The main differ-
ence between git merge and git rebase scenarios on the merge
conflict resolution is that, in git merge scenarios, code changes
are shown once all together and in git rebase scenarios, Git
individually reapplies the commits off the to-do list. Hence,
developers need to resolve conflicts first, and then Git contin-
ues to reapply the remaining commits. There is a chance that
these resolutions would conflict with these remaining commits
in the to-do list [36]. Ji et. al [35] investigated merge conflicts
in Git rebases. Their results show that conflicts arise in 24.3%
– 26.2% of rebase scenarios and no significant difference was
found between the likelihood of conflicts arose given git merge
from previous work [24], [65], [67] and the git rebase scenarios
from their study. Considering that real-evolutionary history
can be used to support developers on different types of tasks,
we leave an open question to practitioners: is the rebase really
worth the damage in the project’s history?

Policy for resolving merge conflicts. In the third
question of our survey, we asked the participants to share their
experience of dealing with merge conflicts. Unfortunately, we
did not get any answer explicitly reporting policies to deal
with conflicts at project level. In fact, we searched in the
GitHub page of each subject project, but we also did not find
any report of it. Creating a policy might provide an organized
and planned way to deal with conflicts. The creation of such a
policy might be an opportunity for practitioners to improve
their work-day tasks, as well as, for researchers to collect
different experiences from practitioners and create a catalogue
of best practices for dealing with merge conflicts.

Why is even a small improvement regarding the
time to resolve single merge conflicts relevant for
practitioners? The results we presented in Section 3.2 do
not indicate that the time to resolve merge conflicts can be
improved by a very large extent when solely referring to the
observed variables. Even though this improvement would be
enough to resolve 15.84% of the conflicting merge scenarios of
our dataset, this is still a small fraction of them. Considering
the difficulty of predicting merge conflicts as well as of creating
strategies to resolve them faster, we argue that even a small

improvement may help developers in practice. To this end,
we see five relevant points of discussion to support our claim:
(i) Developers may get frustrated when they are unaware of
merge conflicts [49], it may diminish their satisfaction to work
on a project since it is a tedious and error-prone task [39],
[47]. (ii) Developers potentially need to handle multiple merge
conflicts during the evolution of the project. For instance, the
developers of the project d319 have resolved 286 conflicting
merge scenarios; if it was possible to save five minutes per
conflicting merge scenario, they would have saved around
3 full-time working days. (iii) Developers may lose focus on
the tasks they were doing to resolve merge conflicts. As merge
conflicts normally interfere with other developers’ work, they
have high priority and developers should stop what they
are doing to resolve the conflicts. A break in the software
development may lead them to lose track of previous tasks;
(iv) By reducing the time/difficulty of merge conflicts, which
is a key challenge for developers [39], [45], [49], may also
decrease the chance of introducing an error during the merge.
(v) An anticipated reduction of merge-conflict difficulty will
also benefit other parts of the software project. A reduction in
time to resolve a merge conflict is only the result of improving
the developers’ daily work. For example, when developers
introduce one-off contributions, they may also introduce more
modularized code that may result also in an improvement to
the software architecture.

6 Threats To Validity
In this section, we discuss limitations as well as internal and
external threats to the validity of our study.

Internal Validity. There are basically six main threats
to internal validity. First, we did not measure the software
development experience of developers integrating conflicting
code. This is a limitation of our study, since more experienced
developers may need less time to solve the same merge conflict
than less experienced developers. In any case, we argue that
large samples average this effect out. Second, we selected sub-
ject projects from different programming languages, hence,
one language could have dominated our dataset (see the
programming language of each subject project in our supple-
mentary Web site [63]). We checked whether a programming
language dominated half of our subject projects. Fortunately,
it did not happen. Third, we rebuild merge scenarios by using
the standard git merge command; if developers used other
merge strategies, merge conflicts emerged that may differ
from the ones we found. However, as developers normally use
standard git merge, and avoid using external tools when merg-
ing [49], it does not affect our results considerably. Fourth,
we could have classified merge scenarios based on their type
(e.g., merge scenarios integrated using pull-requests and not
using pull-requests) or based on the type of change (e.g.,
refactoring changes). We minimize this limitation by looking
at characteristics of merge scenarios and merge conflicts and
by differing formatting changes from other types of changes.
Survey participants suggested that refactoring operations are
conflict-prone. In that direction there is a previous work
already [44]. Unfortunately, this is a limitation of our study
and we suggest investigations in that direction in future work
(see Section 7).

19. https://github.com/d3/d3

20

Fifth, we are not able to measure unexpected events that
happened on the merge-conflict resolution (e.g., the developer
responsible for solving the conflict had a break or asked other
developers for support). As discussed in Sections 4 and 5,
we believe that it does not change our results considerably.
Sixth, there may be a better measure than #SecondsToMerge;
changing the measure may also change our results. We are
confident that we chose the best option for a post-hoc analysis
based on the following arguments: 1) we could not find plau-
sible reasons for only 11 out of the 100 longest conflicting sce-
narios of our dataset having taken so long. It suggests that un-
expected events occur, however, they do not occur very often
in practice; 2) comparing the values of #SecondsToMerge with
the values of a previous study [11] that precisely measured the
time spent to resolve merge conflicts, our results are not that
far from their results. For instance, while developers in their
study needed at least 389 seconds (6.48 minutes) to resolve the
half of the longest merge conflicts (i.e., 5/10), developers from
our subject projects took at least 697 seconds (11.62 minutes)
to resolve the half of the longest merge conflicts (1 304/2 608);
and, 3) survey participants agreed that they usually merge
their code changes right after addressing an issue/task, and
resolve conflicts right after they occur (see Section 4.2). Again,
it does not mean that #SecondsToMerge indeed measures the
time developers spent resolving merge conflicts, however, it
is an evidence that subject developers normally proceed as we
expect (i.e., what we aim to measure with #SecondsToMerge).

External Validity. External validity is threatened
mainly by three factors. First, our restriction to Git and
GitHub as a platform, the three-way merge pattern as well
as to the set of measures. Generalizability to other platforms,
projects, development patterns, and set of measures is lim-
ited. This limitation of the sample was necessary to reduce
the influence of confounds, increasing internal validity [55].
While more research is needed to generalize to other version
control systems, development patterns, and measures, we
are confident that we selected and analyzed a practically
relevant setting, measures estimating different software prop-
erties, and a substantial number of software projects from
various domains, programming languages, longevity, size, and
coordination practices. In addition, our filters applied during
subject project selection guarantee, for instance, that we
sampled active projects (see Section 3.1.2). Second, we are
not able to retrieve information from binary files, hence, we
may miss a piece of information from some merge scenarios.
Unfortunately, we cannot do anything about that, however,
the number of binary files is usually small in software projects.
Third, the response rate of our survey study is very small
(%2), it might be because of external factors that we are not
able to control. For instance, (i) emails are not valid anymore
given developers that used student emails and finished their
studies or developers that used corporative emails and moved
to another company or (ii) the great number of surveys in
pandemic times as reported by a few developers that replied
to our invitation. We tried to increase our response rate
following guidelines of previous studies [46] [48] [57], how-
ever, it remained low. In any event, we got 140 answers for
our survey, which is similar to previous studies investigating
merge conflicts (e.g., [45], [49], and [39] had 162, 102, and 41
participants, respectively).

7 Conclusion and Future Work

In this study, we investigated the main challenges on merge
conflict resolution with a two-phase study. First, we empiri-
cally looked at thousands of merge scenarios from 66 subject
projects aiming at identifying factors that make the merge
conflict resolution longer. Second, we minimized threats to va-
lidity of our empirical study and cross-validated non-intuitive
results by surveying developers from subject projects. Fur-
thermore, we manually checked hundreds of merge scenarios
to dive deep in merge conflict resolutions. In Table 7, we
presented 4 major challenges detailed into 11 sub-challenges
and with a body of 19 solutions to minimize the emergence of
merge conflicts as well as make conflict resolutions faster.

Despite several studies investigating merge conflict reso-
lution, we are the first to investigate factors that influence
the merge conflict resolution in practice with a triangulated
approach (mining, survey and manual analyses). In fact,
some of our results were already mentioned in the literature.
However, our quantitative and qualitative results complement
and add nuance to the recommendations from previous work.

As future work, we suggest a replication of this study
involving other variables that we are not able to properly
control, such as, the dependencies among files, chunks, con-
flicting files, and conflicting chunks. Such an analysis could
add nuance to our findings from the manual analysis. With
the knowledge acquired in this study we suggest six direc-
tions for future work: 1) Interview developers asking them
about specific outlier merge scenarios and how merge conflicts
impact on their mood and their contribution to the project.
With this study we would find technical or social reasons that
influence the resolution of merge conflicts. For instance, why
did a merge conflict of a given characteristic take so long to
be addressed? Was that because of lack of experience, lack
of knowledge in the piece of code, dependence with other
conflicts or changed code? 2) Interview developers aiming at
building a taxonomy of which code they consider relevant to
resolve merge conflicts. What does really matter when solving
a merge conflict? How does the answer vary among develop-
ers? 3) An investigation on the impact of the merge conflict
resolution time comparing merge scenarios with refactorings
and without refactorings. Our study does not distinguish
scenarios which involve refactoring or not, an empirical study
emphasizing on refactoring operations could add nuance to
our finding of the impact of non-conflicting changes on the
merge conflict resolution time, as well as, bring justifications
abroad our study. 4) A similar investigation on the merge
conflict resolution time classifying merge scenarios into differ-
ent types (e.g., merge scenarios integrated using pull-requests
and the ones integrated without using pull-requests). Such a
study could measure how efficient pull requests are to keep
awareness among developers and its influence on the merge
conflict resolution time. 5) a similar investigation classifying
the different types of conflicts that might happen (e.g., lexical,
structural, and semantic). As mentioned, our decision to
cover several programming languages makes this investigation
harder in practice since it is necessary an analysis in the
abstract syntax tree (AST) and in several cases the conflicting
code would not be enough. A study focusing on specific
programming languages instead might be feasible in practice
and provides an understanding on the influence of the conflict

21

type on its resolution. 6) a similar investigation using other
models such as neural networks and deep learning techniques.
Once our study presents a solid understanding of factors and
challenges on merge conflict resolution, a study with other
models could bring a more accurate outcome for the empirical
analysis.

Acknowledgment
This work was partially supported by CNPq (grant
290136/2015-6). Apel’s work has been funded by the German
Research Foundation (AP 206/14-1). We would like to thank
you Angelika Schmid and Zohaib Brohi for support on initial
versions as well as in the statistical analysis.

References
[1] P. Accioly, P. Borba, and G. Cavalcanti. “Understanding Semi-

structured Merge Conflict Characteristics in Open-source Java
Projects”. In Empirical Software Engineering, vol. 23(4), Springer,
pp. 1–35, 2017.

[2] I. Ahmed, C. Brindescu, U. Mannan, C. Jensen, A. Sarma.
“An Empirical Examination of the Relationship Between Code
Smells and Merge Conflicts”. In Proceedings of the International
Symposium on Empirical Software Engineering and Measurement
(ESEM), ACM/IEEE, pp. 58–67, 2017.

[3] A. Alali, H. Kagdi, J. I. Maletic. “What’s a Typical Commit?
A Characterization of Open Source Software Repositories”. In
Proceedings of the International Conference on Program Com-
prehension (ICPC), IEEE, pp. 182–191, 2008.

[4] L. Amaral, M. Oliveira, W. Luz, J. Fortes, R. Bonifacio, D.
Alencar, E. Monteiro, G. Pinto, D. Lo. “How (Not) to Find
Bugs: The Interplay Between Merge Conflicts, Co-Changes, and
Bugs”. In Proceedings of the International Conference on Software
Maintenance and Evolution (ICSME), IEEE, pp. 441-452, 2020.

[5] S. Apel, O. Leßenich, and C. Lengauer. “Structured Merge with
Autotuning: Balancing Precision and Performance”. In Proceed-
ings of the International Conference on Automated Software
Engineering (ASE). ACM, pp. 120–129, 2012.

[6] S. Apel, J. Liebig, B. Brandl, C. Lengauer, and C. Kästner.
“Semistructured Merge: Rethinking Merge in Revision Con-
trol Systems”. In Proceedings of the Symposium and the Eu-
ropean Conference on Foundations of Software Engineering
(ESEC/FSE). ACM, pp. 190–200, 2011.

[7] J. Biehl, M. Czerwinski, G. Smith and G. Robertson “FASTDash:
A Visual Dashboard for Fostering Awareness in Software Teams”.
In: Proceedings of the Conference on Human Factors in Comput-
ing Systems (CHI), ACM, pp. 1313–1322, 2007.

[8] H. Borges and M.T. Valente. “What’s in a GitHub Star? Un-
derstanding Repository Starring Practices in a Social Coding
Platform”. In Journal of Systems and Software (JSS), vol. 146
(1), pp. 112–129, 2018.

[9] C. Brindescu, I. Ahmed, C. Jensen, A. Sarma. “An Empirical
Investigation into Merge Conflicts and Their Effect on Software
Quality”. In Empirical Software Engineering, Springer, vol. 25,
pp. 562–590, 2020.

[10] C. Brindescu, I. Ahmed, R. Leano, A. Sarma. “Planning for
Untangling: Predicting the Difficulty of Merge Conflicts”. In Pro-
ceedings of the International Conference on Software Engineering
(ICSE). ACM, pp. 801–811, 2020.

[11] C. Brindescu, Y. Ramirez, A. Sarma, C. Jensen. “Lifting the
Curtain on Merge Conflict Resolution: A Sensemaking Perspec-
tive”. In Proceedings of the International Conference on Software
Maintenance and Evolution (ICSME), IEEE, pp. 534–545, 2020.

[12] Y. Brun, R. Holmes, M. D. Ernst, and D. Notkin. “Proactive
Detection of Collaboration Conflicts”. In Proceedings of the Eu-
ropean Software Engineering Conference and the Symposium on
Foundations of Software Engineering (ESEC/FSE). ACM, pp.
168–178, 2011.

[13] G. Cavalcanti, P. Borba, and P. Accioly. “Evaluating and Im-
proving Semistructured Merge”. In Proceedings of the ACM on
Programming Languages (OOPSLA), ACM, 59, pp.1–27, 2017.

[14] C. Chatfield. “The Analysis of Time Series: An Introduction”.
5th Edition, Chapman and Hall, 1996.

[15] J. Cohen. “Statistical Power Analysis for the Behavioral Sci-
ences”. Elsevier Inc., p. 490, 1977.

[16] C. Costa, J. Figueiredo, G. Ghiotto, L. Murta. “Characterizing
the Problem of Developers’ Assingment for Merging Branches”.
In International Journal of Software Engineering and Knowledge
Engineering (SEKE), World Scientific, vol. 24, pp. 1489–1508,
2014.

[17] L. Dabbish, C. Stuart, J. Tsay, and J. Herbsleb. “Social Coding
in GitHub: Transparency and Collaboration in an Open Software
Repository”. In Proceedings of the Conference on Computer Sup-
ported Cooperative Work (CSCW). ACM, pp. 1277–1286, 2012.

[18] P. Dewan and R. Hegde. “Semi-synchronous Conflict Detection
and Resolution in Asynchronous Software Development”. In Pro-
ceedings of the Conference on European Computer Supported
Cooperative Work (ECSCW). ACM, pp. 159–178, 2007.

[19] K. Dias, P. Borba, M. Barreto. “Understanding predictive fac-
tors for merge conflict”. In Information and Software Technology
(IST), vol. 121, Science Direct, pp. 1–12, 2020.

[20] R. Falk and N. Miller. “A Primer for Soft Modeling”. In Univer-
sity of Akron Press, 1992.

[21] L. Fahrmeir, T. Kneib, S. Lang, and B. Marx. “Regression:
Models, Methods and Applications”. Springer, pp. 698, 2013.

[22] Y. Fang, H. Sun, G. Li, R. Zhang, and J. Huai. “Context-Aware
Result Inference in Crowdsourcing”. In Information Sciences, vol.
460 (1), pp. 346–363, 2018.

[23] A. Field. “Discovering Statistics Using IBM SPSS Statistics”.
Sage, Fifth Edition, p.1104, 2017.

[24] G. Ghiotto, L. Murta, M. Barros, and A. van der Hoek. “On
the Nature of Merge Conflicts a Study of 2,731 Open Source
Java Projects Hosted by Github”. In Transactions on Software
Engineering (TSE), vol. 99 (1), IEEE, pp. 1–25, 2018.

[25] N. Goode, J.F. Beckman. “You Need to Know: There is a
Causal Relationship Between Structural Knowledge and Control
Performance in Complex Problem Solving Tasks”. In Intelligence,
Elsevier, vol 38(3), pp. 345–352, 2010.

[26] R. A. Gordon. “Regression Analysis for the Social Sciences”.
Routledge, p.566, 2015.

[27] G. Gousios, M. Pinzger, and A. Deursen. “An Exploratory Study
of the Pull-based Software Development Model”. In Proceedings
of the International Conference on Software Engineering (ICSE).
ACM, pp. 345–355, 2014.

[28] G. Gousios, M.A. Storey, and A. Bacchelli. “Work Practices
and Challenges in Pull-based Development: The Contributor’s
Perspective”. In Proceedings of the International Conference on
Software Engineering (ICSE). ACM, pp. 285–296, 2016.

[29] M. L. Guimarães and A. R. Silva. “Improving Early Detection
of Software Merge Conflicts”. In Proceedings of the International
Conference on Software Engineering (ICSE). IEEE, pp. 342–352,
2012.

[30] M. Hague, A. Lin, C. Hong. “CSS Minification via Constraint
Solving”. In Transactions on Programming Languages and Sys-
tems (TOPLAS). ACM, vol. 41(2), pp. 12–76, 2017.

[31] A. Hindle, D. M. German, R. Holt. “What Do Large Commits
Tell Us?: A Taxonomical Study of Large Commits”. In Proceed-
ings of the International Working Conference on Mining Software
Repositories (MSR). ACM, pp. 99–108, 2008.

[32] P. W. Holland. “Statistis and Causal Inference”. Journal of the
American Statistical Association, vol. 8 (81), Taylor & Francis,
Ltd, pp. 945–960, 1986.

[33] G. James, D. Witten, T. Hastie, and R. Tibshirani. “An Intro-
duction to Statistical Learning”. Springer, p.426, 2013.

[34] H. Z. Jerrold. “Significance Testing of the Spearman Rank Cor-
relation Coefficient”. Journal of the American Statistical Associa-
tion, vol. 67 (339), Taylor & Francis, Ltd, pp. 578–580, 1972.

[35] T. Ji, L. Chen, X. Yi, and X. Mao. “Understanding Merge
conflicts and Resolutions in Git Rebases”. In Proceedings of the
International Symposium on Software Reliability Engineering
(ISSRE), IEEE, pp. 70-80, 2020.

[36] S. Just, K. Herzig, J. Czerwonka, and B. Murphy. “Switching
to Git: The Good, the Bad, and the Ugly”. In Proceeding of
the International Symposium on Software Reliability Engineering
(ISSRE). IEEE, pp. 400–411, 2016.

[37] E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. Ger-
man, D. Damian. “The Promises and Perfils of Mining GitHub”.
In Proceedings of the Working Conference on Mining Software
Repositories (MSR), ACM, 92–101, 2014.

22

[38] B.K. Kasi and Anita Sarma. “Cassandra: Proative Conflict Min-
imization through Optimized Task Scheduling”. In Proceedings
of the International Conference on Software Engineering (ICSE).
ACM, pp. 732–741, 2013.

[39] O. Leßenich, J. Siegmund, S. Apel, C. Kästner, and C. Hunsen.
“Indicators for Merge Conflicts in the Wild: Survey and Empirical
Study”. Automated Software Engineering, vol. 25 (2), Springer,
pp. 1–35, 2017.

[40] T. Levine and C. Hullet. “Eta Squared, Partial Eta Squared,
and Misreporting of Effect Size in Communication Research”. In
Human Communication Research, vol. 28(4), pp. 612–625, 2002.

[41] Y. Li and N.J. Belkin. “A Faceted Approach to Conceptualizing
Tasks in Information Seeking”. Information Processing and Man-
agement, vol. 44, pp. 1822–1837, 2008.

[42] J. Liu, J. Gwizdka, C. Liu, and N.J. Belkin. “Predicting Task
Difficulty for Different Task Types”. In Proceedings of the Amer-
ican Society for Information Science and Technology (ASIST).
Wiley, pp.1–10, 2010.

[43] W. Mahmood, M. Chagama, T. Berger, R. Hebig. “Causes of
Merge Conflicts: A Case Study of ElasticSearch”. In Proceedings
of the International Working Conference on Variability Modelling
of Software-Intensive Systems (VaMoS). ACM, pp.1–9, 2020.

[44] M. Mahmoudi, S. Nadi and N. Tsantalis, “Are Refactorings to
Blame? An Empirical Study of Refactorings in Merge Conflicts”.
In Proceedings of the International Conference on Software Anal-
ysis, Evolution and Reengineering (SANER), IEEE, pp. 151–162,
2019.

[45] S. McKee, N. Nelson, A. Sarma, and D. Dig. “Software Practi-
tioner Perspectives on Merge Conflicts and Resolutions”. In Pro-
ceedings of the International Conference on Software Maintenance
and Evolution (ICSME). IEEE, pp. 467–478, 2017.

[46] R. Mello and G. Travassos.“Surveys in Software Engineering:
Identifying Representative Samples”. In Proceedings of the In-
ternational Symposium on Empirical Software Engineering and
Measurement (ESEM). ACM, article 55, pp. 1–6, 2016.

[47] T. Mens. “A State-of-the-Art Survey on Software Merging”. In
IEEE Transactions on Software Engineering. IEEE, 28(5):449–
462, 2002.

[48] J. Molléri, K. Petersen, and E. Mendes. “Survey Guidelines in
Software Engineering: An Annotated Review”. In Proceedings of
the International Symposium on Empirical Software Engineering
and Measurement (ESEM). ACM, article 58, p.1–6, 2016.

[49] N. Nelson, C. Brindescu, S. McKee, A. Sarma, D. Dig. “The Life-
Cycle of Merge Conflicts: Processes, Barriers, and Strategies”.
Empirical Software Engineering, Springer, vol. 24, pp. 2863–2906,
2019.

[50] A. Nieminen. “Real-time Collaborative Resolving of Merge Con-
flicts.” In Proceedigns of the International Conference on Collab-
orative Computing: Networking, Applications and Worksharing
(CollaborateCom), IEEE, pp. 540–543, 2012.

[51] M. Owhadi-Kareshk, S. Nadi, and J. Rubin. “Predicting Merge
Conflicts in Collaborative Software Development”. In Proceedings
of the International Symposium on Empirical Software Engineer-
ing and Measurement (ESEM). IEEE, pp. 1–11, 2019.

[52] Y. Sakamoto, S. Matsumoto, S. Tokunaga, C. Saiki, M. Naka-
mura. “Empirical Study on Effects of Script Minification and
HTTP Compression for Traffic Reduction”. In Proceedings of
the International Conference on Digital Information, Networking,
and Wireless Communications (DINWC). IEEE, pp. 127–132,
2015.

[53] A. Sarma, D.F. Redmiles, A. van der Hoek. “Palant́ır: Early
Detection of Development Conflicts Arising from Parallel Code
Changes”. IEEE Transactions on Software Engineering. IEEE,
vol. 38(4), pp. 889–908, 2012.

[54] B. Shen, W. Zhang, H. Zhao, G. Liang, Z. Jin, and Q. Wang. “In-
telliMerge: A Refactoring-Aware Software Merging Technique”. In
Proceedings of the ACM Programmaing Languages (OOPSLA),
ACM, 170, pp. 1–28, 2019.

[55] J. Siegmund and J. Schumann. “Confounding Parameters on
Program Comprehension: A Literature Survey”. Empirical Soft-
ware Engineering vol. 20 (4), pp. 1159–1192, 2015.

[56] L. Singer, F. Figueira Filho, B. Cleary, C. Treude, M.A. Storey,
and K. Schneider. “Mutual Assessment in the Social Program-
mer Ecosystem: An Empirical Investigation of Developer Profile
Aggregators”. In Proceedings of the Conference on Computer
Supported Cooperative Work (CSCW). ACM, pp. 103–116, 2013.

[57] E. Smith, R. Loftin, E. Murphy-Hill, C. Bird and T. Zimmer-
mann, “Improving Developer Participation Rates in Surveys”. In
Proceedings of the International Workshop on Cooperative and
Human Aspects of Software Engineering (CHASE), IEEE, pp.
89–92, 2013.

[58] K. Stol, P. Ralph and B. Fitzgerald, “Grounded Theory in
Software Engineering Research: A Critical Review and Guide-
lines,” In Proceedings of the International Conference on Software
Engineering (ICSE), ACM, pp. 120–131, 2016.‘

[59] M.A. Storey, A Zagalsky, F. Figueira Filho, L. Singer, D. M.
German. “How Social and Communication Channels Shape and
Challenge a Participatory Culture in Software Development”. In
IEEE Transactions on Software Engineering. vol. 43 (2), pp. 185–
204, 2016.

[60] A. Strauss and J. Corbin. “Grounded Theory in Practice”, Sage,
p. 280, 1997.

[61] C. Tantithamthavorn, and A. Hassan. “An Experience Report
on Defect Modelling in Practice: Pitfalls and Challenges”. In Pro-
ceedings of the International Conference on Software Engineering:
Software Engineering in Practice (ICSE-SIEP), ACM, pp. 286–
295, 2018.

[62] J. Tsay, L. Dabbish, and J. Herbsleb. “Influence of Social and
Technical Factors for Evaluating Contribution in GitHub”. In Pro-
ceedings of the International Conference on Software Engineering
(ICSE). ACM, pp. 356–366, 2014.

[63] G. Vale, C. Hunsen, E. Figueiredo, S. Apel. “Chal-
lenges of Resolving Merge Conflicts: A Mining and
Survey Study – Supplementary Web site” Available:
https://gustavovale.github.io/merge-conflict-resolution-
analysis/, [Accessed: 25/07/2021].

[64] G. Vale, A. Schmid, A., Santos, E. Almeida, and S. Apel. “On
the Relation Between Github Communication Activity and Merge
Conflicts. In Empirical Software Engineering, vol 25, pp. 402–433,
2020.

[65] R. Yuzuki, H. Hate, and K. Matsumoto. “How We Resolve con-
flict: An Empirical Examination of Method-level Conflict Resolu-
tion”. In Proceedings of the International Workshop on Software
Analytics (SWAN), IEEE, pp. 21–24, 2015.

[66] T. Zimmermann, P. Weisgerber, S. Diehl, and A. Zeller. “Mining
Version Histories to Guide Software Changes”. In Proceedings of
the International Conference on Software Engineering (ICSE).
IEEE, pp. 563–572, 2004.

[67] T. Zimmermann. “Mining Workspace Updates in CVS”. In
Proceedings of the International Workshop on Mining Software
Repositories (MSR), IEEE, pp. 11–11, 2007.

