
Behind Developer Contributions on Conflicting
Merge Scenarios

Gustavo Vale
Department of Computer Science

Saarland University
Saarbrücken, Germany
vale@cs.uni-saarland.de

Eduardo Fernandes
The Maersk Mc-Kinney Moller Institute

University of Southern Denmark
Odense, Denmark

edmf@mmmi.sdu.dk

Eduardo Figueiredo
Department of Computer Science

Federal University of Minas Gerais
Belo Horizonte, Brazil
figueiredo@dcc.ufmg.br

Sven Apel
Department of Computer Science

Saarland University
Saarbrücken, Germany
apel@cs.uni-saarland.de

Abstract—Context: The success of Open Source Soft-
ware (OSS) projects typically depends on simultaneous
contributions of several developers. These contribu-
tions often affect the same changing source files and
may lead to merge conflicts when integrated. Previous
studies investigated the reduction of conflicting merge
scenarios. However, empirical evidence on the involve-
ment of OSS contributors in conflicting merge scenarios
is scarce. Objective: We aim to fill this gap with a large-
scale quantitative study with the goal of understanding:
1) the extent in which OSS contributors are involved in
conflicting merge scenarios; 2) characteristics of these
contributors; and 3) characteristics of changing source
files. Method: We collect both contributor data and
contribution data from 66 popular GitHub projects and
analyze data of 2 972 distinct contributors who were
involved in at least one conflicting merge scenario. We
rely on both descriptive and inferential statistics to
address our research questions. Results: About 80% of
the analyzed contributors are involved in only one or
two conflicting merge scenarios. Additionally, 42 out of
the 66 projects had its top-one contributor as the one
mostly involved in conflicting merge scenarios. Finally,
only a small set of changing source files are involved in
conflicting merge scenarios. Conclusions: We advocate
that training the typically small group of contributors
involved in conflicting merge scenarios could signifi-
cantly reduce the number of merge conflicts.

Index Terms—open source software, project con-
tributor, merge conflict, mining software repositories,
quantitative analysis

I. Introduction
Contemporary software development greatly depends

on simultaneous contributions of several developers [29],
[36], [43]. Such observation particularly stands in the open
source software (OSS) development [19], [33], which has
GitHub as a prominent enabling platform. We refer to all

This work was partially supported by CNPq (grant 290136/2015-6)
and CNPq/FAPEMIG (grants 150391/2023-4 and PPM-00651-17).

GitHub users who have contributed to an OSS project
(by either communicating with other users or changing
source files) as contributors [49]. Users whose contribution
is highly frequent (in this work, we consider users who are
responsible for 80% of all contributions to an OSS project)
are called top contributors. The remaining users are called
occasional contributors.

Contributions may occur at two distinct levels of the
OSS project development: merge-scenario level and project
level [48], [49]. The former refers to contributions in a
merge scenario, while the latter refers to contributions on
the whole project at the end of each merge scenario (i.e.,
at the merge commit). Given the distributed nature of
contemporary software development, contributions often
affect a specific changing source file simultaneously and
may lead to merge conflicts [1], [23]. Whenever the integra-
tion of simultaneous contributions leads to merge conflicts,
we have a conflicting merge scenario. Contributors who
were involved in a conflicting merge scenario are called
conflicting contributors.

Several empirical studies investigated conflicting merge
scenarios over the last decade [1], [23], [35], [48], [49].
While some studies focused on either predicting [35] or
resolving [23], [48] conflicting merge scenarios, others in-
vestigated characteristics of merge conflicts [1], [49]. Still,
little has been empirically done in terms of investigating
the involvement of OSS contributors in conflicting merge
scenarios. We advocate that understanding social aspects
of conflicting contributors (and their activity on changing
source files) can help decide which OSS contributors to
instruct (and when to do it) with the purpose of avoiding
conflicting merge scenarios.

In this paper, we present a large-scale quantitative study
aiming at investigating what is behind developer contribu-
tions on conflicting merge scenarios. We are particularly
interested in the three following aspects of developer



contributions. First, we assess the extent in which OSS
contributors are involved in conflicting merge scenarios.
Second, we look at the top contributors to understand
their involvement in conflicting merge scenarios. Third,
we characterize changing source files typically involved in
conflicting merge scenarios.

To achieve our goals, we systematically collect both
contributor data and contribution data from 66 popular
GitHub projects. From a total of 25 397 distinct contrib-
utors, we analyzed 2 972 (11.70%) contributors who are
involved in at least one conflicting merge scenario. We rely
on both descriptive and inferential statistics to address our
research questions. We summarize below our main study
findings and their potential implications.

• 80% of the conflicting contributors were in-
volved in only one or two conflicting merge
scenarios. Thus, a small group of conflicting con-
tributors (only 20%) is involved in the majority con-
flicting merge scenarios. We advocate that training
this specific small group could significantly reduce the
number of merge conflicts.

• 64% of the 66 OSS projects under analysis
had their top contributor as the one involved
in more than 50% of the conflicting merge
scenarios. This result emphasizes the role of top con-
tributors in the success of OSS projects with respect
to the overall project quality.

• A small set of changing source files was involved
in conflicting merge scenarios. Additionally, our
results suggest that the most changed source files are
affected by trivial, minor changes. Thus, we believe
that contribution rules defined for each OSS project
could avoid merge conflicts caused by these trivial,
minor source file changes.

Replication Package: We have made the replication
package of our quantitative study available online [47]
for consultation. This package contains the framework to
collect data, scripts to perform the analyses, and the data
used in the analyses.

The remainder of this paper is structured as follows.
In Section II, we provide our operational definitions of
top contributors and occasional contributors which are
relevant to the rest of the paper. In Section III, we describe
our study design. In Sections IV to VI, we present our
study results for each of our three research questions. In
Sections VII and VIII, we discuss threats to the study va-
lidity and related work. Finally, in Section IX, we conclude
this paper and suggest future work.

II. Top and Occasional Contributors
In this section, we summarize the operational definitions

of top contributors and occasional contributors used in this
paper. We rely on this classification instead of core and
peripheral developers because, as suggested by a previous
study [24], we consider that these terms better represent
high-frequency or low-frequency contributors, respectively.

Our definitions classify developers at distinct levels of
granularity, project, and merge scenario as follows.

Top and occasional contributors at project level
classification: Top and occasional developers at project
level are classified based on their code contributions to the
entire OSS project at the end of each merge scenario (i.e.,
at the merge commit). We followed the five steps below.

1) We compute, for each merge commit (we consider
the git checkout command), the authorship of
each line of code in the entire OSS project.

2) We sum up the lines of code each developer con-
tributed, thereby mapping each developer with an
unique identifier (key) to an object with the de-
veloper’s information (value). This object includes
an attribute informing the number of lines of code
this developer changed in the entire project at the
moment of the merge commit.

3) We compute the total number of lines of code in the
project by summing all developer contributions.

4) We generate a list of developers by code contri-
butions in descending order (i.e., developers who
contributed the most appear at the top of the list).

5) We extract the developers at the top of the list
whose sum of their contributions represent 80% of all
contributions at the moment of the merge commit.
These developers are the top contributors, while the
others are the occasional contributors. The rationale
behind this threshold is due to previous work [10],
[33], [39], [44] which observed that code contributions
typically follows a Zipf distribution (which implies
that the top 20% of contributors are responsible for
80% of the contributions).

Top and occasional contributors at merge-
scenario level classification: Top and occasional devel-
opers at merge-scenario level are classified based on their
code contributions to a merge scenario. The classification
at merge-scenario level is similar to the one at the project
level; only the first step differs. Instead of measuring the
authorship of each developer in the entire project, we
measure the code contribution of each developer in the
merge scenario. In other words, for each merge commit, we
measure only the lines of code changed between the base
commit and the merge commit. Hence, top contributors at
the merge-scenario level are the developers who contribute
to 80% of the changed lines of code in the merge scenario,
while all other developers are occasional contributors.

The distinction between project level and merge-
scenario level is crucial. The developer roles at project
level provide a general view of the code contributions,
while the developer roles at merge-scenario level provide a
fine-grained, focused view on the code changes in a merge
scenario as well as on merge conflicts.

III. Study Design
We describe our study design as follows. In Sec-

tion III-A, we introduce our study goal and research ques-



tions. In Sections III-B and III-C, we explain the dataset
extraction process and analysis procedures, respectively.

A. Study Goal and Research Questions
We rely on the Goal-Question-Metric template [5] to

systematically define our study goal as follows: analyze
OSS project contributors involved in conflicting merge
scenarios; for the purpose of acquiring empirical evidence
on characteristics and activities performed by the con-
tributors; with respect to 1) how often contributors are
involved in conflicting merge scenarios and the extent of
such involvement, 2) key characteristics of the contributors
involved in conflicting merge scenarios, and 3) character-
istics of the contributions in terms of changed source files;
in the context of popular GitHub projects.

We defined the three research questions (RQs) below
with the purpose of driving our study.

RQ1: To what extent open source project contributors get
involved in conflicting merge scenarios? – We are partic-
ularly interested in the distribution of each developer role
rather than a general analysis. Thus, RQ1 is decomposed
into the two sub-questions below.

• RQ1.1: How often do contributors get involved in
conflicting merge scenarios?

• RQ1.2: What is the proportion of involvement in con-
flicting merge scenarios by conflicting contributors?

RQ2: How often are top contributors or top conflicting
contributors involved in conflicting merge scenarios?

RQ3: What are the main characteristics of the changed
source files in conflicting merge scenarios?

B. Dataset Extraction Process
We computed the number of stars to collect the 100

most popular GitHub projects [8]. We relied on GitHub
as it is very popular in industry and largely investigated
in the literature [12], [15], [19], [41], [42], [45], [48]. We
limited our analysis to Git repositories because detecting
merge scenarios is straightforward [35], [49]. To define
our set of subject projects, we applied the following four
filters [25]. Filter 1: filter out projects whose main file
extension does not correspond to a programming language.
Our study targets actual software projects. Filter 2: filter
out projects with less than two commits per month in
the last six months. Our study targets active GitHub
projects. Filter 3: filter out projects for which we cannot
reconstruct at least 50% of all merge scenarios. Our study
targets projects that mostly adopt a three-way merge
pattern [19], [28]. Including projects that adopt other
patterns could bias our analysis. Filter 4: filter out
less popular JavaScript projects to balance our set of
subject projects in terms of the number of projects by
programming language since it prevents analysis biases.

Our strategy for acquiring the merge scenario data con-
sists of the following five steps. Step 1: for each selected
repository, we clone its subject project. Step 2: we identify
merge scenarios by filtering commits with multiple parent

Fig. 1. Distribution of Project Metrics for the 66 Subject Projects

commits (merge commits are identified in Git when the
number of parent commits is greater than one). Step 3:
for each merge commit, we retrieve a common ancestor
for both parent commits (i.e., the base commit). Step 4:
we (re)merge the parent commit of the source branch
into the parent commit of the target branch by using the
standard git merge command and retrieve measurement
data by comparing the changes that occurred from the
base commit until the merge commit. Step 5: we store
all data and repeat Steps 3 to 5 for each merge scenario
found in Step 2.

Our set of subject projects has 66 GitHub projects.
These projects are developed in 12 different program-
ming languages, including C++, Java, JavaScript, and
Python. Our set has a total of 78 740 merge scenarios,
which involve more than 1.5 million changed source files,
10.4 million chunks, and 3 950 conflicting merge scenarios.
Bootstrap [46], Lantern [16], React [14], Redis [2],
and TypeScript [32] are examples of subject projects.
The full list of subject projects and additional content can
be found in our supplementary repository [47].

In Figure 1, we depict the distribution of project metrics
extracted from our set of subject projects. The metrics
include the number of merge scenarios (ms), conflicting
merge scenarios (cms), source files (files), chunks, commits,
and developers (devs). We found a total of 25 397 distinct
contributors; 2 972 out of these contributors (11.70%) were
involved in at least one merge conflict.

C. Data Analysis Procedures
RQ1 Analysis: To answer RQ1.1, we create a table

with all OSS contributors who are involved in at least one
merge conflict. After, we group the contributors into five
categories according to the number of conflicting merge
scenarios they are involved in: one, two, three to five, six
to ten, and more than ten conflicting merge scenarios.
These values were arbitrarily chosen to support the data
visualization given its power law distribution. In our case,
power law distribution means that several merge scenarios
have few contributors and few merge scenarios have several
contributors. As we know the developer roles in each merge



scenario, we normalize each developer role to compare
the number of developers who contribute in each group.
To answer RQ1.2, we also group contributors and analyze
the distribution over the subject developer roles. However,
we are interested in comparing their total of contribu-
tions with respect to their conflicting contributions. For
instance, we investigate how often the contributions of a
certain contributor lead to merge conflicts.

RQ2 Analysis: Our RQ2 analysis is two-fold. First,
we analyze the share of conflicting merge scenarios of the
top contributors by project. Top contributors are those
who contribute to majority merge scenarios. Second, we
analyze the share of conflicting merge scenarios of top
conflicting contributors. Top conflicting contributors are
those who are involved in the highest number of conflicting
merge scenarios in the subject projects.

RQ3 Analysis: We rely on manual and qualitative
procedures to address RQ3. We start by obtaining the
list of top conflicting contributors from the five subject
projects with the highest number of conflicting merge sce-
narios. After, we manually inspect each conflicting merge
scenario. Our goal is to capture factors that may have
led to the merge conflicts. For short, we perform three
analyses: 1) we explore the numbers of merge scenarios
and conflicting merge scenarios in these projects; 2) we
discuss the impact of project rules on merge conflicts; and,
3) we analyze some changed files related to conflicts.

IV. Conflicting Merge Scenarios per
Contributor (RQ1)

In this section, we address RQ1 by discussing the extent
in which OSS contributors are involved in conflicting
merge scenarios. In Section IV-A, we provide the results re-
garding how often contributors are involved in conflicting
scenarios, while, in Section IV-B, we present the results
on the proportion of involvement in conflicting merge
scenarios in contrast to all merge scenario contributions.

A. Contributors in Conflicting Merge Scenarios (RQ1.1)
Overall Results. In Figure 2, we depict the distribu-

tion of contributors by the number of conflicting merge
scenarios they were involved in. Such distribution is pre-
sented in terms of five groups: one, two, three to five, six
to ten, and more than ten conflicting merge scenarios. We
present both the absolute number of contributors and the
percentages with respect to the total of 2 972 contributors
involved in at least one conflicting merge scenario. We
discuss below our main findings.

Our data suggests that about 80% of the contributors
were involved in only one or two conflicting merge sce-
narios. Indeed, we found that majority contributors are
involved in either one conflicting merge scenario (62.6%)
or two conflicting merge scenarios (17.3%). On the one
hand, this result is expected if we consider the nature
of globally distributed development [31] and the inher-
ent complexity of modern OSS projects involving several

Fig. 2. Distribution of Contributors by the Number of Conflicting
Merge Scenarios They Were Involved in

(a) Project-Level Contributors

(b) Merge Scenario-Level Contributors

Fig. 3. Distribution of Contributors by the Number of Conflicting
Merge Scenarios They Participate

contributors [30]. On the other hand, it contrasts with
past work assumptions on the relationship between merge
conflicts and the little inexperience of new contributors
with a specific OSS project [20]. Interestingly, however,
we see in data of Figure 2 that approximately 20% of the
contributors are involved in more than three conflicting
merge scenarios. We also highlight that only 3.8% of the
contributors are involved in more than ten conflicting
merge scenarios. This result can be explained because,
even in large OSS projects with hundreds of contributors,
a very small group of contributors is responsible for most
tasks related to maintaining and evolving a project.

Results by Developer Role. In Figure 3, we show
the distribution of the investigated developer roles by the
number of conflicting merge scenarios. That is, we com-
pute the distribution of contributors by their respective
top or occasional roles (see Section II). We expect this new
perspective will help us understand the nature of those
contributors who are more often involved in conflicting
merge scenarios. We discuss below our main observations.

Project-level contributions. In Figure 3(a), we show that
74.61% of the top contributors are involved in more than
ten conflicting merge scenarios, while only about 20% of
the occasional contributors were involved in such amount
of scenarios. This result is explainable since top contribu-



Fig. 4. Number of Developers Related to Conflicting Merge Scenarios

tors make most of the key decisions on the project main-
tenance and evolution. On the other hand, approximately
50% of the occasional contributors were involved in one or
two conflicting merge scenarios. This finding is interesting
given the occasional nature of many contributions [37],
[38], which may be fine-grained and less likely to generate
conflicts.

Merge-scenario-level contributions. In Figure 3(b), we
show similar trends especially for occasional contributors.
Slightly more than 50% of top contributors are involved
in more than ten conflicting merge scenarios, against
less than 25% for occasional contributors. This is an
expressive percentage, although less expressive than the
75% of top contributors at project level. We speculate
that such drop in percentages may be because we are
looking at a fine-grained level and the changes performed
by top contributors are more specific, like fixing a bug or
introducing a new feature. On the other hand, about 40%
of the occasional contributors at merge-scenario level were
involved in one or two conflicting merge scenarios.

RQ1.1 Finding: Overall, approximately 80% of OSS
contributors are involved in a very small number of
conflicting merge scenarios, i.e., one or two scenarios.
With the analysis by developer roles, we see that
top contributors are often involved in more than 10
conflicting scenarios while occasional contributors are
often involved in less than 5 conflicting scenarios.

B. Proportion of Involvement in Conflicting Merge Sce-
narios (RQ1.2)

In this section, we investigate the rate among all con-
tributions and the conflicting contributions for the 2 972
contributors that are involved in merge conflicts.

In Figure 4, we show this rate divided into four groups:
up to 25%, between 25% and 50%, between 50% and
75%, and greater than 75%. The first group (≤ 25%) and
last group (> 75%) are the ones with more contributors.
To illustrate the first group, a developer of the netdata
project contributed to 1 085 merge scenarios and only two
of them resulted in merge conflicts, i.e., this developer has
a conflicting rate of 0.18%.

Regarding the first group (≤ 25%), we find that 484
contributors have a very small conflicting rate (i.e., up to
5%). These are probably top contributors (at project level
and merge-scenario level) that skip conflicts. Regarding

(a) Project-Level Contributions

(b) Merge Scenario-Level Contributions

Fig. 5. Rate of Conflicting Contributions by the Amount of Merge
Scenario Contributions at Project-Level and Merge-Scenario Level

the last group (> 75%), we found that 1 019 contributors
introduce merge conflicts into all their contributions. This
finding represents 34.3% of the contributors involved with
merge conflicts and 4% of all subject contributors.

In Figure 5, we present the share of conflicting contri-
butions by the amount of merge scenarios contributions
at project- and merge-scenario-level. As we observe in this
figure, most contributors from all developer roles belong
to the group of contributors with conflicting rate less
than 25%. On the other hand, we see that occasional
(at project level and merge-scenario level) developers have
more than 25% of developers in the group with a rate of
conflicting merge scenarios above 75%. Hence, we assume
that most contributors with a very high conflicting rate do
not often contribute to the project. Looking at our data,
we observed that the code contributions of the occasional
developers whose rate of conflicting contributions equals
100% vary from 1 to 25 merge scenarios. In fact, 997 of
them contributed to up to 5 merge scenarios.

RQ1.2 Finding: About 50% of the contributors in-
volved in merge conflicts have a rate of 25% of their
contributions into conflicts. Most of these developers
are top contributors at project- and merge-scenario
levels. Surprisingly, 34% of conflicting contributors
have merge conflicts in all of their contributions. Given
the small number of contributions and supported by
our data, we see that most of them are occasional
contributors.

V. Top Contributors and Top Conflicting
Contributors (RQ2)

In this section, we provide an overview of the top
contributors (Section V-A) as well as of the top conflicting
contributors of each project (Section V-B).



Fig. 6. Share of Conflicting Merge Scenarios for the Top Contributor
of each Subject Project

Fig. 7. Share of Conflicting Merge Scenarios for the Top Conflicting
Contributor of each Subject Project

A. Most Active Contributors

In Figure 6, we present the percentage of conflict-
ing merge scenarios for top contributors of each subject
project. We can see in this figure that 37.9% of the top
contributors participated in up to 25% of the conflicting
merge scenarios. We also see that 21.2% of the top con-
tributors were involved in 25-50% of the conflicting merge
scenarios, 27.3% of the top contributors participated in
50-75% of the conflicting merge scenarios, and 13.6.% of
these top contributors participated in more than 75% of
the conflicting merge scenarios. In other words, in 27 out of
66 projects the top contributors were involved with more
than 50% of the conflicting merge scenarios.

In 12 projects, the top contributors participate in more
than a thousand merge scenarios. However, in only four
projects, these developers are involved with the most
conflicting merge scenarios in their project. One example is
a bootstrap [46] project contributor. She contributed to
3 167 merge scenarios and was involved in 306 conflicting
merge scenarios. It represents participation in 72.5% of
the conflicting merge scenarios of this project. We further
detail this case in Section VI while answering RQ3.

B. Most Active Conflicting Contributors

In Figure 7, we depict the percentage of conflicting
merge scenarios for top conflicting contributors of each
subject project. For short, we observe in this figure that
15.2% of the contributors participated in 25% of the
conflicting merge scenarios while 36.4%, 31.8%, and 16.7%
of these contributors were involved with 25-50%, 50-75%,
and 75% of the conflicting merge scenarios, respectively.
In other words, in 32 out of 66 projects the top conflicting
contributor is involved with more than 50% of the con-
flicting merge scenarios.

In a few cases, top conflicting contributors participated
in more than 100 conflicting merge scenarios. For instance,
in the case of project d3 [11] the same developer is involved
with 364 conflicting scenarios. It represents 84.26% of the
conflicting merge scenarios of that project.

Based on a manual verification, we compare the contrib-
utors that represent both charts of Figures 6 and 7. We
see that they are the same developers in 42 projects; i.e.,
the developer that contributes to more merge scenarios in
the project is also the one involved with the majority of
conflicting merge scenarios. Interestingly, in two projects,
the top contributor is involved with the same number of
conflicting merge scenarios than other contributors. As the
participation of top contributors and the top conflicting
contributors in the majority of conflicting scenarios often
happens, it is interesting to look deeper at their contribu-
tions aiming at identifying coding practices that lead to
merge conflicts. We perform this analysis in Section VI.

RQ2 Finding: In 42 out of 66 projects, the top
contributor is also the top conflicting contributor. In
39.4% of the projects, the top contributors participate
in the majority of conflicting merge scenarios in their
project. Similarly, in 48.49% of the projects, the top
conflicting merge scenario contributors are involved
with the majority of the conflicting merge scenarios
that happened in their respective projects. In other
words, in 27 and 32 projects, the top contributor and
top conflicting contributors are involved with more
than 50% of the conflicting scenarios, respectively. It
may be an indicator that these contributors follow bad
practices which make them participate in the majority
of the merge conflicts of their projects.

VI. Analysis of Conflicting Changes (RQ3)
Looking at our data, we found three projects (CS-

Notes, mardown-here, systems-design-primer) that
the top conflicting contributors participated in all con-
flicting merge scenarios. However, since the number of
conflicting merge scenarios is small (i.e., up to 37) in
these cases, we decided to focus on the five projects with
more than 1 thousand conflicting merge scenarios: d3,
bootstrap, meteor, webpack, FreeCodeCamp. To
preserve the identity of the top conflicting contributors of
these projects, we anonymously nickname them C1, C2,
C3, C4, and C5.

We organize this section according to the three analyses
described in Section III-C to answer RQ3 with data of
these 5 contributors.

A. Contributions of Top Conflicting Contributors
In Table I, we present the overall contributions of the

top five conflicting contributors considering their absolute
and relative numbers of conflicting merge scenarios. We
organize Table I into three major parts. In the first one
(Project), we show the overall number of merge scenarios



TABLE I
Overview Contributions of the Top-Five Conflicting Contributors

Project Contributor Conflict
Id #MS #CMS #MS #CMS #CMS %CMS

C1 1 076 432 (40.15%) 866 (80.48%) 397 (91.90%) 364 (84.26%) 42.03
C2 6 665 422 (6.33%) 3 167 (47.52%) 358 (84.83%) 306 (72.51%) 9.66
C3 2 737 345 (12.60%) 841 (30.73%) 178 (51.59%) 134 (38.84%) 15.93
C4 2 486 132 (5.31%) 1 563 (62.87%) 116 (87.88%) 89 (67.42%) 5.69
C5 4 665 108 (2.31%) 998 (21.39%) 100 (92.59%) 90 (93.33%) 9.02

#MS: number of merge scenarios, #CMS:number of conflicting merge scenarios,
%CMS: percentage of CMS by MS of the contributor.

(#MS) and conflicting merge scenarios (#CMS) in the
five selected projects. In the second part (Contributor),
we depict the #MS and #CMS that the contributor
participated in. That is, she changed at least one line
of code in these merge scenarios. Finally, in the third
part (Conflict), we indicate #CMS that the contributor
was actually involved in conflicting code. That is, their
committed code was responsible for triggering a merge
conflict in the respective merge scenario.

For instance, the project of C1 has 432 conflicting
merge scenarios, but this contributor only participated in
397 of them. From these, C1 committed conflicting code
into 364 merge scenarios. Moreover, we see 1 076 merge
scenarios in her project and C1 contributed to 866 them.
Hence, she contributed to 80.48% of the merge scenarios
of this project. C2, C3, C4, and C5 participate in 47.52%,
30.73%, 62.87%, and 21.39% of the merge scenarios of
their projects, respectively. Only C1 and C4 participated
in the majority of the merge scenarios in their projects.
Therefore, the high participation of these contributors on
conflicting merge scenarios does not necessarily come only
from high contributions to the majority of merge scenarios
in the project.

Focusing on the percentages of columns #CMS (Con-
tributor), we note that all contributors changed more
than 50% of conflicting merge scenarios. Similarly, all
contributors, except C3, committed code causing conflicts
in the majority of the conflicting scenarios, as we see in the
#CMS (Conflict) column of Table I. This is an indicator
that these developers indeed influence the number of
merge conflicts.

Aiming at finding out whether these contributors are
isolated cases or recurrent practices of several developers
in these projects, we compare the rate of conflicting merge
scenarios in the project (3rd column) and the rate of
conflicting merge scenarios of the contributor (last column
in Table I). For instance, we see that the rate of conflicting
merge scenarios of C1’s project is 40.15%. However, C1 has
a higher rate of conflicting merge scenarios (42.03%) than
its project. In fact, all contributors presented in Table I
have a higher rate of conflicting merge scenarios than the
general average data of their respective projects. In the
case of C5, while the project rate of conflicting merge
scenarios is 2.31%, she has a rate of 9.02%; i.e., four times

higher. These results suggest that these five contributors
have relevant impact on the high percentages of merge
conflicts in their projects. Therefore, a deeper analysis in
their code changes is needed to uncover what these specific
developers do.

RQ3 Finding 1: Top conflicting contributors are not
always involved with most merge scenarios in their
respective projects, although they participated in most
conflicting merge scenarios. In fact, their committed
code is responsible for more merge conflicts that the
average rate of conflicting merge scenarios in their
projects which suggests that their coordination is cru-
cial to the project success.

B. Project Contribution Rules
Previous work [1], [3], [27] have shown that several

merge conflicts arise from formatting or from the location
of code changes in a file. An easy way to minimize merge
conflicts due to formatting and the location of the changes
is through the definition of contribution rules. Contribu-
tion rules normally define the contribution process as well
as the code style. Aiming at identifying whether these
five projects have defined contribution rules, we looked at
their README.md file searching for links to other files
or definitions of contribution rules. Except for project d3,
we found contribution rules for the other four projects.
Furthermore, we observe that developers often defined
contribution rules in a file named CONTRIBUTING.md.
Aiming at finding out if the rate of conflicting merge
scenarios increased or reduced after creating this file, we
get the date this file was merged to the main branch for
the first time and compare the number of merge scenarios
with the number conflicting merge scenarios before and
after the creation of this file.

In Table II, we present a summary of this analysis
for the four projects with contribution rules defined. As
we see in this table, most merge scenarios were created
after the creation of the contribution rules file for all
projects. For two of them, the creation of contribution
rules dramatically reduced the share of conflicting merge
scenarios from 14.96% to 3.73% and from 5.82% to 0.83%.
For the other two cases, it does not seem to have an
impact on the conflicting merge scenarios rate. Note that



TABLE II
Comparing Conflicting Merge Scenarios before and after

the Creation of Contribution Rules

Project Name #MS #MS %CMS %CMS
before after before after

bootstrap (C2) 1 544 (231) 5 121 (191) 14.96% 3.73%
meteor (C3) 526 (51) 2 211 (294) 9.70% 13.30%
webpack (C4) 99 (5) 2 387 (127) 5.05% 5.32%
freeCodeCamp (C5) 1 391 (81) 3 274 (27) 5.82% 0.83%

#MS: number of merge scenarios, %CMS: percentage of
conflicting merge scenarios. The numbers in parenthesis
stand for the number of conflicting merge scenarios.

we evaluate neither the quality of the contribution rules
nor the number of contributors in these two time frames;
we only check if the file with contribution rules exists or
not. Hence, other factors may influence the emergence of
merge conflicts (limitations of this approach are discussed
in Section VII). Anyway, we believe that adding contribu-
tion rules helps to avoid the emergence of simple merge
conflicts and, consequently, the general number of merge
conflicts.

RQ3 Finding 2: The analysis of contribution rules
diverges among projects. However, for most projects,
we observed that the contribution rules may reduce
the emergence of merge conflicts.

C. Changed Files
We have the feeling that some files are conflict-prone

because they change more often than other files or be-
cause they are somehow more central to the project. We
investigated these assumptions in 4 ways.

First, in Table III, we present an overview of distinct
files (i.e., files with different paths and names), all file
versions (i.e., all versions of distinct files) for the five
projects that C1-C5 contribute to as well as the number of
distinct files and file versions with merge conflicts. A new
version of a file arises when one or more developers change
it in a merge scenario. To illustrate the data of Table III,
look at the project of C1. In this project, there are 1 824
distinct files of which 79 have merge conflicts. From these
distinct files, we find 39 202 versions of which 603 have
merge conflicts. The rate of merge conflicts in distinct files
is 4.33%, 3.78%, 4.46%, 3.30%, 2.50% for the projects that
C1, C2, C3, C4, and C5 contribute to, respectively. Hence,
if all files change equally and considering an average of
4% conflict rate, the chance of emerging merge conflicts
would be of around 1 in each 25 files changed. Looking
at the number of file versions (#File versions column),
we see that files often change. For instance, the 5 930
distinct files of C2’s project changed 142 533 times. If all
files change equally (i.e., each file changed 24.90 times),
the chance would be of at least one merge conflict in each
file. However, as the 1 717 merge conflicts were distributed
over only 224 files, if they change equally, each of these files

TABLE III
Overview of Changed Files in Projects of Top-Five

Conflicting Contributors

Cont. #Dist. #Dist Files #File #File versions
Files with Confl. versions with Confl.

C1 1 824 79 (4.33%) 39 202 603
C2 5 930 224 (3.78%) 142 533 1 717
C3 7 020 313 (4.46%) 114 757 1 129
C4 4 636 153 (3.30%) 92 266 275
C5 2 876 72 (2.50%) 52 875 138

Cont.: Contributor, #Dist. Files: number of distinct files,
#Dist. Files with Confl.: number of distinct files with
merge conflicts, #File versions: number of file versions,
#File versions with Confl.: number of file versions with
merge conflicts

would have around 8 merge conflicts. Therefore, the main
conclusion we can draw from this table is that files change
often and merge conflicts are concentrated in a few files.

Second, in Table IV, we present the top-three files
changed for the projects of C1-C5 with the number
of merge scenarios emerging conflicts in these files and
the percentage it represents. To illustrate, the two most
changed files for the project that C1 contributed to (d3.js
and d3.min.js) changed in 732 and 715 merge scenarios
and had merge conflicts in 70 and 291 of them, respec-
tively. It means that these files changed in 68.03% and
66.45% (732 and 715 out of 1 076) of the merge scenarios
of this project and in 9.56% and 40.70% of the times they
changed, merge conflicts emerged. Therefore, we see that
these files have a greater chance to change and to arise
merge conflicts than the average of files of this project
(9.56% and 40.70% against 4.33%). On the other hand, the
third most changed file for the same project (package.json)
had only 9 conflicts in the 425 merge scenarios that it
changed (2.12%). From the top three files most change for
the project of C5, only the first one have merge conflicts.
This table supports our understanding that files that
often change usually have more merge conflicts than files
that change less frequently. However, only the number of
changes may lead to wrong conclusions and the outcome
may change from project to project.

Third, in Table V, we present the top-three conflict-
ing files for the projects of C1-C5 with the number
of merge scenarios emerging conflicts in these files and
the percentage it represents. To illustrate, the top three
conflicting files for the project that C2 contribute to
(bootstrap-1.2.0.css, bootstrap.css, and bootstrap-1.0.0.css)
have merge conflicts in 77.78%, 21.71%, and 25.93% of the
times they changed, respectively. On the other hand, the
top-three conflicting files for the C5 project cause merge
conflicts in less than 2.00% of the times they changed.
Note that only 5 files appear in both Table IV and Table V
and that despite the majority of files in these five projects
are JavaScript files, only 5 out of 15 files of Table V
are JavaScript files. With these analyses, we conclude
that frequently changed files are more conflict-prone than



TABLE IV
Top-Three Files Changed over Time for Projects of C1-C5

Cont. Top-3 files #MS #CMS %CMS

d3.js 732 70 9.56
d3.min.js 715 291 40.70C1
package.json 425 9 2.12
docs/index.html 2 384 66 2.77
dist/css/bootstrap.min.css 2 008 52 2.59C2
dist/css/bootsatrap.css 1 928 137 7.11
packages/meteor-tool/package.js 595 69 11.60
.../meteor-release-experimental.json 544 54 9.93C3
packages/webapp/package.js 497 24 4.83
package.json 1 030 39 3.79
lib/Compilation.js 651 7 1.08C4
lib/Parser.js 435 4 0.92
package.json 826 9 1.09
seed/.../basic-javascript.json 677 0 0.00C5
server/boot/user.js 479 0 0.00

Cont.: Contributor, #MS: number of merge scenarios,
#CMS: number of conflicting merge scenarios, and
%CMS: percentage of conflicting merge scenarios over all
merge scenarios

TABLE V
Top-Three Conflicting Files over Time for Projects of

C1-C5

Cont. Top-3 files #MS #CMS %CMS
d3.min.js 715 291 40.70
d3.v2.min.js 203 88 43.35C1
d3.js 732 70 9.56
bootsatrap-1.2.0.css 216 168 77.78
bootsatrap.css 631 137 21.71C2
bootsatrap-1.0.0.css 324 84 25.93
packages/meteor-tool/package.js 595 69 11.60
.../meteor-release-experimental.json 544 54 9.93C3
packages/babel-compiler/packages.js 396 41 10.35
package.json 1 030 39 3.79
test/.../StatsTestcases.tests.js.snap 260 14 5.38C4
yarn.lock 379 8 2.11
seed/challenges/basic-javascript.json 471 9 1.91
package.json 826 9 1.09C5
README.md 444 7 1.58

Cont.: Contributor, #MS: number of merge scenarios,
#CMS: number of conflicting merge scenarios, and
%CMS: percentage of conflicting merge scenarios over all
merge scenarios

others, but that the results may vary from project to
project. Hence, merge conflict prediction strategies may
have better performance when learning with previous
merge scenarios of a project, i.e., there is no silver bullet
strategy across projects. However, we also argue that the
performance will depend on the specific characteristics of
a project (e.g., life-cycle, domain, type of project, and
programming language).

Fourth, with the knowledge acquired from previous
discussion, we compute the Spearman’s rank correlation
between the number of times each file changed and the
number of times code changes caused merge conflicts
for all subject projects. Spearman’s rank correlation is
more adequate for our analysis than Pearson’s correlation
because our data do not have a normal distribution [22].
We find a Spearman’s rank correlation of 0.26 with 99%
significance level (p-value < 2.2e−16). Since some files
are more conflict-prone than others (see discussion of the
2nd and 3rd investigations above), we refine our analysis

including only files with merge conflicts. In this analy-
sis, we find a Spearman’s rank correlation of 0.55 with
99% significance level (p-value < 2.2e−16). Moreover, we
believe that other data refinements, artificial intelligence
techniques, and analysis considering characteristics of each
project may increase even more this correlation.

RQ3 Finding 3: The analysis on changed files reveals
that files changing more often are conflict-prone. In
addition, we also found that merge conflicts are con-
centrated in a few files and argue that better predic-
tions of merge conflicts can be achieved by considering
historical and characteristics of each project.

VII. Threats to Validity
We discuss below possible construct, internal, conclu-

sion, and external threats to the study validity [50].
Construct Validity. Construct validity concerns in-

ferring the result of the experiments to the concept or
theory [50]. For instance, we used only metrics based
on frequency of changes to classify developers between
top and occasional contributors. This poses a threat that
the metrics do not accurately capture actual scenarios
of distributed software development. However, we believe
this threat does not invalidate our main findings since
existing evidence [28], [48] indicates that these metrics
accurately reflect the developers’ perception. Additionally,
to answer RQ3, we focus only on the existence of con-
tribution rules in a specific file (CONTRIBUTING.md).
For instance, we did no evaluate neither the quality of
these contribution rules. A further study could investigate
other characteristics of the contribution rules, such as its
extension and clarity.

Internal Validity. Threats to internal validity are
influences that can affect the independent variable to
causality [50]. In our case, this threat may refer to the
chosen dataset. For instance, since we selected projects
from different programming languages, one or a few lan-
guages could have dominated our dataset. To minimize
this threat, we excluded less popular JavaScript projects
until they do not represent more than 50% our dataset.
We excluded 6 projects with this filter. Another threat is
the choice of only 5 subject projects to answer RQ3. We
selected them because they are large (i.e., 22.39% of all
investigated merge scenarios and 36.43% of all conflicting
merge scenarios). Hence, we investigated 1 439 out of 3 950
conflicting merge scenarios. It brings a confidence level of
99% within ±3% margin of error that we are measuring a
significant amount of conflicting merge scenarios.

Conclusion Validity. Threats to the conclusion va-
lidity are concerned with issues that affect the ability to
draw the correct conclusion between the treatment and the
outcome [50]. In our study, a potential threat to conclusion
validity is the reliability of the data extraction, since not
all information was clear to answer the research questions.
As a result, some data had to be inferred and sometimes



cross-discussions among the paper authors took place to
reach a common agreement.

External Validity. Threats to external validity are
conditions that limit our ability to generalize the results of
our paper [50]. Our data come from Git and GitHub plat-
forms and we restricted our analyses to projects following
the three-way merge pattern. Therefore, we cannot gener-
alize our results to other platforms, projects, development
patterns, and developers. While more research is needed
to allow generalization, we select and analyze a largely
used platform and a high number of software projects
from various domains, programming languages, sizes, and
coordination practices.

VIII. Related Work
In this section, we discuss studies related to merge

conflicts and developer classification to support the orga-
nizational structure of open-source software (OSS).

Merge conflicts have a negative effect on project’s ob-
jectives compromising the project success, especially when
arising frequently [21], [40]. Hence, researchers have inves-
tigated, for instance, merge strategies [3], [4], prediction
strategies [9], [21], [26], awareness tools [6], [26], [40], tried
to understand types of code changes related to conflicts
[1], [17], [28], and strategies to efficiently resolve merge
conflicts [18], [23], [34], [48]. For instance, Ji et al. [23]
empirically investigated merge conflicts and resolutions
in Git rebase scenarios. Their results suggest that re-
bases are often performed (about 8% of pull requests
have rebases and 41% have two or more rebases). Sev-
eral rebases are performed for the purpose of reducing
reviewing changes in pull requests. About 25% of rebases
involve textual conflicts, and approximately 29% of con-
flict rebases involve the introduction of new tokens. This
study is particularly interesting because it emphasizes how
complex the conflicting merge scenarios can be in practice,
and how important it is to assist developers in resolving
merge conflicts. As another example, Gonzalez and Frater-
nali [18] investigated merge conflict resolution, but now
through the proposal and evaluation of a strategy that
extends Git Rerere (REuse REcorded REsolution) with
novel features. Git Rerere was designed to automati-
cally resolve conflicts that are similar to previously solved
conflicts. Their results suggest that the tool can resolve
about 49% of the conflicts generated during the merge
process, with most solutions being similar or the same as
solutions manually performed by developers. This study
is particularly interesting because it suggests that several
merge conflicts have limited size, i.e., they involve one
or two lines of code, and their solutions are significantly
simple. Such finding is inline with our discussion regarding
the importance of project contribution rules to resolve
simple merge conflicts (see Section VI-B).

On the other hand, researchers have classified developers
aiming at understanding the organizational structure of
OSS [7], [10], [13], [24], [33], [39], [44]. For instance, Mockus

et al. [33] found empirical evidence for the Mozilla
browser and the Apache Web server that a small
number of developers are responsible for approximately
80% of the code modifications. Their approach consists of
counting the number of commits made by each developer
and then computing a threshold at the 80% percentile.
Although using a different approach, their result is inline
with our results and also inline with previous work [13],
[39], [44]. As another example, Joblin et al. [24] empirically
classified developers into core and peripheral to model
the organizational structure using network metrics (e.g.,
degree- and eigenvector-centrality) and analyzed how the
set of core developers changed over time.

Despite the number of studies exploring merge conflicts
and developer roles separately, we lack studies specifically
focused on the contribution degree of different types of
OSS developers to the occurrence of conflicting merge
scenarios. We fill this gap performing three analyses first
getting an overview on the topic and later looking deeper
at the impact of code contribution patterns of developers
of 5 projects as well as to their source code changes and the
influence of project contribution rules on the emergence
of merge conflicts. Our results bring an understanding of
which developer roles and source code changes are related
to merge conflicts. Furthermore, we provide implications
and directions to researchers and practitioners avoiding
conflicting merge scenarios.

IX. Conclusion
In this paper, we presented a large-scale quantitative

study which investigated what is behind developer contri-
butions on conflicting merge scenarios. Our results suggest
that 62.6% of the contributors are involved only once with
merge conflicts and only 3.8% are involved with more than
10 merge conflicts. Based on these results, we argue that
training this small group of contributors could significantly
reduce the number of merge conflicts. We also found that
in 42 projects out of 66 the top contributors is also the
top conflicting contributors.

As future work, we plan to expand our analysis to
include fine-grained measures like the size of conflicting
files or compare the conflicting lines of code by top-
contributors and include data from proprietary software
systems. Another possible direction for future work is to
survey developers with a large rate of conflicting contribu-
tions to investigate their perception of bad practices that
cause merge conflicts.

References
[1] P. Accioly, P. Borba, and G. Cavalcanti, “Understanding semi-

structured merge conflict characteristics in open-source Java
projects,” Empirical Software Engineering (EMSE), vol. 23, pp.
2051–2085, 2018.

[2] Antirez, “Redis,” https://github.com/antirez/redis, 2023, [On-
line; accessed 14-August-2023].

[3] S. Apel, O. Leßenich, and C. Lengauer, “Structured merge with
auto-tuning: Balancing precision and performance,” in Proceed-
ings of the International Conference on Automated Software
Engineering (ASE), 2012, pp. 120–129.



[4] S. Apel, J. Liebig, B. Brandl, C. Lengauer, and C. Kästner,
“Semistructured merge: Rethinking merge in revision control
systems,” in Proceedings of the SIGSOFT Symposium and the
European Conference on Foundations of Software Engineering
(ESEC/FSE), 2011, pp. 190–200.

[5] V. Basili and H. Rombach, “The TAME project: Towards
improvement-oriented software environments,” IEEE Transac-
tions on Software Engineering (TSE), vol. 14, no. 6, pp. 758–
773, 1988.

[6] J. Biehl, M. Czerwinski, G. Smith, G. Robertson, and B. Bailey,
“FASTDash: A visual dashboard for fostering awareness in
software teams,” in Proceedings of the Conference on Human
Factors in Computing Systems (CHI), 2007, pp. 1313–1322.

[7] C. Bird, D. Pattison, R. D’Souza, V. Filkov, and P. Devanbu,
“Latent social structure in open source projects,” in Proceedings
of the Joint Meeting of the European Software Engineering
Conference and the SIGSOFT Symposium on the Foundations
of Software Engineering (ESEC/FSE), 2008, pp. 24–35.

[8] H. Borges and M. T. Valente, “What’s in a GitHub star?
Understanding repository starring practices in a social coding
platform,” Journal of Systems and Software (JSS), vol. 146, pp.
112–129, 2018.

[9] Y. Brun, R. Holmes, M. Ernst, and D. Notkin, “Proactive detec-
tion of collaboration conflicts,” in Proceedings of the SIGSOFT
Symposium and the European Conference on Foundations of
Software Engineering (ESEC/FSE), 2011, pp. 168–178.

[10] K. Crowston, K. Wei, Q. Li, and J. Howison, “Core and pe-
riphery in free/libre and open source software team communi-
cations,” in Proceedings of the Hawaii International Conference
on System Sciences (HICSS), 2006, pp. 118a:1–118a:7.

[11] D3, “D3,” https://github.com/d3/d3, 2023, [Online; accessed
14-August-2023].

[12] L. Dabbish, C. Stuart, J. Tsay, and J. Herbsleb, “Social coding
in GitHub: Transparency and collaboration in an open software
repository,” in Proceedings of the Conference on Computer
Supported Cooperative Work (CSCW), 2012, pp. 1277–1286.

[13] T. Dinh-Trong and J. Bieman, “The FreeBSD project: A repli-
cation case study of open source development,” IEEE Transac-
tions on Software Engineering (TSE), vol. 31, no. 6, pp. 481–
494, 2005.

[14] Facebook, “React,” https://github.com/facebook/react, 2023,
[Online; accessed 14-August-2023].

[15] E. Fernandes, A. Chávez, A. Garcia, I. Ferreira, D. Cedrim,
L. Sousa, and W. Oizumi, “Refactoring effect on internal quality
attributes: What haven’t they told you yet?” Information and
Software Technology (IST), vol. 126, p. 106347, 2020.

[16] Getlantern, “Lantern,” https://github.com/getlantern/lantern,
2023, [Online; accessed 14-August-2023].

[17] G. Ghiotto, L. Murta, M. Barros, and A. van der Hoek, “On the
nature of merge conflicts: A study of 2,731 open source Java
projects hosted by GitHub,” IEEE Transactions on Software
Engineering (TSE), vol. 46, no. 8, pp. 892–915, 2020.

[18] S. L. Gonzalez and P. Fraternali, “Almost Rerere: Learning to
resolve conflicts in distributed projects,” IEEE Transactions on
Software Engineering (TSE), vol. 49, no. 4, pp. 2255–2271, 2022.

[19] G. Gousios, M.-A. Storey, and A. Bacchelli, “Work practices
and challenges in pull-based development: The contributor’s
perspective,” in Proceedings of the International Conference on
Software Engineering (ICSE), 2016, pp. 285–296.

[20] G. Gousios, A. Zaidman, M.-A. Storey, and A. Van Deursen,
“Work practices and challenges in pull-based development: The
integrator’s perspective,” in Proceedings of the International
Conference on Software Engineering (ICSE), 2015, pp. 358–368.

[21] M. Guimarães and A. Silva, “Improving early detection of
software merge conflicts,” in Proceedings of the International
Conference on Software Engineering (ICSE), 2012, pp. 342–352.

[22] H. Z. Jerrold, “Significance testing of the Spearman rank corre-
lation coefficient,” Journal of the American Statistical Associa-
tion (JASA), vol. 67, no. 339, pp. 578–580, 1972.

[23] T. Ji, L. Chen, X. Yi, and X. Mao, “Understanding merge
conflicts and resolutions in Git rebases,” in Proceedings of the
International Symposium on Software Reliability Engineering
(ISSRE), 2020, pp. 70–80.

[24] M. Joblin, S. Apel, C. Hunsen, and W. Mauerer, “Classifying
developers into core and peripheral: An empirical study on
count and network metrics,” in Proceedings of the International
Conference on Software Engineering (ICSE), 2017, pp. 164–174.

[25] E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. German,
and D. Damian, “The promises and perils of mining GitHub,”
in Proceedings of the Working Conference on Mining Software
Repositories (MSR), 2014, pp. 92–101.

[26] B. Kasi and A. Sarma, “Cassandra: Proactive conflict mini-
mization through optimized task scheduling,” in Proceedings of
the International Conference on Software Engineering (ICSE),
2013, pp. 732–741.

[27] S. Larsén, J.-R. Falleri, B. Baudry, and M. Monperrus, “Spork:
Structured merge for Java with formatting preservation,” IEEE
Transactions on Software Engineering (TSE), vol. 49, no. 1, pp.
64–83, 2023.

[28] O. Leßenich, J. Siegmund, S. Apel, C. Kästner, and C. Hunsen,
“Indicators for merge conflicts in the wild: Survey and empirical
study,” Automated Software Engineering (ASE), vol. 25, pp.
279–313, 2018.

[29] J. Lin̊aker, H. Munir, K. Wnuk, and C.-E. Mols, “Motivating
the contributions: An open innovation perspective on what to
share as open source software,” Journal of Systems and Software
(JSS), vol. 135, pp. 17–36, 2018.

[30] W. Mahmood, M. Chagama, T. Berger, and R. Hebig, “Causes
of merge conflicts: A case study of ElasticSearch,” in Proceedings
of the International Working Conference on Variability Mod-
elling of Software-Intensive Systems (VaMoS), 2020, pp. 1–9.

[31] S. Matthiesen, P. Bjørn, and C. Trillingsgaard, “Implicit bias
and negative stereotyping in global software development and
why it is time to move on!” Journal of Software: Evolution and
Process (S:EP), vol. 35, no. 5, p. e2435, 2023.

[32] Microsoft, “Typescript,” https://github.com/microsoft/
TypeScript, 2023, [Online; accessed 14-August-2023].

[33] A. Mockus, R. Fielding, and J. Herbsleb, “Two case studies
of open source software development: Apache and Mozilla,”
ACM Transactions on Software Engineering and Methodology
(TOSEM), vol. 11, no. 3, pp. 309–346, 2002.

[34] N. Nelson, C. Brindescu, S. McKee, A. Sarma, and D. Dig, “The
life-cycle of merge conflicts: processes, barriers, and strategies,”
Empirical Software Engineering (EMSE), vol. 24, no. 5, pp.
2863–2906, 2019.

[35] M. Owhadi-Kareshk, S. Nadi, and J. Rubin, “Predicting merge
conflicts in collaborative software development,” in Proceedings
of the International Symposium on Empirical Software Engi-
neering and Measurement (ESEM), 2019, pp. 1–11.

[36] R. Padhye, S. Mani, and V. Sinha, “A study of external com-
munity contribution to open-source projects on GitHub,” in
Proceedings of the Working Conference on Mining Software
Repositories (MSR), 2014, pp. 332–335.

[37] P. Rigby, D. German, L. Cowen, and M.-A. Storey, “Peer review
on open-source software projects: Parameters, statistical mod-
els, and theory,” ACM Transactions on Software Engineering
and Methodology (TOSEM), vol. 23, no. 4, pp. 1–33, 2014.

[38] G. Robles, J. González-Barahona, C. Cervigón, A. Capiluppi,
and D. Izquierdo-Cortázar, “Estimating development effort in
free/open source software projects by mining software reposito-
ries: A case study of OpenStack,” in Proceedings of the Working
Conference on Mining Software Repositories (MSR), 2014, pp.
222–231.

[39] G. Robles, J. Gonzalez-Barahona, and I. Herraiz, “Evolution
of the core team of developers in libre software projects,” in
Proceedings of the International Working Conference on Mining
Software Repositories (MSR), 2009, pp. 167–170.

[40] A. Sarma, D. Redmiles, and A. van der Hoek, “Palantir: Early
detection of development conflicts arising from parallel code
changes,” IEEE Transactions on Software Engineering (TSE),
vol. 38, no. 4, pp. 889–908, 2012.

[41] L. Singer, F. Figueira Filho, B. Cleary, C. Treude, M.-A. Storey,
and K. Schneider, “Mutual assessment in the social program-
mer ecosystem: An empirical investigation of developer profile
aggregators,” in Proceedings of the Conference on Computer
Supported Cooperative Work (CSCW), 2013, pp. 103–116.



[42] M.-A. Storey, A. Zagalsky, F. Figueira Filho, L. Singer, and
D. German, “How social and communication channels shape
and challenge a participatory culture in software development,”
IEEE Transactions on Software Engineering (TSE), vol. 43,
no. 2, pp. 185–204, 2016.

[43] A. Svyatkovskiy, S. Fakhoury, N. Ghorbani, T. Mytkowicz,
E. Dinella, C. Bird, J. Jang, N. Sundaresan, and S. Lahiri,
“Program merge conflict resolution via neural transformers,”
in Proceedings of the Joint European Software Engineering
Conference and Symposium on the Foundations of Software
Engineering (ESEC/FSE), 2022, pp. 822–833.

[44] A. Terceiro, L. R. Rios, and C. Chavez, “An empirical study
on the structural complexity introduced by core and peripheral
developers in free software projects,” in Proceedings of the
Brazilian Symposium on Software Engineering (SBES), 2010,
pp. 21–29.

[45] J. Tsay, L. Dabbish, and J. Herbsleb, “Influence of social and
technical factors for evaluating contribution in GitHub,” in
Proceedings of the International Conference on Software En-

gineering (ICSE), 2014, pp. 356–366.
[46] Twbs, “Bootstrap,” https://github.com/twbs/bootstrap, 2023,

[Online; accessed 14-August-2023].
[47] G. Vale, E. Fernandes, E. Figueiredo, and S. Apel, “Behind

developer contributions on conflicting merge scenarios -
supplementary website,” https://gustavovale.github.io/
behind-developer-contributions-on-conflicting-merge-scenarios/
index.html, 2023, [Online; accessed 14-August-2023].

[48] G. Vale, C. Hunsen, E. Figueiredo, and S. Apel, “Challenges of
resolving merge conflicts: A mining and survey study,” IEEE
Transactions on Software Engineering (TSE), vol. 48, no. 12,
pp. 4964–4985, 2021.

[49] G. Vale, A. Schmid, A. Santos, E. De Almeida, and S. Apel, “On
the relation between GitHub communication activity and merge
conflicts,” Empirical Software Engineering (EMSE), vol. 25, pp.
402–433, 2020.

[50] C. Wohlin, P. Runeson, M. Höst, M. Ohlsson, B. Regnell, and
A. Wesslén, Experimentation in Software Engineering, 1st ed.
Springer Science & Business Media, 2012.


