
Empirical Software Engineering manuscript No.
(will be inserted by the editor)

Predicting Merge Conflicts Considering Social and
Technical Assets

Received: date / Accepted: date

Abstract Concurrent contributions to a code base may introduce merge con-
flicts. Whereas merge conflicts are easy and common to introduce, resolving
them is a difficult, time-consuming, and often error-prone task. Previous re-
search concentrated on the emergence of merge conflicts considering technical
assets in their analyses and often ignored the social perspective (e.g., developer
roles). Our goal is to understand and predict merge conflicts considering so-
cial and technical assets. We devise three models for predicting merge conflicts
based on common measures used by developers. The first model focuses on the
social assets, the second on technical assets, and the third on technical and
social assets. To evaluate our predictors, we report on a large-scale empirical
study analyzing the histories of 66 real-world software systems. Specifically,
we categorize developers into top or occasional contributors at project and
merge-scenario level. We found that top contributors at project level and oc-
casional contributors at merge-scenario level cause more merge conflicts than
the other roles. Hence, the coordination of top contributors at project level
and occasional contributors at merge-scenario level is a good starting point
to minimize the occurrence of merge conflicts (especially because when these
two developers work on the source branch, the chances of merge conflicts are
32.31%). Overall, we show that predicting merge conflicts incorporating de-
veloper roles is possible in practice with high accuracy (0.92) and recall (1.00)
when combining technical and social assets, which is vital information to guide
improvements on speculative merging techniques.

Keywords Collaborative Software Development, Version Control Systems,
Developers Role, Three-way Merge, Merge Conflicts

Address(es) of author(s) should be given



2 Vale et. al

1 Introduction

Successful collaborative software development depends on the ability to coordi-
nate technical and social assets [34]. Version control systems help developers to
manage concurrent contributions across a project’s evolution [68]. Although
typically a large number of commits cleanly merge, concurrent changes can
overlap, leading to merge conflicts. While merge conflicts are easy to intro-
duce, resolving them is difficult, time-consuming, and often error-prone [40].

Given the costs involved in the merge conflict life-cycle [45], researchers
have proposed merge strategies (e.g., structured [3], semi-structured [4]), avoid-
ance strategies (e.g., continuous integration [29], speculative merging [11]),
awareness tools (e.g., CollabVS [17], Palant́ır [52], Cassandra [36], FAST-
Dash [5]), investigated the nature of merge conflicts (e.g., identifying the types
of code changes that lead to merge conflicts) [1,26,40,61], asked how developers
have resolved merge conflicts [41,45,62], and tried to predict them [2,40,47].

When merge strategies are inefficient in reducing the number of merge con-
flicts, developers should continuously integrate their changes and keep aware
of what others are doing. To support awareness, researchers have developed
tools to alert developers about potential merge conflicts before they become
too complex [5, 17, 36, 52]. Awareness tools speculatively pull and merge all
combinations of available branches. The downside is that, constantly pulling
and merging a large number of branch combinations, can quickly get pro-
hibitively expensive [11]. One opportunity for decreasing this cost is to reduce
the number of speculative merging operations in merge scenarios concentrat-
ing only the ones that are prone to conflict. To achieve this, researchers use
machine learning techniques for predicting merge conflicts [47].

There are six studies predicting merge conflicts. Leßenich et al. [40] look
for correlations between various technical measures and merge conflicts. None
of their measures have a strong correlation with merge conflicts (e.g., varying
from 0.13 to 0.43). Accioly et al. [2] investigate the relationship between two
types of code changes (i.e., changes to the same method and changes to directly
dependent methods) and merge conflicts. They found a precision of 57.99%
and a recall of 83.62%. Rocha et al. [51] look at whether it is possible to use
acceptance tests to predict files changed by programming tasks assuming that
choosing the right tasks to work on in parallel will decrease the number of
merge conflicts. As a results, they found a relation between acceptance tests
and files changed. Dias et al. [18] investigate the relation of modularity (in
term of model-view-controller (MVC) layers), size, and timing of code changes
and merge conflicts. As a result, they found that cross MVC layer, large,
and long-living changes are conflict-prone. Owhadi-Kareshk et al. [47] build a
machine learning classifier (using decision trees and random forests) based on
9 Git feature sets. They obtained precision, recall, and f1-score of 1.00, 0.96,
and 0.97 for safe merge scenarios and 0.63, 0.96, and 0.68 for conflicting merge
scenarios. Similarly, Trif et al. [59] use 4 machine learning classifiers (SVM,
Naive Bayes, random forests, and neural networks) to predict merge conflicts.



Predicting Merge Conflicts Considering Social and Technical Assets 3

Their best performance results using neural networks were 0.77 and 0.93 for
precision and recall, respectively.

It is important to note that previous work concentrated on the prediction
of merge conflicts considering technical assets and often ignored the social
perspective (i.e., developers and their relationship). Thus, as current merge
conflict predictions, in terms of recall, are low, we hypothesise that information
on social aspects might increase recall when predicting merge conflicts. Since
coding is a social task, it might be simple for developers to know their role
and relationship with other developers in a merge scenario. Hence, in addition
to reducing the costs of speculative merging techniques, an understanding of
the influence of the social dimension (e.g., developer role) on the emergence
of merge conflicts might be useful to guide the coordination of developers
aiming at reducing the number of merge conflicts. To illustrate how useful
knowing the developer’s role who caused the merge conflict can be for project
coordination, we selected a merge scenario of project create-react-app1. In this
merge scenario, 62 developers changed 651 chunks distributed into 121 files.
Despite the high number of developers involved, the top contributors of the two
merged branches introduced all conflicting code. Therefore, by making these
developers aware of the other code changes, they could have communicated to
understand the changes avoiding the merge conflicts or, at least, simplify the
conflict resolution since they could explain their changes to each other and
decide together what should remain in the target branch.

Our overall goal is to predict merge conflicts taking the social dimension
into account. To achieve our goal, we have conducted a large empirical study
analyzing the history of 66 repositories of popular software projects with a
total of 78 740 merge scenarios. We classified developers as top and occasional
based on their code contributions with distinct granularity (project and merge-
scenario level). Aiming at increasing our knowledge on developer roles, we
first look at the relation of each role separately, then we combine project- and
merge-scenario-level information. Later, after getting this initial understand-
ing of the relation between developer roles and merge conflicts, we devised
three models to predict merge conflicts. We used three classifiers (decision
tree, random forest, and KNN), and seven balancing techniques (e.g., SMOTE,
Adasyn, and over-sampling). The first model is composed of only social mea-
sures, the second is composed of only technical measures, and the third model
is composed of all (social and technical) measures. Creating these three models
enables us to pin down how different measures influence the predictions and
if social measures are useful in practice.

We found that top contributors slightly contribute to more merge con-
flicts at project level, and occasional contributors contribute to more merge
conflicts than top contributors at merge-scenario level. When combining the
granularity, we found that top contributors at project level that are occasional
contributors at merge-scenario level are more related to merge conflicts than all
other combinations of developer roles. When these developers touch (i.e., add,

1 https://github.com/facebookincubator/create-react-app/commit/1e83e8

https://github.com/facebookincubator/create-react-app/commit/1e83e8


4 Vale et. al

delete, change) the source branch, the chances of merge conflicts are 32.31%.
Regarding predictions, random forest performed better in most cases and our
models can correctly predict all conflicting scenarios (i.e., it achieved 100% of
recall). Looking at other performance measures (e.g., precision, f1-score, accu-
racy, and AUC), the models with all and only technical measures performed
better than the model composed by only social measures.

Albeit technical assets have proven essential to predict merge conflicts, our
findings shall call the attention of researchers and practitioners to focus on
social assets and the branches developers are touching in their analyses.

Overall, we make the following contributions:

– We provide evidence that it is possible to predict merge conflicts by looking
only at social measures (e.g., developer roles, the number of developers
involved, and the branch the developers touch);

– We analyze the relation between developer roles and merge conflicts from
three different perspectives: (i) with developer roles investigated individu-
ally, (ii) with developer roles at project and branch level combined, and (iii)
using machine learning classifiers with three models (i.e., social measures
vs. technical measures vs. all measures).

– We show that code changes in the source branch are more conflict-prone
than code changes in the target branch. For instance, when top and occa-
sional contributors at merge-scenario level touch the source branch, 4.36%
and 24.60% of the merge scenarios lead to conflicts, respectively. On the
other hand, only 4.88% and 8.32% of the merge scenarios lead to conflicts
when top and occasional contributors touch the target branch;

– We make our infrastructure and data publicly available for replication and
follow-up studies on a supplementary Web site [63].

2 Background and Related Work

In this section, we present an overview of studies that investigate merge con-
flicts and classify developers into their roles.

2.1 The Three-way Merge

The three-way merge pattern also known as pull-based model and merge sce-
nario (from hereon, merge scenario) is a distinct and widely collaborative de-
velopment pattern [27]. In this model, developers first fork the main repository
by creating a branch. Then, developers commit their changes independently to
add new features or fix bugs. Finally, they create a merge commit integrating
their changes back to the main repository.

There are other ways than the three-way pattern to integrate code to the
repository, such as fast-forward, rebase, or squash integrations [37]. However,
these integrations damage the project’s history, hindering the understanding
of how the changes were made in practice. Hence, to understand the evolution



Predicting Merge Conflicts Considering Social and Technical Assets 5

File1

1
2
3
4
5

File2

1
2
3
4
5

File3

1
2
3
4

File4

1
2
…
12

File1

1 - Dev C
2
3
4
5 - Dev B

File3

1 - Dev A
2 - Dev A
3
4 - Dev B

File1 File2

1 - Dev A
2 - Dev A
3
4
5 - Dev A

File1 File2

File3

1 - Dev A
2 - Dev A
3
4 - Dev B

>>>>
1 - Dev A
2 - Dev A
====
1 - Dev C
2
<<<<
3
4
>>>>
5 - Dev A
====
5 - Dev B
<<<<

!

!

target
source

1 - Dev A
2 - Dev A
3
4 - Dev D
5 - Dev A

1 - Dev A
2 - Dev A
3
4 - Dev D
5 - Dev A

Dev X
FF1E147

Dev A
A562FA6

Dev B
35DBC8F

Dev C
0E8F458

Dev A
923E4D5

Dev D
20BBDF7

Dev C
C2ECB2C

Fig. 1 Illustrative merge scenario

of the project, we use the three-way merge pattern. Even though a branch lives
longer, we are considering just the changes from the fork up to the integration
(i.e., a merge scenario). If the branch is forked and integrated again, it sets up
another merge scenario.

In Figure 1, we illustrate a merge scenario where Dev X created a reposi-
tory with four files (File 1, 2, 3, an 4). Later, Dev A forked the target branch,
creating the source branch. Together with Dev B and Dev C, Dev A touched
File 1 and File 3 in the source branch. Concurrently Dev A and Dev D
changed File 1 and File 2 in the target branch. Finally, Dev C tried to merge
the source branch into the target branch.

Software integrations typically cleanly merge, however, concurrent changes
can overlap, leading to merge conflicts. In the example of Figure 1, Dev C
faced merge conflicts in File 1. These conflicts appeared given the concurrent
changes of Dev A in the target branch with the changes of Dev C and
Dev B in the source branch. In the next section, we discuss how researchers
and practitioners have investigated and dealt with merge conflicts.

2.2 Merge Conflicts

Merge conflicts are easy to introduce, but resolving them is a difficult, time-
consuming, and error-prone task [40]. There are dozens of studies investigating
the whole merge conflict life-cycle. In this section, we give an overview of
studies that try to: (i) avoid or minimize the emergence of merge conflicts, (ii)
investigate how merge conflicts and code changes that cause merge conflicts
look like, (iii) estimate their resolution or difficulty, and (iv) predict them.

Avoiding merge conflicts. Researchers have investigated merge strate-
gies (e.g., [3, 4, 12, 25, 32, 64]) and awareness approaches and tools (e.g., [5,



6 Vale et. al

11, 17, 29, 31, 36, 52]). Regarding merge strategies, researchers proposed struc-
tured strategies that leverage information about the underlying code structure
by analyzing the corresponding Abstract Syntax Tree (AST) [3]. Some merge
conflicts such as due to formatting changes or renaming often can be avoided
using AST information. Since differentiating a complete AST is expensive,
semi-structured merge strategies improve performance by producing a partial
AST that expands only until the method level, with complete method bodies
in the leaves [3]. In this line Dinella et al. [19] propose DeepMerge, a tool
that uses deep learning algorithm to merge code that an unstructured merge
technique (diff3) failed to merge. Regarding awareness approaches and tools,
Guimarães et al. [29] proposed to continuously merge, compile, and test com-
mitted and uncommitted changes to detect merge conflicts as early as possible.
As examples of tools, CollabVS [17] is a semi-synchronous distributed com-
puter supported model that allows programmers creating code asynchronously
to synchronously collaborate with each other to detect and resolve potentially
conflicting tasks before they have completed the tasks. Crystal [11] is a vi-
sual tool that uses speculative analysis to help developers detect, manage, and
prevent merge conflicts. FASTDash [5] is an interactive visualization tool
that seeks to improve team activity awareness using a spatial representation
of the shared code base that highlights team members’ current activities (e.g.,
what methods and classes are currently changed). Similarly, Syde [31] is a
tool for increasing awareness by sharing the code changes from other devel-
opers’ workspaces. Similar to FASTDash and Syde, Palant́ır [52] visually
illustrates code changes and helps developers avoid conflicts by making them
aware of changes in private workspaces. Finally, Cassandra [36] is a tool
to minimize conflicts by optimizing task scheduling to minimize simultaneous
edits to the same files.

Investigating merge conflicts. A few studies have investigated how
merge conflicts look exactly and which type of code changes lead to merge
conflicts [1, 46, 61, 65]. Accioly et al. [1] investigated the structure of code
changes that lead to merge conflicts with semi-structured tools. Their results
show that in most of the conflicting merge scenarios, more than two developers
are involved and code cloning can be a root cause of merge conflicts. Nishimura
et al. [46] proposed MergeHelper, a tool that helps developers to find the
root cause of merge conflicts by providing them with the historic edit oper-
ations that affected a given class member. Vale et al. [61] investigated the
relation between GitHub communication activity and merge conflicts. As a
result, they found no correlation between communication measures and the oc-
currence of merge conflicts. However, when investigating only the 10% largest
merge scenarios, they found that merge scenarios’ size (i.e., changed lines of
code) and the number of developers involved influence the strength of the rela-
tion between GitHub communication activity and the occurrence of conflicts.
Wuensche et al. [65] developed an approach to find potential higher-order
merge conflicts (e.g., test and build conflicts) using a statistically constructed
call graph which reuses data from previous runs to scale well with very large
source code repositories. As a result, they did not find any test conflicts in



Predicting Merge Conflicts Considering Social and Technical Assets 7

their 22 month analysis and they found that the top three causes of build
conflicts are: 1) changes to the signature, 2) missing include statements, and
3) duplicated definitions.

Estimating the merge conflict resolution. A few studies have tried to
measure the time/difficulty of resolution of merge conflicts [8, 62]. Brindescu
et al. [8] conducted an in-situ observation of 7 developers resolving 10 merge
conflicts. Their results show that developers search for information on seven
sources (e.g., diff between merged versions and commit history), the conflicts
resolution took from 40 to 2 190 seconds (36.5 minutes) and developers nor-
mally follow 6 steps to conflict resolution: (1) look at external data sources,
(2) open a particular file to work on, (3) read or scroll through the source
code, (4) edit source code, (5) read a chunk on either side, and (6) run the
build or perform test. Vale et al. [62] conducted a mining and survey study
to identify the challenges of resolving merge conflicts. As a result, they found
that measures indirectly related to merge conflicts (i.e., measures related to
the merge scenario changes) are stronger correlated with merge conflict resolu-
tion time than measures directly related to merge conflicts (i.e., merge conflict
characteristics). Cross-validating their results, survey participants mentioned
25 measures used to quantify how hard/time-consuming is the resolution of
merge conflicts mentioning measures indirectly related to merge conflicts. The
challenges on merge conflict resolution includes: lack of coordination, lack of
tool support, flaws in the system architecture, and lack of testing suite or
pipeline for continuous integration.

Predicting merge conflicts. Looking at the main venues of software en-
gineering (e.g., Transactions on Software Engineering, Empirical Software En-
gineering, and International Conference on Software Engineering) and search-
ing for papers in the references of the selected papers (i.e., snowballing tech-
nique), we found six studies predicting merge conflicts. Leßenich et al. [40]
investigated the correlation between seven source code measures and the like-
lihood of merge conflicts. Note that practitioners indicated these measures to
be related to the emergence of merge conflicts (e.g., scattering degree among
classes, commit density, and number of files). As a result, none of the investi-
gated factors had a strong correlation with the occurrence of merge conflicts.
Accioly et al. [2] computed recall and precision identifying merge conflicts
related to two types of code changes (i.e., editions to the same method and
editions to directly dependent methods). In addition, they manually investi-
gated false positives and false negatives. Their results show recall and precision
of 83.62% and 57.99% in the best case. Related to the manual analysis, they
did not find a silver bullet to improve their predictions. Still, they realized that
removing different spacing instances, decreases the number of false positives
from 226 to 203. Owhadi-Kareshk et al. [47] tried to predict merge conflicts
by building a classifier with nine measure sets (e.g., number of developers in a
branch, number of simultaneously changed files in two branches, and number
of added and deleted lines in a branch) for projects developed in seven pro-
gramming languages (e.g., C, C#, Java, PHP, and Python). Their results
agree with Leßenich et al., in most of the cases showing weak or no correlation



8 Vale et. al

between subject metrics and the occurrence of merge conflicts. Only the num-
ber of simultaneously changed files in two branches had strong correlation for
projects written in Java and PHP. Furthermore, the analysis using a random
forest classifier successfully predicted merge conflicts (precision, recall, and
f1-score of 1.00, 0.96, and 0.97 for safe merge scenarios and 0.63, 1.00, 0.68
for conflicting merge scenarios). Note that the f1-score of non-conflict scenar-
ios is much higher than conflicting scenarios which suggests that it is easier
to predict conflict-free merge scenarios than merge scenarios with conflicts.
Rocha et al. [51] investigated whether it is feasible to use acceptance tests to
predict files changed by programming tasks in Behaviour-Driven Development
(BDD) projects. The idea behind is that choosing which tasks to work on
in parallel, a development team could likely reduce conflict occurrence. As a
result, they found that tests associated to a task might help to predict appli-
cation files changed by developers responsible for the task. Furthermore, they
found that the better the test coverage of a task, the better the predictive
power. Dias et al. [18] conducted a study to understand merge conflicts three
aspects of developers contributions: modularity, size, and timing. As a result,
they found that: i) conflicts occur even when merging modular contributions,
but the occurrence of merge conflicts increases when contributions are not
modular (i.e., across model, view, and controller (MVC) layers), ii) large con-
tributions involving more developers, commits, changed files are more likely
associated with merge conflicts than small contributions, and iii) contributions
over longer periods of time are more likely associated with conflicts than short
ones. Trif et al. [59] predicted conflicts using machine learning (SVM, Naive
Bayes, random forest) and deep learning (neural networks). As a result, their
random forest analysis show 5 top factors that cause conflicts: 1) the num-
ber of parallel lines changed, 2) whether a pull request was opened before the
merge, 3) the number of commits on a branch, 4) the active time of develop-
ment, and 5) the minimum length of commit messages in a branch. Their best
performance results were for random forest and neural networks with 0.75 and
0.77 of precision and 0.69 and 0.93 of recall, respectively.

Despite the number of studies investigating merge conflicts, we did not
find studies investigating which developer roles are prone to introduce merge
conflicts. Most studies that use some social measure (e.g., [1, 40, 47, 61]) look
at the number of developers in the merged branches or in the merge scenario.
Only Vale et al. [61] investigate the relationship among developers (i.e., their
communication). Still, they do not classify developers into roles nor try to pre-
dict merge conflicts. Therefore, looking at the software engineering literature,
we are the first study trying to understand and predict merge conflicts using
social assets (especially the developer roles) in collaborative software develop-
ment. Furthermore, only two studies use sophisticated machine learning based
techniques to predict merge conflicts. Hence, we are the first study predicting
merge conflicts by creating multiple classifiers with multiple machine learning
based techniques and taking the social perspective into account.



Predicting Merge Conflicts Considering Social and Technical Assets 9

2.3 Human Factor Investigations

There are several studies showing that human factors play an important role
in software quality. These studies include investigations on developers pro-
ductivity when they learn from experience of other developers individually,
from groups, and from organisational-unit level [9] and the influence of the
number of developers [42, 66], organisational structure [44], and code owner-
ship [7, 13,23,28,48,49,58] on the number of failures.

To mention a few of them, Bird et al. [7] investigated whether ownership
influences the number of pre-release faults and post-release failures in the con-
text of two commercial systems: Windows Vista and Windows 7. As a results,
they found that: i) developers who owns less than 5% of lines of code of com-
ponents (named minor contributors) is more likely to introduce pre- and post
release failures, ii) higher levels of ownerships are related to fewer failures,
iii) the number of minor contributors negatively affects software quality, and
iv) without minor contributors, the ability to predict failure-prone components
is greatly diminished, supporting the hypothesis that minor contributors are
related to software quality. Similarly, Businge et al. [13] investigated the in-
fluence of ownership on the number of failures in the context of small-sized
Android applications. As a result, concurring with Bird et al. [7], they found
that minor contributors are related to more failures and applications with few
major contributors are more reliable than applications with larger number of
minor contributors. At the end, studies investigating the relation between code
ownership and the number of failures found similar results and recommend
that i) changes made by minor contributors should be reviewed with more
scrutiny, ii) potential minor contributors should communicate desired changes
to developers experienced with the respective file/binary, and iii) components
with low ownership should be given priority by quality assurance resources.

Similar to these studies, we agree that human factors play an important
role on software quality. Different from them, we investigate the influence of
human factors on merge conflict prediction and not on the failure prediction.

3 Developer Roles

Previous work [6,15,20,34,35,43,50,57] had classified developers into core and
peripheral roles aiming at understanding the organizational structure of open
source projects. Mockus et al. [43] found empirical evidence for the Mozilla
browser and the Apache Web server that a small number of developers are
responsible for approximately 80% of the code modifications. Their approach
consists of counting the number of commits made by each developer and then
computing a threshold at the 80% percentile. Developers with a commit count
above the threshold are considered core and, developers below the threshold
are considered peripheral. They rationalized this threshold by observing that
the number of commits made by developers typically follows a Zipf distribution
(which implies that the top 20% of contributors are responsible for 80% of the



10 Vale et. al

contributions) [15]. The Zipf distribution was also observed in other studies
[20, 50, 57]. Other researchers used network metrics and analyzed core and
peripheral developers over the project evolution [6,34,35]. For instance, Joblin
et al. [34] empirically classified developers into core and peripheral to model the
organizational structure using network metrics (e.g., degree- and eigenvector-
centrality) and analyzed how the set of core developers changed over time.

Despite several studies classifying developers into roles, none of them ana-
lyze the influence of the developer roles on the emergence of merge conflicts.
We use top contributors and occasional contributors classification instead of
core and peripheral developers because, as suggested by a previous study [34],
we consider that these terms better represent high- or low-frequency contrib-
utors, respectively. Similar to previous work [15, 43, 50, 57], we use the 80%
percentile to classify top contributors (core). Furthermore, as suggested by
previous work [34, 35], we recompute the developer roles for each merge sce-
nario. Differently from them, we classify developers with distinct granularity:
project and merge-scenario level.

Top and occasional contributors at project level classification. Top
and occasional developers at project level are classified based on their code
contributions on the whole project at the end of each merge scenario (i.e.,
at the merge commit). Practically, we follow 5 steps. First, for each merge
commit we checked it out using the git checkout SHA command, where
SHA is the identifier for the merge commit. Hence, for each merge commit,
we run the git blame command to compute the authorship of each line of
code in the whole project. Second, we sum up the lines of code each developer
contributed creating a map where each developer has an unique identifier (key)
and an object with the developer information as a value. This object includes
an attribute informing the number of lines of code this developer changed in
the whole project at the moment of the merge commit. Third, get the total
lines of code in the project by summing all developer contributions. Fourth, we
create a list of developers in descending order based on their code contributions
(i.e., developers that contribute most are at the top of the list). Fifth, we get
the top developers from the list until the sum of their contributions makes up
80% of the total contributions at merge commit time. These developers are
classified as top contributors. All other developers are considered occasional
contributors.

Top and occasional contributors at merge-scenario level classifi-
cation. Top and occasional developers at merge-scenario level are classified
based on their code contributions in a merge scenario. The classification at
merge-scenario is similar to the project level, the only difference is in the
first step. Instead of measuring the authorship of each developer in the whole
project, we measure the code contribution of each developer in the merge sce-
nario. In other words, for each merge commit, we measure only the lines of
code changed between the base and merge commit. Hence, top contributors at
merge scenario level are the developers that contribute to 80% of the changed
lines of code in the merge scenario and all other developers are occasional
contributors.



Predicting Merge Conflicts Considering Social and Technical Assets 11

Subject 
Projects

Merge Scenarios Database Operationalization
and Data AnalysisData Acquisition

Research 
Questions

Fig. 2 Methodology Overview.

The distinction of project and merge-scenario level is essential because,
while the developer roles at project level give a more global view of the code
contributions, developer roles at merge-scenario level give a more focused view
on merge scenario code changes and on merge conflicts. In Section 4.3, we
describe the investigated measures as well as exemplify how the developer
roles are computed in practice.

4 Study Setting

In Figure 2, we illustrate our four steps, which consist of (i) defining our
goals and research questions, (ii) selecting subject projects, (iii) acquiring data,
(iv) operationalizing and analyzing data. We describe these processes in the
following four sections.

4.1 Goals and Research Questions

Our overall goals are threefold:

– To understand which developer roles cause proportionally more
merge conflicts. Knowing which developer roles are more often involved
in merge conflicts can: i) avoid or minimise conflicting merge scenarios since
project coordinators and developer themselves can increase the coordina-
tion and communication where conflict-prone developer roles are working
on. Hence, they can be aware sooner of other changes and fix conflicts in
its earlier stages or even avoid them. For instance, as seen in the example
merge scenario presented in Section 1, properly coordinating specific de-
veloper roles (i.e., making them aware or other changes and communicate
with each other) can be enough for avoiding merge conflicts and ii) support
on the conflict resolution since project coordinators and developer them-
selves can increase the communication of developer roles often involved in
conflict to support the merge conflicts resolution.

– To find whether it is feasible to predict merge conflicts using only
social measures. Showing that it is possible to predict merge conflicts
using social measures can minimise the number of speculative merging as



12 Vale et. al

motivated in Section 1, but also highlight the importance of social measures
in software analysis. Hence, we show evidence of why researchers should
consider social measures more often in their analyses.

– To find whether combining social and technical assets improve
the state-of-the-art of predicting merge conflicts. Previous work
has predicted merge conflicts using technical measures, adding the social
perspective might improve previous results improving the state-of-the-art
of merge conflict predictions.

We investigate the relationship between the developer role and the emer-
gence or avoidance of merge conflicts in four ways, represented by the following
research questions:

RQ1: Which developer role is more often related to merge conflicts consid-
ering project and merge-scenario level separately?

RQ1.1: Are top contributors at project level proportionally related to more
merge conflicts than occasional contributors?

RQ1.2: Are top contributors at merge-scenario level proportionally related
to more merge conflicts than occasional contributors?

RQ2: Which combination of developer roles is related to merge conflicts
combining project and merge-scenario level classification?

RQ3: Are merge conflicts predictable using only social measures?

RQ4: Is a model combining social and technical measures better than a
model composed of only social measures to predict merge conflicts?

Note that the first research question is simple such that developers can
identify developer roles without tool support. In the second research question,
we increase the complexity, but developers with a comprehensive understand-
ing of the project can still identify developer roles without tool support. In
the third and fourth research questions, we use more information and a more
sophisticated approach. It makes manual identification difficult. Answering
these four research questions, we expect an actionable insights overview of the
influence of the subject developer roles on the occurrence of merge conflicts,
especially when triangulating social and technical measures.

4.2 Subject Projects

We selected the corpus of subject projects by retrieving the 100 most popular
projects on GitHub, as determined by the number of stars [10] and, then, we
applied the following four filters created based on Kalliamvakou et al. work [38]:
(i) projects that do not have a classified programming language as the main
file extension since we are interested in programming language projects; (ii)
projects with less than two commits per month in the last six months, since
we are interested in active community projects on GitHub; (iii) projects in
which it was not possible to reconstruct at least 50% of the merge scenarios,



Predicting Merge Conflicts Considering Social and Technical Assets 13

since we are interested in projects that use the three-way merge pattern in
the majority of integrations (see Section 2.1). The inclusion of projects that
follow other development patterns could bias our analysis. In Section 4.3, we
detail how we rebuilt merge scenarios; and, (iv) balancing the programming
language of projects consists of excluding less popular JavaScript projects
until they are not the majority of subject projects. Including most projects of
a programming language could bias our analysis, as we explain in Section 7.

We restricted our selection to GitHub because it is one of the most popular
platforms to host repositories, and it has been investigated and used in prior
work [16,27,55,56,60–62]. We limited our analysis to Git repositories because
it simplifies the identification of merge scenarios in retrospect and is a popular
practice as well.

After applying all filters, we obtained 66 projects, developed in 12 program-
ming languages (e.g., JavaScript, Python, Java, Go, and C++), contain-
ing 78 740 merge scenarios that involve more than 1.5 million files changed,
10.4 million chunks, and 3 950 conflicting merge scenarios. bootstrap2, re-
act3, TypeScript4, redis5, and lantern6 are examples of selected projects.
In Figure 3, we show the distribution of merge scenarios (ms), conflicting merge
scenarios (cms), number of files, number of chunks, number of commits, and
number of developers by each subject project. In other words, each project
represents a dot in the graphs and the number of files, for instance, is the
sum of all files of a project. The complete list of projects with URL, program-
ming language, and descriptive statics is available at our supplementary Web
site [63].

4.3 Data Acquisition

In this section we show: i) how we acquire data for each merge scenario, ii) de-
tails about the developer roles classification, iii) the investigated measures,
iv) how we computed the investigated measures, v) an example of how the
investigated measures are computed, and vi) where our data and framework
is available.

Acquiring data. We followed a similar approach from previous work
[61, 62] to acquire data from merge scenarios which consists of the follow-
ing 5 steps. First, we cloned a subject project’s repository. Second, we got all
merge commits by filtering commits with multiple parent commits. Third, we
retrieved the base commit (i.e., the common ancestor for both parent com-
mits), for each merge commit (see Section 2.1). Fourth, we rebuilt merge sce-
narios by (re)merging parent commits and retrieving information from each

2 https://github.com/twbs/bootstrap
3 https://github.com/facebook/react
4 https://github.com/microsoft/TypeScript
5 https://github.com/antirez/redis
6 https://github.com/getlantern/lantern

https://github.com/twbs/bootstrap
https://github.com/facebook/react
https://github.com/microsoft/TypeScript
https://github.com/antirez/redis
https://github.com/getlantern/lantern


14 Vale et. al

Fig. 3 Descriptive statistics by subject project

commit between the base commit and the merge commit for each merged
branch.

Commit information includes author, date, lines of code, and files changed.
Therewith, we know which developer (by the commit’s author) changed each
line of code at each branch. Finally, we stored all data and repeated steps 3
and 4 for each merge scenario found in step 2. Note that we excluded merge
scenarios that do not have a base commit (e.g., fast-forward, rebase, or squash
integrations [37]), and we ignored binary files because we cannot track changes
from them. It is important to highlight that all investigated merge scenarios
integrate only two branches (i.e., no octopus merges).

At the end, we obtained a set of developers for each merge scenario. For
each developer, we retrieved: 1) a unique identifier, 2) the merge scenario
identifier, 3) a boolean flag demonstrating if it is or not a conflicting merge
scenario, 4) the list of files touched in the target branch, 5) the list of files
touched in the source branch, 6) the number of chunks changed in the target
branch, 7) the number of chunks changed in the source branch, 8) the number
of lines of code changed in the target branch, 9) the number of lines of code
changed in the source branch, 10) the number of commits in the target branch,
and 11) the number of commits in the source branch.

Classifying developers. To classify developers into top and occasional,
we followed the approach described in Section 3. Note that at project level we
consider developers contribution in the whole project for each merge commit.
Hence, top and occasional contributors at project level might not be active
developers in a given merge scenario. By active developers, we mean developers
that touched (i.e., created, edited, or deleted) one of the integrated branches of
a merge scenario. At merge-scenario level, we consider only code contributions
in a merge scenario. Hence, all top and occasional contributors at merge-
scenario level are active developers.



Predicting Merge Conflicts Considering Social and Technical Assets 15

Investigated measures. In Table 1, we present the investigated measures.
The reasoning behind our choice is related to three factors: i) fine-grained mea-
surement, ii) already used in the literature, and iii) inexpensive computation.

Fine-grained measurement. Considering that the code contributions are
normally different on the merged branches which may influence either the
occurrence of merge conflicts as well as the developers’ role that contribute
to the branch [14, 26], we differentiate contributions from target and source
branches for all investigated measures.

Already used in the literature. We selected the measures by surveying the lit-
erature on merge conflicts and related areas, such as code evolution or software
maintenance (see the Reference column of Table 1). Furthermore, developers
reported that most of the selected measures are useful to identify merge con-
flicts [40]. Note that measures found in the literature are often coarse-grained
(i.e., ignore the branch contributions that happened).

Inexpensive computation. We selected measures which extraction is com-
putationally inexpensive aiming at making the prediction used in practice.

Computing measures. To get the measures from a merge scenario, we
basically aggregate measures from active developers (i.e., the set mentioned
before). For instance, to come up with the value of loct, we aggregate the
number of source lines of code (i.e., excluding blanks and comments) in the
target branch of all developers for a given merge scenario. The counting of loc
is part of our framework and follows a similar implementation of cloc tool7.
As another example, to come up with the value of devs from a merge scenario,
we got a set of all active developers (represented by the unique identifier) of a
merge scenario (represented by the merge scenario identifier).

Exemplifying computation of measures. From the example presented
in Section 2.1, we see that three files changed in this merge scenario (files -
File 1, File 2, and File 3) where two changed in the target branch (filest - File
1 and File 2) and two files changed in the source branch (filess - File 1 and
File 3). The number of chunks is six (chunks) where four chunks are in the
target branch (chunkst - two chunks in File 1 from Dev A and two in File 2
from Dev A and Dev D) and four chunks are in the source branch (chunkss

- two chunks in File 1 from Dev C and Dev B and two in File 3 from Dev A
and Dev B). The number of lines of code is twelve (loc) where seven are in
the target branch (loct) and five are in the source branch (locs). The number
of commits is five (commits) where two are in the target branch (commitst -
hashes: 923e4d5 and 20bbdf7) and three are in the source branch (commitss

- hashes: a562fa6, 35dbc8f, and 0e8f458).
In Table 2, we illustrate the number of lines of code each developer con-

tributed at the moment of the merge commit (hash: c2ecb2c) at project and
merge-scenario level. Despite of in the beginning of the merge scenario, Dev X
committed 26 lines of code (hash ff1e147 - 5 loc in File 1, 5 loc in File 2, 4
loc in File 3, and 12 loc in File 4), until the merge commit Dev A, Dev B,
Dev C, and Dev D changed 8, 2, 1, and 1 lines of code, respectively. Hence,

7 https://cloc.sourceforge.net/

https://cloc.sourceforge.net/


16 Vale et. al

Table 1 Variables of our study

Variable Description References
Dependent variable

has conflict Boolean informing if the merge scenario has conflicts [40,61]
Independent (Technical) variables

files Number of files touched in the merge scenario [61,62]
filest Number of files touched in the target branch [22,39,40,47,52]
filess Number of files touched in the source branch [22,39,40,47,52]

filest&s
Number of files touched in the target and source [40]branches

chunks Number of chunks touched in the merge scenario [40,61,62]
chunkst Number of chunks touched in the target branch
chunkss Number of chunks touched in the source branch

loc Number of source lines of code touched in the [61,62]merge scenario (i.e., code churn)

loct
Number of source lines of code touched in the [22,40,47]target branch

locs
Number of source lines of code touched in the [22,40,47]source branch

commits Number of commits created in the merge scenario [22,39,40,47,61]
commitst Number of commits created in the target branch
commitss Number of commits created in the source branch

Independent (Social) variables
topp Number of top contributors at project level [15, 43,50,57]

topp&t
Number of top contributors at project level
contributing to the target branch

topp&s
Number of top contributors at project level
contributing to the source branch

occp Number of occasional contributors at project level [15, 43,50,57]

occp&t
Number of occasional contributors at project
level contributing to the target branch

occp&s
Number of occasional contributors at project
level contributing to the source branch

topms Number of top contributors at merge-scenario level

topms&t
Number of top contributors at merge-scenario
level contributing to the target branch

topms&s
Number of top contributors at merge-scenario
level contributing to the source branch

occms
Number of occasional contributors at merge-scenario
level

occms&t
Number of occasional contributors at merge-scenario
level contributing to the target branch

occms&s
Number of occasional contributors at merge-scenario
level contributing to the source branch

devs Number of active developers in a merge scenario [61,62]
devst Number of active developers in the target branch [21,22,39,47]
devss Number of active developers in the source branch [21,22,39,47]

devst&s
Number of active developers in target and source
branches



Predicting Merge Conflicts Considering Social and Technical Assets 17

Table 2 Developer code contributions at project and merge-scenario level

Developer Project Merge-Scenario
Dev X 17 -
Dev A 8 8
Dev B 2 2
Dev C 1 1
Dev D 1 1
Total loc 29 12

at the merge commit, Dev X authored 17 lines of code (3 loc in File 1, 1
loc in File 2, 1 loc in File 3, and 12 loc in File 4). Note that changes from
DevA, Dev B, and Dev C are concurrently causing merge conflicts. Note
that Dev X is not an active developer in the exemplified merge scenario since
she does not commit between the base and merge commit.

At the merge commit the project had 29 lines of code. Hence, the first
developers with the large number of lines of code that touched 23 lines of
code are classified as top contributors. Hence, Dev X and Dev A are top
contributors and Dev B, Dev C, and Dev D are occasional contributors at
project level. We see that 12 lines of code changed in the exemplified merge
scenario. Hence, developers that touched 10 lines of code are classified as top
contributors. Hence, Dev A and Dev B are top contributors and Dev C and
Dev D are occasional contributors at merge scenario level.

Looking at the social measures we see that 4 developers are active in this
merge scenario (devs - Dev A, Dev B, Dev C, and Dev D) where two
touched the target branch (devst - Dev A and Dev D) and three touched the
source branch (devss - Dev A, Dev B, and Dev C). The only developer that
touched both target and source branches is Dev A (devst&s). The number
of top contributors at project level is one (topp - Dev A) since despite of
Dev X was classified as top contributor, she is not active in the illustrated
merge scenario. As Dev A contributed to the target and source branch, topp&t

and topp&s is one. The number of occp is three (Dev B, Dev C, and Dev D)
where Dev D contributed to the target branch (i.e., occp&t is one) and Dev B
and Dev C contributed to the source branch (i.e., occp&t is two). Looking at
measures at merge-scenario level, the number of top developers is two (topms -
Dev A and Dev B) where Dev A contributed to the target branch (topms&t)
and Dev A and Dev B contributed to the source branch (topms&s). The
number of occasional contributors is two (occms - Dev C and Dev D) where
Dev D contributed to the target branch (occms&t) and Dev C contributed to
the source branch (occms&s).

Framework and Data Availability. Our data mining (Java) and anal-
ysis frameworks (Python) are open-source. All data necessary for replicating
this study are stored in a MySQL database and replicated on spreadsheets
(.csv files). All tools, links to subject projects, subject projects filtering process,
and data are available at our supplementary Web site [63].



18 Vale et. al

4.4 Operationalization

The operationalization of RQ1 and RQ2 consists of getting the set of merge
scenarios that a given developer role participated in (#MS), a subset of these
merge scenarios which have merge conflicts (#Conf. MS), and share of con-
flicting merge scenarios (i.e., #MS × #Conf. MS) investigated in each research
question (see Section 4.1). For instance, in RQ1.1 we want to find a subset of
merge scenarios from all 78 740 investigated merge scenarios that have top con-
tributors contributing to both target and source branches. From this subset,
we get the number of merge scenarios that have merge conflicts and compute
the share of conflicting merge scenarios. We performed a chi-square test to ver-
ify whether the developer role (top and occasional) differs significantly. The
chi-square test is adequate because we have large and unpaired data (i.e., the
number of merge scenarios varies depending on the developer role), variables
under analysis are categorical (e.g., top- or occasional-contributors), and the
outcome is binomial (i.e., conflicting or safe merge scenarios). The null and
alternative hypotheses for RQ1 and RQ2 are:

H0: Developers’ role and emergence of merge conflicts are independent.
Ha: Developers’ role and emergence of merge conflicts are not independent.

where the p-value is below 0.01 (i.e., 99% significance level), we reject the
null hypothesis (H0) and accept the alternative hypothesis (Ha). Accepting
the alternative hypothesis suggests that the variables are related, but the rela-
tionship is not necessarily causal. As we measured several attributes for each
merge scenario, we grouped them using set operations (e.g., union) and treated
each influencing factor separately. Aiming at getting a baseline for comparison
of our results, we compared the results of each developer role with the overall
average of conflicting merge scenarios for all merge scenarios in analysis. Thus,
we increased the knowledge over our data and internal validity.

The operationalization of RQ3 and RQ4 consists of using data acquired
as described in Section 4.3 and follows three steps: (i) to balance our data
since merge conflicts happen in only the minority of merge scenarios, (ii) to
select the target measures (i.e., features), and (iii) to predict conflicting sce-
narios using three classifiers. We used multiple balancing techniques, sets of
measures, and classifiers to show practitioners which configurations perform
better on our data. For data balancing, we chose seven techniques (under, over,
both, SMOTE, BorderlineSmote, SVMSmote, Adasyn). For feature selection,
in RQ3, we created a model using only the social measures presented in Table 1
as we want to investigate the prediction of merge conflicts using only social as-
sets. In RQ4, we created two models, one using only the technical measures and
the other one all measures presented in Table 1. We build these two models to
be able to compare our results with the model created for RQ3 and with a pre-
vious study [47]. To predict conflicts, we chose three classifiers (decision tree,
random forest, and KNN), because they are simple yet achieve good results for
binomial classification. Due to the importance of hyper-parameters, we used



Predicting Merge Conflicts Considering Social and Technical Assets 19

grid-search with 10-fold cross-validation to find the right hyper-parameters to
use. For each classifier, we tuned it using all possible hyper-parameters. For
instance, for decision tree, we set the hyper-parameters: max depth (10, 50, 80,
100, 150, 200), max feature (auto, sqrt, log2), min samples split (2, 3, 5, 10),
min samples leaf (1, 2, 3, 5, 10), criterion (gini, entropy) and, splitter (best,
random). The complete list of hyper-parameters and tuning values, as well as,
a description of each balancing technique and classifier are available at our
supplementary Web site [63].

Performance Measures. We showed precision, recall, and f1-score for
conflicting and safe merge scenarios. Furthermore, even though the previ-
ous work [47] mentioned that accuracy is not a good performance measure
when dealing with a discrepant difference between the majority and minor-
ity classes, we also showed accuracy and area under the curve (AUC ) for our
general predictions. Presenting results for conflicting and safe scenarios pro-
vides a complete view of how a detector would perform in practice than only
presenting general measures. In our case, it is desirable to have higher recall
than higher precision for conflicting scenarios since it is better to predict all
conflicting scenarios and some false-positives (i.e., reported as conflicting sce-
narios, but they are safe in practice) than miss some conflicting scenarios (i.e.,
true-negatives). In other words, it is better to suggest speculative merges for
some safe-scenarios than ignore some real conflicting scenarios. We considered
f1-score the second most relevant performance measure since its computation
combines precision and recall. In cases where we found the same value for the
performance measures, we present the results for the model with lower values
for the hyper-parameters.

5 Results

In this section, we present the results structured according to our research
questions. Overall, we investigated 78 740 merge scenarios of which 3 950 of
them have merge conflicts. It corresponds to an average of 5.02% conflicting
merge scenarios. We use this percentage in RQ1 and RQ2 to compare if a
developer role is above or below the general average.

5.1 RQ1. Which developer role is more often related to merge conflicts
considering project and merge-scenario level separately?

We answer this question by looking at data from project and merge-scenario
level separately. In Table 3, we present the general result for RQ1.1 and the
results for each branch. Top contributors at project level contributed to the
target and source branches in 45 297 merge scenarios and 3 290 of them have
merge conflicts. It represents a share of 7.26% of conflicting merge scenarios.
Occasional contributors at project level contributed to 60 609 merge scenarios,
3 409 of them have merge conflicts. It represents a share of 5.62% of conflicting



20 Vale et. al

Table 3 Top and occasional contributors at project level contributions overview

Branch Dev. Role #MS #Conf. MS %Conf.MS
Top 45 297 3 290 7.26%Target & Source Occ. 60 609 3 409 5 . 62 %
Top 33 872 2 301 6.79%Target Occ. 46 826 2 745 5. 86 %
Top 20 925 2 590 12.38%Source Occ. 35 086 2 970 8. 46 %

Dev.: developer, #MS: number of merge scenarios and #Conf.MS: number of
conflicting merge scenarios

Table 4 Top and occasional contributors at merge-scenario level contributions overview

Branch Dev. Role #MS #Conf. MS %Conf.MS
Top 75 142 3 623 4 . 82 %Target & Source Occ. 21 751 2 880 13.24%
Top 62 214 3 039 4 . 88 %Target Occ. 17 100 1 424 8.32%
Top 53 812 2 344 4 . 36 %Source Occ. 8 023 1 974 24.60%

Dev.: developer, #MS: number of merge scenarios and #Conf.MS: number of
conflicting merge scenarios

merge scenarios. Note that it does not need to be the same developer. It just
needs to have at least one given developer role contributing to the target
branch and at least one developer contributing to the source branch. With
the chi-square test (X-squared=103.01, df=1, p-value< 2.2e−16), we reject the
null hypothesis and accept the alternative hypothesis. Thus, we conclude that
there is a relationship between the developer role and the emergence of merge
conflicts. We found a similar result for the target and source branches.

In Table 4, we present the general result for RQ1.2 and the results for
each branch. Top contributors at merge-scenario level contributed to 75 142
analyzed merge scenarios and 3 623 conflicting merge scenarios. It represents
a share of 4.82% of conflicting merge scenarios. Occasional contributors at
merge-scenario level contributed to 21 751 merge scenarios and to 2 880 con-
flicting merge scenarios. It represents a share of 13.24% of conflicting merge
scenarios. With the chi-square test (X-squared=1600.4, df=1, p-value< 2.2e−16),
we reject the null hypothesis and accept the alternative hypothesis. Thus, we
conclude that there is a relationship between the developer role and the emer-
gence of merge conflicts. We also found a similar result for the target and
source branches.

Comparing the results with the general average, we observed that contrib-
utors at project level have a greater percentage for all the cases. For instance,
top and occasional contributors have a share of 7.26% and 5.62% conflict-



Predicting Merge Conflicts Considering Social and Technical Assets 21

ing scenarios, respectively. For developer roles at merge-scenario level, we see
that occasional contributors have a share of conflicting merge scenarios above
the general average (between 8.32%–24.60%) while top contributors do not
(between 4.36%–4.88%).

We expected that top contributors are related to more merge conflicts
than occasional contributors since the more code a developer changes, the
greater the chance of happening conflicting merge scenarios. However, our
results of RQ1.2 shows that, at merge-scenario level, occasional contributors
are more often involved in conflicting merge scenarios than top contributors.
To illustrate, let us consider a merge scenario with 4 developers changing 100
lines of code. Dev A changed 50 lines of code (50% chance to be related to
conflicts), Dev B changed 40 lines of code (40%), Dev C and Dev D changed
5 lines of code each (5% each). In this merge scenario, Dev A and Dev B
are top contributors and Dev C and Dev D are occasional contributors. Note
that the chance of Dev C and Dev D being in merge conflict is only 10%.
Nevertheless, even despite this small chance, these occasional contributors were
responsible for all conflicting changes.

RQ1 Summary: At project level, top contributors are related proportion-
ally more to conflicting merge scenarios than occasional contributors, and
occasional contributors collaborate to more merge scenarios than top con-
tributors. At merge-scenario level, the share of conflicting merge scenarios
is greater for occasional contributors than for top contributors. Around one
quarter of the contributions of occasional contributors at merge-scenario
level in the source branch are related to merge conflicts.

5.2 RQ2. Which combination of developer roles is related to merge conflicts
combining project and merge-scenario level classification?

In Table 5, we present the general result for RQ2 and the results for each
branch. As expected, merge scenarios with top contributors at project touch-
ing the target and the source branches that are also top contributors at merge-
scenario level occurred more often than merge scenarios with top contributors
at project level touching the target and source branches and occasional contrib-
utors at merge-scenario level (44 497 against 15 834). However, when looking
at the proportion of conflicting merge scenarios, top contributors at project
level that are occasional contributors at merge scenario level have the higher
percentage (15.76%) than all other developer roles. With the chi-square test
(X-squared = 1229.6, df=3, p-value< 2.2e−16), we reject the null hypothesis
and accept the alternative hypothesis. Thus, we conclude that there is a rela-
tionship between the developer role and the emergence of merge conflicts. We
found a similar result for the target and source branches.



22 Vale et. al

Table 5 Top and occasional contributors combining project and merge-scenario level con-
tributions overview

Branch Dev. Role #MS #Conf. MS %Conf.MS
Topp ◦ topms 44 497 3 070 6 . 90 %
Topp ◦ occms 15 834 2 496 15.76%
Occp ◦ topms 57 053 3 084 5 . 41 %Target & Source

Occp ◦ occms 21 195 2 800 13 . 21 %
Topp ◦ topms 23 728 1 579 6 . 65 %
Topp ◦ occms 11 268 1 164 10.33%
Occp ◦ topms 31 009 1 880 6 . 06 %Target

Occp ◦ occms 16 188 1 329 8 . 21 %
Topp ◦ topms 11 184 1 678 15 . 00 %
Topp ◦ occms 4 943 1 597 32.31%
Occp ◦ topms 18 793 1 933 10 . 29 %Source

Occp ◦ occms 1 914 1 974 24 . 93 %
Dev.: developer, #MS: number of merge scenarios and #Conf.MS: number of
conflicting merge scenarios

RQ2 Summary: Looking at developer roles at project and merge-scenario
levels together, we found that merge scenarios with top contributors at
project level and occasional contributors at merge-scenario level touching
the target and source branches have the greatest share of conflicting merge
scenarios in general and for the analysis of both branches. Surprisingly,
around one-third of the contributions of these developer roles in the source
branch are related to merge conflicts. It is surprising because it represents
six times more than the general average (i.e., without considering developer
roles) and three times more the contributions of the same developer roles
in the target branch.

5.3 RQ3. Are merge conflicts predictable using only social measures?

When answering RQ3 and RQ4, we present only the best performance results
according to the criteria described in Section 4.4. Presenting only a few results
is necessary since we have results for a combination of three models (social
vs. technical vs. social and technical measures), seven balancing techniques
(i.e., under-, over-, both-, SMOTE-, BorderlineSmote-, SVMSmote-, Adasyn-
sampling), and three classifiers (i.e., decision tree, random forest, and KNN).
The complete results can be seen in our supplementary Web site [63].

In Table 6, we present the results of our predictions using social measures
for each classifier highlighting the best balancing techniques. By best balanc-
ing techniques, we mean the balancing techniques that balanced our data in
a way that made our classifiers perform better. Reinforcing, we use the re-
call and f1-score of conflicting scenarios as our main performance measures
(see Section 4.4). Hence, once we got the best setup (i.e., the combination of



Predicting Merge Conflicts Considering Social and Technical Assets 23

Table 6 Performance overview for social measures

Classifier Bal. Tech. Scenario R F1 P Acc. AUC

Decision Tree Over Safe 0.60 0.75 1.00 0.62 0.80Conflicting 0.99 0.21 0.12
Under
SMOTE Safe 0.58 0.74 1.00Random Forest
Adasyn Conflicting 1.00 0.20 0.11 0.60 0.79

KNN Adasyn Safe 0.72 0.83 1.00 0.73 0.83Conflicting 0.94 0.26 0.15
Bal. Tech.: balancing technique, R: recall, F1: f1-score, P: precision, and Acc.: accuracy

classifier and balancing technique) for conflicting scenarios, we highlight their
results.

For the predictions of conflicting scenarios using only social measures, the
setup with random forest performed better when using balanced data from
under, SMOTE, or Adasyn-sampling technique. With this setup, we achieve a
recall, f1-score, and precision of 1.00, 0.26, and 0.15, respectively. Regarding
safe scenarios, we found a recall, f1-score, and precision of 0.72, 0.83, and 1.00,
respectively. In terms of accuracy and AUC this setup achieved 0.60 and 0.79.

Note that the setup using KNN classifier with data from Adasyn-sampling
technique achieved better accuracy and AUC are 0.73 and 0.83 than the setup
with better recall. Furthermore, note that none of the setups achieved high
f1-score and precision for conflicting scenarios (all values below 0.3).

RQ3 Summary: Using only social measures we created a model in which
the random forest classifier achieved 1.00 of recall. Therefore, we conclude
that it is possible to predict conflicting merge scenarios using only social
measures. Classifying all conflicting scenarios correctly means that we can
reduce speculative merging considerably without missing any real conflict-
ing scenarios. In any event, we highlight the low precision of our model
which leads to an open challenge of increasing the precision of models
using only social measures.

5.4 RQ4. Is a model combining social and technical measures better than a
model composed of only social measures to predict merge conflicts?

Before looking at the results combining social and technical measures, we
present the results of a model using only technical measures. As mentioned,
we created this model aiming at increasing our understanding on the mod-
els as well as fomenting discussions. In Table 7, we present the results of our
predictions, similar we did when answering RQ3. For the predictions of con-
flicting scenarios, the setup using random forest classifier and balanced data
from SMOTE- or Adasyn-sampling techniques performed better. With this



24 Vale et. al

Table 7 Performance overview for technical measures

Classifier Bal. Tech. Scenario R F1 P Acc. AUC

Decision Tree

Over

Safe 0.88 0.93 1.00 0.88 0.94
Both

Conflicting 1.00 0.46 0.30SMOTE
BorderlineSmote
Adasyn
SMOTE Safe 0.92 0.96 1.00Random Forest Adasyn Conflicting 1.00 0.56 0.39 0.92 0.95

KNN Adasyn Safe 0.75 0.85 1.00 0.76 0.84Conflicting 0.93 0.28 0.16
Bal. Tech.: balancing technique, R: recall, F1: f1-score, P: precision, and Acc.: accuracy

setup, we achieved a recall, f1-score, and precision of 1.00, 0.56, and 0.39, re-
spectively. Regarding safe scenarios, we found a recall, f1-score, and precision
of 0.92, 0.96, and 1.00, respectively. In terms of accuracy and AUC, we found
0.92 and 0.95.

Note that we found the maximum value for the model using only social
measures in terms of recall for conflicting scenarios. However, the value for
other performance measures increases in the model using technical measures.
For instance, f1-score and precision for conflicting scenarios increase from 0.26
to 0.92 and from 0.15 to 0.39, respectively. We also see an increase for safe
scenarios and general measures. For instance, the accuracy for the social and
technical models are 0.73 and 0.92, respectively.

In Table 8, we present the predictions of our model using social and techni-
cal measures similar to Table 6 and Table 7. For the predictions of conflicting
scenarios, the setup using random forest classifier and balanced data from
under- or over-sampling techniques performed better. With this setup, we
found a recall, f1-score, and precision of 1.00, 0.56, and 0.39, respectively. Re-
garding safe scenarios, we found a recall, f1-score, and precision of 0.92, 0.96,
and 1.00 for the same setup, respectively. In terms of accuracy and AUC, we
found 0.92 and 0.96, respectively.

As seen, the results of a model using only technical measures and the other
using all (social and technical) measures are basically the same. Only the AUC
increased from 0.95 to 0.96. For the technical and all measures models, the
random forest classifier performed slightly better than the other classifiers and
the data from under- and over-sampling presented better results than the data
from other balancing techniques.

Observing that no real improvements were obtained adding the technical
and social measures, in Figure 4 we show the correlation-matrix to identify
whether the investigated measures correlate with each other. Be aware that
correlating pairs of investigated variables provide a limited and simpler view-
point compared to the machine learning classifiers predictions. As we can see
in Figure 4, some social measures are correlated with each other and also
with some technical measures. For instance, occp has a high positive correla-



Predicting Merge Conflicts Considering Social and Technical Assets 25

Table 8 Performance overview for all (technical and social) measures

Classifier Bal. Tech. Scenario R F1 P Acc. AUC

Decision Tree Over Safe 0.87 0.93 1.00 0.87 0.93Conflicting 1.00 0.44 0.29
Under Safe 0.92 0.96 1.00Random Forest Over Conflicting 1.00 0.56 0.39 0.92 0.96

KNN Adasyn Safe 0.73 0.84 0.99 0.74 0.82Conflicting 0.92 0.27 0.16
Bal. Tech.: balancing technique, R: recall, F1: f1-score, P: precision, and Acc.: accuracy

tion with devs (0.78) and occp&t (0.73) and a moderate positive correlation
with occp&s (0.65), occms (0.64), commits (0.60), occms&t (0.55). All corre-
lations were computed using Spearman-rank based correlation with 95% of
confidence level. Spearman-rank based correlation is invariant for linear trans-
formations of covariates and is simple and useful to understand the relation
among our covariables [33]. Having social measures correlated with each other
might have provided similar information to the social model not improving
its performance. Having social measures related to technical measures made
the addition of social measures to the technical model, introducing only infor-
mation that technical measures had already provided. We come back with a
discussion on this topic in Section 6.2.

RQ4 Summary: In terms of recall, the three models we built (only social
vs. only technical vs. all measures) found 1.00 of recall for conflicting
scenarios (i.e., they were able to retrieve all real conflicting scenarios).
Considering accuracy, AUC, f1-score, and precision for conflicting and safe
scenarios, the models using only technical and all social and technical
measures performed better than those using only social measures.

6 Discussion

We divide this section into three parts. First, we compare our results with
previous work predicting merge conflicts. Second, we present a reflection upon
our results. Finally, we present implications of our results and findings to
practitioners, researchers, and tool builders.

6.1 Comparing Results

As mentioned in Section 2.2, there are six studies predicting merge conflicts.
As the approach and results from Accioly et al. [2], Leßenich et al. [40], Rocha
et al. [51], and Dias et al. [18] differ significantly from ours, it is not fair
comparing our results. For instance, while we compare developer roles and the
used machine learning classifiers to predict conflicts, Accioly et al. [2] computed



26 Vale et. al

Fig. 4 Correlation matrix of investigated variables.

recall and precision to identify merge conflicts related to two types of code
changes. Hence, even though they also compute recall and precision, our results
are not comparable. Despite of Trif et al. [59] used machine learning like us,
they present just a general recall and precision, i.e., they do not differ safe and
conflicting scenarios. Furthermore, they do not show f1-score and AUC. Hence,
we opted to not compare their results with ours. Owhadi-Kareshk et al. [47],
on the other hand, used machine learning classifiers like us and present recall,
precision, and f1-score for safe and conflicting scenarios making our results
comparable. Even though we use a different set of measures/variables, subject
projects, and they present the results by programming language, we consider
our results comparable.

In Table 9, we present the results for the performance measures presented
in their study (i.e., recall, f1-score, and precision) which is a subset of our
performance measures. Aiming at providing a fair comparison, we show the
interval of their results by programming languages for the random forest clas-
sifier. Similar to our study, the random forest classifier was the classifier that
performed better. Looking at safe scenarios, they presented better recall, simi-
lar f1-score, and lower precision. Looking at conflicting scenarios, we presented



Predicting Merge Conflicts Considering Social and Technical Assets 27

Table 9 Comparison of our results with the results of Owhadi-Kareshk et al. [47]

Study Scenario Recall F1-score Precision
Owhadi-Kareshk et al. [47] Safe [0.93,0.96] [0.95,0.97] [0.97,0.98]
Ours 0.92 0.96 1.00
Owhadi-Kareshk et al. [47] [0.68,0.83] [0.57,0.68] [0.48,0.63]
Ours Conflicting 1.00 0.56 0.39

higher recall and lower f1-score and precision. It is important to mention that
we focus on increasing recall of conflicting merge scenarios since missing real
conflicting scenarios might damage speculative merge tools and hurt users’ con-
fidence on the predictions making them stop using tool support [30]. Hence, we
consider essential to retrieve all real conflicting scenarios. This choice made us
decrease precision. In other words, we ensure that all real conflicting scenarios
were correctly classified, but we classified some safe scenarios as conflicting
scenarios (see Section 4.4).

6.2 Reflecting on Results

Occasional contributors are more related to conflicting scenarios
than top contributors. As mentioned, we expected that top contributors
are related to more merge conflicts than occasional contributors since the
more code a developer changes, the greater the chance of happening conflict-
ing merge scenarios. However, our results when answering RQ1 (see Table 4)
show the opposite. In other words, at merge-scenario level, occasional contribu-
tors are conflict-prone when compared to top contributors. For instance, when
looking at the source branch, the percentage of conflicting merge scenarios for
occasional contributors is 24.60%, while for top contributors the percentage of
conflicting merge scenarios is only 4.36%. We speculate that there may be two
reasons for this phenomenon: i) occasional contributors normally change more
code than necessary to address a task, such as fix a bug and ii) occasional
contributors take more time than necessary to complete a task. We plan an
in-situ investigation in future work to draw a conclusion about it.

One-third of scenarios have merge conflicts when top contributors
at project level and occasional contributors at merge-scenario level
touch the source branch. Once we know the conflict-prone developer roles,
project coordinators or developers themselves should increase awareness when
these developer roles are touching the source code. Considering that it is easy
for practitioners collecting the required information (i.e., developer roles at
project and merge-scenario level and the touched branch), they can use this
information in practice without tool support. Looking at our data, we saw that
merge conflicts are rare when there is none or one occasional contributor at
both project and merge-scenario level touching the source branch. However,
when there are two or more occasional contributors, the chances of conflicting



28 Vale et. al

merge scenarios increase considerably. Looking at Table 5, we saw that one-
third of the scenarios led to conflicts when there is at least a top contributor
at project level and an occasional contributor at merge-scenario level touching
the source branch.

Random forest performed better than decision tree and KNN
classifiers. Looking at the answers of RQ3 and RQ4, we can see that the
random forest classifier performed better than the other classifiers. For in-
stance, in the technical- and all measure models, random forest performed
better or equally for all performance measures presented in Table 7 and Ta-
ble 8. Owhadi-Kareshk et al. [47] found similar results, as we discussed in Sec-
tion 6.1. With all, we suggest this classifier for further analysis and research on
conflict predictions. Be aware that all classifiers used the same data to predict
the conflicts. So, the performance is indeed related to the competence of a
classifier retrieves better recall, f1-score, precision, and AUC.

Adasyn-sampling is a reasonable balancing technique to use for
merge scenario data. Adasyn-sampling is one of the newest balancing tech-
niques and performed better in six out of the nine cases we explored. Over- and
SMOTE-sampling also performed well, appearing in four and three cases we
investigated, respectively. We suggest Adasyn-sampling balancing technique
for further analysis and research on merge conflicts.

The touched branch might be insightful for different kinds of
analyses. Following our study, we see that the answers of research questions
are complementary. Answering RQ1, we took a simple viewpoint. Answering
RQ2, we combined developer roles at both project and merge-scenario level.
This information was fundamental to achieve reasonable performance measures
because we increased our knowledge over our data, especially for the touched
branch confounding factor. In fact, we are not the first ones exploring the
touched branch factor. However, while previous work [14,26] reports different
contribution patterns on the target and source branches, we are the first ones
to show that the touched branch influences the emergence of merge conflicts.
In some cases, only the fact of considering the touched branch triples the share
of conflicting merge scenarios. For instance, while occasional contributors at
merge-scenario level touching the target branch have a share of 8.32%, these
contributors touching the source branch have a share of 24.60% (see Table 4).
Therefore, as the touched branch played an important role in our analyses and
on previous work [14,26], We speculate that the touched branch might be useful
for studies mining repositories, investigating project quality criteria, predicting
bugs, and other anomalies. For instance, it might provide a new perspective
and increase performance when predicting bugs on software systems.

Computing social versus technical measures. As mentioned, devel-
opers deeper into the project have a great knowledge of what is going on.
Hence, they are able to classify developers at project and merge scenario level
without formal measurement. Considering the results of RQ1 and RQ2, they
are able to identify conflict-prone scenarios with informal measurement and
without tool support. In the case of top contributors at project level and oc-
casional contributors at merge-scenario level, around one third of the merge



Predicting Merge Conflicts Considering Social and Technical Assets 29

scenarios have merge conflicts (see Table 5). On the other hand, when a formal
measurement is preferred, computing technical measures is simpler because so-
cial measures are computed based on the lines of code (a technical measure).
Therefore, to compute the developer role related measures, we first need to
compute technical measures and then, compute social measures.

Why did the model with social and technical measures not per-
form better than the model with only technical measures? We see two
factors influencing the performance of the model with all measures: i) inserting
confounds and ii) increasing the complexity of the investigated phenomenon.

Inserting confounds. Confounds are variables related to each other, but
which are not positively impacting the predictions. We already showed a dis-
cussion on this topic when answering RQ4. Hence, in Section 5.4, we saw that
some social measures are correlated with each other (e.g., Spearman-rank of
0.78 between occasional contributors at project-level (occp) and the number of
developers (devs)) and also with some technical measures (Spearman-rank of
0.60 between occp and the number of commits (commits)). Having variables
correlated with each other in our model is not necessarily bad, however, it
does not help improving the performance of our model.

Increasing the complexity of the investigated phenomenon. The model using
only technical measures is composed of 13 independent variables. The model
with only social measures is composed of 16 independent variables. Hence,
the model with all measures is composed of 29 independent variables which
increases the complexity of the investigated phenomenon. Machine learning
classifiers are able to identify which variables are more relevant to predict the
dependent variable (i.e., minimising over-fitting). However, the more complex
the phenomenon, the more difficult it will be to find a function that describes
that behaviour. Considering that some variables do not add useful information
to the model and the great complexity of the investigated phenomenon with
all variables, social measures were not able to improve the performance on the
predictions of the technical model. At least adding the social measures did not
confuse the technical measures decreasing the performance of the all measures
model compared with the technical model performance.

6.3 Implications for Practitioners, Researchers, and Tool Builders

Researchers should focus more on the social perspective and on the
branch developers touch. The social perspective in general and the touched
branch factor are often ignored when dealing with merge conflicts. Even though
using only social measures does not perform optimally, our study reinforces
that social information and the touched branch influence on the emergence of
merge conflicts. We suggest researchers using developer roles and the touched
branch information when investigating merge conflicts. The information of the
developer roles and the touched branch might be useful also to other kinds of
analysis mining software repositories.



30 Vale et. al

Tool builders should use developer roles for building tools that
reduce speculative merging. We show evidence that some developer roles
are more often related to conflicting scenarios than others. So, we suggest tool
builders using this information to reduce speculative merging. Hence, before
performing speculative merging, their tools filter merge scenarios that have a
chance of having merge conflicts. Developer roles can also be useful to construct
awareness tools. For instance, merge scenarios that have top contributors at
project level and occasional contributors at merge-scenario level touching the
source branch, might be closely coordinated/monitored since one third of them
end with merge conflicts.

Social measures are a good alternative to retrieve conflicting sce-
narios. As seen in Section 2.3, human factors play an important role in soft-
ware development. In our study, we were able to retrieve all real conflicting
merge scenarios using developer roles. As discussed in Section 6.2, developers
with a deep understanding of the project collaboration are able to manually
classify developers into top and occasional contributors without formal mea-
surement. Hence, they can avoid merge conflicts by coordinating conflict-prone
developer roles more closely. Once automated classification is desired, they can
use speculative or awareness tools as previously discussed.

Practitioners should care more about the order of development
tasks. Once it is clear that a conflict will arise when developers touch the
same piece of code in different branches, practitioners might find ways to
define an order to perform their tasks in a way that they are not going to
touch the same parts of code in different branches (i.e., excluding the chances
of merge conflicts arise). Researchers have been investigating and creating
tools to support this [22, 26, 36, 52, 62]. So, practitioners can already use the
proposed tools.

7 Threats to Validity

In this section, we discuss potential threats to the validity of our study to help
further research and replications of this study. In the following, we detail the
main internal and external threats to validity.

Internal validity. We discuss three main internal threats to validity. First,
we used simple and common metrics to classify developers. This poses the
threat that the metrics do not accurately capture reality. This threat is minor,
as existing evidence indicates that those metrics accurately reflect the develop-
ers’ perception [15,20,50,57]. Second, we used a single alias instead of looking
at developers’ contributions across multiple information sources (i.e., mail-
ing list, social networks, and version-control system). Although contributors
in general are interested in the relevance/recognition of their contributions,
maintaining multiple aliases would not be productive. For this reason, we think
this threat has limited influence on developer classifications. Third, we selected
subject projects from different programming languages; hence, one language
could have dominated our dataset. To minimize this threat, we checked and



Predicting Merge Conflicts Considering Social and Technical Assets 31

excluded less popular JavaScript projects until they do not dominate our
dataset, as presented in filter iv of Section 4.2.

External validity. Three factors can contribute to external threats to
validity. First, we used Git and GitHub as platforms, the three-way merge
pattern, and the set of metrics. Generalizability to other platforms, projects,
development patterns, and set of metrics is limited. This sample limitation
was necessary to reduce the influence of confounds, increasing internal valid-
ity, through [54]. While more research is needed to generalize to other version
control systems and development patterns, we are confident that we select and
analyze a practically relevant platform and a substantial number of software
projects from various domains, programming languages, longevity, size, and
coordination practices. In addition, our filters applied during subject project
selection guarantee, for instance, that we sample real and active projects (see
Section 4.2). Second, we could not retrieve information from binary files; hence,
we may miss information from some merge scenarios. Unfortunately, we could
not do anything about that, however, the number of binary files is normally
small in software projects. Third, performing only automated analyses. Inter-
viewing or surveying developers could make our analyses more trivial; however,
considering that developers think they are doing the right thing, their answers
could not point to their faults.

8 Conclusions and Future Work

In this study, we investigated the relation of top and occasional contributors
on the emergence of merge conflicts and merge conflict predictions using social
and technical assets. To achieve our goal, we mined 66 repositories of popular
software projects with a total of 78 740 merge scenarios.

As a result of our initial analysis to understand the influence of developer
roles on merge conflicts, we saw that those roles are practical and statistically
related to the emergence of merge conflicts. When looking at project level,
top contributors are more related to merge conflicts than occasional contrib-
utors. On the other hand, when looking at merge-scenario level, occasional
contributors are more related to merge conflicts than top contributors. Join-
ing the analysis of project and merge-scenario level, we saw those scenarios,
where top contributors at project level and occasional contributors at merge-
scenario level contribute, are more related to merge conflicts than the other
combination of developer roles. We also found that contributions on the source
branch are more conflict-prone than contributions on the target branch. For
instance, 24.60% of the contributions of occasional contributors in the source
branch resulted in merge conflicts, while only 8.32% of these contributors on
the target branch resulted in merge conflicts.

Our predictions achieved 100% of recall for the three models we built (social
measures vs. technical measures vs. all measures). Predicting merge conflicts
using social and technical assets is useful in practice and these models retrieved
all real conflicting scenarios. At the end, we reinforce the importance of using



32 Vale et. al

the information of the touched branch and the social perspective in analyses of
software repositories. These pieces of information are important since coding
is a social task and they played an important role in our analyses.

In the future, we plan to: (i) deeply investigate the influence of the change
location on the emergence of merge conflicts, (ii) survey developers with a large
share of conflicting contributions to get their perception of practices that cause
merge conflicts, (iii) mine repositories from other source and version control
systems to compare our results, (iv) retrieve the performance of other classifiers
and measures to predict merge conflicts, and (v) perform a deep analysis on
a few developers that are involved in the majority of merge conflicts in a few
projects to understand from different perspectives which factors (e.g., type of
changes and changed files) are more related to merge conflicts.

9 Acknowledgement

This work was supported by the German Research Foundation (AP 206/14-1)
and by the Brazilian National Council for Scientific and Technological Devel-
opment - CNPq (grant 290136/2015-6).

References

1. P. Accioly, P. Borba, and G. Cavalcanti. “Understanding Semi-structured Merge Con-
flict Characteristics in Open-source Java projects”. In Empirical Software Engineering.
Springer, pp. 1–35, 2017.

2. P. Accioly, P. Borba, L. Silva, and G. Cavalcanti, “Analyzing Conflict Predictors in
Open-source Java Projects”. In Proceedings of the International Conference on Mining
Software Repositories (MSR), ACM, pp. 576–586, 2018.

3. S. Apel, O. Lessenich, and C. Lengauer. “Structured Merge with Autotuning: Balancing
Precision and Performance”. In Proceedings of the International Conference on Auto-
mated Software Engineering (ASE). ACM, pp. 120–129, 2012.

4. S. Apel, J. Liebig, B. Brandl, C. Lengauer, and C. Kästner. “Semistructured Merge:
Rethinking Merge in Revision Control Systems”. In Proceedings of the Symposium and
the European Conference on Foundations of Software Engineering (ESEC/FSE). ACM,
pp. 190–200, 2011.

5. J. Biehl, M. Czerwinski, G. Smith and G. Robertson “FASTDash: A Visual Dashboard
for Fostering Awareness in Software Teams”. In Proceedings of the Conference on Human
Factors in Computing Systems (CHI), ACM, pp. 1313–1322, 2007.

6. C. Bird, D. Pattison, R. D’Souza, V. Filkov, and P. Devanbu. “Latent Social Structure in
Open Source Projects”. In Proceedings of the International Symposium on Foundations
of Software Engineering (FSE). ACM, pp. 24–35, 2008.

7. C. Bird, N. Nagappan, B. Murphy, H. Gall, and P. Devanbu. “Don’t touch my code!:
Examining the Effects of Ownership on Software Quality”. In Proceedings of the Euro-
pean Software Engineering Conference and the Symposium on Foundations of Software
Engineering (ESEC/FSE), ACM, pp. 4-14. 2011.

8. C. Brindescu, I. Ahmed, R. Leano, and A. Sarma. “Planning for untangling: Predicting
the difficulty of merge conflicts”. In Proceedings of the International Conference on
Software Engineering (ICSE), ACM, pp. 801-811, 2020.

9. W. Boh, S. Slaughter, and J. Espinosa. “Learning from experience in software develop-
ment: A multilevel analysis”. Management Science, vol. 53(8), pp. 1315–1331, 2007.



Predicting Merge Conflicts Considering Social and Technical Assets 33

10. H. Borges and M.T. Valente. “What’s in a GitHub Star? Understanding Repository
Starring Practices in a Social Coding Platform”. In Journal of Systems and Software
(JSS), Elsevier, vol. 146 (1), pp. 112–129, 2018.

11. Y. Brun, R. Holmes, M. D. Ernst, and D. Notkin. “Proactive Detection of Collaboration
Conflicts”. In Proceedings of the European Software Engineering Conference and the
Symposium on Foundations of Software Engineering (ESEC/FSE). ACM, pp. 168–178,
2011.

12. J. Buffenbarger, “Syntactic Software Merging”. In Software Configuration Management.
Springer, pp. 153–172, 1995.

13. J. Businge, S. Kawuma, E. Bainomugisha, F. Khomh, and E. Nabaasa. “Code Author-
ship and Fault-proneness of Open-Source Android Applications: An Empirical Study”.
In Proceedings of the International Conference on Predictive Models and Data Analytics
in Software Engineering (PROMISE). ACM, pp. 33-42, 2017.

14. C. Costa, J. Figueiredo, G. Ghiotto, and L. Murta. “Characterizing the Problem of
Developers’ Assignment for Merging Branches”. International Journal of Software En-
gineering and Knowledge Engineering, 24, 10 (2014), pp. 1489–1508, 2014.

15. K. Crowston, K. Wei, Q. Li, and J. Howison. “Core and Periphery in Free/Libre and
Open Source Software Team Communications”. In Proceedings of the Hawaii Interna-
tional Conference on System Sciences (HICSS), IEEE, pp. 45–56, 2006.

16. L. Dabbish, C. Stuart, J. Tsay, and J. Herbsleb. “Social Coding in GitHub: Transparency
and Collaboration in an Open Software Repository”. In Proceedings of the Conference
on Computer Supported Cooperative Work (CSCW). ACM, pp. 1277–1286, 2012.

17. P. Dewan and R. Hegde. “Semi-synchronous Conflict Detection and Resolution in Asyn-
chronous Software Development”. In Proceedings of the Conference on European Com-
puter Supported Cooperative Work (ECSCW). ACM, pp. 159-178, 2007.

18. K. Dias, P. Borba, M. Barreto. “Understanding predictive factors for merge conflicts”.
In Information and Software Technology, Elsevier, vol. 121, p. 106256, 2020.

19. E. Dinella, T. Mytkowicz, A. Svyatkovskiy, C. Bird, M. Naik, and S. Lahiri. “DEEP-
MERGE: Learning to Merge programs”. In Transactions on Software Engineering (TSE),
IEEE, vol. 49, pp. 1599-1614, 2022.

20. T. Dinh-Trong and J. Bieman. “The FreeBSD Project: A Replication Case Study of
Open Source Development”. Transactions on Software Engineering, , IEEE, vol. 31(6),
pp. 481–494, 2005.

21. H. Estler, M. Nordio, C. Furia, and B. Meyer, “Awareness and merge conflicts in
distributed software development”. In Proceedings of the International Conference on
Global Software Engineering (ICGSE), IEEE, pp. 26-35, 2014.

22. Y. Fan, X. Xia, D. Lo, and S. Li, “Early prediction of merged code changes to prioritize
reviewing tasks”. Empirical Software Engineering, Springer, pp. 1–48, 2018.

23. M. Foucault, C. Teyton, D. Lo, X. Blanc, and J. Falleri. “On the Usefulness of Owner-
ship Metrics in Open-source Software Projects”. Information and Software Technology.
Elsevier, vol. 64, pp. 102–112, 2015.

24. T. Fritz, G. Murphy, and E. Hill. “Does a programmer’s activity indicate knowledge
of code?”. In Proceedings of the European Software Engineering Conference and the
Symposium on Foundations of Software Engineering (ESEC/FSE). ACM. pp. 341-350,
2007.

25. “Fstmerge tool”. https://github.com/joliebig/featurehouse/tree/master/
fstmerge.

26. G. Ghiotto, L. Murta, M. Barros, and A. Hoek. “On the Nature of Merge Conflicts a
Study of 2,731 Open Source Java Projects Hosted by GitHub”. Transactions on Software
Engineering, IEEE, pp. 1-25, 2018.

27. G. Gousios, M.A. Storey, and A. Bacchelli. “Work Practices and Challenges in Pull-
based Development: The Contributor’s Perspective”. In Proceedings of the International
Conference on Software Engineering (ICSE). ACM, pp. 285-296, 2016.

28. M. Greiler, K. Herzig, and J. Czerwonka. “Code Ownership and Software Quality:
A Replication Study”. In Proceedings of the Working Conference on Mining Software
Repositories (MSR), IEEE, pp. 2-12, 2015.

29. M. L. Guimarães and A. R. Silva. “Improving Early Detection of Software Merge Con-
flicts”. In Proceedings of the International Conference on Software Engineering (ICSE).
IEEE, pp. 342-352, 2012.

https://github.com/joliebig/featurehouse/tree/master/fstmerge
https://github.com/joliebig/featurehouse/tree/master/fstmerge


34 Vale et. al

30. A. Halin, A. Nuttinck, M. Acher, X. Devroey, G. Perrouin, and B. Baudry. ”Test them
all, is it worth it? Assessing configuration sampling on the JHipster Web development
stack”. In Empirical Software Engineering. Springer, vol. 24, pp. 674-717, 2019.

31. L. Hattori and M. Lanza. “Syde: A Tool for Collaborative Software Development”. In
Proceedings of the International Conference on Software Engineering (ICSE). ACM, pp.
235-238, 2010.

32. “Jdime tool”. http://fosd.net/JDime
33. H. Z. Jerrold. “Significance Testing of the Spearman Rank Correlation Coefficient”.

Journal of the American Statistical Association, vol. 67 (339), Taylor & Francis, Ltd,
pp. 578–580, 1972.

34. M. Joblin, S. Apel, C. Hunsen and W. Mauerer. “Classifying Developers into Core and
Peripheral: An Empirical Study on Count and Network Metrics”. In Proceedings of the
International Conference on Software Engineering (ICSE). ACM, pp. 164-174, 2017.

35. M. Joblin, W. Mauerer, S. Apel, J. Siegmund, and D. Riehle. “From Developer Networks
to Verified Communities: A Fine-grained Approach”. In Proceedings of the International
Conference on Software Engineering (ICSE). IEEE, pp. 563-573, 2015.

36. B.K. Kasi and Anita Sarma. “Cassandra: Proactive Conflict Minimization through Op-
timized Task Scheduling”. In Proceedings of the International Conference on Software
Engineering (ICSE). ACM, pp. 732-741, 2013.

37. S. Just, K. Herzig, J. Czerwonka, and B. Murphy. “Switching to Git: The Good, the Bad,
and the Ugly”. In Proceeding of the International Symposium on Software Reliability
Engineering (ISSRE). IEEE, pp. 400-411, 2016.

38. E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. German, D. Damian. “The
Promises and Perils of Mining GitHub”. In Proceedings of the Working Conference on
Mining Software Repositories (MSR), ACM, 92-101, 2014.

39. O. Kononenko, T. Rose, O. Baysal, M. Godfrey, D. Theisen, and B. Water, “Study-
ing pull request merges: a case study of shopify’s active merchant”. In Proceedings of
the International Conference on Software Engineering (ICSE): Software Engineering in
Practice. ACM pp. 124-133, 2018.

40. O. Leßenich, J. Siegmund, S. Apel, C. Kästner, and C. Hunsen. “Indicators for Merge
Conflicts in the Wild: Survey and Empirical Study”. Automated Software Engineering,
vol. 25, pp. 279-313, 2018.

41. S. McKee, N. Nelson, A. Sarma, and D. Dig. “Software Practitioner Perspectives on
Merge Conflicts and Resolutions.“ In Proceedings of the International Conference on
Software Maintenance and Evolution (ICSME). IEEE, pp. 467-478, 2017.

42. A. Meneely and L. Williams. “Secure open source collaboration: an empirical study
of linus’ law”. In Proceedings of the Conference on Computer and Communications
Security (CCS), ACM, pp. 453-462, 2009.

43. A. Mockus, R. T. Fielding, and J. D. Herbsleb. “Two case studies of open source software
development: Apache and Mozilla”. Transactions Software Engineering Methodology,
ACM, pp. 309-346, 2002.

44. N. Nagappan, B. Murphy, and V. Basili. “The influence of organizational structure on
software quality: an empirical case study”. In Proceedings of the International Confer-
ence on Software Engineering (ICSE), ACM, pp. 521-530, 2008.

45. N. Nelson, C. Bridescu, S. McKee, A. Sarma, D. Dig. “The Life-cycle of Merge Conflicts:
Processes, Barriers, and Strategies”. Empirical Software Engineering, Springer, pp. 1-44,
2019.

46. Y. Nishimura and K. Maruyama. “Supporting Merge Conflict Resolution by Using Fine-
grained Code Change History”. In Proceedings of the International Conference on Soft-
ware Analysis, Evolution, and Reengineering (SANER). IEEE, pp. 661-664, 2016.

47. M. Owhadi-Kareshk, S. Nadi, and J. Rubin. “Predicting Merge Conflicts in Collabora-
tive Software Development”. In Proceedings of the International Symposium on Empir-
ical Software Engineering and Measurement (ESEM). IEEE, pp. 1-11, 2019.

48. M. Pinzger, N. Nagappan, and B. Murphy. “Can developer-module networks predict
failures?”. In Proceedings of the European Software Engineering Conference and the
Symposium on Foundations of Software Engineering (ESEC/FSE). ACM, pp. 2-12,
2008.

http://fosd.net/JDime


Predicting Merge Conflicts Considering Social and Technical Assets 35

49. F. Rahman and P. Devanbu. “Ownership, Experience and Defects: A Fine-grained Study
of Authorship”. In Proceedings of the International Conference on Software Engineering
(ICSE), ACM, pp. 491-500, 2011.

50. G. Robles, J. M. Gonzalez-Barahona, and I. Herraiz. “Evolution of the Core Team of
Developers in Libre Software Projects”. In Proceedings of the Mining Software Reposi-
tories (MSR), IEEE, pp. 167-170, 2009.

51. T. Rocha, P. Borba and J. Santos. “Using acceptance tests to predict files changed by
programming tasks”. In Journal of Systems and Software (JSS), Elsevier, vol. 154, pp.
176–195, 2019.

52. A. Sarma, D.F. Redmiles, A. van der Hoek. “Palant́ır: Early Detection of Development
Conflicts Arising from Parallel Code Changes”. Transactions on Software Engineering.
IEEE, vol. 38(4), pp. 889-908, 2012.

53. S. Shafiq, A. Mashkoor, C. Mayr-Dorn and A. Egyed, “TaskAllocator: A Recommen-
dation Approach for Role-based Tasks Allocation in Agile Software Development”. In
Proceedings of the International Conference on Global Software Engineering (ICGSE),
IEEE, pp. 39-49, 2021.

54. J. Siegmund and J. Schumann. “Confounding Parameters on Program Comprehension:
A Literature Survey”. Empirical Software Engineering 20, 4 (2015), Springer, pp. 1159-
1192, 2015.

55. L. Singer, F. Figueira Filho, B. Cleary, C. Treude, M.A. Storey, and K. Schneider. “Mu-
tual Assessment in the Social Programmer Ecosystem: An Empirical Investigation of
Developer Profile Aggregators”. In Proceedings of the Conference on Computer Sup-
ported Cooperative Work (CSCW). ACM, pp. 103-116, 2013.

56. M.A. Storey, A. Zagalsky, F. Figueira Filho, L. Singer, D. M. German. “How Social and
Communication Channels Shape and Challenge a Participatory Culture in Software
Development”. In IEEE Transactions on Software Engineering. vol. 43 (2), pp. 185-204,
2016.

57. A. Terceiro, L. R. Rios, and C. Chavez. “An Empirical Study on the Structural Com-
plexity Introduced by Core and Peripheral Developers in Free Software Projects”. In
Proceedings of the Brazilian Symposium on Software Engineering, IEEE, pp. 21-29,
2010.

58. P. Thongtanunam, S. McIntosh, A. Hassan, and H. Iida. “Revisiting code ownership and
its relationship with software quality in the scope of modern code review”. In Proceedings
of the International Conference on Software Engineering (ICSE), ACM, pp. 1039-1050,
2016.

59. M. Trif and R. Slavescu. “Towards Predicting Merge Conflicts in Software Development
Environments”. In Proceedings of the International Conference on Intelligent Computer
Communication and Processing (ICCP), IEEE, pp. 251-256, 2021.

60. J. Tsay, L. Dabbish, and J. Herbsleb. “Influence of Social and Technical Factors for
Evaluating Contribution in GitHub”. In Proceedings of the International Conference on
Software Engineering (ICSE). ACM, pp. 356-366, 2014.

61. G. Vale, A. Schmid, A. Santos, E. Almeida, S. Apel. “On the Relation Between Github
Communication Activity and Merge Conflicts”. Empirical Software Engineering, vol. 25,
Springer, pp. 402-433, 2020.

62. G. Vale, C. Hunsen, E. Figueiredo and S. Apel. “Challenges of Resolving Merge Con-
flicts: A Mining and Survey Study”. Transactions on Software Engineering (TSE), IEEE,
pp. 1-22, 2021.

63. G. Vale, H. Costa, and S. Apel, “Predicting Merge Conflicts Consider-
ing Social and Technical Assets” Available: https://gustavovale.github.io/
predicting-merge-conflicts-considering-social-and-technical-assets/. [Ac-
cessed 27/07/2023].

64. B. Westfechtel, “Structure-oriented Merging of Revisions of Software Documents”. In
Proceedings of the International Workshop on Software Configuration Management.
ACM, pp. 68-79, 1991.

65. T. Wuensche, A. Andrzejak, and S. Schwedes. “Detecting Higher-Order Merge Conflicts
in Large Software Projects”. In Proceedings of the International Conference on Software
Testing, Validation and Verification (ICST). IEEE, pp. 353,363, 2020.

https://gustavovale.github.io/predicting-merge-conflicts-considering-social-and-technical-assets/
https://gustavovale.github.io/predicting-merge-conflicts-considering-social-and-technical-assets/


36 Vale et. al

66. E. Weyuker, T. Ostrand, and R. Bell. “Do too many cooks spoil the broth? using
the number of developers to enhance defect prediction models”. Empirical Software
Engineering, Springer, vol. 13(5), pp. 539-559, 2008.

67. R.F. Woolson, “Wilcoxon signed-rank test”. Wiley Encyclopedia of Clinical Trials pp.1-
3, 2008.

68. T. Zimmermann, P. Weisgerber, S. Diehl, and A. Zeller. “Mining Version Histories to
Guide Software Changes”. In Proceedings of the International Conference on Software
Engineering (ICSE). IEEE, pp. 563-572, 2004.


	Introduction
	Background and Related Work
	Developer Roles
	Study Setting
	Results
	Discussion
	Threats to Validity
	Conclusions and Future Work
	Acknowledgement

