
Semistructured Merge in Revision Control Systems
Sven Apel, Jörg Liebig, Christian Lengauer

Dept. of Informatics and Mathematics
University of Passau

{apel,joliebig,lengauer}@fim.uni-passau.de

Christian Kästner
School of Computer Science

University of Magdeburg
ckaestne@ovgu.de

William R. Cook
Dept. of Computer Sciences

University of Texas at Austin
wcook@cs.utexas.edu

Abstract—Revision control systems are a major means to
manage versions and variants of today’s software systems. An
ongoing problem in these systems is how to resolve conflicts
when merging independently developed revisions. Unstructured
revision control systems are purely text-based and solve conflicts
based on textual similarity. Structured revision control systems
are tailored to specific languages and use language-specific
knowledge for conflict resolution. We propose semistructured
revision control systems to inherit the strengths of both classes
of systems: generality and expressiveness. The idea is to provide
structural information of the underlying software artifacts in the
form of annotated grammars, which is motivated by recent work
on software product lines. This way, a wide variety of languages
can be supported and the information provided can assist the
resolution of conflicts. We have implemented a preliminary
tool and report on our experience with merging Java artifacts.
We believe that drawing a connection between revision control
systems and product lines has benefits for both fields.

I. INTRODUCTION

Revision control systems (a.k.a. version control systems)
have a long tradition in software engineering [1], [2]. On
the one hand, they are used in virtually every substantial
software project in industry. On the other hand, they have
also attracted much attention in academia. Revision control
systems are a major means to manage versions and variants
of today’s software systems. A programmer creates a revision
of a software system by deriving it from the base system or
from another revision; a revision can be developed and evolve
in isolation; and it can be merged again with the base system
or another revision. A major problem of revision control is
how to resolve merge conflicts that are caused by concurrent
changes.

In the recent years, two classes of revision control systems
have emerged: (1) revision control systems that operate on
plain text and (2) revision control systems that operate on
more abstract and structured document representations. The
first class is used widely in practice, since such systems are
typically language-independent (i.e., they work with every
software artifact that can be represented with text). Some
widely used systems of this class are CVS1, Subversion2, Git3,
and Mercurial4. Henceforth, we call them unstructured revi-
sion control systems. A problem is that, when conflicts occur,
the unstructured revision control system has no knowledge

1http://www.cvshome.org/eng/
2http://subversion.tigris.org/
3http://git-scm.com/
4http://mercurial.selenic.com/

of the structure of the underlying software artifacts, which
makes it difficult to resolve certain kinds of conflicts, as we
will illustrate.

The second class is explored mainly in academia with
the goal of solving the problems of unstructured revision
control systems with the conflict resolution. The idea is to
use the structure and semantics of the software artifacts being
processed to resolve merge conflicts automatically [3]. These
systems operate on abstract syntax trees or similar represen-
tations instead of on plain program text. A drawback is that,
aiming at a particular language’s syntax or semantics, they
sacrifice language independence. Henceforth, we call these
systems structured revision control systems.

Apparently, there is a trade-off between generality and
expressiveness of revision control systems. A revision control
system is general, if it works with many different kinds of
software artifacts. It is expressive if it is able to handle as
many merge conflicts as possible automatically. Inspired by the
trade-off between generality and expressiveness, we propose a
new class of revision control systems, called semistructured
revision control systems, that inherits the strengths but not
the weaknesses of structured and unstructured revision control
systems. The idea is to increase the amount of information a
revision control system has at its disposal to resolve conflicts,
while maintaining generality in the sense that many languages
are supported. In particular, we concentrate on the merge
process, so we speak of semistructured merge.

Our proposal is based on previous work on language-
independent feature composition in software product line
engineering [4], [5]. We noticed a strong similarity between
software composition tools and software merging techniques
used in revision control systems, which we exploit in our
proposal. In a nutshell, we extend an existing feature compo-
sition tool infrastructure, called FEATUREHOUSE, to enable
it to merge different revisions of a software system based on
the structure of the software artifacts involved. Users can plug
new languages into FEATUREHOUSE by providing a formal
specification of their languages’ syntax (i.e., the grammar)
enriched with semantic information. While this approach is
not entirely language-independent, it is still quite general in
that new languages can be integrated easily by providing
their grammars. If, for whatever reason, there is no grammar
available for a certain language, a programmer can parse
corresponding software artifacts line by line, which would be
effectively the unstructured approach.

http://www.cvshome.org/eng/
http://subversion.tigris.org/
http://git-scm.com/
http://mercurial.selenic.com/


Base Program STACK

1 import java.util.LinkedList;
2 public class Stack<T> {
3 private LinkedList<T> items = new LinkedList<T>();
4 public void push(T item) {
5 items.addFirst(item);
6 }
7 public T pop() {
8 if(items.size() > 0) return items.removeFirst();
9 else return null;

10 }
11 }

Fig. 1. A simple stack implementation in Java.

Learning from product line engineering pays off in the
development of revision control systems, as we will demon-
strate. But also the reverse is interesting. Revision control
systems are use widely in practice to manage versions and
variants. We and others believe that drawing a connection
between revision control systems and software product lines
also provides insights for software product line engineers,
especially with regard to real-world application scenarios [6].

In the remainder, we analyze the trade-off between gener-
ality and expressiveness of structured and unstructured merge.
Based on the analysis, we derive our proposal of semistruc-
tured merge. Furthermore, we offer a preliminary tool that
demonstrates the principal applicability of the approach, and
we report on first experiences with it.

II. CONFLICTS IN REVISION CONTROL – BACKGROUND
AND RELATED WORK

There is a large body of work on revision control sys-
tems [1], [2] and conflict resolution in software merging [3].
We concentrate on aspects relevant for our proposal. The
purpose of a revision control system is to manage different
revisions of a software system. Usually, revisions are derived
from a base program or from other revisions. By branching
the development line, a programmer can create independent
revisions, which can be changed and evolve in isolation (e.g.,
to add and test new features). Finally, independent revisions
can be merged again with the base program or with other
revisions, which may have been changed in the meantime.

The key issue we address in our work is merge conflict
resolution. When two revisions have evolved independently,
conflicts may occur while merging them. A major goal of
research in this area is to empower revision control systems
to resolve merge conflicts automatically [3]. First, we illustrate
the problem of conflict resolution in unstructured merge. Then,
we highlight some mechanisms of structured merge that enable
them to resolve conflicts better than unstructured merge.

A. Unstructured Merge

To illustrate the conflict resolution problem, we use the
running example of a simple stack implementation, as shown
in Figure 1. Henceforth, we call this program the base program
or simply STACK. It contains a class Stack that contains a
field items and the two methods push and pop.

Revision TOP

1 import java.util.LinkedList;
2 public class Stack<T> {
3 private LinkedList<T> items = new LinkedList<T>();
4 public void push(T item) {
5 items.addFirst(item);
6 }
7 public T top() {
8 return items.getFirst();
9 }

10 public T pop() {
11 if(items.size() > 0) return items.removeFirst();
12 else return null;
13 }
14 }

Fig. 2. A revision of the stack implementation that adds method top.

Revision SIZE

1 import java.util.LinkedList;
2 public class Stack<T> {
3 private LinkedList<T> items = new LinkedList<T>();
4 public void push(T item) {
5 items.addFirst(item);
6 }
7 public int size() {
8 return items.size();
9 }

10 public T pop() {
11 if(items.size() > 0) return items.removeFirst();
12 else return null;
13 }
14 }

Fig. 3. A revision of the stack implementation that adds method size.

Now, suppose a programmer would like to add a new feature
TOP, but would like to develop the feature in its own branch,
independently of the main branch (i.e., base program). To this
end, the programmer creates a branch with a new revision TOP.
Furthermore, suppose another programmer adds subsequently
a feature Size directly to the main branch5 by creating a
corresponding revision of the base program. Figure 2 and
Figure 3 present code for the two revisions, each of which
add a new method to class Stack. Finally, suppose that, at
some point in time, the two branches are merged again to
combine both revisions including the new features.

Merging the two branches involves merging the two revi-
sions TOP and SIZE on the basis of the common ancestor, the
base program STACK. This process is also called a three-way
merge because it involves three programs or documents [2]. In
our example, the merge process reports a conflict that cannot
be resolved automatically with unstructured merge. Figure 4
illustrates the output of the Linux merge tool for this example.
The figure shows that the merge process is not able to merge
the two new methods top and size such that both can be
present in the merged program.

This example is very simple but it illustrates already the
problems of unstructured merge. An unstructured merge tool
operates solely on the basis of text lines or tokens. It identifies
new text fragments with regard to the common ancestor (base
program) and stores the common fragments before and after

5Note that the programmer could develop feature SIZE in any other branch
but, for simplicity, we assume that the main branch is used.



mergeunstruct(TOP, STACK, SIZE)

1 import java.util.LinkedList;
2 public class Stack<T> {
3 private LinkedList<T> items = new LinkedList<T>();
4 public void push(T item) {
5 items.addFirst(item);
6 }
7 <<<<<<< Top/Stack.java
8 public T top() {
9 return items.getFirst();

10 }
11 =======
12 public int size() {
13 return items.size();
14 }
15 >>>>>>> Size/Stack.java
16 public T pop() {
17 if(items.size() > 0) return items.removeFirst();
18 else return null;
19 }
20 }

Fig. 4. Output of the Linux merge tool when merging revision TOP and
SIZE with the base program.

mergestruct(TOP, STACK, SIZE)

1 import java.util.LinkedList;
2 public class Stack<T> {
3 private LinkedList<T> items = new LinkedList<T>();
4 public void push(T item) {
5 items.addFirst(item);
6 }
7 public T top() {
8 return items.getFirst();
9 }

10 public int size() {
11 return items.size();
12 }
13 public T pop() {
14 if(items.size() > 0) return items.removeFirst();
15 else return null;
16 }
17 }

Fig. 5. Merging TOP and SIZE without conflicts.

the new fragments. If the two revisions change or extend text
in the same region, the system reports a conflict, i.e., it is not
able to decide how to merge the changes or extensions. In
our example, the merge tool knows that two independent text
fragments (which actually implement the two methods top
and size) are added to the same location of the base program
(which is enclosed by the two fragments that implement the
methods push and pop). The problem is that the unstructured
merge tool does not know that these fragments are methods
and that a merge of the two is actually straightforward, as we
illustrate next.

Why is an unstructured revision control system not able to
resolve the conflict that occurs when merging the revisions
TOP and SIZE? As indicated before, an unstructured merge
tool does not know that the two fragments implement Java
methods whose order does not matter within a class decla-
ration. If the tool knew that the base program and the two
revisions are actually Java programs, then it would be able to
solve the conflict automatically. There are actually two ways to
resolve the conflict: include method top first and then method
size (shown in Figure 5), or vice versa.

Revision SERIALIZABLE

1 import java.util.LinkedList;
2 import java.io.Serializable;
3 public class Stack<T> implements Serializable {
4 private static final long serialVersionUID = 42;
5 ...
6 }

Fig. 6. Revision that makes Stack objects serializable.

Revision FLUSHABLE

1 import java.util.LinkedList;
2 import java.io.Flushable;
3 public class Stack<T> implements Flushable {
4 ...
5 public void flush() { ... }
6 }

Fig. 7. Revision that makes Stack objects flushable.

B. Structured Merge

Figure 5 illustrates a very simple example of taking ad-
vantage of information on the syntax and semantics of the
programs and revisions involved in the merge process. In
the past, many tools have been proposed that leverage this
kind of information to resolve as many conflicts as possi-
ble [3]. Westfechtel and Buffenbarger pioneered this field by
proposing tools that incorporate structural information such
as the context-free and context-sensitive syntax in the merge
process [7], [8]. Researchers proposed a wide variety of
structural comparison and merge tools including tools specific
to Java [9] and C++ [10]. Some tools even consult additionally
semantic information [11]–[13].

Let us illustrate the abilities of structured merge by a further
example. Suppose we have the base stack implementation and
we create two independent revisions, one to develop feature
SERIALIZABLE that enables stack objects to be serialized and
another to develop feature FLUSHABLE that allows program-
mers to flush the elements of the stack to a data stream.
Figure 6 and Figure 7 depict excerpts of the two revisions.

Merging the two revisions with the base program using
unstructured merge causes two conflicts. First, the system is
not able to merge the two new import statements and, second,
it is not able to merge the two implements clauses of the two
revisions. Figure 8 shows the conflicts as reported by the Linux
merge tool.

A structured revision control system that knows that the
base program and the revisions are written in Java is able to
resolve the conflicts automatically and produces the desired
result (i.e., the imports are placed one after the other and the
implements clauses are concatenated), as shown in Figure 9.

Beside the conflicts we have seen so far, there are many
more conflicts that can be resolved by structured revision
control systems on the basis of language-specific knowledge.
For example, a for loop in Java consists of a header and a
body, and the header consists of three parts. This information is
useful when two revisions modify disjoint parts of the header.



mergeunstruct(SERIALIZABLE, STACK, FLUSHABLE)

1 import java.util.LinkedList;
2 <<<<<<< Serializable/Stack.java
3 import java.io.Serializable;
4 =======
5 import java.io.Flushable;
6 >>>>>>> Flushable/Stack.java
7 <<<<<<< Serializable/Stack.java
8 public class Stack<T> implements Serializable {
9 private static final long serialVersionUID = 42;

10 =======
11 public class Stack<T> implements Flushable {
12 >>>>>>> Flushable/Stack.java
13 private LinkedList<T> items = new LinkedList<T>();
14 public void push(T item) {
15 items.addFirst(item);
16 }
17 public T pop() {
18 if(items.size() > 0) return items.removeFirst();
19 else return null;
20 }
21 public void flush() { ... }
22 }

Fig. 8. Output of the Linux merge tool merging revision SERIALIZABLE
and FLUSHABLE with the base program.

mergestruct(SERIALIZABLE, STACK, FLUSHABLE)

1 import java.util.LinkedList;
2 import java.io.Serializable;
3 import java.io.Flushable;
4 public class Stack<T> implements Serializable, Flushable {
5 private static final long serialVersionUID = 42;
6 private LinkedList<T> items = new LinkedList<T>();
7 public void push(T item) {
8 items.addFirst(item);
9 }

10 public T pop() {
11 if(items.size() > 0) return items.removeFirst();
12 else return null;
13 }
14 public void flush() { ... }
15 }

Fig. 9. The desired result of merging revision SERIALIZABLE and FLUSH-
ABLE with the base program.

C. Generality vs. Expressiveness

The previous discussion reveals that there is a trade-off
between generality and expressiveness of revision control
systems. Unstructured revision control systems are very gen-
eral. They can be used with every kind of (textual) software
artifact. However, they are not able to resolve conflicts that
require knowledge on the language of the artifacts involved.
Typically, a structured revision control system is tailored to
a particular language. So, it would be possible to build a
revision control system for Java that can resolve the conflicts
we have discussed so far and, in addition, many other conflicts.
However, such a system would be useless in a setting in which
a software system consists of artifacts written in many different
languages, most notably software product lines [4], [14].

The trade-off motivates us to explore the space between
structured and unstructured revision control systems. Can we
invent a system that is able to handle a wide variety of software
artifacts and that has enough information on these artifacts
to resolve a reasonable number of conflicts automatically?
A trivial solution would be to develop a structured revision

items push pop

Stack<T>

Stack

items push pop

Stack<T>

Stack

size

items push top pop

Stack<T>

Stack

items push top pop

Stack<T>

Stack

size

(b)

(d)

(a)

(c)

Fig. 10. Different revisions of the stack example represented as program
structure trees.

control system for every artifact type that occurs in a software
project. A problem with this naive approach is that it is very
tedious and error-prone. Moreover, in many cases, not all
artifact types can be anticipated; in times where people invent
their own domain-specific languages and document formats,
this approach is simply infeasible.

III. SEMISTRUCTURED MERGE

The basic idea of semistructured revision control systems—
which is much like in structured revision control systems—
is to represent software artifacts as trees and to provide
information on how the nodes of a certain type (e.g., methods
or classes) and their subtrees are merged. We call such a tree,
which is essentially a parse tree, a program structure tree
(a.k.a. feature structure tree) [5]. In Figure 10 (a), we show a
simplified program structure tree of the base program STACK,
and, in Figure 10 (b) and Figure 10 (c), we show simplified
program structure trees of TOP and SIZE. It is important to
note that not all structural information is represented in the
tree. For example, there are no nodes that represent statements
or expressions. But the structural information is not lost; it is
contained as plain text in the leaves (not shown). So a program
structure tree is not necessarily a full parse tree but abstracts
from some details and represents them as plain text.

The choice of which kind of structural element is repre-
sented by a distinct node depends on the expressiveness which
we want to attain with semistructured merge. Let us explain
this choice by means of the stack example. Taking the three
program structure trees as input, a merge tool can produce
the desired output just by superimposing the trees, as shown
in Figure 10 (d). Why does this algorithm work?6 It works
because the order of methods does not matter. If the two
revisions added methods with identical signatures, the tool
would have to merge the statements of their bodies. This would
be more difficult since their order matters (and statements

6Note that the structured merge tools of Westfechtel [7] and Buffen-
barger [8] are not able to resolve this kind of conflict (personal communication
with Westfechtel). However, in principle they would have enough information
to do so.



do not have unique names). Even with all knowledge on the
Java language, there are always cases in which we cannot
say how to merge sequences of statements. This is the reason
why we choose to represent methods as leaves and their
statements as sole text content; in other languages, we may
choose differently.

In the example of Figure 8, we see that unstructured merge
is not able to combine the differing implements clauses of
two revisions of a class. With semistructured (and structured)
merge, we are able to achieve this because we know that
lists of types can be concatenated.7 But what do we do with
program elements of which we do not know how to merge
them, such as method bodies with statements? The answer
is simple: We represent the elements as plain text and use
conventional unstructured merge. That is, if a conflict occurs
inside a method body, we cannot resolve it automatically—
much like in unstructured merge.

So, semistructured merge is more expressive than unstruc-
tured merge because certain conflicts can be resolved auto-
matically; but it is less expressive than truly structured merge
because some content is treated as plain text. The question
that arises is: Why not use structured merge altogether? The
answer is: This way we loose more and more generality, as
we explain next.

A. Balancing Generality and Expressiveness

The ability of semistructured merge to resolve the conflicts
which we have discussed so far is based on the observation
that the order of certain elements, e.g., of classes, interfaces,
methods, imports, implements and throws list elements, and
so on, does no matter. We call those conflicts ordering con-
flicts. A merge algorithm that just resolves ordering conflicts
automatically is simpler to define than a full structural merge.
A semistructured merge uses an abstraction of the structure
of the document, where the abstraction has just enough infor-
mation to identify ordered items and resolve conflicts.

Thus, our system consists of two parts: (1) a generic engine
that knows how to identify and resolve ordering conflicts and
(2) a small abstract specification—for each artifact type—of
the program’s or document’s elements of which the order does
not matter. The abstract specification of a document structure
is given by an annotated grammar of the language. Most of
the difficult work is done by the generic merge engine, using
the grammar as a guide. This architecture makes it relatively
easy to include new languages by providing proper abstract
specifications. For example, the order of data type declarations
in a Haskell program or of functions in a Python program does
not matter.

To illustrate the role of annotations, consider the excerpt
of a simplified Java grammar in Figure 11. It contains a set
of production rules. For example, the rule ClassDecl de-
fines the structure of classes containing fields (FieldDecl),
constructors (ClassConstr), and methods (MethodDecl).

7Again, the structured merge tools of Westfechtel [7] and Buffenbarger [8]
are not able to resolve this kind of conflict, but this should be possible in
principle.

1 @FSTNonTerminal(name="{Type}")
2 ClassDecl : "class" Type ImplList "{"
3 (FieldDecl)* (ClassConstr)* (MethodDecl)*
4 "}";
5 ...
6 @FSTNonTerminal(name="ImplClause")
7 ImplList : "implements" @LIST Type ("," @LIST Type)*
8 @FSTTerminal(name="{<ID>}({ParamList})")
9 MethodDeclaration :

10 Type <ID> "(" (ParamList)? ")" "{"
11 (Statement)*;
12 "}";
13 @FSTTerminal(name="{TOSTRING}")
14 Type : ...

Fig. 11. An excerpt of a simplified Java grammar with semantic annotations.

Production rules may be annotated with @FSTNonTerminal
and @FSTTerminal. The former annotation defines that
(1) elements corresponding to the rule are represented as
nodes in corresponding program structure tree, (2) there may
be subnodes, and (3) the order of elements or nodes is
arbitrary. In our example, we annotate the rule for class
declarations with @FSTNonTerminal8 because classes may
contain further classes, methods, and so on, and the order of
classes in a file or package may vary. The @FSTTerminal
annotation is like the @FSTNonTerminal annotation except
that subelements are represented as plain text. We annotate the
rule for method declarations in this way because the order of
methods may vary but their inner statements are represented by
plain text, as explained before. A further interesting example
is the rule for implements lists. This rule is annotated with
@FSTNonTerminal, so the order of elements (i.e., type
names) of an implements list may vary. However, for a parser,
it is difficult to recognize that the elements form really a
list, which is basically due to the grammar’s treatment of the
commas between the elements. The inner annotation @LIST
passes exactly this information to the generated parser.

Beyond ordering conflicts we can imagine many ways to
use annotations for conflict resolution. For example, we could
use annotations to specify how the parts of a for loop header
are merged. In this case, the order of the parts matters, so the
annotations would have to be of a different kind. In further
work, we will explore the potential of our approach to resolve
other kinds of conflicts.

As we have illustrated, an annotated grammar contains
sufficient information to guide a language-independent revi-
sion control system in merging Java artifacts. But how does
this approach facilitate generality? Indeed, for a language
to be supported, we need some information in the form of
an annotated grammar, so the tool is not entirely language-
independent. But such a grammar is easily provided, since
standard grammars in Backus-Naur-Form are available on
the Web for many languages, and adding annotations is a
matter of hours, at most. Actually, we do not even need
the entire grammar of a language, but only the part that is
concerned with elements whose order is flexible. We have

8The annotation parameter name is used to assign a name to the corre-
sponding nodes in the program structure tree.



been quite successful using such a mechanism in feature
composition in software product line engineering [4] and we
expect to reproduce the success of applying such a mechanism
in revision control systems.

To summarize, semistructured merge is more expressive
than unstructured merge, since certain conflicts can be re-
solved automatically based on information on the underlying
languages; and semistructured merge is more general than
structured merge, since a wide variety of languages can
be supported solely on the basis of providing an annotated
grammar, which needs to be done only once per language.
If, for whatever reason, there is no information available
on a given language, semistructured merge behaves exactly
like unstructured merge, parsing the corresponding software
artifact line by line.

IV. IMPLEMENTATION AND EXPERIENCE

We have implemented a first prototype of a semistructured
merge tool, called FSTMERGE, which is able to resolve
ordering conflicts.9 FSTMERGE takes advantage of our ex-
isting tool infrastructure FEATUREHOUSE, as illustrated in
Figure 12. The tool FSTGENERATOR generates almost all
code that is necessary for the integration of a new language
into FSTMERGE. FSTGENERATOR expects the grammar of
the language in a proprietary format, called FEATUREBNF,
of which we have shown already an example in Figure 11.
Using a grammar written in FEATUREBNF, FSTGENER-
ATOR generates an LL(k) parser (which produces program
structure trees) and a corresponding pretty printer, which are
then integrated into FSTMERGE. After the generation step,
FSTMERGE proceeds as follows: (1) the generated parser
receives the base program and two revisions written in the
target language and produces for each program a program
structure tree; (2) FSTMERGE performs the semistructured
merge as explained before (the trees are superimposed and
a conventional unstructured merge is applied to the leaves);
(3) the generated pretty printer writes the merged revisions to
disk.

structure trees
feature

Generator

CJava ...C# Haskell JavaCC Python

MergeParser

and revisions

use unstructured merge for text content

base program
feature structure tree

superimposed
revisions
merged

Pretty Printer

FSTMerge

FSTGenerator

FeatureBNF

Fig. 12. The architecture of FEATUREHOUSE.

So far, we have used FSTMERGE only with Java programs
and we concentrated on ordering conflicts (including merging
classes containing methods, fields, implements lists). But,

9FSTMERGE and some examples can be downloaded with the FEATURE-
HOUSE distribution: http://www.fosd.de/fh/

due to our experience with FEATUREHOUSE in software
product line engineering [4], [5], [15]–[18], we expect that
integrating further languages is very easy. In fact, we have
already developed the annotated grammars of several further
languages including C, C#, JavaCC, and Haskell—what is
missing are case studies. The more interesting issue is whether
semistructured merge can play to its strengths in real software
projects. It is clear that semistructured merge is able to resolve
more conflicts than unstructured merge. But how frequent are
such conflicts? For example, how often are methods added
independently to the same region? How often are implements
lists changed? Currently, we cannot provide answers. Although
there is some evidence that revisions often involve additions
of larger structures such as entire functions [19], we need
a substantial set of data to answer the question definitely.
From the theoretical point of view, semistructured merge is
very interesting, not least because, by means of playing with
annotations, we can adjust the way the merge tool works.
However, the impact on practical revision control remains to be
evaluated. A first step is to analyze the kind and frequencies of
conflicts in different software projects incorporating different
kinds of software artifacts.

V. CONCLUSION AND OPEN ISSUES

Both unstructured and structured revision control systems
have strengths and weaknesses. The former are very general
but cannot resolve certain kinds of conflicts. The latter are
typically tailored to specific languages and can thus resolve
conflicts better than the former. To profit from both worlds, we
have proposed semistructured merge, which is inspired by our
previous work on software product lines. Developers provide
information on the artifact languages in the form of annotated
grammars. This way, a wide variety of different languages
can be supported while taking advantage of the provided
information during the merge process. We have implemented a
preliminary tool and plugged in support for the Java language.
Whereas integrating further languages is straightforward, it is
interesting to explore whether semistructured merge can play
to its strengths in practical software engineering. Finally, it
is interesting to study the commonalities and differences of
software product lines and revision control systems. We have
taken a first step and we believe that, in the future, both fields
will converge.

We see three interesting open issues of our approach. The
first issue is that semistructured merge (much like structured
merge) relies on structural information, so the revisions must
be syntactically correct. Whereas it is best practice to commit
only correct programs or documents, this is not a strict
requirement of today’s (unstructured) revision control systems.
In such cases, the artifacts involved have to be parsed as
plain text such that semistructured merge behaves exactly like
unstructured merge. It is interesting to explore whether in
such cases syntacticly correct fragments can be represented
by program structure trees and only the incorrect fragments
as plain text.

http://www.fosd.de/fh/


A further issue is the role of refactorings. So far we
have not addressed changes like the renaming of methods
or classes. For example, in semistructured merge, a rename
method refactoring would result in two different methods (the
original method and the renamed method), without reporting
a conflict. It is debatable if this is the desired behavior. On the
other hand, we believe that structural information of whatever
kind is of a great value in the presence of refactoring. One can
even imagine to tune the kind of information that is passed
to the merge tool, e.g., information on references between
program elements instead of ordering information. We will
explore this issue in further work.

Finally, it would interesting to explore how type information
can be used to resolve conflicts. The problem is that type
systems are typically tailored to specific languages and thus
would undermine generality. However, researchers begin to
think about cross-language and language-independent type
systems [20]–[22]. In the future, it may be possible to use
such a type system for conflict resolution in semistructured
revision control systems.

ACKNOWLEDGMENTS

We thank Don Batory for fruitful discussions on the poten-
tial of semistructured merge. This work has been supported
in part by the German Research Foundation (DFG), project
number AP 206/2-1.

REFERENCES

[1] R. Conradi and B. Westfechtel, “Version Models for Software Configu-
ration Management,” ACM Computing Surveys (CSUR), vol. 30, no. 2,
pp. 232–282, 1998.

[2] B. O’Sullivan, “Making Sense of Revision-Control Systems,” Commu-
nications of the ACM (CACM), vol. 52, no. 9, pp. 56–62, 2009.

[3] T. Mens, “A State-of-the-Art Survey on Software Merging,” IEEE
Transactions on Software Engineering (TSE), vol. 28, no. 5, pp. 449–
462, 2002.

[4] S. Apel, C. Kästner, and C. Lengauer, “FeatureHouse: Language-
Independent, Automated Software Composition,” in Proceedings of the
International Conference on Software Engineering (ICSE). IEEE
Computer Society, 2009, pp. 221–231.

[5] S. Apel and C. Lengauer, “Superimposition: A Language-Independent
Approach to Software Composition,” in Proceedings of the International
Symposium on Software Composition (SC), ser. Lecture Notes in Com-
puter Science, vol. 4954. Springer-Verlag, 2008, pp. 20–35.

[6] M. Staples and D. Hill, “Experiences Adopting Software Product Line
Development without a Product Line Architecture,” in Proceedings of
the Asia-Pacific Software Engineering Conference (APSEC). IEEE
Computer Society, 2004, pp. 176–183.

[7] B. Westfechtel, “Structure-Oriented Merging of Revisions of Software
Documents,” in Proceedings of the International Workshop on Software
Configuration Management (SCM). ACM Press, 1991, pp. 68–79.

[8] J. Buffenbarger, “Syntactic Software Merging,” in Selected Papers from
the ICSE SCM-4 and SCM-5 Workshops on Software Configuration
Management, ser. Lecture Notes in Computer Science, vol. 1005.
Springer-Verlag, 1995, pp. 153–172.

[9] T. Apiwattanapong, A. Orso, and M. Harrold, “JDiff: A Differencing
Technique and Tool for Object-Oriented Programs,” Automated Software
Engineering, vol. 14, no. 1, pp. 3–36, 2007.

[10] J. Grass, “Cdiff: A Syntax Directed Differencer for C++ Programs,” in
Proceedings of the USENIX C++ Conference. USENIX Association,
1992, pp. 181–193.

[11] V. Berzins, “Software Merge: Semantics of Combining Changes to
Programs,” ACM Transactions on Programming Languages and Systems
(TOPLAS), vol. 16, no. 6, pp. 1875–1903, 1994.

[12] D. Jackson and D. Ladd, “Semantic Diff: A Tool for Summarizing the
Effects of Modifications,” in Proceedings of the International Confer-
ence on Software Maintenance (ICSM). IEEE Computer Society, 1994,
pp. 243–252.

[13] D. Binkley, S. Horwitz, and T. Reps, “Program Integration for Languages
with Procedure Calls,” ACM Transactions on Software Engineering and
Methodology (TOSEM), vol. 4, no. 1, pp. 3–35, 1995.

[14] D. Batory, J. Sarvela, and A. Rauschmayer, “Scaling Step-Wise Refine-
ment,” IEEE Transactions on Software Engineering (TSE), vol. 30, no. 6,
pp. 355–371, 2004.

[15] S. Apel, C. Lengauer, B. Möller, and C. Kästner, “An Algebra for
Features and Feature Composition,” in Proceedings of the Interna-
tional Conference on Algebraic Methodology and Software Technology
(AMAST), ser. Lecture Notes in Computer Science, vol. 5140. Springer-
Verlag, 2008, pp. 36–50.

[16] S. Apel, F. Janda, S. Trujillo, and C. Kästner, “Model Superimposition in
Software Product Lines,” in Proceedings of the International Conference
on Model Transformation (ICMT), ser. Lecture Notes in Computer
Science, vol. 5563. Springer-Verlag, 2009, pp. 4–19.

[17] S. Apel, C. Kästner, A. Größlinger, and C. Lengauer, “Feature
(De)composition in Functional Programming,” in Proceedings of the
International Conference on Software Composition (SC), ser. Lecture
Notes in Computer Science, vol. 5634. Springer-Verlag, 2009, pp.
9–26.

[18] S. Apel, C. Lengauer, D. Batory, B. Möller, and C. Kästner, “An Algebra
for Feature-Oriented Software Development,” Department of Informatics
and Mathematics, University of Passau, Tech. Rep. MIP-0706, 2007.

[19] G. Stoyle, M. Hicks, G. Bierman, P. Sewell, and I. Neamtiu, “Mutatis
Mutandis: Safe and Predictable Dynamic Software Updating,” in Pro-
ceedings of the International Symposium on Principles of Programming
Languages (POPL). ACM Press, 2005, pp. 183–194.

[20] M. Grechanik, D. Batory, and D. Perry, “Design of Large-Scale Polylin-
gual Systems,” in Proceedings of the International Conference on
Software Engineering (ICSE). IEEE Computer Society, 2004, pp. 357–
366.

[21] S. Apel and D. Hutchins, “An Overview of the gDeep Calculus,”
Department of Informatics and Mathematics, University of Passau, Tech.
Rep. MIP-0712, 2007.

[22] S. Apel and D. Hutchins, “A Calculus for Uniform Feature Compo-
sition,” ACM Transactions on Programming Languages and Systems
(TOPLAS), 2010.


	Introduction
	Conflicts in Revision Control -- Background and Related Work
	Unstructured Merge
	Structured Merge
	Generality vs. Expressiveness

	Semistructured Merge
	Balancing Generality and Expressiveness

	Implementation and Experience
	Conclusion and Open Issues
	References

