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Abstract—Modeling structure and behavior of software systems
plays a crucial role in the industrial practice of software
engineering. As with other software engineering artifacts, software
models are subject to evolution. Supporting modelers in evolving
software models with recommendations for model completions
is still an open problem, though. In this paper, we explore the
potential of large language models for this task. In particular, we
propose an approach, RAMC, leveraging large language models,
model histories, and retrieval-augmented generation for model
completion. Through experiments on three datasets, including an
industrial application, one public open-source community dataset,
and one controlled collection of simulated model repositories,
we evaluate the potential of large language models for model
completion with RAMC. We found that large language models
are indeed a promising technology for supporting software model
evolution (62.30% semantically correct completions on real-world
industrial data and up to 86.19% type-correct completions).
The general inference capabilities of large language models are
particularly useful when dealing with concepts for which there
are few, noisy, or no examples at all.

I. INTRODUCTION

Models play an important role in modern software and system
development [61], software documentation [42, 56], system ar-
chitecture [57], simulation [21], and industrial automation [34].
In practice, all artifacts in software and system development are
subject to evolution, which also applies to software models1:
Software models must evolve because of changing requirements,
but they are also subject to bugfixes and refactorings [72].

From the perspective of a modeling tool, we can understand
the evolution of a software model as a sequence of edit
operations: To change or evolve the model, the user executes
edit operations (e.g., using mouse clicks and keyboard strokes)
provided by the tool. Supporting tool users in accomplishing
various software model (evolution) tasks is clearly desirable
in practice [23, 71]. For the evolution of software models,
modeling tools typically provide an initial set of edit operations
(e.g., adding an attribute to a model element). Nevertheless,
since the usage of a (domain-specific) language is also subject
to evolution and since (project-specific) usage patterns might
emerge, this initial set of edit operations is likely not exhaustive.
§ Equal contribution 1 In our work, to avoid confusion, it’s crucial to
differentiate between software models and machine learning models.

For example, in object-oriented design, design patterns [30]
are widely used and are not part of UML [56], but could be
provided as edit operations by a UML modeling tool.

For source code, modern integrated development environ-
ments already support writing and evolving source code by
(auto-)completion. Most notably, the use of large language
models (LLMs) has become state-of-the-art for the auto-
completion of source code [18, 77, 5, 29, 6, 75].

The world of software models seems to be lagging behind,
and no general approach for software model auto-completion is
ready for industrial application. It has been even argued that the
so-called cognification of use cases in model-driven software
engineering might turn the difference between (perceived)
added value and cost from negative to positive [13].

Problem Statement. Notably, for a few domain-specific
languages, rule-based approaches exist that use pre-defined edit
operations or patterns for model completion [43, 44, 32, 64].
Using a specification language for defining edit operations
poses three challenges, though. First, specifying new edit
operations requires knowledge about the specification language
and the domain-specific language. Second, domain-specific edit
operations are often not explicitly known, that is, they are a
form of tacit knowledge [58]. Externalizing the knowledge
is hard or even impossible for domain experts. Third, edit
operations can change over time, for example, because the
metamodel changes. In the light of these challenges, mining
approaches that retrieve edit operations are especially appeal-
ing, since they do not require any manual specification, no
hand-crafting of examples (as in model transformation by
example [73, 38]), and they are not limited to well-formedness
rules that can be derived out of the metamodel. Unfortunately,
existing approaches such as applying frequent subgraph mining
to software model repositories are not scalable [71], and mining
approaches lack abstraction capabilities [71].

Clearly, from the perspective of software model evolution, it
is desirable to have context-dependent auto-completions, rather
than utilizing a fixed set of edit operations. We posit that
generative language models exhibit a deep understanding of
language and hold comprehensive knowledge across various
domains, which is a result of their training on vast corpora. This



capability enhances their potential to interpret and complete
software models effectively, which usually encompass a vast
amount of natural language data.

While recent research suggests that LLMs could be utilized
for model completion [16], we go beyond and utilize model
evolution data from model repositories to capture real-world
complexities. It is important to note that, in our work, we
explicitly acknowledge the complexity of real-world data, which
is due to the close collaboration with our industry partner (who
also contributes a case study).

Contributions. By leveraging existing software model
histories2, and by defining an encoding for serializations of
model difference graphs, we study to what extent retrieval-
augmented generation, (i.e., we provide examples as context in
the prompt) can be used for software model completion. We find
that RAMC is indeed a promising approach for software model
completion, with 62.30% of semantically correct completions.
We furthermore propose to use fine-tuning (i.e., the LLM’s
weights are adapted by training on parts of our data) for
software model completion and compare it to our retrieval-
based approach, RAMC. LLM’s general inference capabilities
prove especially helpful in handling noisy and unknown context,
and real-time capabilities enabled by LLMs are beneficial for
stepwise model completion. We conclude that using LLMs for
software model completion is viable in practice (despite various
complexities), but further research is necessary to provide more
task and domain knowledge to the LLM.

In summary, we make the following contributions:

• As a foundation for applying LLMs, we formalize the
concept of software model completion based on change
graphs and their serialization.

• We propose a retrieval-augmented generation approach,
RAMC, for software model completion.

• We evaluate RAMC qualitatively and quantitatively on
three datasets, including an industrial application, one
public open-source community dataset, and one controlled
collection of simulated model repositories. We compare
our approach with the most recent advancements in model
completion [16] as well as to the alternative of fine-
tuning a pre-trained LLM. We find that, for all three
datasets, LLMs are a promising technology for software
model completion, with up to 86.19% correct completions
(for the synthetic dataset) and 62.30% of semantically
correct completions on the industrial dataset. Notably,
our approach improves significantly over the state of the
art [16]. Furthermore, it appears that fine-tuning can be
an alternative to retrieval-augmented generation that is
worthwhile investigating.

Source code for the experiments, scripts, public datasets, and
results are publicly available (see Section VII).

2 Note that we use the terms software model repositories and software model
histories interchangeably, and we assume that the repository contains several
revisions of a software model.

II. RELATED WORK

Various approaches have been proposed for software model
completion, ranging from rule-based approaches to data
mining techniques and more sophisticated machine learning
approaches. An overview of recommender systems in model-
driven engineering is given by Almonte et al. [7]. Some of the
previous work studies recommending model completions by
utilizing knowledge bases such as pattern catalogs or knowledge
graphs [2, 43, 44, 50, 46, 23, 48]. Consequently, these research
efforts are often domain-specific, as they require the provision
of domain-specific catalogs (a.k.a., the cold start problem), such
as for UML [43, 44, 50] or business process modelling [23, 46].

Another common approach is to use already existing model
repositories and employ techniques such as frequency-based
mining, association rule mining, information retrieval tech-
niques, and clustering to suggest new items to be included
in the model [1, 68, 24, 28] or new libraries for use [32].
MemoRec [24] and MORGAN [26] are frameworks that use a
graph-based representation of models and a similarity-based
information retrieval mechanism to retrieve relevant items (such
as classes) from a database of modelling projects. However,
their graph-based representation does focus on the relationship
between a model element and its attributes, but it does not
capture relationships between different elements in the model
and consequently may not capture the essential semantics and
constraints of the model and modelling languages. Repository
mining and similarity-based item recommendation techniques
are often combined [23, 46]. Kögel et al. [41, 40] identify rule
applications in current user updates and find similar ones in
the model’s history. More generally, one could automatically
compute consistency-preserving rules [39] or pattern mining
approaches [71, 70, 45] to derive a set of rules to be used in
conjunction with a similar association rule mining approach.

Another strategy to generate model completion candidates
that comply with the given metamodel and additional con-
straints involves using search-based techniques [66]. Without
knowledge about higher-level semantics, these approaches are
more comparable to the application of a catalog of minimal
consistency-preserving edit operations [39].

Regarding the application of natural language processing
(NLP) [12] and language models [19, 76], Burgueño et al. [12]
propose an NLP-based system using word embedding similarity
to recommend domain concepts. Weyssow et al. [76] use a
transformer-based language model to recommend metamodel
concepts without generating full model completions. Di Rocco
et al. [25] introduce a recommender system using an encoder-
decoder neural network to assist modelers with editing op-
erations. It suggests element types to add, but leaves the
specification of details, values, and names of these elements
and operations to the human modeler. Gomes et al. [31] use
natural language processing to translate user intents, expressed
in natural language, into actionable commands for developing
and updating a system domain model. While code completion
and model completion are closely related, recent research has
mainly concentrated on code completion, where LLMs seem



to be the state of the art [18, 36, 20, 65]. Considering the
close connection to code and model completion, it’s essential
for us to explore further how generative approaches, such as
LLMs, operate within the context of software model completion
of complex real-world models. Most closely to this work, is
an approach by Chaaben et al. [16], which utilized the few-
shot capabilities of GPT-3 for model completion by providing
example concepts of unrelated domains. In contrast, our
approach takes a different avenue, leveraging model evolution
from model repositories. Cámara et al. [14] further extend on
Chaaben et al.’s research by conducting experiments to assess
ChatGPT’s capability in model generation. Ahmad et al. explore
the role of ChatGPT in collaborative architecting through
a case study focused on defining Architectural Significant
Requirements (ASRs) and their translation into UML [4]. In
the appendix, a table summarizing related work on model
completion is provided.

A slightly different but similar research area focuses on
model repair [52, 35, 51, 49, 54, 68]. REVISION [54] uses
so-called consistency-preserving edit operations to detected
inconsistencies and then uses the pre-defined edit operations
to recommend repair operations.

III. FORMAL DEFINITIONS

In this section, we describe the fundamental concepts essential
for the subsequent approach and analysis.

A. Software Models, Edit Operations and Model Completion

In model-driven engineering, the language for a software model
(i.e., its abstract syntax and static semantics) is typically defined
by a metamodel TM . We denote by M the set of all valid
models (according to some metamodel). This can be formalized
using typed attributed graphs [9, 27].

Definition III.1 (Abstract Syntax Graph). An abstract syntax
graph Gm of a model m ∈ M is a attributed graph, typed
over an attributed type graph TG given by metamodel TM .

The idea of typed graphs is to define a graph homomorphism
(i.e., a function from the typed graph G to the type graph
TG). Details of this formalization are given by Biermann et
al. [9]. The abstract syntax graph of a model and its type graph
contain all information that a model holds. In this paper, we
are concerned with model repositories. We assume that the
modelling tool takes care of checking the correct typing of the
software models. Furthermore, we work with a simplified graph
representation of the models in which the abstract syntax graph
is a labeled directed graph with node and edge labels equal
to a textual representation of corresponding classifiers and
relationships of the abstract syntax graph (cf. Definition III.1).

Definition III.2 (Labeled Directed Graph). Given a label
alphabet L, a labeled directed graph G is a tuple (V,E, λ),
where V is a finite set of nodes, E is a subset of V ×V , called
the edge set, and λ : V ∪ E → L is the labeling function,
which assigns a label to nodes and edges.

Rather than working directly on the abstract syntax graph of
the models, we will mostly be working with model differences.

Definition III.3 (Structural Model Difference). A structural
model difference ∆mn of a pair of model versions m and n
is obtained by matching corresponding model elements in the
model graphs Gm and Gn (using a model matcher [69], e.g.,
EMFCompare [10] or SiDiff [63]). There are added elements
(the ones present in Gn but not in Gm), removed element (the
ones present in Gm but not in Gn), and preserved elements
which are present in Gm and Gn.

We assume that this matching is deterministic, that is,
given two models m,n ∈ M, we obtain a unique structural
model difference ∆mn. The difference can be represented as
a difference graph G∆mn [54]. More concretely, we add the
change type ( “Add”, “Preserve”, or “Remove”) in the node
and edge labels, and matching elements (i.e., the preserved
ones) from Gm and Gn are unified (present only once).

We define a simple change graph to be the smallest subgraph
comprising all changes in the difference graph G∆mn

.

Definition III.4 (Simple Change Graph). Given a difference
graph G∆mn

, a simple change graph SCG∆mn
⊆ G∆mn

is
derived from G∆mn

by first selecting all the elements in G∆mn

representing a change (i.e., added, removed nodes and edges)
and, second, adding preserved nodes that are adjacent to a
changed edge.

Definition III.5 (Endogenous model transformation). An en-
dogenous model transformation is a pair t = (m,n) ∈M×M.
We call m the source model and n the target model of the
transformation and T def

= M×M the space of endogenous
model transformations.

Next, we define a function SCG : T → G that takes a model
transformation (i.e., a pair of models) as input and returns the
simple change graph for the corresponding model difference.
We can use SCG to define an equivalence relation on T by

t1 = (m,n) ∼ t2 = (k, l) ⇐⇒ SCG∆mn = SCG∆kl
.

It is straightforward to see that this relation indeed defines an
equivalence relation (i.e., the relation is reflexive, symmetric,
and transitive). We can therefore define the quotient set T /∼.
By construction there is bijection from the quotient set to
the range of SCG. We can therefore use this construction to
formally define the concept of an edit operation.

Definition III.6. An edit operation is an equivalence class in
the set E def

= T /∼. An edit operation is therefore a set of model
transformations that have the same simple change graph.

Remark. The graph labeling function λ allows us do define
the scope of the edit operation. For example, if we are
interested only in the type of nodes and edges, we can omit
the attributes from the label. Likewise, if we are interested
in the attributes, or only want to set them during execution
time, we can define placeholders for the attribute values in
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Figure 1: Visual presentation of our example taken from the
REPAIRVISION dataset: a⃝ Evolutionary View: User performs
edit operations one by one. b⃝ Evolution can be performed by

a user or by using a completion approach.

the labels. Therefore, we define edit operations only up to the
concrete label representation, which leaves some freedom for
templating. In this work, we do make use of placeholders only
during the evaluation (e.g., checking for type correctness).

Given an edit operation ε and a model m, one can perform
the removal of “Remove” nodes and the gluing of “Add” nodes
as defined by the simple change graph corresponding to ε, and
then set concrete attributes. This yields the corresponding model
n with (m,n) ∈ ε. This way, an edit operation ε ∈ E can be
interpreted as a template for a model transformation, which is in
line with previous constructions [9, 37, 71]. We write m

ε→ n
to denote a concrete element (i.e., a model transformation) in
the equivalence class ε ∈ E . We are interested in completing
software models. That is, for an existing evolution m

ε→ n, we
want to find a completion γ ∈ E , such that m ε→ n

γ→ c is a
realistic completion, meaning, in some real-world scenarios, it
actually will be done by a modeler.

Definition III.7 (Model Completion). Given a set of model
transformations T , model completion is a computable function
C : T → T that, given a model transformation m

ε→ n from
a source model m to a (partial) target model n, computes a
model transformation C(m

ε→ n) = n
γ→ c. We call the edit

operation γ a software model completion.

Given a model completion γ, we denote the application of
γ to model n by π :M×E → T , where π(m, γ ◦ ε) = (n, c).
In general, for an edit operation ε, there might be zero or more
applications to a given model m ∈ M. Nevertheless, given
that the matching in n is fully defined by the application of ε,
there is a uniquely defined candidate (n, c) ∈ T .

B. Language Models

Language models, as generative models, have the capability to
produce new sequences of text based on their training data.

Definition III.8 (Language Model). A language model is a
conditional probability distribution P(ω|c) for a (sequence of)
token(s) ω, given a sequence of context tokens c.

The probability distribution is typically derived from a corpus
of documents, containing (some of) the tokens. With the success
of transformer architecture [74], LLMs have become quite
popular now and are used in plenty of domains including
software engineering [62, 79, 78]. There are two tactics
available to feed domain knowledge or context into a generative
language model: fine-tuning and retrieval-augmented generation.
Retrieval-augmented generation includes additional knowledge
in the context (or prompt). Fine-tuning adjusts the LLM’s
weights based on additional training data.

IV. APPROACH

In this section, we describe RAMC – our approach of how to
employ LLMs to (auto-)complete software models.

A. Running Example

Consider the motivating example depicted in Figure 1, which
originates from one of our datasets, REPAIRVISION, further
explained in Section V-B. In a⃝, we show the evolution of its
abstract syntax graph3. In this evolution scenario, a modeller
adds the UML Profiles mechanism (cf. UML specification [56],
Chapter 12.3) to the ECORE metamodel4 of UML 2.5.1. Step
by step the modeller extends the existing UML metamodel
with additional functionality, currently focusing on the EClass
extension in the UML package. In a first step, the modeller
adds an operation getStereotype (responsible for accessing the
Sterotype of the extensions associated with an element in the
(meta-)model). As defined in the UML specification [56], every
extension has access to the Metaclass it extends, realized in
ECORE by the EOperation getMetaclass. This EOperation is
implemented by the modeller in a second step. These steps in
the evolution of the UML metamodel could be performed via
edit operations by a human user, or likewise, recommended in
the form of a model completion (as depicted in b⃝ of Figure 1).

B. Overview and Design Choices

Utilizing LLMs for software model completion gives rise to
several challenges addressed by RAMC: how to provide context,
such as domain knowledge, to the LLM, how to serialize
software models, and how to deal with limited context5?

Regarding context, we opt for retrieval-augmented generation,
and compare the approach to fine-tuning in one of our
experiments. The next important design decision is that we do
not work on the software models directly but on the simple
change graphs, described in Section III. The basic idea is that
simple change graph completions can be straight forwardly
interpreted as model completions (i.e., generating a new “added”
node corresponds to adding a new model element to the model).
Working with the concept of a simple change graph has several
advantages: First, we do not have to work with the entire
software model representation, but we can focus on slices of

3 Due to obvious space constraints, only a small part of the original model (only
one out of 256 classifiers and 2 out of 741 operations) is shown 4 UML,
according to the Meta-Object Facility [55], is itself a model according to
its meta-metamodel, ECORE, and therefore covered by the present work.
5 Software models can become huge compared to the limited number of
tokens that can be given to a LLM.
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Figure 2: Detailed prompt and simple change graph
serialization of the RAMC approach corresponding to the
example given in Figure 1, exact few-shot examples are

provided in the appendix.

the models around recently changed elements. This is one tactic
of dealing with the common problem of the limited context
of a LLM. For example, in our running example, the entire
(serialized) UML metamodel is huge and would not fit in the
context of contemporary LLMs.

Second, simple change graph completions also include
attribute changes and deletions of model elements and are
not limited to the creation of new model elements. RAMC is
capable of suggesting semantically appropriate changes, such
as renaming an attribute or altering the type of an attribute.
Additionally, it recommends specific attribute values that are
beyond predefined options, for example, values for string type
attributes. Although alternative representations besides simple
change graph can influence the outcome, choosing simple
change graph was a deliberate design decision we made.

An overview of the approach is depicted in Figure 3, the
computation of model differences (Figure 3, ①) and simple
change graphs (Figure 3, ②) is explained in Section III. Their
serialization will be addressed in the next subsection. Based
on the terminology in Section III, the formalization of our
approach RAMC is given in the appendix.

Figure 3: Overview of RAMC.

C. Pre-processing

Both training phase and generation phase work on serializations
of simple change graphs. We describe how these serializations
are derived based on the example given in Figure 1. Input to
this procedure are two (successive) revisions of a model; output
is a serialization of their simple change graphs. These revisions
can originate either from the model the user is working on (in
the generation phase) or from our training data.

In the first step, a model difference is computed for each pair
of successive revisions of a model (Figure 3, ①). Regarding
our running example in a⃝ of Figure 1, we also highlighted
these model differences by color, that is, “added” model
elements are depicted in green. From this model difference, we
compute a (partial) simple change graph (see Definition III.4
and Figure 3, ②). Finally, the simple change graph is serialized
as a list of edges (Figure 3, ③). To this end, we defined a
graph serialization, called EdgeList, for directed labeled graphs.
Figure 2 presents the prompt generated from our approach
alongside the corresponding response, which was retrieved via
API access to ChatGPT. It also shows an example of this graph
serialization (e.g., last part of the prompt), which contains all
kinds of attribute information. It can quickly become verbose
and noisy in real-world examples. Common formats such as the
GraphML6 are less suitable for LLMs, since they list vertices
before edges. This requires guessing all nodes first – added,
deleted, and preserved – before generating edges.

D. Training Phase

The input to the training phase is a set of serialized simple
change graph components. The output is a (vector) store of
serializations with a key for retrieval (Figure 3, ⑤). We retrieve
relevant simple change graphs from model repositories by
utilizing a similarity search based on sentence embeddings [59].
The serializations are stored in a vector database together with
their sentence embedding (Figure 3, ④ and ⑤).

E. Generation Phase

The input to the generation phase is a set of serialized simple
change graph components capturing the difference of a new
model snapshot (i.e., local changes) and the previous model
revision (m1

ε→ m2), as well as the vector store from the
training phase. The output is a (list of) completion(s) in the
form of EdgeList serializations, which are suggested to the
user after being parsed (an example is given in Figure 2, at
the bottom under ’Response’).

Retrieval. The vector store is queried for simple change
graph serializations via a similarity-based retrieval. Note that,
in our case the retrieved context can be interpreted as few-
shot examples, because we retrieve complete simple change
graphs, that is, completed partial simple change graphs from the
history. The few-shot samples from Figure 2 are detailed in the
appendix. To ensure a diversity of samples, we use a procedure
similar to maximum marginal relevance [15], explained in
detail in the appendix. As few-shot samples, we select up to 12

6 http://graphml.graphdrawing.org

http://graphml.graphdrawing.org


serialized simple change graphs; we investigate the dependency
on the number of few-shot samples in Section V.

Prompt formulation. The prompt (input to the LLM) used
by our approach consists of an instruction at the beginning,
followed by the few-shot samples retrieved from the vector store
(joined via a separation token), and finally the (partial)-simple
change graph serialization is concatenated (see Figure 2).

Sampling new edges. We can sample multiple completion
candidates from the LLM by using a beam search or by
instructing the LLM to generate multiple edges. Details of
the edge sampling are given in the appendix.

F. Implementation

We have implemented the computation of model differences
and simple change graphs on top of the ECLIPSE MODELING
FRAMEWORK [67], using SIDIFF [63] for matching and diffing.
The other parts are implemented in PYTHON3, mainly utilizing
NETWORKX7 for handling graphs. We use LANGCHAIN8

for the handling of language models and retrieval-augmented
generation. We use the ALL-MINILM-L6-V29 language model
for the sentence embeddings since it performed well in pre-
liminary experiments. As vector store, we use CHROMADB10.
As language model, we use GPT-4 (version 0613), since it
performed best in preliminary experiments. We use a dedicated
deployment of OpenAI on Microsoft Azure that is certified for
the classification level of the industrial data.

V. EVALUATION

We evaluate to what extent our approach is able to derive
structurally and semantically correct completion operations
from the software model history. This includes, in particular,
their applicability in industrial scenarios. We aim at a systematic
evaluation of LLMs for model completion in a controlled
setting. This allows us to concentrate on the core effectiveness
of LLM technology, while controlling for confounding factors
such as tool use and human aspects (e.g., UX design facets).
This is also the reason why, at this stage, conducting a user
study settled in a specific application context would be not
opportune (but needs to follow at a later stage). However, by
applying our approach to a real-world context at our industry
partner, who expressed clear interest in and demand for this
technology, we establish a solid methodological and empirical
foundation, before considering the development of sophisticated
and potentially costly tools.

A. Research Questions

To understand the merits of language models for model com-
pletion, we want to answer the following research questions:

RQ 1: To what extent can pre-trained language models and
retrieval-augmented generation be used for the completion
of software models?

7 https://networkx.org 8 https://python.langchain.com
9 https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
10 https://www.trychroma.com

Clearly, a general pre-trained language model is typically
not aware of the syntax and domain-specific semantics of the
simple change graph serializations per se. This includes the
definition of the graph serialization format, the definition of
simple change graphs, the metamodel, and the domain-specific
semantics of the software models not already encoded in the
metamodel. For example, a generated completion might be
invalid according to the metamodel, (e.g., invalid combination
of edge, source, and target node labels) or could even result
in an invalid directed labeled graph serialization (e.g., they do
not adhere to the EdgeList format).

RQ 2: What influence does semantic retrieval have on the
performance of RAMC?

As motivated in Section IV, providing context that is
semantically close to a to-be-completed change could improve
the correctness of retrieval-augmented generation. We therefore
want to understand the influence of the similarity-based retrieval
on model completion. That is, we want to compare semantic
retrieval and random retrieval of few-shot examples and to
analyze the influence of the number of few-shot examples.

RQ 3: How does RAMC compare against the state of the
art (Chaaben et al. [16])?

We evaluate the accuracy of our proposed approach, RAMC,
by comparing it to the closely related work of Chaaben et
al. [16], which we use as a baseline. Their study focuses on
few-shot learning to suggest new model elements, providing
the same unrelated, few-shot examples independently of the
current model to be completed. Our investigation centers on
the prediction improvements that can be realized by providing
semantically similar examples from the model history as context
to the LLM for the model completion task.

RQ 4: What are limitations of using LLMs for model
completion in a real-world setting?

While quantitative results provide insights into the merits of
LLMs on model completion, we also want to investigate when
and why model completion fails. From simple examples and
simulated changes it is hardly possible to make assertions for
real-world changes. We therefore take a closer look at a sample
set from real-world changes. From our observations, we will
derive research gaps and hypotheses for future research.

RQ 5: What insights can be gained when comparing domain-
specific fine-tuning to our retrieval-based approach RAMC?

An alternative to retrieval-augmented generation is domain-
specific fine-tuning. We explore its viability, considering dataset
properties and training specifics (e.g., epochs and base LLM).

B. Datasets

To answer our research questions, we make use of three datasets,
balancing internal and external validity. Basic statistics about
the datasets are given in Table I.

https://networkx.org
https://python.langchain.com
https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
https://www.trychroma.com


Table I: Basic statistics for the datasets. Model size is
measured in terms of the number model elements. Changes

include added, deleted, and modified model elements.

Dataset No. No. Avg. Avg. No. Public
Models Revisions Model Size Changes

INDUSTRY 8 159 11 365 50 340 No
REPAIRVISION 42 3 139 685 70 Yes

SYNTHETIC 24 360 5 402 564 Yes

INDUSTRY Dataset. We have extracted this dataset from a
repository of SYSML models in MAGICDRAW11 for a train
control software used by a large product line of trains of our in-
dustry partner. The dataset stems from an industry collaboration,
where we tackle several challenges related to the management
of large industrial software product lines. The model for the
train control software comprises several submodels, such as
drive and brake control, interior lightning, exterior lightning,
sanitary facilities, HVAC, etc. In a preprocessing step, we have
removed confidential information (e.g., the models contain
requirement owner information and other personal information
of involved engineers). The models themselves as well as the
average number of changes between revisions in this dataset
are large (cf. Table I). The large number of changes originates
from many attributes changes, such as renamings, and typically
long time periods between two revisions.

The INDUSTRY dataset with its domain-specific and project-
specific concepts helps to understand to what extent we can use
LLMs for software model completion in a complex, real-world
setting. It allows us to assess the effectiveness in navigating
the noisy, complex, and often irregular nature of real-world
data – a critical aspect often overlooked in existing research.

REPAIRVISION Dataset. The REPAIRVISION [54, 53]
dataset is a public dataset12 of real-world open-source models,
containing histories of 21 ECORE repositories, such as UML2
or BPMN2. The REPAIRVISION dataset plays a crucial role
in our evaluation in assessing how effectively LLMs can be
employed for software model completion in real-world settings.
Similar to the INDUSTRY dataset, the serialized change graphs
in this dataset can become verbose and noisy and reflect the
difficulties of real-world model completion (see Figure 2).
Its public availability facilitates reproducibility, comparability,
and public accessibility, fundamental aspects that ensure our
research can be examined and extended by others.

SYNTHETIC Ecore Dataset. With the first two datasets, we
aimed at external validity and a real-world setting. At the same
time, we had only little control over potentially influential
factors of the dataset impairing internal validity. To obtain
a dataset for which we can control several properties of the
model repositories, we simulated the evolution of a software
model similar to Tinnes et al. [71]: We used a metamodel that
resembles a simple component model (as used in modelling
system architecture) with components, implementations, ports,
connectors, and requirements. Some predefined edit operations

11 MAGICDRAW is a modeling tool commonly used in industries for UML
and SysML (system modeling). 12 https://repairvision.github.io/evaluation

have been randomly applied to a revision of a software model
to obtain a new revision of the software model. This way
we were able to control the number of edit operations that
are applied per model revision (i.e., 11, 31, 51, 81) and the
number of model revisions in one dataset (i.e., 10 or 20). We
furthermore randomly applied perturbations. That is, with a
certain probability (i.e., 0%, 50%, 100%), we slightly modified
the edit operation by a successive application of an additional
edit operation that overlaps with the original edit operation.
The repositories in this dataset contain only changes at the type
level, that is, we do no include attributes or changes thereof.
The SYNTHETIC dataset gives us more control over several
properties of a model repository, allowing us to specifically
understand how fine-tuning is affected by the properties of the
model repositories, this way increasing internal validity.

C. Operationalization

We conduct four experiments, one per research question. For
all significance tests, we use a significance level of α = 0.05.

Experiment 1 (RQ 1): To answer RQ 1, we preprocess all
three datasets from Section V-B and generate a collection with
training (75%) and testing samples (25%), more specifically
simple change graphs, to ensure a systematic evaluation. We
then select13 between 122–221 samples, depending on the
dataset from the testing set and, for each, we select between 1
to 12 few-shot samples from the training set. The reason to
choose between 122–221 samples is (1) to obtain a sample set
of a manageable size that we can manually analyze and that
induces acceptable costs for the LLM usage and (2) to obtain
a large enough set to draw conclusions.

First, we analyze the correctness of the generated com-
pletions with respect to the ground truth. A simple change
graph contains a change that actually occurred in the modeling
history. From the change graph, we randomly remove edges to
obtain a partial change graph, with the full change graph being
the corresponding ground truth. This approach improves over
previous methods that involves arbitrarily removing elements
from a static snapshot. By focusing on model histories, we
create a realistic setting, selecting subsets of changes that have
actually occurred in real-world scenarios. We consider different
levels of correctness: Structural correctness ensures that the
graph structure is correct, with properly directed, sourced,
and targeted nodes. Change structure correctness builds on
this by additionally requiring correct types of changes to the
model, such as whether elements should be modified, added, or
removed. Lastly, type structure correctness demands further an
exactly correct ’type’ and ’changetype’. An illustrative example
for these types is given in Figure 2 under ’response’. We
automatically check the format, structural correctness, change
semantics, and type correctness for all datasets.

For the INDUSTRY dataset, we additionally manually evaluate
the generated completions to also check for semantic correct-
ness. In our manual analysis of semantic correctness, a solution
was deemed correct if the LLM’s proposed completion matched
the ground truth in meaning and purpose. This check cannot
13 The selection procedure is explained in detail in the appendix.

https://repairvision.github.io/evaluation


be automated due to the extensive use of natural language in
our data and application-specific identifiers (e.g., user-chosen
attribute names). For example, in Figure 2, naming a new
operation ’getExtension’ or ’getExt’ is a matter of preference,
while their semantic meaning is the same. We addressed
potential errors and bias in our manual analysis by having two
of the authors independently evaluate the proposed solutions.
Any mismatches in their evaluations were discussed, and a
consensus was reached on the correct interpretation. For the
base LLM, we use GPT-414 (version 0613) in a dedicated
Azure deployment to complete our prompts.

Experiment 2 (RQ 2): In RQ 2, we investigate whether
the correctness (from correct format to semantic correctness)
depends on the number of few-shot samples. For the INDUSTRY
dataset, we have the information on whether a few-shot
sample’s change is of a similar class as the test simple change
graph. We also investigate how this affects correctness, that
is, whether the similarity-based retrieval in RAMC affects the
correctness of completions. To this end, we compare semantic
sampling with few-shot samples that have been randomly
retrieved from the training data. We evaluate this for semantic
correctness. For this reason, and also to reduce the LLMs usage
costs, we perform this analysis only for the INDUSTRY dataset.

Experiment 3 (RQ 3): To address RQ 3, we selected the
publicly available REVISION dataset. This selection not only
enhances reproducibility but also allows for comparisons with
future methodologies, such that ongoing research advancements
can be directly compared to our RAMC and the work by
Chaaben et al. [16]. Their approach recommends new classes,
their associations, and attributes. Accordingly, the present
experiment specifically targets these aspects. We excluded
samples that did not fall into these categories, resulting in 51
test examples from the REVISION dataset for comparison. To
replicate the approach introduced by Chaaben et al., which
we denote as a BASELINE, we use their few-shot examples,
serialization of concepts, and incorporate the partial models
similarly into the prompt. Further details are available in the
appendix. We query GPT-3 (text-davinci-002) several times
and suggest the most frequently occurring concept.

Experiment 4 (RQ 4): We answer RQ 4 by manually
investigating completions that have been generated in the
first experiment for the INDUSTRY dataset. We go through
all prompt and completion pairs and identify common patterns
where the model completion works well or does not, and
we aim at interfering causes that led to the results. Since this
analysis is time-consuming, we focus on the INDUSTRY dataset
– a domain- and project-specific, real-world dataset. We report
on the identified strengths and weaknesses of the approach –
given this real-world scenario – and point to research gaps and
formulate hypotheses for future research and improvements.

Experiment 5 (RQ 5): To investigate whether fine-tuning is

14 Note that we experimented with several LLMs from the GPT family of
models and also observed changes in the specific model’s performance over
time [17]. At the time of execution, GPT-4 using a small introductory prompt
that explains the tasks (see appendix) was performing best on a small test set,
and we therefore fixed the LLM in RAMC to GPT-4.

a viable alternative to few-shot prompting (see Experiment 1),
we fine-tune models from the GPT family of language models
on the SYNTHETIC dataset. The reasons why we restrict this
analysis to the SYNTHETIC datasets are manifold: The main
reason is that we want to understand how the performance of
the fine-tuning approach depends on various properties of the
dataset in a controlled setting. Furthermore, we have a limited
budget for this experiment, and fine-tuning is costly. We also
control for the number of fine-tuning epochs and the base
language model used for the fine-tuning. For every repository
of the dataset, we split the data into training set (90%) and
testing set (10%), and we use the test set to report on the
performance of the completion task. The fine-tuning of the
models optimizes the average token accuracy15. To compare
the retrieval-augmented generation to fine-tuning, we run both
for the same test samples. For the few-shot training samples,
we also use the same training samples used to fine-tune the
language models. We assess the correctness with regard to
the ground truth. Due to the unique characteristics of the
SYNTHETIC dataset, the ground truth correctness is defined by
the graph structure, change structure, and type structure.

D. Results

Experiment 1 (RQ 1): Addressing RQ 1, which explores
the extent to which pre-trained LLMs and retrieval-augmented
generation can be utilized for software model completion, our
findings on the correctness of RAMC are detailed in Table II.

We list the different levels of correctness for all datasets.
We see that more than 90% of the completions have a correct
format and even more than 76% of completions are type correct,
that is, completed edges have the right source and target nodes,
and type and the types of the source and target node are correct.
Even at a semantic level, 62% of the generated completions
are correct for the INDUSTRY dataset. For the SYNTHETIC
dataset type correctness is equivalent to semantic correctness.
Consequently 86% of the results are correct for this dataset.

Table II: Different levels of correctness in percent (%) of the
entire test set for all three datasets.

Change Type Total
Dataset Format Structure Structure Structure Semantic Count

INDUSTRY 92.62 86.89 78.69 76.23 62.30 122
REPAIRVISION 91.86 84.62 84.16 76.92 – 221

SYNTHETIC 99.05 86.19 86.19 86.19 – 210

Experiment 2 (RQ 2): Regarding the relationship between
the number of few-shot samples and correctness, we con-
ducted a (one-sided) Mann-Whitney-U test for the overall
and type/semantic correct distributions over the number few-
shot samples. For every dataset, we do not find any significant
relationship between the number of few-shot samples and
correctness (smallest p-value is 0.2 for the type correctness

15 At the time of experiment execution, evaluating with any self-defined test
metrics was not possible using the fine-tuning APIs provided by OpenAI. This
metric is not aware of any specifics of the dataset, and even a single wrong
token in a serialization can produce a syntactically wrong serialization, while
the token accuracy for the incorrect completion would still be high.



of the REPAIRVISION dataset). Furthermore, we find that test
samples where a similar class of changes is among the few-shot
samples perform significantly better than overall correctness
(p = 0.0289 using a Mann-Whitney-U test, p = 0.0227 using
a binomial test). Finally, we find that similarity-based retrieval
performs significantly better than random retrieval for type
correctness (p < 10−9, using a binomial test) as well as for
semantic correctness (p < 0.0038 by a binomial test16).

Table III: Different levels of correctness in percent (%) of
RAMC and random retrieval on the INDUSTRY dataset.

Change Type Total
Approach Format Structure Structure Structure Semantic (Count)

RAMC 92.62 86.89 78.69 76.23 62.30 122
RANDOM 84.43 79.51 52.46 50.00 – 122

Experiment 3 (RQ 3): To obtain a clear picture of the
pros and cons of RAMC, BASELINE and random retrieval,
we independently report the accuracy of the correct concepts
(classes) and the correct association. We further split correct
concepts in correct type (“Same Class” in Table IV) and correct
name (see appendix, for details). We perform binomial tests (our
random baseline against RAMC and Chaaben et al.) to compare
the effectiveness of our approach. We found that, in all cases,
RAMC performs significantly better than RANDOM, which,
in turn, performs even significantly better than BASELINE
(Table IV).

Table IV: Different levels of correctness (%) of RAMC,
random retrieval, and BASELINE on the REVISION dataset.

Approach Same Class Same Name Same Concept Same Assoc.

RAMC 94.1** 96.1** 94.1** 80.4*

RANDOM 78.4 80.4 76.5 68.6
BASELINE 21.6** 9.8** 9.8** 7.8**

(**: p < 0.01, *: p < 0.05)

Experiment 4 (RQ 4): To better understand when and
why the retrieval-augmented generation succeeds or fails when
completing software models, we separate our analysis here in
two parts—successful completions and unsuccessful ones.

Reoccurring patterns (success): Several of the successful
completions follow repeating completion patterns. For example,
there is a move refactoring, where a package declaration with
type definitions is moved from one package to another package.
Since this happened quite often in the past repository histories,
the correct new parent package could be deduced, even though
this package is not yet part of the incomplete test sample.

Complex refactorings (success): Furthermore, more complex
refactorings have also been be completed correctly, for example,
a redesign of a whole-part decomposition including packages
and SYSML block definitions has been correctly performed.
Similarly, we find correctly completed refactorings dealing
with inheritance (of port types).

16 For semantic correctness, we rely on the fact that the number of semantically
correct samples is smaller than the number of type correct samples. Thus, we
are able to compute an upper bound for the p-value using the type correct
random retrieval samples.

Project-specific concepts (success): Even project-specific
concepts, such as a special kind of tagging concept to mark
software components as “frozen”, are correctly inferred from
the few-shot examples or co-changes of components are
correctly identified, likewise.

No memorization (success): We also observe correct han-
dling of structure in non-trivial cases. For example, correct
combinations of source and target node ids are generated can
not be observed in the few-shot examples.

Noise (success): We also observe that the language model is
able to infer concepts among noise, that is, unrelated changes.
For example, there are correctly completed instances of the “add
interface block and type reference” concept where similar few-
shot samples are only present with lots of entangled changes.

Regarding unsuccessful cases, we observe two main reasons
for failure: incorrect structure and incorrect semantic.

Structural conflicts (failure): For incorrect structure, we find
examples where conflicts occur because a node with the same
node id is already present. Furthermore, sometimes (correct)
model elements or packages are added to the incorrect parent
package (in most cases, we see a tendency of the LLM to
“flatten” hierarchies).

Structure incorrect (failure): There are several instances
where correct edge, source, and target node types are generated
but their ids, and consequently the structure, is incorrect.

Semantics wrong b/c copy&paste (failure): One cause for
incorrect semantic completions is that parts of few-shot samples
are incorrectly copied and pasted. This typically occurs when
the LLM lacks sufficient context to generate the correct
completion, leading it to mistakenly copy and paste segments
from the provided examples.

Semantics wrong b/c unknown evolution/missing context
(failure): For example, in the case of functional project-specific
evolution, it might be hard to “guess” the right completion
without further knowledge, or the semantic retrieval might fail
to retrieve instances of the correct change pattern. Interestingly,
in some of these cases, the LLM is “guessing well but not
perfect” (e.g., added subsystem instead of external subsystem).

Conceivable but unobserved evolution (failure): Another
interesting instance of incorrect semantic completion is a
completion where a comment (in German) should be removed
but instead a comment (in English) has been added. In the
project, there were many renamings from German to English
and, in this case, a future change has been correctly anticipated.

Experiment 5 (RQ 5): To compare our retrieval-augmented
generation-based to fine-tuning, we perform an analysis at the
token level, and we also compare the completions on a graph-
structural and semantic level. At the token level, we find an
average token accuracy of 96.9%, with a minimum of 92.1%,
and a maximum of 99.0% on our test data sets (10% test ratio).
We can observe strong correlation of the average token accuracy
with the number of fine-tuning epochs. Also, larger models
perform better with respect to the average token accuracy.
Regarding the repository properties, we only find significant
negative correlations with the perturbation probability. That is,
more diverse repositories are typically harder for the model



completion using fine-tuning. Exact numbers are given in
our appendix. When comparing the distributions of the edges
removed in the simple change graph for incorrect and correct
completions, we see that the average number of removed edges
for the incorrect (i.e., no exact match) completions (5.78) is
significantly larger than the average number of removed edges
for the correct ones (2.94). Similarly, we find a significant
relationship for the distributions of the total simple change
graph size (14.89 for the incorrect completions, and 6.39 for
correct completions). Accuracies of the comparison of our
approach to the fine-tuning approach are given in Table V.

Table V: Different levels of correctness in percent (%) for
fine-tuned models compared to the retrieval-based approach in

multi-edge software model completion on SYNTHETIC.

Dataset Method Correct edge(s) Exact match

BATCH 1 RAMC 88.52 39.34
text-ada-001 88.33 56.67

BATCH 2 RAMC 86.00 37.00
text-curie-001 90.05 64.68

We conducted a Mann-Whitney-U test to compare the
performance of retrieval-augmented generation and the fine-
tuned text-curie-001 and text-ada-001 models from the GPT-
3 family. In terms of producing, at least, one correct edge,
neither fine-tuning nor retrieval-augmented generation exhibit
statistical significance in outperforming the other. In terms
of exact matches, text-ada-001 (p = 0.0290) and text-curie-
001 (p < 10−7) outperform retrieval-augmented generation.
Regarding exact matches, the impact of different sampling
methods used in fine-tuning and RAMC becomes substantial
(algorithms are provided in the appendix). While RAMC often
produces more edges than required, the sampling procedure
used with the fine-tuning models is more conservative.

E. Discussion

Overall, we find that both RAMC and fine-tuning of LLMs are
promising approaches for model completion, and the general
inference capabilities of LLMs are useful, can handle noisy
contexts, and provide real-time capabilities. We will next
discuss the results, outline hypotheses for potential future
research, and describe threats to validity in Section V-F.

RQ 1: In the Experiment 1, we observed promising correct-
ness values across all datasets. Not only are more than 90% of
completions correct w.r.t. the serialization format, but we also
find more than 62% of semantically correct completions in
the real-world industrial setting. This indicates that retrieval-
augmented generation is a promising technique for model
completion. Token processing times fall within the millisecond
range, and time required for semantic retrieval is negligible,
even for larger models. The approach’s real-time capability is
significant given the stepwise model completion use case.

RQ 2: In the retrieval-augmented generation setting, we
do not find any significant relationship between the number
of few-shot samples and correctness. We find that similarity-
based retrieval boosts the correctness of the approach and that

it significantly performs better if a similar relevant change—
following a similar pattern—is available in the context. It also
worthwhile mentioning that real-world datasets are typically
biased with respect to the change pattern, and semantic retrieval
can avoid sampling from large but irrelevant change pattern.

RQ 3: We have observed that, in all instances where
new elements with associations are recommended, RAMC
consistently outperforms random retrieval and Chaaben et
al. [16]. These results reinforce our findings from RQ 1, namely
that leveraging LLMs with retrieval-augmented generation
represents a viable approach for model completion.

RQ 4: We have seen that our approach can be used to
provide completions that are correct to a large extent for
simple reoccurring patterns but also more complex refactorings.
Even project-specific concepts can be deduced from few-
shot examples. In many cases, generated edges are also
structurally correct. The general inference capabilities of
LLMs are useful, for example, in dealing with concepts for
which there are few or no similar examples. Furthermore,
also with noise retrieval-augmented generation often provides
correct completions. Regarding usefulness of the completions,
our manual analysis reveals that many of the completions
appear useful for the modeler. For example, RAMC was
able to perform a translation of several German comments
to English, because the engineering language of the project
has been changed. Furthermore, RAMC was able to complete
project-specific refactorings.For a further investigation of these
observations, we formulate the following hypothesis.

Hypothesis 1: LLMs and retrieval-augmented generation
are able to handle noisy training examples, leverage (do-
main) knowledge from pre-training, adapt to project-specific
concepts, and provide useful software model completions.

We found completions that are incorrect from a structural
viewpoint as well as incorrect from a semantic viewpoint.
As for structurally incorrect completions, we identified cases
where existing node ids are incorrectly reused, where incorrect
(containment) hierarchies would have been created, or where
completed edges are correct from a type perspective but do not
connect the right nodes. It is worth further investigating how
these structural deficiencies could be overcome, in particular,
given that LLMs are designed for sequential input, not for
graph inputs. This leaves us with the following hypothesis.

Hypothesis 2: Conceivable remedies for the structural
deficiencies include fine-tuning of LLMs, combining graph
neural networks – designed for graph-like input – with LLMs,
providing multiple different graph serialization orders, or a
positional encoding that reflects the graph-like nature of the
simple change graph serializations.

Regarding semantics, we found incorrect completions that
were related to a lack of (domain) knowledge in the pre-trained
model or the few-shot examples, respectively. For example,
we found cases of functional evolution where the language



model is missing (domain) knowledge or requirements, or
cases of a refactoring without any relevant few-shot sample.
We further identified cases where a conceivable completion
has been generated but was not the one from the ground truth.

Hypothesis 3: Conceivable remedies for the semantic defi-
ciencies include strategies to further fuse the approach with
context knowledge (e.g., fine-tuning, providing requirements,
or task context in the prompt, leveraging other project
data in repositories etc.). Furthermore, providing a list of
recommendations may cure some identified deficiencies.

RQ 5: We found that a more fine-tuning epochs are beneficial
for the average token accuracy. More diverse repositories
increase the difficulty for the software model completion. The
larger the simple change graph and the more edges we omit
for the completion, the higher the probability of an incorrect
completion. The reason that fine-tuning has a higher exact
match accuracy is more due to the edge sampling algorithm
than to the method itself: When analyzing the percentage of
correct edges, it becomes clear that we cannot conclude that
one approach outperforms the other. Instead, we hypothesize
a strong dependency on the edge sampling procedure, which
deserves further investigation. While the retrieval-augmented
generation often generated more edges than necessary, the
sampling procedure used with the fine-tuned models from the
GPT-3 family takes a more conservative approach, prioritizing
the generation of edges with high confidence.

Comparison to code completion. Note that LLMs for
source code completions show similar results to our findings in
Experiment 1 and 5, ranging from 29% for perfect prediction
of entire code blocks to 69% for a few tokens in a single code
statement [20]. Drawing a direct comparison between code and
model completion is not straightforward, though.

F. Threats to Validity

With respect to construct validity, we made several design
choices that may not be able to leverage the entire potential of
LLMs for software model completion, including our definition
of simple change graphs, the serialization of the simple change
graph, the strategy of how to provide domain knowledge to
the language model, and the choice of the base LLM.

To increase internal validity, we incorporated the SYNTHETIC
Ecore Dataset into our experiments, controlling for properties
of software model repositories. Still, we were not always able
to completely isolate every factor in our experiments. For
example, fine-tuning and few-shot learning use different edge
samplings. This is due to the API that we used to access the
language models. In future research, an ablation study for the
design choices in the algorithms shall be performed. To address
the potential variability that LLMs may exhibit, we checked
and confirmed that the completions were stable.

Regarding external validity, we included two real-world
datasets (REPAIRVISION and INDUSTRY), and we study real-
world change scenarios from the observed history in these
repositories. We have chosen our test samples to be small
enough to perform manual semantic analysis, but large enough

to draw conclusions. To minimize costly manual checks, our
semantic analysis was confined to our most challenging dataset,
the INDUSTRY dataset. Extending the analysis to the other
datasets would enhance validity. However, we are confident
that, having analyzed hundreds of samples, we have struck a
reasonable compromise. We are therefore certain that our results
have an acceptable degree of generalizability for the current
state of research. In any case, user studies shall investigate the
usefulness of our completions in practice. Investigating merits
of LLMs for model completion is an emerging topic, and many
questions are open. Still, our results set a lower bound for the
potential of LLMs in this area, with promising results, insights,
and hypotheses for further research.

VI. CONCLUSION

We presented and investigated an approach to software model
completion based on retrieval-augmented generation, RAMC,
and compared it to fine-tuning during our evaluation. Our
experiments on a simulated, a public, open source ECORE, and
an industrial SYSML dataset for a train control software product
line show that, indeed, LLMs are a promising technology
for software model completion. The real-time capability of
our approach is especially beneficial for stepwise model
completion, highlighting its practical utility. We achieved a
semantic correctness in a real-world industry setting of 62.30%,
which is comparable to earlier results with LLMs for source
code completion. Further investigation revealed that similarity-
based retrieval significantly enhances the correctness of model
completions and that fine-tuning is a viable alternative to
retrieval-augmented generation. All in all, the general inference
capabilities of LLMs are beneficial, particularly in dealing
with concepts for which only scarce or even no analogous
examples are provided. We have identified concrete causes for
the technology to fail and formulated corresponding hypotheses
for future research. Of utmost importance for future research is
to compare technology, such as graph neural networks, that has
been designed for processing graph-like data (e.g., our simple
change graphs), especially for structural aspects of software
model completion. Also, marrying approaches that are strong
for structural aspects, and LLMs, that are typically strong
for semantic aspects of model completion is worth further
investigation.

VII. DATA AVAILABILITY

We provided all data (excluding the INDUSTRY dataset) and
the Python code of our approach on a supplementary website.
We cannot include the INDUSTRY dataset, because it contains
sensitive data, including intellectual property of products on
the market. We provide R scripts and Jupyter Notebooks to
replicate our statistical evaluation.
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[50] Patrick Mäder, Tobias Kuschke, and Mario Janke. Reactive auto-
completion of modeling activities. Transactions on Software Engineering,
47(7):1431–1451, 2021.

[51] Nebras Nassar, Hendrik Radke, and Thorsten Arendt. Rule-based repair
of emf models: An automated interactive approach. In Theory and
Practice of Model Transformation: 10th International Conference, ICMT
2017, Held as Part of STAF 2017, Marburg, Germany, July 17-18, 2017,
Proceedings 10, pages 171–181. Springer, 2017.

[52] Patrick Neubauer, Robert Bill, Tanja Mayerhofer, and Manuel Wimmer.
Automated generation of consistency-achieving model editors. In 2017
IEEE 24th International Conference on Software Analysis, Evolution and
Reengineering (SANER), pages 127–137. IEEE, 2017.

[53] Manuel Ohrndorf, Christopher Pietsch, Udo Kelter, Lars Grunske, and
Timo Kehrer. History-based model repair recommendations. Transactions
of Software Engineering Methodology (TOSEM), 30(2), 2021.

[54] Manuel Ohrndorf, Christopher Pietsch, Udo Kelter, and Timo Kehrer.
ReVision: A tool for history-based model repair recommendations. In
Proceedings of the International Conference on Software Engineering
(ICSE): Companion Proceedings, pages 105–108. ACM, 2018.

[55] OMG. OMG Meta Object Facility (MOF) Core Specification, Version
2.4.1. Technical report, Object Management Group, June 2013.

[56] OMG. Unified modeling language (UML) version 2.5.1. Standard, Object
Management Group, December 2017.

[57] OMG. Omg sysml v. 1.6. Standard, Object Management Group,
December 2019.

[58] Michael Polanyi. Personal Knowledge: Towards a Post Critical
Philosophy. University of Chicago Press, 1958.

[59] Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings
using siamese bert-networks. arXiv preprint, 2019.

[60] Gregorio Robles, Michel RV Chaudron, Rodi Jolak, and Regina Hebig.
A reflection on the impact of model mining from github. Information
and Software Technology, 164:107317, 2023.

[61] Alberto Rodrigues Da Silva. Model-driven engineering: A survey
supported by the unified conceptual model. Computer Languages, Systems
and Structures, 43:139–155, 2015.

[62] Hazem Peter Samoaa, Firas Bayram, Pasquale Salza, and Philipp Leitner.
A systematic mapping study of source code representation for deep
learning in software engineering. IET Software, 2022.

[63] Maik Schmidt and Tilman Gloetzner. Constructing difference tools for
models using the SiDiff framework. In Proceedings of the International
Conference on Software Engineering (ICSE): Companion Proceedings,
pages 947–948. ACM/IEEE, 2008.

[64] Sagar Sen, Benoit Baudry, and Hans Vangheluwe. Towards domain-
specific model editors with automatic model completion. Simulation,
86(2):109–126, 2010.

[65] Dominik Sobania, Martin Briesch, and Franz Rothlauf. Choose your pro-
gramming copilot: A comparison of the program synthesis performance

of github copilot and genetic programming. CoRR, abs/2111.07875,
2021.

[66] Friedrich Steimann and Bastian Ulke. Generic model assist. In Ana
Moreira, Bernhard Schätz, Jeff Gray, Antonio Vallecillo, and Peter Clarke,
editors, Proceedings of the International Conference on Model Driven
Engineering Languages and Systems (MODELS), pages 18–34. Springer
Berlin Heidelberg, 2013.

[67] Dave Steinberg, Frank Budinsky, Ed Merks, and Marcelo Paternostro.
EMF: eclipse modeling framework. Pearson Education, 2008.

[68] Matthew Stephan. Towards a cognizant virtual software modeling
assistant using model clones. In 2019 IEEE/ACM 41st International
Conference on Software Engineering: New Ideas and Emerging Results
(ICSE-NIER), pages 21–24. IEEE, 2019.

[69] Matthew Stephan and James R Cordy. A survey of model comparison
approaches and applications. In Proceedings of the International
Conference on Model-Driven Engineering and Software Development
(MODELSWARD), pages 265–277, 2013.

[70] Christof Tinnes, Timo Kehrer, Mitchell Joblin, Uwe Hohenstein, Andreas
Biesdorf, and Sven Apel. Mining domain-specific edit operations
from model repositories with applications to semantic lifting of model
differences and change profiling. Automated Software Engineering,
30(2):17, 2023.

[71] Christof Tinnes, Timo Kehrer, Joblin. Mitchell, Uwe Hohenstein, Andreas
Biesdorf, and Sven Apel. Learning domain-specific edit operations from
model repositories with frequent subgraph mining. In Proceedings of
the International Conference on Automated Software Engineering (ASE).
ACM/IEEE, 2021.

[72] Arie Van Deursen, Eelco Visser, and Jos Warmer. Model-driven software
evolution: A research agenda. Technical Report Series TUD-SERG-2007-
006., 2007.
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APPENDIX

A. Sampling of Experiment Samples

To get a manageable (e.g., we want to perform a manual
analysis for correctness and need to keep LLM usage cost ac-
ceptable) – but still large enough – sample for our experiments,
our aim is to sample around 100–200 examples for each of the
datasets (i.e., SYNTHETIC, REPAIRVISION, and INDUSTRY).
Every dataset consists of several projects (e.g., submodels in
the case of the INDUSTRY dataset), and we ensure that they are
represented with the same distribution in our sample. We draw
at least 200 examples. Since we ensure that every project is
included, at least, once, even if it is very small, this leaves us
with 210 samples for the SYNTHETIC dataset, 221 samples for
the REPAIRVISION dataset, and 200 samples for the INDUSTRY
dataset. For every project in the dataset we used a diversity
sampling strategy (cf. Section C3) to obtain a diverse range
of samples. For the INDUSTRY dataset, since we perform a
manual analysis of semantic correctness there, we further want
to reduce the size of the sample, without harming diversity too
much. We could have just randomly (or with the procedure
above) down-sampled, for example, to 100 samples. Instead,
since we generally observe a strong homogeneity in the real-
world datasets (i.e., many repeating patterns in INDUSTRY and
REPAIRVISION datasets), we wanted to ensure that we do not
decrease the heterogeneity. We therefore decided to further
select samples from industry with a more controlled procedure:

We further examine the prompt and completion pairs to
classify the changes into semantic clusters that we defined. We
skimmed the dataset once and came up with a list of change
patterns, for example, “interface added between components”.
We agreed on a final list of patterns (the first and second author
of the paper agreed on categories for the examples from the
initially drawn 200 examples). We then recorded whether the
training samples contain a change that falls into the same class.
We then only included samples that are unique according to
the number of training examples in the prompt, the class of the
change that we assigned, and whether there is a similar change
in the training samples or not (which has also been decided
with the help of the patterns we defined for the changes).
This leaves 122 samples for the model completion task on the
INDUSTRY dataset.

B. Formalization

In addition to the terminology from our formalization in
Section III, we will define further operators and then formal-
ize our approach RAMC on top: We define a serialization
operator s : G → Σ∗, where Σ∗ is the set of all strings.
This operator s takes a (partial) simple change graph g ∈ G
and returns a serialization for this graph (the detailed seri-
alization is given in Section C2). Furthermore, we define
r : Σ∗ → Σ∗k, which, given a (partial) serialized simple
change graph s(g) ∈ Σ∗, retrieves k “similar” serialized simple
change graphs from a (vector) database. We define the prompt
operator prompt: Σ∗ × Σ∗k → Σ∗, which, given a tuple
(s(g), r(s(g)) of the (partial) simple change graph and the

retrieved similar serialized simple change graphs, constructs
the final prompt (described in detail in Section C4). Given
the prompt instruction i := prompt((s(g), r(s(g))), we can
generate serialized completed simple change graph candidates
by sampling tokens with a LLM. That is, we sample tokens
ωj+1 from P(ωj+1|i ω1 . . . ωj), until the entropy becomes too
large or a complete edge serialization has been sampled. A
large entropy of the language model token probabilities can be
seen as an indicator17 for a high uncertainty of further tokens.
We denote this candidate generation by

cgLLM : Σ∗ → Σ∗

cgLLM(i) 7→ s(g)ω1 . . . ωJ ,

where J is the total number of sampled tokens. By s(g)ω1, we
denote the string concatenation of s(g) and ω1, and likewise
for the rest of this expression. Finally, we parse s(g)ω1 . . . ωJ

as a graph (if possible), and interpret it as a completed simple
change graph, which represents a model transformation γ. It
can happen (although it rarly happens in practise as can be seen
in the evaluation section of this paper) that the completed string
does not represent our simple change graph serialization format.
In this case, we record this failure and consider the model
completion as failed. Identifying the parsed graph with the
corresponding edit operation, we denote this parsing operator by
s−1 : Σ∗ → E . With this notation, the entire model completion
approach, RAMC, can be formalized by

CRAMC : T → T
(m1,m2) 7→ π(m1, s

−1 ◦ cgLLM ◦ prompt

◦ id× r ◦ s ◦ SCG(m1,m2)),

where π is the application operator and SCG the simple change
graph operator defined in Section III.

C. Implementation Details

1) Realization of the operator SCG: Simple Change Graphs
and Their Labels

In Definition III.4, we defined simple change graphs as
subgraphs of a difference graph, which is a labeled graph. In
this section, we explain in more detail, how we derive the labels
from the models and the change graph, that is, the realization
of the operator SCG.

We assume a simplified metamodel, in which we have
classes that carry a name, that is, the type of a model element.
A class has attributes that have a attribute name and attribute
value, and references that have a reference type.

For a given model, we then use this simplified metamodel to
derive a labeled graph (cf. Definition III.2): we map objects (i.e.,
instances of a class) to a node of the labeled graph and instances
of references to edges. By this, we ensure that our graph
representation is structurally equivalent to an abstract syntax
graph of the model (difference). Nodes and edges in the graph
carry a label. For nodes, this label is a JSON representation
of the object. It has a attribute type with its value equal to the

17 assuming a well-calibrated LLM



name of the class the object is an instance of. It also contains
all attributes with their values for the given object(assuming
we can serialize the attribute). More concretely, the attributes
are a contained as a nested JSON inside the node label JSON
with JSON attribute names equal to the attribute name and
JSON value given by the attribute value. Finally, for the edge
labels, we use a JSON that has a JSON attribute type with
value equal to the reference type.

Next, for the difference graph, we simply add to each node
and each edge another JSON attribute changeType, with value
equal to Add, Preserve, or Remove, depending on the change
type in the difference graph. For modified attributes, we add
another node attached to the necessarily preserved object with
a JSON label indicating the attribute value before and after
the change. Since a simple change graph is a subgraph of the
difference graph, this construction also defines the labels of
the simple change graph.

Note that in some cases (e.g., to check for type correctness),
we can simply remove attribute information from our labels,
thus obtaining a graph that has only information about the
type structure. We use this graph, for example, to check for
type correctness of model completions. Furthermore, this graph
without attribute information can also be helpful for other use
cases, where we are only interested in the type structure, for
example, in change pattern mining use cases, or if we want to
define a reusable template for edit operations.

Now that we know how to construct a labeled graph for
a given model difference, we will next see how we serialize
these labeled graphs.

2) Realization of the operator s: Serialization Format
In this section, we explain our serialization format for graphs,

called EdgeList, which will be part of the prompt being send
to the LLM (cf. Figure 2). In the language of Section B, this
section it about the implementation of the operator s.

The serialization of a graph starts with a header line
(indicating an id of the graph).

t # <graph id>

After the header, all edges of the graph are serialized edge-
by-edge, where one edge will correspond to one line in the
serialization format. An edge is represented by one line of the
following format:

e <src id> <t g t i d> <s rc labe l> <t g t l a b e l> <edge label>

Here, <src label>, <tgt label>, and <edge label> are
the labels of the labeled graph corresponding to the simple
change graph (cf. Section C1), and <src id> and <tgt id>
are identifiers for the source and target vertices of the edge,
respectively.

An extract of an example simple change graph serialization
is given in Listing 1.

When we designed this serialization format, we had already
the application of LLMs for model completion in mind. More
common graph serialization formats start with a list of nodes
and then list edges between these nodes. Instead, we define
nodes implicitly, while defining edges. Therefore, node labels

of already defined nodes will be duplicated in our approach. In
practise, we avoid this though, by replacing an already defined
node label by an empty JSON.

Especially in the case of fine-tuning, we do want to avoid
that the LLM has first to guess the right nodes of the graph
before it continues with the edges. The EdgeList format allows
for a continuous generation of edges and avoids the break
between listing nodes and listing edges.
t # 1
e 0 1 { . . . ” add ” , ” type ” : ” po r t ”} { . . . ” add ” , ” type ” : ”
↪→ component ”} { . . . ” add ” , ” type ” : ” po r t ”}
e 0 2 { . . . ” add ” , ” type ” : ” requirement ”} { . . . ” add ” , ” type ” : ”
↪→ component ”} { . . . ” add ” , ” type ” : ” requirement ”}

Listing 1: An example SCG in the EdgeList format.

In a textual representation, we have to linearize also the
listing of the edges, that is, we need to decide on an ordering
of the edges of the graph. In our case, the order of edges for
this serialization is determined using a depth-first search, since
it proved to perform best in a pilot study. Nevertheless, other
serialization strategies (or even representing the graph in more
than one edge order) are conceivable and could be investigated
as part of future work.

3) Realization of the operator r: Diversity Based Few-Shot
Sample Retrieval

RAMC involves retrieving similar examples to the software
model the user is currently working on. This retrieval is given
by the operator r in Section B. To ensure diversity, typical
implementations of maximum marginal relevance retrieve
elements, element by element, and ensures maximal distance to
the already existing elements. This can lead to below optimal
samples, because samples that have already been retrieved
are later not removed. In essence, typical maximum marginal
relevance implementation can get stuck in local optima.

In our sampling algorithm, the goal is the same as in
maximum marginal relevance. That is, we want to select
samples that are similar to a given input but the samples
themselves are diverse. We extend on maximum marginal
relevance by using the following retrieval procedure: First, for
a given embedding, we retrieve a given number n of elements
that are similar to this given embedding. We call this set S.
Second, from S, we want to draw another sample of a given
size k, that maximizes the distances between all elements.
Initially, we draw k random elements from S. Let’s call this
set D Third, we choose one of these elements e and replace it
by an element from (S \D)∪ {e} that has maximum distance
to the D \ {e}. Finally, we iterate this procedure for a given
number of iterations and try to choose at least one element of
the initial set D once.

4) Realization of the operator cgLLM ◦prompt: Candidate
Generation

We utilize two different tactics/algorithms to generate
candidates for the software model completion. In the language
from Section B, these represent two different implementations
of the operator cgLLM ◦ prompt. In the first tactic, we keep
the control over the sampling procedure and use the language
model to generate the completions token-wise. We therefore



use this tactic only with a “completion-like” interface. This
tactic is more expensive, since we have to process the entire
context for every token. Especially for GPT-4, this tactic is
not feasible (without major adaptions). For the second tactic,
we utilize the LLM’s capabilities to directly generate entire
candidate completions. In the present study, we are using this
tactic for all completions generated with GPT-4.

a) Beam-like Sampling Algorithm
The candidate generation works as follows (see pseudo code

in Listing 1): The algorithm takes a set of incomplete edit
operation candidates (in the form of serialized simple change
graphs) and uses the (fine-tuned) language model to sample
new edge candidates and appends them to the incomplete
edit operation candidate (Line 12). The sampling generates
all possible extensions above a certain probability threshold.
Since we cannot guarantee that the extensions lead to a correct
EdgeList serialization, we check the syntactical correctness
and reject incorrect extensions (Line 13). Furthermore, even
syntactically valid extensions could be invalid according to the
metamodel and have to be rejected likewise (Line 14). After
that, the corresponding simple change graph represents a valid
edit operation by definition. Based on a graph isomorphism
test, we then filter out duplicates (Line 15). Although graph
isomorphism is theoretically expensive from a computational
perspective, in our setting, it is acceptable since we have only
a few medium size graphs, and employ Weisfeiler-Lehman
hashes [33] to speed up the comparison. We add complete
candidates to the output list (Line 19) and repeat this process
until all candidates are complete (Line 9). Whether a candidate
is complete is checked using several conditions such as the
total probability of the candidate, a drop in the probability of
a generated edge, or a generated stop token.

b) ChatModel Instruction
An alternative to the token-wise beam search above is to let

the LLM decide when to stop. If multiple candidates should be
generated, one could sample with a certain temperature > 0.

For our completion generation, we use the following instruc-
tion prompts:

Listing 2: Single edge completion prompt.
You are an a s s i s t a n t t h a t i s given a l i s t o f change graphs
i n an edge format . That is , the graph i s given edge by edge
. The graphs are d i rec ted , labe led graphs . An edge i s
s e r i a l i z e d as
” e s rc id t g t i d edge label s r c l a be l t g t l a b e l ”

Labels are d i c t i o n a r i e s . I f a node appears i n more than one
edge , the second t ime i t appears i t i s replaced by ” ” to

avoid r e p e t i t i o n .

E . g . :
e 0 1 a b bar
e 1 2 b la foo

The second edge here would be equ iva len t to :
” e 1 2 b la bar foo ”

There are some change graphs given as examples . Graphs are
separated by ”\n\n$$\n−−−\n ” .

The l a s t graph i n t h i s l i s t o f graphs i s not yet complete .
Exac t l y one edge i s missing .
Your task i s i t , to complete the l a s t graph by guessing the

l a s t edge . You can guess t h i s t y p i c a l l y by look ing a t the

Algorithm 1: Pseudocode for the candidate generation.

1 Function generateCandidates(ε, L, TM):
2 begin
3 Input: ε – given context serialization
4 L- fine-tuned language model
5 TM- metamodel
6 Output: [ε1, . . . , εn] - list of candidates
7 incomplete ← [ε]; ▷ set of incomplete edit operations
8 complete ← [] ; ▷ set of complete edit operations
9 while size(incomplete) > 0 do

10 ext ← []; ▷ set of extended edit operations
11 foreach op ∈ incomplete do
12 ext += sampleEdges(L, op);
13 ext ← checkCorrectSCG(ext);
14 ext ← checkMetaModel(TM, ext);
15 ext ← prune(ext, complete);
16 incomplete ← [];
17 foreach ε̃ ∈ ext do
18 if complete(ε̃) then
19 complete += ε̃;
20 else
21 incomplete += ε̃;
22 return complete

examples and t r y i n g to deduce the pa t te rns i n the examples .
Give t h i s missing edge i n the format

” e s rc id t g t i d edge label s r c l ab e l t g t l a b e l ” . Note t h a t
the beginning ” e ” i s a l ready pa r t o f the prompt .

Listing 3: Multiple edge completion prompt.
You are an a s s i s t a n t t h a t i s given a l i s t o f change graphs
i n an edge format . That is , the graph i s given edge by edge
. The graphs are d i rec ted , labe led graphs . An edge i s
s e r i a l i z e d as
” e s rc id t g t i d edge label s r c l ab e l t g t l a b e l ”

Labels are d i c t i o n a r i e s or concatenat ions o f change type
and node / edge type . I f a node appears i n more than one edge
, the second t ime i t appears i t can be replaced by ” ” to
avoid r e p e t i t i o n .

E . g . :
e 0 1 a b bar
e 1 2 b la foo

The second edge here would be equ iva len t to :
” e 1 2 b la bar foo ”

There are some change graphs given as examples . Graphs are
separated by ”\n\n$$\n−−−\n ” .

The l a s t graph i n t h i s l i s t o f graphs i s not yet complete .
Some edges are missing .
Your task i s i t , to complete the l a s t graph by guessing the

missing edges . You can guess t h i s t y p i c a l l y by look ing a t
the examples and t r y i n g to deduce the pa t te rns i n the
examples . Give the missing edges i n the format
” e s rc id t g t i d edge label s r c l ab e l t g t l a b e l ” . Note t h a t

the beginning ” e ” i s a l ready pa r t o f the prompt . A f t e r the
l a s t edge of the change graph , add two new l i n e s .

5) Realization of the operators π and SCG: Evaluation
based on graphs in G

Applying an edit operation to a model m1 requires some
pre-conditions to be fulfilled. This includes the definition of



a matching (i.e., to define the preserved model elements). As
argued in Section III, we assume models to be valid and
application conditions (pre-conditions) of edit operations to be
fulfilled. This is the responsibility of the modeling tool. For
example, in the Eclipse Modeling Framework Ecosystem, there
are model transformation tools such as HENSHIN [8] that can
be used for the definition, verification, and application of an
edit operation.

Given a matching and the original (left-hand side) model
m1 the operator SCG and π are inverse to each other (i.e.,
SCG ◦π ≡ id under the identification of E with the range of
SCG in G.

The matching defined by the matching of the incomplete edit
operation ε can be reused for the matching of the completed
edit operation γ ◦ ε. In case the completed edit operation does
not depend on preserved model elements that are not present
in the incomplete edit operation, the model completion will
be already fully defined by a surrogate operation CG : G → G.
In mathematical terms, in this case the following diagram
commutes.

T E ⊂ G Σ∗

T E ⊂ G Σ∗

SCG

CRAMC CG

s

cgLLM◦prompt ◦ id×r

π(m1,.) s

We can therefore base our evaluation on the surrogate
operator CG . For the evaluation, we can therefore sidestep
the question of defining π.

Anyway, π can be defined by realized by adding model ele-
ments corresponding to “added” nodes to the model, removing
model elements corresponding to “removed” nodes from the
model, changing attributes of “preserved” nodes given via the
change nodes of the simple change graphs, and finally connect-
ing the new model elements to the preserved nodes according to
the edges in the simple change graph (and removing dangling
edges after removing likewise). Alternatively, tools such as
HENSHIN can be used to define an edit rule corresponding
to the simple change graph first and then applying this edit
rule as an edit operation using the matching defined by the
incomplete edit operation ε.

In our implementation and evaluation, we realize the operator
SCG as follows: For two (successive) model m1 and m2 (i.e.,
(m1,m2) ∈ T ), we compute the simple change graphs in G
as described in Section III. That is, we first compute a model
difference by the tool SIDFF [63] (other model diffing tools,
e.g., EMFCOMPARE, are conceivable). We then map added,
removed, and changed model elements to their corresponding
nodes in a simple change graph. We then remove all nodes
from the matching tree not directly connected to these added,
removed, or changed nodes.

Remark. Only depending on the matching defined by the in-
complete edit operation brings some limitation to the approach.
During the software model completion, we can not depend
on “new” preserved nodes. Anyway, it is hardly possible, to
include the entire model in the context, one therefore needs
to take decisions to only bring in slices of the model into the

model completions. Alternative slicing options or extensions
of the simple change graphs used in this work are conceivable.
For example, one could try to extend the simple change graph
with preserved nodes that are likely be involved in a subsequent
model completion (e.g., model elements that are textually or
semantically similar to the elements involved in the current
change context). Consideration of these alternatives are beyond
the scope of the present work and left for future work.

D. Details for Baseline Comparison

1) Evaluated Datasets
A proper level to compare different model completion

approaches would be a meta-meta level (following the MOF).
This allows us to compare Chaaben et al.’s approach, which
works for a subset of UML class diagrams and a subset of
activity diagrams, against our approach, which works directly
on the abstract syntax graph of the models. By interpreting the
abstract syntax of our models as class diagrams, we were able
to compare (part of) their approach to ours. In our dataset, we
had already classified the changes and the changes that are of
interest for the recommendation of new concepts, corresponded
to a class of changes we called ”Add node” in our samples.
We selected these changes, which left us with 51 samples for
the revision dataset.

2) Evaluation Method
In our comparison, we focused on concept recommendation

and association recommendation. Attribute recommendation in
class diagrams is quite comparable to concept recommendation.
Indeed, in ECORE deciding between a reference to another
concept or an attribute of an EClass is more like a design
choice and both are considered to be a EStructuralFeature.

We mapped the examples we observed to corresponding
concept recommendations. E.g., when an EClass with name
User is added via a containment to an EClass with the name
Software, we used the tuple [EClass.Software, EClass.User]
in Chaaben et al.’s approach. Depeding on the concrete ECore
concept, we replaced *name* by the corresponding identifier
(e.g., name for EClass, key for EAnnotation, etc.).

To get a clearer picture of the pros and cons of the
approaches, we decided to report independently the accuracy
of the correct concepts being recommended, the accuracy of
correct association being recommended, and we further split
in correct type (e.g., EClass in the example above) and correct
name (e.g., Software, or User in the example above).

3) Replication of their approach
To use the approach introduced by Chaaben et al. [16], as

the BASELINE we had to make some design decisions, to make
a fair comparison possible.

We utilized the same few-shot examples, following the
premise that these could originate from unrelated models. We
could have decided to choose the few-shot samples from the
dataset, similar to our approach. Anyway, since we consider
this a crucial difference of the approach, we used the few-shot
samples exactly as in the implementation of their approach.
The few-shot samples were loaded from a file that we used
in the re-implementation of their approach. We build on their



serialization of concepts and enhance the queries by additionally
incorporating the partial domain model in a similar manner. We
select between one to four pairs of related concepts, enclosing
the concept names in brackets.

As in the original approach, we query GPT-3 (text-davinci-
002) multiple times to suggest the most frequently occurring
concepts. We use the same temperature setting of 0.7 and a
maximum token length of 20 tokens, which is sufficient in our
REVISION dataset to suggest at least one new pair of concepts.
Excess tokens were removed. We also considered upgrading the
model used for the BASELINE to GPT-4. This transition would
necessitate additional modifications in their approach. When
utilizing GPT-4 with the existing prompts, the model begins
generating natural language text that is not directly related to
the specific use case. This deviation occurs because the text-
davinci-002 model is not designed for chat-like interactions,
unlike ChatGPT and GPT-4. Consequently, changing the model
would require a redesign of their prompts to align with the
capabilities of these models.

The authors employed a sampling strategy coupled with a
ranking method, so we similarly query GPT-3 multiple times
using a variety of prompts, each consisting of the same few-
shot examples but with different queries that incorporate a
subsets of model elements from the partial model. In their
implementation, the authors sampled (random or all) pairs
of concepts from the model at hand. This method does not
facilitate effective real-time responses, particularly for larger
software models, thus making it impractical for scenarios like
those encountered in our REVISION dataset (about 685 queries
on average, see I). Since we had simple change graphs at hand,
we decided to sample the edges/associations from these simple
change graphs, ensuring that the number of elements in the
partial model for each query ranges between one and four
elements.

Furthermore, when suggesting new concepts, the paper
considers both elements of each pair as new concepts. Un-
fortunately, one of these elements is usually already present
in the partial model. This results in existing model elements
being ranked at the top, rather than new concepts, leading to
poorer outcomes. We have improved upon this by filtering out
classes that already exist in the model.

It is noteworthy that several recommender systems make
a list of k recommendations. We did intentionally decide to
set k equal to one, since in a real world scenario (compare
to GitHub Copilot), one would typically not come up with
a list, but directly integrate one recommendation in the IDE.
To ensure a fair comparison, we focus on the single most
frequently occurring completion.

E. Few-shot examples

Due to space limitations, we omitted the few-shot examples in
Figure 1 which are presented here. These examples demonstrate
the retrieval of, in this specific case, four few-shot instances
through our vector store. The similarity-based retrieval mecha-
nism is further detailed in Section C3.
t # 5175

e 2 1 ”{ ’ changeType ’ : ’Add ’ , ’ type ’ : ’ re ference ’ , ’
referenceTypeName ’ : ’ eOperations ’} ” ”{ ’ changeType ’ : ’
Preserve ’ , ’ type ’ : ’ ob jec t ’ , ’ className ’ : ’ EClass ’ , ’
a t t r i b u t e s ’ : { ’ id ’ : ’ ftfz6d6tEei97MD7GK1RmA ’ , ’
eAnnotat ions ’ : [ ’ org . ec l i pse . emf . ecore . impl .
EAnnotationImpl@1d8d14f1 ( source : h t t p : / / www. ec l i pse . org /
emf /2002/GenModel ) ’ , ’ org . ec l i pse . emf . ecore . impl .
EAnnotationImpl@c8ca1dd ( source : dup l i ca tes ) ’ ] , ’ name ’ : ’
C l a s s i f i e r ’ , ’ ePackage ’ : ’ uml ’ , ’ abs t rac t ’ : ’ t rue ’ , ’ i n t e r f a c e
’ : ’ f a l se ’ , ’ e IDA t t r i bu te ’ : ’ name ’ , ’ eS t ruc tu ra lFea tu res ’ : [ ’
i sAbs t rac t ’ , ’ gene ra l i za t i on ’ , ’ powertypeExtent ’ , ’ fea tu re ’ , ’
inheritedMember ’ , ’ r e d e f i n e d C l a s s i f i e r ’ , ’ general ’ , ’
s u b s t i t u t i o n ’ , ’ a t t r i b u t e ’ , ’ rep resen ta t ion ’ , ’
co l labora t ionUse ’ , ’ ownedUseCase ’ , ’ useCase ’ ] , ’
eGenericSuperTypes ’ : [ ’ org . ec l i pse . emf . ecore . impl .
EGenericTypeImpl@239c2926 ( expression : Namespace ) ’ , ’ org .
ec l i pse . emf . ecore . impl . EGenericTypeImpl@526bc7ba (
expression : RedefinableElement ) ’ , ’ org . ec l i pse . emf . ecore .
impl . EGenericTypeImpl@6999e7c8 ( expression : Type )
’ , ’ . . . ’ ] } } ” ”{ ’ changeType ’ : ’Add ’ , ’ type ’ : ’ ob jec t ’ , ’

className ’ : ’ EOperation ’ , ’ a t t r i b u t e s ’ : { ’ id ’ : ’
mrycqN6tEei97MD7GK1RmA ’ , ’name ’ : ’ ge tA l lUsed In te r faces ’ , ’

ordered ’ : ’ f a l se ’ , ’ unique ’ : ’ t rue ’ , ’ lowerBound ’ : ’ 0 ’ , ’
upperBound ’ : ’ − 1 ’ , ’ many ’ : ’ t rue ’ , ’ requ i red ’ : ’ f a l se ’ , ’ eType ’ : ’
I n t e r f ace ’ , ’ eGenericType ’ : ’ org . ec l i pse . emf . ecore . impl .
EGenericTypeImpl@762545f6 ( expression : I n t e r f a c e ) ’ , ’
eContainingClass ’ : ’ C l a s s i f i e r ’}} ”
e 2 0 ”{ ’ changeType ’ : ’Add ’ , ’ type ’ : ’ re ference ’ , ’
referenceTypeName ’ : ’ eOperations ’} ” ”{ ’ changeType ’ : ’Add
’ , ’ type ’ : ’ ob jec t ’ , ’ className ’ : ’ EOperation ’ , ’ a t t r i b u t e s
’ : { ’ id ’ : ’ mrycp96tEei97MD7GK1RmA ’ , ’name ’ : ’
getUsedInter faces ’ , ’ ordered ’ : ’ f a l se ’ , ’ unique ’ : ’ t rue ’ , ’
lowerBound ’ : ’ 0 ’ , ’ upperBound ’ : ’ − 1 ’ , ’ many ’ : ’ t rue ’ , ’ requ i red
’ : ’ f a l se ’ , ’ eType ’ : ’ I n t e r f ace ’ , ’ eGenericType ’ : ’ org . ec l i pse .
emf . ecore . impl . EGenericTypeImpl@3d23f56e ( expression :
I n t e r f a c e ) ’ , ’ eContainingClass ’ : ’ C l a s s i f i e r ’}} ”

$$
−−−
t # 1250
e 2 1 ”{ ’ changeType ’ : ’Add ’ , ’ type ’ : ’ re ference ’ , ’
referenceTypeName ’ : ’ eOperations ’} ” ”{ ’ changeType ’ : ’
Preserve ’ , ’ type ’ : ’ ob jec t ’ , ’ className ’ : ’ EClass ’ , ’
a t t r i b u t e s ’ : { ’ id ’ : ’ ftfz6d6tEei97MD7GK1RmA ’ , ’
eAnnotat ions ’ : [ ’ org . ec l i pse . emf . ecore . impl .
EAnnotationImpl@50bd114f ( source : h t t p : / / www. ec l i pse . org /
emf /2002/GenModel ) ’ , ’ org . ec l i pse . emf . ecore . impl .
EAnnotationImpl@11c9b440 ( source : dup l i ca tes ) ’ ] , ’ name ’ : ’
C l a s s i f i e r ’ , ’ ePackage ’ : ’ uml ’ , ’ abs t rac t ’ : ’ t rue ’ , ’ i n t e r f a c e
’ : ’ f a l se ’ , ’ e IDA t t r i bu te ’ : ’ name ’ , ’ eS t ruc tu ra lFea tu res ’ : [ ’
i sAbs t rac t ’ , ’ gene ra l i za t i on ’ , ’ powertypeExtent ’ , ’ fea tu re ’ , ’
inheritedMember ’ , ’ r e d e f i n e d C l a s s i f i e r ’ , ’ general ’ , ’
ownedUseCase ’ , ’ useCase ’ , ’ s u b s t i t u t i o n ’ , ’ a t t r i b u t e ’ , ’
rep resen ta t ion ’ , ’ co l labora t ionUse ’ , ’ ownedSignature ’ ] , ’
eGenericSuperTypes ’ : [ ’ org . ec l i pse . emf . ecore . impl .
EGenericTypeImpl@1504a6f7 ( expression : Namespace ) ’ , ’ org .
ec l i pse . emf . ecore . impl . EGenericTypeImpl@65db7f4d (
expression : RedefinableElement ) ’ , ’ org . ec l i pse . emf . ecore .
impl . EGenericTypeImpl@225a383c ( expression : Type )
’ , ’ . . . ’ ] } } ” ”{ ’ changeType ’ : ’Add ’ , ’ type ’ : ’ ob jec t ’ , ’

className ’ : ’ EOperation ’ , ’ a t t r i b u t e s ’ : { ’ id ’ : ’
inuJYt6tEei97MD7GK1RmA ’ , ’name ’ : ’ getOperat ion ’ , ’ ordered ’ : ’

f a l se ’ , ’ unique ’ : ’ t rue ’ , ’ lowerBound ’ : ’ 0 ’ , ’ upperBound ’ : ’ 1 ’ , ’
many ’ : ’ f a l se ’ , ’ requ i red ’ : ’ f a l se ’ , ’ eType ’ : ’ Operat ion ’ , ’
eGenericType ’ : ’ org . ec l i pse . emf . ecore . impl .
EGenericTypeImpl@4e5c0171 ( expression : Operat ion ) ’ , ’
eContainingClass ’ : ’ C l a s s i f i e r ’ , ’ eParameters ’ : [ ’ name ’ ]}} ”
e 1 0 ”{ ’ changeType ’ : ’Add ’ , ’ type ’ : ’ re ference ’ , ’
referenceTypeName ’ : ’ eParameters ’} ” ”{ ’ changeType ’ : ’Add
’ , ’ type ’ : ’ ob jec t ’ , ’ className ’ : ’ EParameter ’ , ’ a t t r i b u t e s
’ : { ’ id ’ : ’ inuJY96tEei97MD7GK1RmA ’ , ’name ’ : ’ name ’ , ’ ordered
’ : ’ f a l se ’ , ’ unique ’ : ’ t rue ’ , ’ lowerBound ’ : ’ 1 ’ , ’ upperBound
’ : ’ 1 ’ , ’ many ’ : ’ f a l se ’ , ’ requ i red ’ : ’ t rue ’ , ’ eType ’ : ’ S t r ing ’ , ’
eGenericType ’ : ’ org . ec l i pse . emf . ecore . impl .
EGenericTypeImpl@bbcf831 ( expression : S t r i n g ) ’ , ’ eOperation
’ : ’ getOperat ion ’}} ”

$$
−−−
t # 2292
e 0 2 ”{ ’ changeType ’ : ’Remove ’ , ’ type ’ : ’ re ference ’ , ’
referenceTypeName ’ : ’ eAnnotat ions ’} ” ”{ ’ changeType ’ : ’
Preserve ’ , ’ type ’ : ’ ob jec t ’ , ’ className ’ : ’ EClass ’ , ’



a t t r i b u t e s ’ : { ’ id ’ : ’ fthA796tEei97MD7GK1RmA ’ , ’
eAnnotat ions ’ : [ ’ org . ec l i pse . emf . ecore . impl .
EAnnotationImpl@2fa33653 ( source : h t t p : / / www. ec l i pse . org /
emf /2002/GenModel ) ’ , ’ org . ec l i pse . emf . ecore . impl .
EAnnotationImpl@59d423ca ( source : dup l i ca tes ) ’ ] , ’ name ’ : ’
Extension ’ , ’ ePackage ’ : ’ uml ’ , ’ abs t rac t ’ : ’ f a l se ’ , ’ i n t e r f a c e
’ : ’ f a l se ’ , ’ eOperations ’ : [ ’ non owned end ’ , ’ i s b ina ry ’ , ’
getStereotype ’ , ’ getStereotypeEnd ’ , ’ isRequired ’ , ’
getMetaclass ’ , ’ metaclassEnd ’ ] , ’ eS t ruc tu ra lFea tu res ’ : [ ’
isRequired ’ , ’ metaclass ’ ] , ’ eGenericSuperTypes ’ : [ ’ org . ec l i pse
. emf . ecore . impl . EGenericTypeImpl@3ff99636 ( expression :
Assoc ia t ion ) ’ ]}} ” ”{ ’ changeType ’ : ’Remove ’ , ’ type ’ : ’ ob jec t
’ , ’ className ’ : ’ EAnnotation ’ , ’ a t t r i b u t e s ’ : { ’ id ’ : ’
oBpkOd6tEei97MD7GK1RmA ’ , ’ source ’ : ’ h t t p : / / www. ec l i pse . org /

emf /2002/GenModel ’ , ’ d e t a i l s ’ : [ ’ org . ec l i pse . emf . ecore . impl .
EStringToStringMapEntryImpl@95f12e0 ( key : documentation ,
value : An extens ion i s used to i n d i c a t e t h a t the p r o p e r t i e s

o f a metaclass are extended through a stereotype , and
gives the a b i l i t y to f l e x i b l y add ( and l a t e r remove )
s te reotypes to c lasses . ) ’ ] , ’ eModelElement ’ : ’ Extension ’}} ”
e 2 3 ”{ ’ changeType ’ : ’Remove ’ , ’ type ’ : ’ re ference ’ , ’
referenceTypeName ’ : ’ d e t a i l s ’} ” ”{ ’ changeType ’ : ’Remove ’ ,

’ type ’ : ’ ob jec t ’ , ’ className ’ : ’ EStr ingToStr ingMapEntry ’ ,
’ a t t r i b u t e s ’ : { ’ id ’ : ’ oBpkOt6tEei97MD7GK1RmA ’ , ’ key ’ : ’
documentation ’ , ’ value ’ : ’ An extens ion i s used to i n d i c a t e
t h a t the p r o p e r t i e s o f a metaclass are extended through a
stereotype , and gives the a b i l i t y to f l e x i b l y add ( and
l a t e r remove ) s tereotypes to c lasses . ’}} ”
e 0 4 ”{ ’ changeType ’ : ’Add ’ , ’ type ’ : ’ re ference ’ , ’
referenceTypeName ’ : ’ eAnnotat ions ’} ” ”{ ’ changeType ’ : ’Add
’ , ’ type ’ : ’ ob jec t ’ , ’ className ’ : ’ EAnnotation ’ , ’
a t t r i b u t e s ’ : { ’ id ’ : ’ 0oByC96tEei97MD7GK1RmA ’ , ’ source ’ : ’
h t t p : / / www. ec l i pse . org / emf /2002/GenModel ’ , ’ d e t a i l s ’ : [ ’ org .
ec l i pse . emf . ecore . impl . EStringToStringMapEntryImpl@5cd02377

( key : documentation , value : An extens ion i s used to
i n d i c a t e t h a t the p r o p e r t i e s o f a metaclass are extended
through a stereotype , and gives the a b i l i t y to f l e x i b l y add

( and l a t e r remove ) s tereo types to c lasses .\\n<p>Merged
from package UML ( URI {@ l i t e r a l h t t p : / / www.omg. org / spec /UML
/20110701}) .</p>) ’ ] , ’ eModelElement ’ : ’ Extension ’}} ”
e 4 1 ”{ ’ changeType ’ : ’Add ’ , ’ type ’ : ’ re ference ’ , ’
referenceTypeName ’ : ’ d e t a i l s ’} ” ”{ ’ changeType ’ : ’Add ’ , ’
type ’ : ’ ob jec t ’ , ’ className ’ : ’ EStr ingToStr ingMapEntry ’ , ’
a t t r i b u t e s ’ : { ’ id ’ : ’ 0oByDN6tEei97MD7GK1RmA ’ , ’ key ’ : ’
documentation ’ , ’ value ’ : ’ An extens ion i s used to i n d i c a t e
t h a t the p r o p e r t i e s o f a metaclass are extended through a
stereotype , and gives the a b i l i t y to f l e x i b l y add ( and
l a t e r remove ) s tereotypes to c lasses .\\n<p>Merged from p
’}} ”

$$
−−−
t # 88
e 0 2 ”{ ’ changeType ’ : ’Add ’ , ’ type ’ : ’ re ference ’ , ’
referenceTypeName ’ : ’ eAnnotat ions ’} ” ”{ ’ changeType ’ : ’
Preserve ’ , ’ type ’ : ’ ob jec t ’ , ’ className ’ : ’ EClass ’ , ’
a t t r i b u t e s ’ : { ’ id ’ : ’ fZD13N6tEei97MD7GK1RmA ’ , ’
eAnnotat ions ’ : [ ’ org . ec l i pse . emf . ecore . impl .
EAnnotationImpl@68481491 ( source : h t t p : / / www. ec l i pse . org /
emf /2002/GenModel ) ’ , ’ org . ec l i pse . emf . ecore . impl .
EAnnotationImpl@4faef368 ( source : dup l i ca tes ) ’ ] , ’ name ’ : ’
DataType ’ , ’ ePackage ’ : ’ cmof ’ , ’ abs t rac t ’ : ’ f a l se ’ , ’ i n t e r f a c e
’ : ’ f a l se ’ , ’ e IDA t t r i bu te ’ : ’ name ’ , ’ eS t ruc tu ra lFea tu res ’ : [ ’
ownedOperation ’ , ’ ownedAtt r ibute ’ ] , ’ eGenericSuperTypes ’ : [ ’
org . ec l i pse . emf . ecore . impl . EGenericTypeImpl@7ebe7d9f (
expression : C l a s s i f i e r ) ’ ]}} ” ”{ ’ changeType ’ : ’Add ’ , ’ type ’ :

’ ob jec t ’ , ’ className ’ : ’ EAnnotation ’ , ’ a t t r i b u t e s ’ : { ’ id ’ :
’ ffDLSt6tEei97MD7GK1RmA ’ , ’ source ’ : ’ h t t p : / / www. ec l i pse .

org / emf /2002/GenModel ’ , ’ d e t a i l s ’ : [ ’ org . ec l i pse . emf . ecore .
impl . EStringToStringMapEntryImpl@5e553e0a ( key :
documentation , value : A data type i s a type whose ins tances

are i d e n t i f i e d only by t h e i r value . A data type may
conta in a t t r i b u t e s to support the modeling o f s t r u c t u r e d
data types . ) ’ ] , ’ eModelElement ’ : ’ DataType ’}} ”
e 2 1 ”{ ’ changeType ’ : ’Add ’ , ’ type ’ : ’ re ference ’ , ’
referenceTypeName ’ : ’ d e t a i l s ’} ” ”{ ’ changeType ’ : ’Add ’ , ’
type ’ : ’ ob jec t ’ , ’ className ’ : ’ EStr ingToStr ingMapEntry ’ , ’
a t t r i b u t e s ’ : { ’ id ’ : ’ ffDLS96tEei97MD7GK1RmA ’ , ’ key ’ : ’
documentation ’ , ’ value ’ : ’ A data type i s a type whose
ins tances are i d e n t i f i e d only by t h e i r value . A data type
may conta in a t t r i b u t e s to support the modeling o f
s t r u c t u r e d data types . ’}} ”
e 3 4 ”{ ’ changeType ’ : ’Remove ’ , ’ type ’ : ’ re ference ’ , ’

referenceTypeName ’ : ’ d e t a i l s ’} ” ”{ ’ changeType ’ : ’Remove ’ , ’
type ’ : ’ ob jec t ’ , ’ className ’ : ’ EAnnotation ’ , ’ a t t r i b u t e s ’ :
{ ’ id ’ : ’ fZD13d6tEei97MD7GK1RmA ’ , ’ source ’ : ’ h t t p : / / www.
ec l i pse . org / emf /2002/GenModel ’ , ’ d e t a i l s ’ : [ ’ org . ec l i pse . emf .
ecore . impl . EStringToStringMapEntryImpl@77d8e24f ( key :
documentation , value : A data type i s a type whose ins tances

are i d e n t i f i e d only by t h e i r value . A DataType may conta in
a t t r i b u t e s to suppor t the modeling o f s t r u c t u r e d data

types .\\n\\n\\n\\nA t y p i c a l use of data types would be to
represent programming language p r i m i t i v e types or CORBA
basic types . For example , i n t e g e r and s t r i n g types are
o f ten t rea ted as data types .\\ r\\nDataType i s an abs t rac t
c lass t h a t acts as a common superc lass f o r d i f f e r e n t k inds
o f data types . ) ’ ] , ’ eModelElement ’ : ’ DataType ’}} ” ”{ ’
changeType ’ : ’Remove ’ , ’ type ’ : ’ ob jec t ’ , ’ className ’ : ’
EStr ingToStr ingMapEntry ’ , ’ a t t r i b u t e s ’ : { ’ id ’ : ’
fZD13t6tEei97MD7GK1RmA ’ , ’ key ’ : ’ documentation ’ , ’ value ’ : ’ A

data type i s a type whose ins tances are i d e n t i f i e d only by
t h e i r value . A DataType may conta in a t t r i b u t e s to suppor t
the modeling o f s t r u c t u r e d data types .\\n\\n\\n\\nA t y p i c a l
use of data types would be to ’}} ”

e 0 3 ”{ ’ changeType ’ : ’Remove ’ , ’ type ’ : ’ re ference ’ , ’
referenceTypeName ’ : ’ eAnnotat ions ’} ”

$$
−−−

F. Further (pre-)processing and filtering steps

We perform some additional filtering steps during the
(pre-)processing of simple change graphs and the sampling.
For the sake of clarity, we omitted them in the description of
the approach and experiment description. The applied filters
are the following:

• Because we have a limitted context size available for
the LLMs, very long attribute descriptions (for example
in comments) are limitted to a length of 200 characters.
Everything longer than 200 characters has been cut and
“. . . ” are appended.

• When sampling few-shot samples, and the overall prompt
size becomes too long, we remove few-shot samples until
the prompt fits into the model.

• Serialized simple change graphs that are too large to fit
in the context of the language model are filtered.

• To save tokens and therefore reduce language model usage
costs, we do not repeat node labels, but instead replace
them by a “ ” token (or “{}” when using JSON in the
label representation).

• We filtered duplicated simple change graphs.
• Models from the original REPAIRVISION dataset that

could not be loaded or had empty history were removed.
The description of the dataset parameters in Section V-B
describes the state after this filtering.

G. Detailed Results of the Industry Dataset and Experiment 3

Table VI summarizes the results of our results from Experiment
3. We distinguished between four completion task character-
istics in the rows of the table: noise present, project specific
change, complex change, and reoccurring pattern. All four are
binary relations. “Noise Present” indicates whether there are
changes entangled in the task or in the few-shot examples.
We considered the task to be a “Project Specific Change”,
if the change was not common for the modeling language
(SysML), but rather some pattern we observed for this project
only. “Complex Change” indicates a change that does consist of



several interconnected atomic changes (e.g., adding an attribute
or adding a class, i.e., implicitly we distinguish between atomic
changes and complex changes, as common in the field [39]).
Finally “Reoccurring Pattern” describes if we observe the
pattern of the task at hand also in the few-shot samples. That is,
aside from concrete attribute values, the change happens often
in the project and can be retrieved via our semantic retrieval.
Correctness is classified as follows in the columns of the table:
We only consider semantically correct completions (evaluated
via a manual analysis) as correct. The incorrect completions, we
further classify in “semantically conceivable” (i.e., the change
is not the one observed in the ground truth, but without further
context it would also be meaningful), “Semantically Incorrect”
(i.e., format correct, structurally correct, but the completion
has a meaning different from the ground truth completion),
“structurally incorrect” (i.e., a reference connects no the right
nodes, or a new class is associated to another class where
nothing should be added, etc.), and “format incorrect” (i.e.,
without error correction, the graph serialization could not be
parsed, e.g., because an existing node id is reused by another
node).

Remark. In Section V, we stated that there is no significant
relationship between the correctness and the number of few-
shot examples that are added to the prompt. For the INDUSTRY
dataset, we additionally recorded, if (at least one) similar pattern
is among the few-shot examples. Separating these two cases
– i.e., there is a similar pattern among the few-shot examples
or not – we see that in the first case there is no significant
relationship between the number of few-shot examples, while
in the second case there is a significant relationship.

This suggest that as long as a similar few-shot example is
available, the amount of few-shot examples does not matter too
much, while in the case that the examples are rather unrelated,
the amount plays a role.

H. Detailed Results of the Fine-Tuning Experiments

This section delves into a detailed analysis of our last
experiment highlighting the influence of various factors on
the average token accuracy. We are especially interested in
the model token accuracy of the fine-tuned language model in
relationship with the properties of the dataset and the properties
of the fine-tuning such as the number of fine-tuning epochs
and the base language model used. We fine-tune one LLM
per simulated repository. As base models we choose text-
ada-001, text-curie-001, and text-davinci-003 from the GPT-3
family. Since fine-tuning the text-davinci-003 model is quite
expensive (i.e., 3 Cents per thousand tokens at the time of
this experiment), we fine-tuned this model only for the model
repositories where the perturbation probability equals 100%
(the ones which are typically the harder ones). This leaves us
with a total of 112 fine-tuned models (24 simulated repositories
for text-ada-001 and text-curie-001 and 8 for text-davinci-003,
which is 24*2*2+ 8*2*1 = 112) and a total fine-tuning cost of
347$. Building on the insights previously touched upon, our
analysis reveals a strong correlation between average token

accuracy and the number of fine-tuning epochs. Furthermore, it
becomes evident that larger models exhibit better performance
in terms of average token accuracy. Regarding the repository
properties, we only find significant negative correlations with
the perturbation probability (Table VII). We therefore also
analyze model completions from a graph matching perspective
(like already mentioned in Experiment 4). Since generating all
completion candidates for all test samples of all fined-tuned
language models would be even more expensive, we select two
fine-tuned language models, the less cost-intensive alternative,
and perform the analysis of the model completions on them.

I. Related Work

1) Current Challenges in the Research Domain
Research in model-driven engineering faces several chal-

lenges that should receive increased attention in the future.
The scarcity of reusable datasets [22, 60, 47, 11] for many

use cases in model-driven engineering hinders the comparison
of different approaches, which is then often reduced to a
qualitative analysis. The lack of proper datasets also poses
a challenge for the development and evaluation of data-
driven (e.g., machine learning) approaches in model-driven
engineering. To circumvent this lack of datasets, many authors
in model-driven engineering research report on experiences
using their approaches in a concrete application context, that
is, as part of a tool. Reporting on an evaluation in a concrete
application setting, again, makes it difficult to compare against
the approach, especially if the application context or the tool is
not available to the public and/or user studies are performed.

There are only a few datasets available that can be used
to evaluate model completion. In the concrete example of
model completion, the evaluation is often performed on a
dataset of model snapshots, from which elements are removed
artificially. Instead, it would be more realistic to have pairs of
to-be-completed models and their completed counterparts.

Finally, there are no commonly accepted evaluation metrics
and often technologies or proposed approaches are evaluated
in a manner that is only applicable for the specific use case at
hand. Only a minority of the literature reports on metrics that
are independent of their specific approach and only depending
on the use case (i.e., model completion). For instance, a model
completion methodology could suggest the top-10 names for
meta-model classes for inclusion in a meta-model, with the
evaluation of this method focusing solely on the accuracy
of these ten recommendations. Consequently, this creates a
challenge in directly comparing such an approach to others
that might recommend a single name while also suggesting
relationships between the newly added class and existing
classes. Further it would require a ground truth of to-be-
completed and completed models, which is not available for
most datasets. But even here, its not easy to define what
a correct completion is. For example, if a model element
is missing in the incomplete model, but the model element
is not required for the model to be valid, is it a correct
completion or not? Likewise, if a recommended class name is
a synonym of the correct class name, is it a correct completion



Table VI: Comparison of different failure types along several characteristics of the completion task. This table summarizes the
results of our manual analysis of the INDUSTRY dataset.

Level of Correctness

Task Characteristic Correct Incorrect Total Total (%)

Semantically Semantically Semantically Structurally Format
Correct Conceivable Incorrect Incorrect Incorrect

Noise Present TRUE 30.77% 23.08% 15.38% 15.38% 15.38% 13 11
FALSE 66.06% 14.68% 8.26% 4.59% 6.42% 109 89

Project Specific Change TRUE 74.55% 3.64% 7.27% 5.45% 9.09% 55 45
FALSE 52.24% 25.37% 10.45% 5.97% 5.97% 67 55

Complex Change TRUE 66.67% 23.81% 4.76% 0.00% 4.76% 21 17
FALSE 61.39% 13.86% 9.90% 6.93% 7.92% 101 83

Reoccurring Pattern TRUE 71.13% 17.53% 6.19% 2.06% 3.09% 97 80
FALSE 28.00% 8.00% 20.00% 20.00% 24.00% 25 20

Total 62.30% 15.57% 9.02% 5.74% 7.38% 122 100

Table VII: Pearson correlations of the average token accuracy
w.r.t. several properties. RepoD denotes the number of

revisions, RepoE the number of applied edit operations, and
RepoP the perturbation probability.

RepoD RepoE RepoP Epochs Token Count Base Model

Average Token Accuracy 0.16 0.13 -0.22* 0.69** 0.08 0.43**
Token Accuracy (All) 0.16 0.13 -0.22* 0.69** 0.08 0.43**

Token Accuracy (Ada) 0.26 0.22 -0.43* 0.72** 0.14 –
Token Accuracy (Curie) 0.13 0.12 -0.35* 0.82** 0.02 –

Token Accuracy (Davinci) 0.02 -0.04 – 0.94** -0.06 –

(**: p < .001, *: p < 0.05)

or not? Note that for source code, there are commonly accepted
datasets such as HumanEval [18] and evaluation metrics [18]
to evaluate code completion approaches. For example, since
there is a well-defined execution semantics, the evaluation of
a code completion approach can be performed by checking
the correctness of the code completion in a test suite. For
many models (e.g., UML, SysML, Ecore, etc.), there is no
well-defined execution semantics and therefore a test approach
for evaluation would not be applicable to software models, in
general.

2) Comparison and differentiation from other approaches
In Table VIII, we summarize the related work with a

specific focus on the model completion task. For each approach,
we included information about the specific task, the method
used and the evaluation process, including the data used for
evaluation and specific prerequisites are required for replicating
the evaluation. Given the sometimes challenging nature of
tracking the availability of artifacts, we acknowledge that some
information might not be entirely accurate, and we apologize
for any inadvertent inaccuracies. A main finding of our analysis
of related work is that, currently, a direct comparison with
other approaches, for most approaches, is infeasible, due to
the field’s novelty, the absence of commonly accepted metrics
and datasets, or a focus of previous work on artificial datasets
without real-world model evolution. We also highlight the
most prevailing reason why a comparison to our approach

is infeasible in Table VIII. In the following paragraph, we
will delve into the reasons why a direct comparison to the
approaches in Table VIII is not easily possible.

When we want to compare our approach to an existing
approach, we could do this comparison on he data the
approach was evaluated on. For this, the exact (test) data
and a comparable metric need to be published. If this is not
the case, it might still be possible to perform a comparison
by applying the existing approach to our data. But for this
the approach should either be generic (i.e., not depend on a
specific domain) or work for our datasets (i.e., EMF models).

a) (Partial) model completion
The approach by Agt-Rickauer et al. [2, 3] focuses on

suggesting related class names, potential sub- or super-class
names, and different names for connections given a specific
focus point in the model. However, their approach does not
extend to suggesting attributes, operation names, or relationship
types, making a comparison to our approach challenging.
Conversely, our approach goes far beyond suggesting the names
of new elements. Furthermore, the evaluation of their method is
deeply integrated within the tool, making a direct comparison
impossible. This approach relies on conceptual knowledge
bases (comprising semantically related terms built from natural
language data) and a semantic network, neither of which are
available for external validation. Consequently, it is challenging
to verify when and how the suggestions are semantically and
structurally correct.

The approach by Elkamel et al. [28] suggests entities in
metamodels, such as classes and structural features, but does not
support types for the recommended attributes or relationships.
In an offline phase, they use a clustering algorithm to partition
UML classes collected from various UML class diagrams
based on the semantic relations between their characteristics.
Subsequently, they recommend semantically similar whole
classes, and individual methods and attributes of that class
can be accepted or rejected. Their approach is not based
on historical data. On the other hand, we cannot apply their
approach to our data, as they only suggest entire classes while
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our approach focuses on a more general setting. Their approach
directly relies on user feedback, as entire classes are suggested
for the user including its attributes to accept or reject. As a
result, it is rare for an entire class to be completely correct
initially. While their focus is more on the user setting, we
focus on the core effectiveness of the LLM technology. This
makes a direct comparison between our methods unintuitive.

Similarly, Di Rocco et al. [24] propose an approach for
suggesting new classes and structural features (attributes and
references) in metamodels. Their method generates recommen-
dations as a ranked list of classes if the active context is a
package, or as a ranked list of structural features if the active
context is a class. This approach involves identifying a subset of
the most similar metamodels from given metamodel repositories
and determining the most similar contexts within that subset.
However, the method lacks support for recommending the types
of attributes and relationships.

Di Rocco et al. [25] further present a recommender system
that uses an Encoder-Decoder neural network to assist modelers
with performing editing operations. The system learns from
past modeling activities and is evaluated on a BPMN dataset.
These past activities are modeled as edit operation sequences.
One limitation of this specific format is that the changes of
an element in the edit operation sequences can be scattered
throughout the complete sequence, with possibly hundreds
of other edit operations between them. This also means that
connected/related elements or elements that belong together can
appear at completely different locations within such a sequence.
These connected/related elements can give valuable context to
the model completion task. If then, as in the work by Di Rocco
et al. [25], only the last 10 edit operations are considered,
important information regarding the local (graph-like context)
might be lost. This issue becomes more pronounced as models
increase in size. One could instead not only focus on the last
x edit operations, but instead put the entire history of a model
into the LLM context. Anyway, especially for large models,
providing the entire history of the model as context is infeasible
and may not fit in the context of an LLM.

We cannot compare their approach to our model completion
approach because it does not include the specific details and
values of operations. For instance in the example in Listing 4.

set − a t t name BPMN2ActionContributor to #200

Listing 4: An example of the NEMO [25]

In the setAtt operation, the class name being created isn’t
suggested. Instead, each event is simplified to a tuple
<setAtt, class, name>. While their approach focuses on
proposing simplified completions, as highlighted in their work,
our approach suggests more complex model elements with
detailed, specific values (e.g. class names, concrete attribute
values). An example of a concrete, linearized model completion
suggestion of RAMC is given Listening 5.

1 2 ”{ ’ changeType ’ : ’Add ’ , ’ type ’ : ’ re ference ’ ,
’ referenceTypeName ’ : ’ eOperations ’} ” ”{ ’ changeType ’ : ’ Add ’ ,
’ type ’ : ’ ob jec t ’ , ’ className ’ : ’ EOperation ’ , ’ a t t r i b u t e s ’
{ ’ id ’ : ’ lU7gFt6tEei97MD7GK1RmA ’ , ’ name ’ :

’ getMetaclass ’ , ’ ordered ’ : ’ f a l se ’ , ’ unique ’ : ’ t rue ’ ,
’ lowerBound ’ : ’ 0 ’ , ’ upperBound ’ : ’ 1 ’ , ’ many ’ : ’ f a l se ’ ,
’ requ i red ’ : ’ f a l se ’ , ’ eType ’ : ’ Metaclass ’ ,
’ eGenericType ’ : ’ Metaclass ’ , ’ eContainingClass ’ :
’ Extension ’}} ”

Listing 5: A RAMC completion candidate

The competition candidate includes a specific change to the
model, detailing how it is connected to other elements (as a
quick reminder, 1 and 2 represent the source and target nodes,
followed by the edge attributes in the first ). It suggests specific
values and the names of changed attribute elements and much
more. All in all, comparing our work to the work by Di Rocco
et al. [25] would be an unfair comparison for both sides.

Di Rocco et al. [26] focus on model completion by suggest-
ing new classes and structural features (attributes, references,
methods, and fields). This is achieved by constructing a separate
graph for each class in the models and use graph kernel
similarity to identify the most similar items among the training
set to the partial model that should be completed. However,
their approach does not ensure structural correctness, such as
where to add a class or how elements should be connected
overall. Additionally, the work reports very low precision and
recall values, which left us believing that their method will
likely not perform well on real-world and industrial datasets.
For our baseline, we therefore decided to reimplement the
approach by Chaaben et al. [16], which is also more closely
related to our approach.

Regarding the use of language models, Chaaben et al. [16]
use LLMs and acknowledge that their results are preliminary,
considering only a few UML examples (30 domain models,
selected manually from the dataset ModelSet). Their evaluation
focuses on suggesting class names, attributes of classes and
association names. They do not consider historical data,
therefore without major adaptation, we cannot perform our
experiments on their data. We primarily focus on historical
data because we aim to gather real-world examples. Instead
of randomly excluding model components and using them as
ground truth, we study actual real-world evolution, making the
setting much more realistic. Additionally, their approach does
not scale for larger models, so our real-world models are by
far too large to fit within the context window of the GPT-3
model (text-davinci-002). This challenge is precisely why we
decided to focus on historical data in combination with simple
change graph slicing. Anyway, since the work by Chaaben
et al. [16] is the most closely rated work, we re-implement
their approach and tailor it to our dataset to enable a direct
comparison between their method and ours.

b) Additional data required for model completion
There are also other approaches, such as those employing

rule-based matching based on a predefined catalog of change
patterns (edit operations), where additional data is required
to compare their approach to ours [43, 44, 50, 41]. These
pattern-based approaches are to some extend orthogonal to
ours. For example, one can use semantic lifting [39], to further
compress change graphs before applying an approach like ours.
Similarly, one could apply an approach like ours to sequences of



edit operations. Anyway, this requires the definition of pattern
catalogs and is therefore limited to application domains where
such catalogs are available or requires the combination with
pattern mining [71, 70] – an area that itself is rather active
research than mature technology.

The work by Burgueno et al. [12] relies on knowledge
extracted from textual documents to provide meaningful
suggestions. Our approach is pure model completion and we
do not include further information in the model completion
setting. In this sense their approach can be understood as
an extension of our approach that provides a completion in
the form C : T × Σ∗ → T . On the other hand, one can
include other artifacts (e.g., requirements) and natural language
information also as part of the model – which is done in the
form of requirements diagrams for the SYSML models of
our INDUSTRY dataset. In this sense – when the additional
information (e.g., requirements) that one wants to include in
the model completion is fused with the to-be-completed models
– our approach covers this “contextualized” model completion.
We acknowledge the approach by Burgueno et al. [12] and
also believe that a more explicit handling of different types
of context has the potential to provide better targeted model
completions. Using retrieval augmented generation, further
context can easily be integrated in the generation. Unfortunately,
we can not easily compare their approach to ours, because
the dataset used in their evaluation is not available and in
our datasets we do not have this additional context readily
available, rendering a direct comparison difficult.

Both research streams (i.e., contextualized model completion
and pattern-based model completion) seem to be promising
concepts for further investigation and extension of the approach
proposed in this work. Anyway, the more “combination” is used
in the approach the more difficult will be to understand what
effect is due to which design decision or technology (without
conducting a sophisticated ablation study). The purpose of
this work was to investigate the merits of LLM technology
for model completion and therefore increase internal validity.
Further combinations are intentionally left for future research.

c) Related but distinct tasks
While several related studies focus on related but different

tasks, we will highlight a few examples here. Of course,
mentioning all of them would exceed the scope of this work,
and we hope the examples given here will clarify why some
related work can not be directly compared to our approach,
although similar on a high abstraction level. The work by
Ohrndorf et al. [54], which specifically proposes a model repair
approach rather than model completion. Their method generates
repair proposals for inconsistencies introduced by incomplete
editing processes. The approach focuses on examples in the
revision history, in which constraints were, at some point,
violated and subsequently fixed at a later point. While their
method ensures constraints are preserved, it does not handle
adding or changing functionality within the system, leaving the
modeler to perform the actual modeling work. As we should
not compare fixing syntactic errors in source to suggesting
new source code, we can also not compare model repair

to model completion. Gomes et al. [31] focus on creating
and evolving a system domain model based on interactions
in natural language from non-technical users. They utilize
Natural Language Processing (NLP) to interpret the users’
intents expressed in natural language and transfer these intents
to commands the system can understand. This represents an
entirely different task. They do not suggest functional changes
to the model, but translate the user intentions to machine
readable commands. Also the approaches by Kögel et al. [41]
and Kushke et al. [44, 43] can be seen as different (altough
very related) approaches. In principle, these approaches try
to recommend complete patterns from partial patterns, which
is then leveraged to perform a model completion. Finally,
the approach by Burgueno et al. [12] recommends model
completions given some additional context, while our approach
requires only the model (change).

d) Domain-specific applications
There is a category of approaches focusing on specific

domain languages [32, 1, 68]. Their approaches are limited to
Simulink models, which is why we cannot apply them to our
data.

Deng et al. [23] propose an approach focused on business
process models, specifically BPMN. Their method is not
transferable to other domains. They mine relationships among
activity nodes from existing processes, store these relations as
patterns in a database, and then compare new processes with
these patterns. This comparison recommends suitable activity
nodes from the most matching patterns to assist in building a
new process.

e) The need for a benchmarking infrastructure
Our analysis above underscores the current challenges

faced by the research community. This lack of baselines and
benchmarking infrastructure is a critical point. The field is
currently in a state of developing the necessary infrastructure,
and we are contributing to this effort, while appreciating
previous contribution efforts.
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