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ABSTRACT
Many industrial software product lines use a clone-and-own ap-
proach for reuse among software products. As a result, the different
products in the product linemay drift apart, which implies increased
efforts for tasks such as change propagation, domain analysis, and
quality assurance. While many solutions have been proposed in the
literature, these are often difficult to apply in a real-world setting.
We study this drift of products in a concrete large-scale industrial
model-driven clone-and-own software product line in the railway
domain at our industry partner. For this purpose, we conducted in-
terviews and a survey, and we investigated the models in the model
history of this project. We found that increased efforts are mainly
caused by large model differences and increased communication
efforts. We argue that, in the short-term, treating the symptoms
(i.e., handling large model differences) can help to keep efforts for
software product-line engineering acceptable — instead of employ-
ing sophisticated variability management. To treat the symptoms,
we employ a solution based on semantic-lifting to simplify model
differences. Using the interviews and the survey, we evaluate the
feasibility of variability management approaches and the semantic-
lifting approach in the context of this project.

CCS CONCEPTS
• Software and its engineering→ Software developmentmeth-
ods; Software product lines; Software configuration manage-
ment and version control systems.
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1 INTRODUCTION
Software product-line engineering [41] aims at developing a family
of software products by reusing software artifacts as well as pro-
cesses across the family. There are several software product-line
engineering methodologies [2, 44], ranging from simple cloning of
artifacts across products (clone-and-own) to platforms with built-
in variability support, which allow to generate products based on
a configuration (i.e., a feature selection). Depending on various
factors (e.g., the number of products), it makes sense to favor one
approach over another [14, 30, 41, 44]. For example, the overhead
for establishing and using a platform will only pay off when the
platform is used for a larger number of products [41]. It is important
to note that the reuse of artifacts in software product lines is not
limited to source code, but can also include other artifacts, such as
documentation, requirements, and models [3, 4, 7, 35, 39, 55].

Many industrial software product lines have been grown or-
ganically, using some form of managed cloning (clone-and-own
with some form of clone management in place) [14, 44]. As a conse-
quence, changes have to be propagated from one product to another.
This is often done manually and therefore time-consuming and
error-prone [30]. A key challenge of the evolution of clone-and-own
software product lines is that products tend to drift apart [28, 58].
This leads to a risk of losing the benefits of reuse if efforts related
to cloning and merging exceed the savings of reuse.

In this experience paper, we report on a model-driven software
product line (i.e., models are the primary artifacts) in the railway
domain at our industry partner, which employs a form of managed
cloning. In particular, we study the divergence of models in this
setting. We observed that quality assurance, change propagation,
and domain analysis are the main drivers for increased effort (or
costs), due to the cloning approach — an observation consistent
with the literature [14, 30, 45]. Nevertheless, these activities are
indispensable. Especially for safety-relevant parts of the system, a
thorough quality assurance of the changes made to the system is
critical to decrease the risk of failing software qualification, which
in turn leads to an increase in time-to-market.

Common to all of these activities is the analysis of differences
between products or between a product and the common platform.
In large software product lines, the models and also the differences
between models easily become huge. We found that, indeed, large
model differences are a major symptom of the drift at our industry
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partner. It is increasingly difficult to identify commonalities that can
be lifted to a common platform or propagated across products. Many
small but uncritical changes, such as model element renamings,
make model differences unnecessarily verbose and confusing. For
example, in our case study, renaming a package leads to the change
of the fully qualified name of subordinated elements and therefore
to plenty of fine-grained changes in the model difference.

A solution to the divergence problem might be to migrate to
a platform-based approach [14, 30, 44]. This is not only a time-
consuming task, but there is also a risk of losing flexibility to cre-
ate new products. Moreover, the independence of products in a
clone-and-own software product line is sometimes desired to avoid
unintended side effects [14, 30]. In general, many of the assump-
tions made by platform approaches are often not compatible with
real-world constraints such as organizational structures within a
company. An alternative to platform-based approaches is to utilize
feature traces in a bottom-up manner for change propagation and
the composition of new products [18, 28]. Unfortunately, state-of-
the-art tools are not mature yet (e.g., scalability to large product
lines has not been shown yet) and are not available for model
artifacts.

While it is desirable in the long term to systematically manage
variability, it is imperative in the short term to “treat the symptoms”
of a clone-and-own approach. That is, we need to reduce the effort
required for critical activities such as quality assurance, change
propagation, and domain analysis. For this purpose, we have com-
bined semantic lifting [27] with a recent approach for edit operation
mining [54], to effectively simplify large model differences at our
industry partner. The idea of this semantic lifting approach is to
compress the differences, that is, to combine many fine-grained
differences into higher-level, reusable change patterns.

Based on semi-structured interviews and a questionnaire survey,
we explore the merits and barriers of platform-based approaches,
bottom-up approaches, and the semantic lifting approach in the
context of drift between products in an industrial setting.

In a summary, we make the following contributions:
• We report on a case study and challenges related to model drift
in a real-world industrial clone-and-own software product
line in the railway domain with more than 200 engineers,
300GB of artifacts, and over 7 years of history.

• We conducted interviews and a survey with practitioners in
this project to
– verify the presence of model drift in this real-world case
study,

– study symptoms and causes for the model drift,
– evaluate whether approaches proposed in the literature can
be applied and whether a migration would be feasible,

– evaluate a bottom-up approach based on semantic lifting
and pattern mining to mitigate one of the major symptoms
of model drift, that is, large model differences.

• We find that major symptoms of model drift are large model
differences as well as increased communication efforts, mainly
for tasks such as quality assurance, change propagation, and
domain analysis. There are several causes, most prominently
an increasing model size as well as missing tool support for
several variability-related tasks. Worse, available approaches

cannot be applied because the cost and risk of a migration
would be to high, existing tools are not mature, and critical
features are missing. A semantic lifting approach can help to
mitigate challenges related to large model differences.

2 STATE OF THE ART
Supporting and managing model evolution, for example, support-
ing collaborative work on models, versioning of models, or quality
assurance of the models has been studied extensively in the litera-
ture [1, 6, 26, 29, 34, 37, 43, 53]. The studies by Straeten et al. [53],
Kahlil et al. [29], and Paige et al. [37] provide an extensive overview.

Whereas model evolution research is focusing on the evolution
in the temporal dimension, the software product-line engineering
community is interested in differences in the product dimension. In
the literature, several alternatives and approaches complementary
to clone-and-own are proposed. In what follows, we will recapture
the clone-and-own approach, describe the problem of the so called
unintentional divergence in clone-and-own, and describe possible
solutions proposed in the literature. Furthermore, we provide an
overview of industrial clone-and-own case studies.

2.1 Clone-and-Own
Clone-and-own [14, 28, 30, 44, 45] describes the ad-hoc process of
cloning existing products and developing the cloned products inde-
pendently from each other. There has been a debate in the software
product-line engineering community about whether a clone-and-
own approach should be discouraged or not [14, 24, 28]. Never-
theless, as a matter of fact [14, 28, 44], clone-and-own approaches
are used in the industrial practice. In many cases utilizing clone-
and-own approaches, there exists a single product which has to be
modified slightly to satisfy the needs of other customers. Cloning is
then an available mechanism, which can be rapidly used to satisfy
this customers needs. Often it is not known in advance whether an
existing product will evolve into a family of products. Therefore, it
is hard to assess whether the initial effort to setup a platform for
the product family will pay off in the long run [41]. An observation
made by Berger et al. [8] is “that none of our subjects exercises pure
clone&own, but that variants already use variation points”. This
observation is also true for our railway case study, where trainset
platforms also have some internal variability (see Section 3).

A common issue related to the clone-and-own approach is the un-
intentional divergence between the products [28, 48]. Unintentional
divergence describes the increasing difference between products
in the product family. There are multiple possible reasons for this
divergence, for example, missing reuse opportunities (e.g., com-
monalities are not identified during domain analysis), noise due to
differences in the implementation of features in different products,
or even the increased complexity of the individual products as a
consequence of the evolution of the products. In the context of a
model-driven product line, we will refer to model drift as a specific
instance of unintentional divergence in model artifacts.

2.2 Platform Approaches
One solution to the divergence problem is to migrate the cloned
product line to a 150% platform [14, 30, 44]. There are only a few
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tools that support 150% platform approaches for model-driven soft-
ware product lines. SuperMod [49] relies on so-called filtered editing
and feature ambitions, which a user can select when committing
changes. The MagicDraw Product Line Engineering Plugin is
more mature, but the user has to explicitly model the variability
for every (variable) model element. In contrast to 150% platform
approaches, where a product is generated by selecting a subset of
the functionality implemented in the 150% platform, compositional
approaches [3, 17, 22, 40, 46] have been proposed in the literature.
For example, Apel et al. [3] propose an approach to compose a
specific product by superimposing model fragments; typically one
model fragment per feature. Jayaraman et al. [22] describe a UML
composition language based on graph transformations for reusing
features. Another compositional approach is delta modeling [46],
where a product is composed out of a core model (a valid product)
and multiple delta-models that encapsulate modifications to the
core model. Delta-models are not necessarily in one-to-one corre-
spondence with features. Elrad et al. [17] propose an approach for
aspect-oriented modelling to separate crosscutting-concerns and
core functionality in UML models.

A migration from a clone-and-own approach to a platform ap-
proach is not only time-consuming, but there is also a risk of losing
flexibility to create new products, and the independence of the
products in a clone-and-own software product line is sometimes
desired to avoid unintended side effects [14, 30].

2.3 Bottom-up Product Line Engineering
Some authors observe that, with an increasing number of products,
maintenance efforts for a clone-and-own approach will rapidly
grow [14, 28, 38, 57], but they also acknowledge that, in some set-
tings (e.g., a small number of products), a cloning approach is vi-
able [24, 28, 38, 41]. Furthermore, many industrial product lines
start with a single product, and it is not clear at the beginning, how
many products there will be in the future or how long the product
line will be used at all [14, 27].

For this reason, approaches supporting variability management
in clone-and-own product lines have been proposed [18, 28]. The
basic idea is to utilize feature traces in a bottom-up manner for
change propagation and the composition of new products. Some
authors propose variation control systems [18, 25, 31, 49, 51], which
aim at unifying version control and variability management1.

2.4 Industrial Clone-and-Own Case Studies
Some authors study clone-and-own in multiple-case studies (i.e.,
having more than one concrete subject project). For example, Rubin
et al. [44] evaluate a framework for managing collections of related
products based on three industrial case studies. Dubinsky et al. [14]
study cloning practices in six industrial clone-and-own software
product lines. More recently, Krüger et al. [30] compare cost and
cost factors of clone-and-own and platform-oriented reuse in indus-
trial settings using a literature review and interviews within one
company. Berger et al. [8] study the state of adoption of a system-
atic variability management in twelve industry case studies across
several domains. While this research compares platform-oriented

1Some variation control systems internally maintain 150% model, and therefore belong
to the category of platform approaches.

research and clone-and-own or investigates a transition from clone-
and-own to a more systematic variability management, we study
the concrete challenge of drift between products in one concrete
industrial clone-and-own software product line.

There are also single-case studies in an industrial context, for
example, Jepsen et al. [23] or Weston et al. [56] focusing on the
extractive adoption of software product lines. Other single-case
studies compare platform-based and clone-and-own approaches,
for example, Echeverría et al. [15] compare effectiveness, efficiency,
and satisfaction of clone-and-own and a platform-based approach
in a controlled experiment. A comprehensive list of case studies
using extractive adoption is given by the ESPLA catalog [32]. To
the best of our knowledge, there is no work studying drift between
products in an industrial setting.

3 RAILWAY CASE STUDY SETTING
In this section, we describe the setting of our case study that we
conducted with our industry partner.

Our industry partner offers a wide range of trains from small
commuter rails to high-speed trains. Their trains include a lot of
software components that provide various functionality, from heat-
ing, ventilation, and air conditioning (HVAC) systems, to highly
safety-relevant systems such as the drive control system. The soft-
ware components consist mainly of SCL code2. Over the years, our
industry partner’s code bases have become large and complex. For
this reason, the engineering team that is responsible for the train
software decided in 2014 to follow amodel-driven engineering (MDE)
methodology. This eases the documentation of the train software
and maintains traceability between requirements and software com-
ponents. The team of around 200 engineers uses MagicDraw[21]
as their modelling environment, because it is an industry-proven
tool, supports modelling in the modelling language used in this
project (i.e., SysML), and is capable of handling large models. As
a further benefit of MDE, large parts of the software components’
source code are generated out of the SysML models. For code gener-
ation,MagicDraw models are transformed into Eclipse Modeling
Framework (EMF) models [52], which are then transformed into
SCL source code components. The reason to use EMF in an inter-
mediate step is the availability of tooling and libraries from the
EMF ecosystem. Code generation is a one-way process, that is, no
round-trip engineering is performed.

At the time of the study, the model base consisted of approxi-
mately 300GB of artifacts (including image data for diagrams). The
overall model for the entire train software is divided into 122 weakly
coupled submodels, which are evolved and versioned independently
from each other. For instance, there is one submodel for HVAC and
another submodel for drive and break control.

The train domain is a highly regulated domain, so the software
is subject to qualification and certification requirements according
to IEC 61508 [20], EN 50126 [10], EN 50657 [12], and EN 50129 [11].
Maintaining requirements traceability and exhaustive documenta-
tion is therefore required, and following a model-driven approach
helps to automate many of the documentation related tasks. In
Table 1, we give an overview of the project setting.

2Aka. structured text; a block-structured IEC 61131-3 language, mainly designed for
programmable logic controllers.



ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore Christof Tinnes, Wolfgang Rössler, Uwe Hohenstein, Torsten Kühn, Andreas Biesdorf, and Sven Apel

Since many of the software components shall be reused across
different trainsets such as commuter rail, light rail, and high-speed
trains, the software is developed as a software product line. The
artifacts are versioned in a repository with one branch per train-
set, called trainset platform. There is also a platform, called the
common platform, which holds the type-independent parts of the
models and the ones that can be configured/adjusted in the train-
specific branches. The common platform is evolved by following an
extractive software product line adoption path [2], that is, newly
developed features and reusable parts are (manually) identified and
regularlymerged into the common platform (see Figure 1). Common
functionality is evolved in the common platform and propagated to
trainset platforms, if desired. Furthermore, fixes or changes to the
models for the trainset types have to be propagated to the common
platform and trainset types that use the affected parts.

In general, change and feature propagation has to be performed
carefully, since parts of the software system might have been qual-
ified already and must not be modified thereafter. Several times
per month, for quality assurance purposes, the common platform
and trainset platform branches are compared in the modelling tool
MagicDraw and manually checked. Incompatible or incomplete
changes have to be be identified during these checks. Some changes
might even cause serious problems if merged into the common
platform and therefore need to be identified and fixed. Furthermore,
based on the model differences, a domain analysis is performed by
a domain expert to identify commonalities and reuse opportunities.

Table 1: Project context for our railway case study. Themodel
size is given in number of model elements (attributes not
included). Model differences are between a trainset platform
and the common platform and include changed attributes.

Number of Train Sub- Avg. model Avg. number Artifact Age
developers types models size of differences size

200 8 122 24.627 63.096 300 GB 7 yrs

4 SEMANTIC LIFTING TO REDUCE THE
COMPLEXITY OF MODEL DIFFERENCES

As a consequence of unintentional divergence, large model differ-
ences (e.g., thousands to hundreds of thousands of changes) can
increase the efforts in tasks, such as change and feature propagation,
quality assurance, or domain analysis. The large model differences
lead to increased efforts for these tasks. Other than common vari-
ability management approaches, we were therefore interested in
the feasibility of a treatment of the large model differences, that is,
a treatment of the symptoms of unintentional divergence.

In this section, we describe an approach to reduce the complexity
of model differences that is based on semantic lifting [27] and edit
operation mining [54]. Semantic lifting is not a product line engi-
neering approach but a means for handling large model differences.

4.1 Model Transformations and Edit Operations
The approach presented here is based on edit operations [27]. An
edit operation represents a modeling operation that a user of a mod-
eling tool can perform on a model. We consider edit operations
as a special kind of model transformation [9, 16, 33]. Model trans-
formations are a central and ubiquitous element in model-driven

engineering [33, 50]. The concept of edit operations, which are en-
dogenous (i.e., source and target meta-model are equal), in-place
(i.e., the output of the model transformation overrides the input
model) model transformations, can be formalized by graph trans-
formations on typed graphs. We refer the readers to the work of
Bierman et al. [9] and Ehrig et al. [16] for details. Note that, since
one model revision is the result of the application of edit operations
to the previous model revision, every model difference between
two model revisions can be described as a (partially) ordered set of
edit operations. In this context, we also speak of change patterns
when we refer to edit operations.

4.2 Description of the Approach
The high-level idea of our approach is to simplify the presentation of
model differences and to provide further insights for the user. This
can speed up tasks such as change propagation. We approach the
problem of large model differences by reducing the “perceived” size
of the model difference. This is realized by grouping fine-grained
differences to higher-level (semantic) changes. These changes can
also be classified or tagged (e.g., a change can be a violation) to
support the architect or developer during analysis and quality as-
surance related tasks. Furthermore, higher-level changes can help
in the identification of common functionalities.

Technically, we achieve this by a semantic lifting of the model
differences. As shown by Kehrer et al. [27], a set of defined edit
operations (or high-level changes, in our case) can be recognized in
a model difference, and each model difference can be expressed in
terms of these high-level changes. In this semantic lifting approach,
high-level changes are defined by edit rules, which are an executable
form of edit operations. Edit rules are then lifted to recognition
rules, which can be applied to a model difference to group the
low-level changes in the model difference into semantic change sets.
Furthermore, if low-level changes are contained in more than one
change set, a heuristic is applied to select only disjoint change sets.
Larger change sets are preferred over smaller ones. The result of
lifting is a difference containing all original changes grouped into
disjoint semantic change sets. For example, a change pattern that we
observe quite often in the models from our case study in Section 3
is a connector and two ports added between two existing parts in
an SysML internal block diagram (see Figure 2). This high-level
change comprises 17 low-level changes. For many tasks related
to the model differences, it will be sufficient to see this high-level
information and only drill down if necessary.

In a subsequent step, filters can be applied to the lifted differences,
which is especially helpful for quality assurance. Some changes will
be less interesting, while others will be more interesting. For ex-
ample, a renaming operation might be less interesting than adding
interfaces between components. Filtering these kinds of changes
improves the clarity of the model difference, especially since these
changes will typically be scattered across the model difference.
Furthermore, illegal changes can be highlighted in the model dif-
ferences by tagging certain edit operations.

A difficulty of this approach is that the high-level changes have
to be known and defined as input to the semantic lifting step. This
requires a deep knowledge of the modeling language’s meta-model
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Figure 1: Schematic representation of model drift between trainset platforms and common platform in the railway product line.

Figure 2: Results of the semantic lifting of a connector that
is added between a component and a subsystem.

(i.e., SysML, in our case) and the underlying paradigm of the trans-
formation language. Some of the high-level changes might even be
project-specific. Moreover, some of the changes are a form of tacit
knowledge [42], and it will be hard for domain experts to external-
ize this knowledge. Leaving the definition of high-level changes
to the engineers of the project causes a large overhead, which we
want to avoid. In our previous work, we therefore developed an
recommender system, Ockham, which is able to mine high-level
change patterns from model repositories [54]. The tool is based
on the so-called minimum description length principle [19], which
states that the best model (in our case, a set of change patterns) to
explain a dataset (in our case, model differences from the model
repository) is the one that provides the best compression of the
data. Ockham considers the problem of automatically identifying
semantic change sets from a graph mining perspective. The mining
of high-level changes is done in 5 steps. In Step 1, we compute
model difference for successive model revisions. In Step 2, we build
so called simple change graphs for these model differences. Simple
change graphs are labeled directed graphs that break the (typically
large) model differences into a set of smaller connected components.

In Step 3, frequent subgraph mining [13] is applied to this set of con-
nected components for a large number of model differences. Step 4
uses a compression metric to filter for the “relevant” subgraphs and
to rank the subgraphs for the output of the recommender system.
In the last step, Step 5, executable edit operations for the semantic
lifting approach [27] are computed from the labeled graphs.

In our previous work, we have shown our automatically discov-
ered change patterns are relevant and help in a meaningful manner.
Details of this recommender system can be found elsewhere [54],
and we show there that the edit operations discovered by Ockham
are meaningful for the models from the case study in Section 3.

Compared to the original semantic lifting approach [27], our
combined approach automatically recommends meaningful edit
operations for lifting model differences. Moreover, edit operations
can be classified for efficient filtering of large differences.

4.3 Putting the Pieces Together
The engineering team at our industry partner uses MagicDraw
for their SysML models, but there is an export to EMF. Many tools,
such as code generation tools, are based on EMF. The approach
presented here also builds on top of an “intermediate” EMF model.
For semantic lifting, we use SiLift [27], which uses SiDiff [47] for
computing structural differences. For the definition and execution of
the recognition rules, SiLift usesHenshin [5]. SiLift outputs a list
of changes and semantic change sets (see Figure 2), which can then
be filtered and sorted. For the edit operation recommendation, we
use Ockham [54], which uses SiDiff to compute model differences
and Gaston [36] for frequent subgraph mining. Ockham outputs
the recommended edit operations as Henshin rules.

5 CASE STUDY
In this section, we report on our case study conducted with our
industry partner. We analyze the symptoms of model drift, influ-
encing factors, and possible solutions.
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Table 2: Overview of the interviewees.

Role Scope Experience (level)

System engineer Single model Entry-level
System engineer Single model Intermediate
Tool support Cross-cutting Intermediate
Chief architect Cross-cutting Senior
Head of tool development Cross-cutting Senior

5.1 Research Questions
To better understand the model drift, our goal is to answer the
following research questions. RQ 1 – RQ 3 study the problem side,
while RQ 4 and RQ 5 study the solution side:
RQ 1: Can model drift be observed in this product line and how is
it perceived by the developers?
RQ 2: What are symptoms of model drift?
RQ 3: What are causes of model drift and large model differences?
RQ4:Can existing solutions (i.e., bottom-up approaches and platform-
based approaches) to the model drift be applied?
RQ 5: Can the semantic lifting approach support the engineers in
handling large model differences?

5.2 Study Setup and Conduct
Semi-structured interviews: To get a first impression of the
model drift challenge in this project, we conducted semi-structured
interviews with five engineers of the project (see Table 2), among
them the head of the tool development team and one of the lead
architects. Three of the participants were working with more than
one of the products of the product line and two of the participants
did contribute to a single product. The interviews lasted 45 – 60
minutes. The interview had three sections: Challenges in clone-
and-own product line engineering, unintentional divergence, and
variability management solutions. In the last section, we presented
the approach form Section 4 and asked the participants for their
feedback regarding technical, organizational, as well as economic
feasibility. We asked only open-ended questions and did not have
any further constraints except covering the three sections men-
tioned above.

Questionnaire Survey: We then used the input from the semi-
structured interview in the design of a questionnaire. We conducted
a web-based3 questionnaire survey with 9 project employees of
the project from Section 3. The questionnaire was distributed via
a mailing list of the architects of the project. Therefore the ma-
jority of the recipients were architects and developers involved
in architectural decisions. The survey had four sections; the first
section asked the interviewees about their role and experience, the
second about evolution and trends of the project, the third about
model differences in the project, and the last one about solution
ideas and their feasibility. We gave an introduction into the topic
and shortly summarized variability management solutions. We also
explained the semantic-lifting approach. All together, we asked 27
questions. Since a majority of the employees are German speak-
ing, we asked all the questions in German. The questionnaire was
sent to 17 candidates and 9 filled out the questionnaire. 5 of the

3We used Microsoft Forms, since it is easily accessible and employees at our industry
partner are familiar with this tool.

respondents were architects, while 4 of the respondents were de-
velopers. The project experience of the respondents ranged from
1-2 years to more than 6 years. The questionnaire is available at
https://forms.office.com/r/WRvUNQisuR.

Repository data: To also get quantitative insights, we got ac-
cess to the SysML models in the project. The repository used is the
Teamwork Server, which is the default solution for collaborative
development inMagicDraw. There is one project for each of the
submodels and the repository holds the entire history for each of
the submodels and all trainset platforms as well as the common
platform. Table 1 shows the number of submodels, trainset plat-
forms, as well as the average size of the models. We also used the
data in this repository, to exemplary validate statements made by
interviewees and survey respondents.

To answer the research questions, we use the input from the
semi-structured interviews, the results from the questionnaire, as
well as insights from the models in the model repository.

5.3 Results
Semi-structured interviews. During the interviews, four out of

five interview partners mentioned challenges related to large model
differences when asking about general challenges in their project.
For example, they stated that during the propagation of changes
from one product variant to another variant, the model differences
can be hard to understand because of changes concurrently made
by other developers. One of the interview partners did not mention
challenges related to the variability at all. When we asked about
the tasks and roles in the project, it turned out that she was mainly
involved in the evolution of a single product and not in any activities
related to variability management. As major drivers for variability,
differences in hardware as well as different customer requirements
have been mentioned.

All interviewees ruled out a migration to a platform-based prod-
uct line engineering approach, because of migration efforts, risks,
and immature tooling. Furthermore, there are less than a dozen
of product variants, and therefore the effort for maintaining the
platform possibly would exceed the benefits. Bottom-up approaches
are conceptually more realistic, but there exists no mature tooling
yet and, as a prerequisite, the variability has to be known explicitly,
which is not yet the case in their setting.

The most time-consuming tasks for the interviewees are variant
synchronization tasks (e.g., change propagation). Merging appears
to be difficult because it is hard to define what belongs to a feature
and what does not. There are many interfaces between different
submodels, which further complicates merging. Computing the
differences themselves is already time-consuming and takes 15 to
30 minutes per model difference.Worse, many fine-grained changes,
such as renaming operations, make the model differences hard to
read. This is also the case for frequently performed refactorings
that are introduced because the models are adapted to new tooling.
When we explained semantic lifting to the interviewees, four out
of five participants stated that a semantic lifting approach has to
potential speed-up several of their activities in the project. For
example, the analysis of model differences for review purposes
could be supported and irrelevant changes can be filtered out.

https://forms.office.com/r/WRvUNQisuR
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Questionnaire. All of the answers were optional, but most of
the 9 participants of our industry partner answered to all of the
closed-ended questions. We also received 10 answers to open-ended
questions.

78% of the respondents said they observe a drift between the
different products. All of them see model drift even among the
5 biggest challenges in the project. 63% of the respondents say
that, without a solution, serious problems might arise; 27% of the
respondents say that a solution will increase the efficiency.

As symptoms of model drift, respondents report increasingly
large model differences (78%), increased effort for change propaga-
tion (67%), increasing numbers of inconsistencies (56%), increase in
communication efforts (44%), increase in feature interaction bugs
(22%), and increased effort for domain analysis (33%). Furthermore,
for 89% of the respondents, model differences play a role in some of
their tasks in the project, for 33% even a significant role. While for
only 22% of the survey participants model differences between two
revisions within one product variant can be challenging, 78% of the
respondents experience model differences between two product
variants as challenging. For these respondents, differences play a
role and can be challenging during the following tasks: reviews
(88%), changes and bugfixes between two variants(100%), and do-
main analysis (88%). One of the participants pointed out that, even
in requirements engineering (requirements are also part of models),
unintended divergence is a challenge.

As causes of the model drift, all of the respondents mentioned
different hardware of the products and parts of the architecture
not being reused, 33% even report a significant influence of not
reusing parts of the architecture. 67% think that it is difficult to
define and unify features across multiple products and evolution
of the single products has been mentioned by 50%. According to
the respondents, large model differences are also caused by the
size of the models themselves (78%), missing explicit variability
information (67%), missing tool support for filtering and cherry-
picking of model differences (100%), and no distinction between
architectural (i.e., refactorings) and functional evolution (78%).

In Figure 3, we show a violin chart of the Likert scale data for
the survey participants’ opinions about 150% platform approaches,
bottom-up approaches, and the semantic lifting approach. The
plots shows their opinions along several dimensions: whether the
approaches are suitable to provide improvement regarding the
model drift challenge, whether the advantages of utilizing these ap-
proaches would outweigh the cost and risk of development and mi-
gration, whether the current tooling would support the approaches,
whether the approaches are organizationally and technically feasi-
ble, and whether tooling for these approaches is known already.

Repository data. In order to also quantify the model drift, we
computed the model differences between the common platform
and the trainset platform for a selection of submodels and trainset
platforms and three time regions (we can not take time points,
because we do not have revisions at the same time points for all
of the submodels). Figure 3 shows a violin plot of the size of the
model differences. In this plot, we grouped the differences into three
groups (Spring 2022, Spring 2021, Winter 2019). Even more, if we
consider a single trainset platform and a single submodel, we can
observe an increase in the size of the model difference.

We also made specific observations in the model histories, specif-
ically with the purpose of cross-validating some of the statements
of the interview and survey participants. For example, we can see
that there are entire modules with the same purpose that are not
reused but evolve independently for each of the trainset platforms.
We also see that refactorings, such as renamings or changing the
structure in the package hierarchy can obfuscate model differences.
For example, the renaming of a root package will lead to a change
in the fully qualified name of all subpackages. Also we encountered
submodel revisions for which computing the model differences
using MagicDraw failed because of a memory limit. We will re-
fer to specific observations like these directly in the discussion in
Section 5.4.

5.4 Discussion
In this subsection, we use the results from the experiments to an-
swer the research questions from Section 5.1.

RQ 1: Model drift. Four out of five participants of the semi-
structured interviews as well as 78% of the survey participants
stated that they experience model drift and that model drift is a
serious challenge. As can be seen from Figure 3, in terms of the
size of model differences, the common platform and the trainset
platform experience a drift. The time for computing the differences
of the latest models in MagicDraw was 25min, on average, on a
Lenovo P51 with an Intel Core™ i7-7820HQ CPU and 10GB RAM
for the MagicDraw Java Application.

Summary: Model drift is perceived as serious challenge
for the railways case study. Model drift is manifested in the
model histories and is also perceived by a majority of the
engineers from our interviews and questionnaire.

RQ 2: Symptoms of model drift. According to the interviews as
well as the questionnaire, change propagation, domain analysis, and
quality assurance are tasks that have become increasingly challeng-
ing because of the model drift. This is mainly because of the huge
size of model differences involved in these activities. For example,
for the heating, ventilation, and air conditioning model (i.e., one
of the 122 submodels), MagicDraw presents 81.000 differences be-
tween one trainset platform and the common platform. This induces
considerable effort for analysis tasks and variant synchronization
tasks (e.g., change propagation). For instance, in our interviews,
the engineers at our industry partner confirm that, on average,
the analysis for quality assurance purposes takes 30 minutes per
submodel. Given that often multiple submodels have to be analyzed
on a regular basis — often several times per month — this leads
to significant efforts and costs. Furthermore, the risk of making
mistakes, for example, missing a touched sealed component (i.e., a
component which is marked as unmodifiable), raises. If disallowed
changes are discovered only late in the process – at worst during
software qualification – this leads to delays in the development pro-
cess which, in the end, leads to delayed delivery of the products to
customers and penalties by customers. Another symptom of model
drift are increased communication efforts, which were reported by
44% of the participants.
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(a) Violin chart of the opinions about bottom-up approaches, platform approaches, and
the semantic lifting approach. Likert scores range from 1 (=Disagree) to 5 (=Agree).

(b) Violine plot showing the number of changes per difference
between common platform and trainset platforms.

Figure 3: Left: Comparison of the solution approaches. Right: Model drift in the trend of the model difference size.

Missing reuse opportunities — due to the sheer number of differ-
ences — further accelerates the drift between the different trainset
platforms. This causes redundant work for the different trainset
platforms. According to one of the survey participants, “rebasing of
a product to a new version of the parent platform is not possible for
months because the diffs are so large that tool crashes reproducibly,”
which then leads to some of the work been done multiple times or
even new duplicates being created.

Besides the sheer number of changes, changes may be scattered
across the entire model difference. As an extreme example, recently
the engineering language has been changed from German to Eng-
lish. In total, more than 7.5% (or 98486 changes in total) of the
changes are related to renaming refactorings. For some of the anal-
ysis tasks (e.g., reviews), these changes are irrelevant, but the mod-
elling tool does not provide filters for these changes. For other tasks,
such as domain engineering, it would be helpful, to classify these
changes and merge them contiguously instead of being intermixed
with other types of changes (e.g., functional changes).

Summary: Large model differences and increased com-
munication efforts are the main symptoms for model drift
experienced at our industry partner. Finding commonalities
or reuse opportunities in these large differences has also
become challenging. Mostly tasks such as change propa-
gation, domain analysis, and quality assurance seem to be
affected by the drift.

RQ 3: Causes of model drift and large model differences. We found
the following drivers for model drift and large model differences.

Hugemodels:According to the interviewees, one reason for the
enormous size of model differences is the size of the models them-
selves. The models grew steadily in size over the last seven years.
The average size is 24.627 objects, where an object is an instance of
a class in the meta-model. That is, attributes and references are not
even included in this count. The reason is that the train software and
system is modeled with a high degree of detail. Various additional

information is provided, for example, requirements traceability or
organizational information.

Duplicated architecture: In the model repositories, we found
parts of the models that seem to have a similar purpose but are
modelled individually for every trainset platform. These duplicated
parts appear in every model difference and also inflate the number
of changes in these differences. Different hardware used for the
different trainset platforms appears to be one of the main drivers
for inducing new variability and duplicated parts of the models.
The interviews and survey support this finding. One of the survey
respondents said that “under time pressure, often only a single
solution is sought for the concrete problem in the concrete project
instead of a solution suitable for the platform.”

Implicit variability: Many of the problematic changes that
are typically found during quality assurance are related to missing
explicit constraints related to variability. For example, there are
components which must not be modified in one of the trainset plat-
forms. Because this information is often implicit, trainset platform
engineers sometimes change parts of a model where actually no
change should occur. Missing variability information increases the
size of the model differences: Features that are only part of the
platform but not present in a specific train type will be always
shown in a model difference, even though they might not be rele-
vant. Likewise, features that are only part of the specific trainset
platforms but irrelevant to the platform should be excluded from
the platform when merging train type changes. For tasks such as
extracting commonalities, such features are of special interest. This
extraction would be easier if only product-specific features are com-
pared across the different train types, that is, explicit variability
should be used for isolated feature development.

Missing tool support: Especially for domain analysis, a model
difference between a trainset platform and the common platform
or between two trainset platforms is computed. In the differences,
there will be many changes that are not relevant for the domain
analysis. One limitation of MagicDraw is that it does not support
filtering model differences. Even given a concrete feature mapping,
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MagicDraw does not provide any filtering functionality out-of-the
box. This is also partly related to the fact that there is no commonly
accepted way to express variability in SysMLmodels. The engineers
at our industry partner not only need support for Boolean features
but also numeric and topological features. Furthermore, Magic-
Draw only supports two-way and three-way merging to propagate
the changes between branches. Merging aims at including as many
changes as possible, while in different variants, some differences are
desired [28]. Cherry-picking changes (i.e., only selecting changes
between two consecutive revisions) would support change propa-
gation, butMagicDraw does not support cherry-picking as of now.
On of the survey respondents mentioned that “poor tool support
for taking over simple changes leads to the same changes being
brought in individually and thus only being the same, but not the
same elements, so that technically further diffs arise.” In our reposi-
tory data, we can also see these duplicated blocks, which will show
up in the model differences.

Classification of changes: Model differences typically show
many fine-grained changes. Some of these fine-grained changes be-
long to higher-level changes, but they are not grouped together in
the presentation of model differences. This increases the “perceived”
size of the model differences. Another challenge that increases the
complexity of model differences is the lack of a distinction between
architectural evolution (i.e., refactoring) and functional evolution.
For example, correcting a typo in a component name is presented
in a similar way to the user as changing a connector. Another exam-
ple are move refactorings, for example, a package is moved in the
containment hierarchy, or graphical changes in diagrams. As one
of the survey respondents states, “[...] semi-automatic changes (ex-
ample: upper/lower case of elements) lead to HUGE diffs, so that no
manual diff (and merge) is possible for a long time.” These changes
are typically scattered across a model, and they are ubiquitous. For
some activities, such as quality assurance, it would be helpful to
distinguish these changes from other, more important changes.

Summary: Large models together with a lack of support
for explicit variability as well as missing tool support for
filtering model differences result in large numbers of model
differences that have to be analyzed. Therefore, it is increas-
ingly difficult to reuse parts of the system across multiple
trainset platforms. Parts of the models can not be reused
even though they have a similar purpose. These factors
cause the variants drifting apart over time.

RQ 4: Solution approaches. During our interviews and in the
survey, we identified several hindrances using existing solution
approaches (see Section 2.2 and Section 2.3), which we discuss in
this subsection w.r.t. possible solution approaches.

Platform approaches: Our interviewees and survey partici-
pants mentioned several barriers to use 150% platform approaches.
Most prominently, platform approaches can not be used because of
the cost and risk of a migration. At our industry partner, there is al-
ready a significant amount of modelling data that would have to be
migrated. One of the participants of the interview mentioned that
“many of the developers think in terms of concrete products and
not the entire product line”. This also shows that a migration from

pure clone-and-own to a (150% platform) software product line ap-
proach will face organizational hindrances. Furthermore, there is no
variability modelling approach that supports Boolean constraints,
numeric constraints, as well as also topological constraints. One of
the survey participants even said that “the structural variability is
so large that it can not be modelled using a 150% platform.” Some
mentioned that such an approach could be useful as a basis (which
is also a goal of current efforts) but some of the differences will be
too special and need individual solutions.

Bottom-up approaches: According to our interviews, a sup-
port for understanding the variability and commonalities between
the different trainset platforms is clearly desirable. Nevertheless,
according to interviews and survey, approaches proposed in the
literature are not mature enough. For example, as for the 150%
platform approaches, there is no approach that supports Boolean
constraints, numeric constraints, and topological constraints. Ad-
ditionally, variation control systems proposed for models (e.g., Su-
perMod [49]) have not yet been evaluated in an industrial setting.
This is complicated by the fact that there is no universally accepted
standard for expressing variability in modeling languages [8].

Typically, bottom-up approaches make use of traces between
features and implementation artifacts. Automatically reverse engi-
neering the feature traces in this product line is not feasible. This
is not only because of non-Boolean constraints, but also because of
the size of the models (and therefore scalability issues), and because
these approaches discover many merged feature candidates that
contain more than one feature. Furthermore, there are not enough
products available to discover a useful set of feature candidates.
In general, the “development of methodology and tooling in the
domain would be of enormous complexity”, according to a survey
respondent. Nevertheless, the engineering team at our industry
partner developed an approach to feature traceability, and the man-
ual incorporation of explicit variability information into the models
is an ongoing activity. Still, there are only a few feature traces yet
which could be used.

Summary:Common variability management solutions pro-
posed in the literature are not applicable to the setting at our
industry partner. This is mainly due to immaturity of the
available tooling, but also because many approaches make
simplifying assumptions, not taking real-world and organi-
zational constraints into account. A migration to another
approach comes with high costs and risk, in any case.

RQ 5: Semantic lifting. While platform-based and bottom-up ap-
proaches are not (yet) applicable in this setting, the results from the
interviews and the questionnaire survey suggest that the semantic
lifting approach from Section 4 appears to be suitable to support
the engineers in handling large model differences.

Having a semantic change log for model differences “has already
been hypothesized as a valuable solution in a workshop”, according
to one of the interview participants. Four out of five interviewees
stated that using higher-level change patterns in the presentation
of model differences would support many tasks, such as merging
features, filtering the differences during reviews, identifying illegal
changes in model differences, and understanding model differences
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in general. The remaining participant did not perform any tasks
where the current size of the model difference was considered as a
problem. Two interviewees, who were responsible for propagating
changes between the common platform and trainset platforms de-
scribed the merge process as one of their biggest challenge: since
they “[...] work with several workers in the project, it is also very
time-consuming [during merge] to filter out what my own changes
were. [...] Usually several points in the model are affected by a
small change — external interfaces, software, product structure,
physical structures — so there are changed elements in every folder,
so to speak.” Grouping related changes can support here as well.
Two of the interviewees mentioned that change patterns could also
be used to easier recognize complex refactorings in model differ-
ences. In earlier work4, it has been shown that, in this product line,
recommended edit operations for the semantic lifting achieve a
compression ratio of about 4.0, on average (without filtering yet).

The current tooling does not support such an approach natively
but, according to one of the interview participants, it would be
possible to develop a plugin forMagicDraw. Unlike the bottom-up
approaches, semantic lifting appears to be more feasible from a
technical viewpoint (see Figure 3). Nevertheless, one of the survey
participants is also concerned that the “[...] current lack of expe-
rience in that field, could be an obstacle in the development of a
production-ready solution.”

Interview and survey participants at our industry partner
largely support the hypothesis that a semantic lifting ap-
proach mitigates challenges arising from the model drift.
The hypothesis is further supported by the observation that
the differences can indeed be compressed using semantic
lifting in this product line. Nevertheless, there are concerns
that the production-ready implementation of a semantic
lifting approach can be challenging.

5.5 Threats to Validity
The purpose of this work is to report on a concrete large-scale prod-
uct line in an industrial setting. We do not claim the generalizability
to other large-scale product lines here, although we strongly believe
that similar challenges exist in many industrial settings. This is also
suggested by the work of Dubinsky et al. [14] and Rubin et al. [44].

A threat to internal validity is caused by our setup of the inter-
views and the questionnaire. We had no control group, because
we only had a small group of participants. Nevertheless, in partic-
ular regarding the existence of the drift, we used three different
methods (interviews, survey, and repository data) to validate the
presences of an unintentional divergence. Furthermore, we did not
evaluate the semantic lifting approach in a long-term application at
our industry partner. For future work, we need to put the approach
to the acid test by letting the engineers work with the tooling.

A threat to external validity is that we only used a small sample
of engineers from the project for our interviews and in the survey.
Nevertheless, the engineers participating in the interviews and the

4An extension of [54] is currently under review and available as preprint at https:
//www.researchsquare.com/article/rs-1558716/v1

survey were involved into architectural decisions or had an other-
wise leading role. We also used only a subset of all submodels in the
project for our repository analysis. Anyhow, because the results
of interviews, survey, and the repository analysis are consistent,
we are confident that our results hold for the entire project. Also,
many results were evident from a small sample set, for example,
we could find the drift for all single products in the sample.

6 CONCLUSION AND OUTLOOK
In this paper, we report on a study on model drift in an industrial
large-scale model-driven clone-and-own software product line. We
conducted semi-structured interviews, a questionnaire survey, and
we analyzed the model repository to understand model drift in
this product line. We found substantial model drift that impairs
several tasks, such as change propagation, domain analysis, and
quality assurance. The main reason is that these tasks are based
on large model differences that have to be analyzed manually by
engineers. We found that solutions described in the literature are
often not applicable in a real-world setting, for example, filtering
model differences for certain features requires a rigorous modelling
of variability in the models and existing tools miss some critical
functionality, for example, handling structural variability. Instead
of addressing variability management as one of the root causes for
large model differences, we also studied the alternative route of
addressing large model differences directly. Based on our obser-
vations, we proposed a concrete solution to mitigate the problem
by summarizing the model differences in terms of higher-level
change patterns that are automatically derived from model reposi-
tories based on the idea that meaningful patterns are the ones that
compresses model differences. In the context of the project at our
industry partner, this idea appears to hold true. Our mixed methods
study provides evidence that semantic lifting can support engineers
in tackling large model differences. The approach is orthogonal to
variability management solutions. For example, even using vari-
ability management solutions, model differences can still be large
(e.g., because of the size of the models or missing tool support for
filtering model differences properly).

Other existing solutions to support software product-line en-
gineering related tasks require explicit variability in the models.
Establishing a bottom-up, managed cloning product line engineer-
ing is a long-term target at our industry partner. The engineering
team at our industry partner is currently working on making vari-
ability explicit by creating explicit mappings from features to model
elements. As a long-term solution, it is conceivable to use this vari-
ability information, for instance, to propagate changes between
trainset platforms or for filtering of models and model differences.

While in the long-run it is imperative to establish a working
variability management approach, in the short-term, treating symp-
toms of unintentional divergence can support engineers and avoids
costs and risk of more costly solutions.
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