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Abstract. Realtime and embedded systems are subject to strict re-
quirements on performance and resource consumption. However, modern
software-engineering methods do not always allow to meet these techni-
cal requirements. More specifically, common approaches for the design
of flexible, reusable and customizable software lead to increased mem-
ory consumption and reduced performance. This article proposes a con-
figurable binding mechanism that addresses this important problem. It
adopts features of design patterns and mixins. Our proposal is not obvi-
ous – the difficulty is to arrange the structural elements of design patterns
and mixins so that the binding is configurable and copes with those re-
quirements specific to realtime and embedded systems. Measurements
show that our approach indeed accomplishes this. At the same time, it
provides the known virtues of modern software-engineering methods, in
particular configurability and reusability. Finally, we say how to apply
our approach to other common design and implementation methodolo-
gies, e.g., program families, frameworks, and aspects.

1 Introduction

Today approximately 98% of all computers are deployed as embedded systems [32].
The market is growing rapidly [8]. Future scenarios like ubiquitous computing
will push this trend [35]. Currently, software development for embedded systems
focuses on technical aspects like performance and resource constraints, but ne-
glects software-engineering requirements, e.g., reusability, customizability, and
extensibility. However, these requirements are extremely important for embed-
ded systems as well.

Design patterns are one common method to build configurable, reusable and
extensible software [15, 6]. They provide standard solutions for recurring design
problems. But with many design patterns, the downside is performance degrada-
tion and higher resource consumption [15, 12, 4]. This is due to the use of abstract



classes and methods as well as delegation and the higher degree of indirection. [4]
shows that the elimination of unneeded abstract classes reduces memory space
consumption by 4.8% and runtime by 23.3% for a specific but representative sce-
nario. Thus there often is a tension between software-engineering requirements
and technical requirements.

To overcome this tension, we envision a binding mechanism that the appli-
cation programmer can configure. The type of the binding is a parameter: If the
programmer configures the system such that assembly of the concrete classes
from patterns takes place at compile-time (early binding), the configuration pro-
cess will eliminate abstract classes and delegations. This is good with regard to
resource consumption and performance. With the other configuration, the im-
plementation is bound at runtime parametrically (late binding). In other words,
the programmer trades performance etc. for flexibility. The configurations differ
only in the point of time when the concrete classes and their methods are bound
to the context, but not with regard to the interface. We refer to this as bind-
ing time in what follows. Furthermore, we perceive the binding as a separate
concern. It must be explicit and separated from the implementation of the ap-
plication logic, to facilitate its configuration. This is in line with the well-known
separation of concerns [26, 21].

The seamless integration of such a binding mechanism into known design
methodologies with a focus on reusability and configurability, e.g., program fami-
lies, frameworks, aspects and collaborations, is not obvious. This is because these
methodologies use different mechanisms for the (de)composition and encapsula-
tion of modules as well as for their configuration and reuse. Designing a general
binding concept which works for all these mechanisms is challenging. E.g., pro-
gram families and their members typically are composed either at compile time
or at runtime. Common implementation techniques do not support both. To
give another example, aspect-oriented programming (AOP) focuses on the sepa-
ration of crosscutting concerns. To our knowledge, research has not addressed
the question how to make the binding explicit with AOP. This article intro-
duces a configurable binding mechanism. We say how to combine it with those
methodologies without constraining their flexibility or applicability. In short,
we model variation points (e.g., abstract classes, template classes) and concrete
classes as mixins, introduce separate interfaces for early and late binding and
use a dispatcher for delegation. – At the same time, the technical requirements
(performance, low memory consumption) prevail. We show that our approach is
just as good as the native implementation methodologies in these respects.

Section 2 discusses the prospective impact of the type of binding. Section 3
introduces relevant design and implementation techniques. Section 4 then de-
scribes our configurable binding mechanism. Section 5 features an experimental
evaluation. Section 6 says how to restructure object-oriented programs in gen-
eral in order to make the binding configurable and discusses the applicability of
our configurable binding to program families, frameworks, aspects, and design
patterns. Section 7 reviews related work. Section 8 concludes.



2 The Impact of the Binding Time

The binding type – early or late binding – impacts flexibility and configurability
of the software system as well as its memory footprint and performance. This
section reviews known binding variants, based on an example. The example is
adopted from the strategy design pattern (cf. [15]): The objective is to separate an
object (context) from its behavior. The context uses different strategies, and each
strategy encapsulates one type of behavior. For instance, think of a byte buffer
(context) which encrypts the data stored. Strategies encapsulate the various
encryption algorithms. Replacement of strategies is possible either at compile-
time or at runtime (see Fig. 1).
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Fig. 1. Binding strategies to the context at different times.

Compile-time – early binding. This variant binds a strategy to the context
early. This implies that strategies cannot be exchanged at runtime. The
context cannot alter its behavior dynamically. The advantage of this variant
is reduced resource consumption. This is because no additional references,
method calls, or classes are needed.

Runtime – late binding. This variant binds the strategies late. The program-
mer uses abstract classes and a level of indirection to implement this binding
mechanism. The context can now alter its behavior dynamically. But the use
of abstract classes and indirect invocation increase the memory footprint and
reduce performance.

In short, both binding mechanisms have their advantages and disadvantages. It
depends on the application scenario which one is adequate. Due to the resource-
constrainedness and the importance of performance, early binding is indispens-
able in realtime embedded systems. As mentioned, we see the binding time as
a non-functional concern: If one wants to alter the binding time flexibly, he has
to make it explicit. To do so, we will propose a binding mechanism that is con-
figurable. An important objective is to avoid the redundant implementation of
application logic classes. In other words, the programmer should be able to reuse
implementations of concrete classes, irrespective of the binding time.

3 Basic Design and Implementation Techniques

This section classifies relevant implementation techniques by their binding type
and assesses the degree of configurability and reusability offered. The implemen-



tation techniques under consideration are the following ones: (1) direct associa-
tion of context and concrete classes, (2) design patterns which use late binding,
and (3) template classes which use early binding. We continue to use the strategy
pattern as our running example.

Association. A simple way to separate objects and their behavior is to model
the behavior (the strategy) as a separate class and associate it directly with
the object (the context). We distinguish between two cases, aggregation and
association [24]. With aggregation, the strategy is hard-wired with the con-
text. With association, the object owns a reference to a strategy. The first
case supports no configuration. The second one allows the replacement of
the strategy, but the new strategy has to be type-equivalent. In both cases,
reusability of the strategy implementations is low. This is because interface
and implementation are not separated (cf. [15]).

Design patterns. The strategy design pattern provides a better solution for
the separation of objects and their behavior. Figure 2 shows the correspond-
ing class diagram.3 The context owns a reference/pointer to the interface Ab-
stractStrategy. AbstractStrategy is a polymorphic type [31]. Several concrete
strategies implement it using inheritance. Given this polymorphic coherence,
the context can invoke the concrete strategies via the same interface. Thus,
the programmer can apply the strategies to the context at runtime by re-
placing the reference of the context. The downside of this implementation
technique is the late binding. Virtual function-pointer tables and additional
pointers/references increase the memory consumption, and the indirect invo-
cation mechanism based on function pointers decreases the performance. [12]
presents a quantitative analysis of this issue for C++. These drawbacks pre-
vent the use of pattern-based software in resource-constrained environments.

Context

Strategy A Strategy B

AbstractStrategy

Fig. 2. The strategy design pat-
tern.
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Fig. 3. Exchangeable strate-
gies using mixins.

Template classes and mixins. Template classes allow to implement the se-
paration of context and its strategy as well. The term ’template’ is quite
overloaded in computer science. We use it similarly to the template con-
struct in C++. Templates allow generic programming by the parameteriza-
tion of classes with types [31]. Templates are typically used to implement

3 For all diagrams, we use UML (see www.uml.org).



1 int main () {
2 Context <StrategyA > context1 ; // using strategy A
3 Context <StrategyB > context2 ; // using strategy B
4 }

Fig. 4. Instantiation of the context using different strategies.

data structures which work with various data types. The type is determined
at compile-time. Figure 3 shows the template-based implementation of the
strategy example. By instantiating the template, the programmer decides
which strategy the context refers to (cf. Fig. 4). The context inherits from
the strategy chosen. This mechanism is called mixin-based inheritance, and
the template classes are named mixins [5]. In the figure, the dashed arrows
indicate that the context might inherit from the base class. In contrast to the
pattern-based variant, no resources are wasted, and there is no performance
overhead. Moreover, modern compilers are able to inline calls to templates
classes, because the type is known at compile-time [31]. With abstract classes
in turn, this is not the case. On the other hand, the programmer must choose
the strategy at compile-time.

All three variants are efficient solutions for specific application requirements.
However, due to the inadequate support of configuration and reuse, we do not
consider the direct association approach in what follows. The template variant
provides compile-time configurability only, but exhibits good performance and
has a small memory footprint. The use of abstract classes, adopted by design
patterns, is flexible, but results in weaker performance and higher resource con-
sumption. To combine the advantages of these approaches, we will integrate them
in a new, more abstract concept. Furthermore, classes of the application logic
shall be reusable, regardless of the binding variant in use. This is not possible
with a combination of templates and patterns, due to the different interfaces of
the concrete strategy classes. The pattern-based approach requires an interface
that declares all methods of the strategies as virtual/abstract. This is differ-
ent from the template approach. In other words, templates and patterns cannot
be exchanged mutually. This is because the application logic classes are not
reusable.

This article shows how to combine the advantages of both approaches without
loosing on applicability. We make the binding mechanism explicit and therefore
configurable. Our mechanism allows to reuse functional concerns (the application
logic), irrespective of the binding.

4 The Configurable Binding Mechanism

This section introduces the new notion of configurable binding. We first provide
a general description, followed by an illustration using the strategy pattern.



4.1 General Concept

Starting point of our description are the differences of mixin layers and design
patterns in terms of flexibility and configurability as well as performance and
memory consumption. Concepts such as abstract classes, indirect invocation,
and delegation yield high flexibility and runtime configurability. On the other
hand, they incur performance penalties and higher memory consumption. Our
approach uses these concepts, but allows for their easy elimination in case run-
time configurability is not needed. Compared to existing approaches, it is now the
programmer who makes this configuration decision. Figure 5 depicts the struc-
tural components that allow for runtime configurability. (So far, the situation
depicted is identical to the pattern approach.) The goal is to make the binding
configurable if the programmer wants to have runtime configurability, or, alter-
natively, use mixin techniques to make the classes exchangeable at compile-time.
To ease the presentation, we describe our approach as a sequence of four steps.

Concrete Class A Concrete Class B

Abstract ClassContext

Fig. 5. Using abstract classes to gain flexibility and configurability.

1. In the first step, the context is implemented as a mixin. It inherits from its
template parameter (cf. Fig. 6). The dashed arrows stand for inheritance re-
lations that are configurable. The instantiation of the mixins specifies which
relation is actually established (by mixin-based inheritance, cf. Sec. 3). Do-
ing so, the programmer can instantiate the context with concrete classes.
Thus, the context has full access to the attributes and methods of the class.
After this first step, the application programmer can exchange concrete class
implementations at compile-time by substituting the template parameter.

Context
Base

Concrete Class A Concrete Class B

Fig. 6. Implementing the context as mixin.



Conrete Class A

Context
Base

Conrete Class B Dispatcher

Fig. 7. Introducing the dispatcher for runtime configurability.

2. The second step introduces a dispatcher (cf. Fig. 7). It provides runtime
configurability. It has the same interface as the concrete classes. So, the
programmer can use the dispatcher instead of concrete classes. Moreover,
the dispatcher owns a reference to a concrete class. The dispatcher delegates
incoming calls to the concrete classes, using the reference.

Conrete Class A

Context
Base

Conrete Class B Dispatcher

Dynamic Binding

Fig. 8. Introducing a unique interface for all concrete classes.

3. To provide a unique interface for all concrete classes, this step introduces
an interface (Dynamic Binding) (cf. Fig. 8). It declares all methods of the
concrete classes as virtual/abstract. The reference of the dispatcher points
to this interface.

Conrete Class A

Context
Base

Conrete Class B Dispatcher
Binding Binding

Static Binding Dynamic Binding

Fig. 9. Implementing the concrete classes as mixins.



4. Because the interface is only needed for dynamic configurability, the concrete
classes inherit from the interface only in this case. To accomplish this, the
concrete classes are implemented as mixins (cf. Fig. 9). In the dynamic case,
they are instantiated using the interface Dynamic Binding. In the static case,
they inherit from the empty interface Static Binding.

Figure 10 shows the resulting class hierarchy of late binding. We call it the
dynamic case in the following. The figure shows that the dispatcher delegates
calls from the context to the concrete class. The programmer can exchange
concrete classes at runtime by resetting the reference of the dispatcher. The
Dynamic Binding interface facilitates this. Figure 11 depicts the class hierarchy
in the case of early binding. In what follows, we refer to it as the static case.
The programmer instantiates the context directly using the concrete classes. In
this case, no additional interface is needed. The concrete classes inherit from the
empty interface Static Binding.

Binding Binding

Dispatcher

Context
Base

Concrete Class BConcrete Class A

Dynamic Binding

Fig. 10. The dynamic case – late binding of con-
crete classes.

Binding

Context

Concrete Class A

Base

Static Binding

Fig. 11. The static
case – early binding
of concrete classes.

4.2 Application to the Strategy Pattern

To illustrate our binding mechanism, we apply it to the strategy pattern. We will
refer to the result as extended strategy pattern. To provide even more insight, we
use a concrete scenario: A communication client sends and receives data. The
client uses different strategies to do so. It supports two concrete strategies: Sync-
Sending sends and receives data in a synchronous way. AsyncSending does the
same in an asynchronous way (cf. Fig. 12). The code snippets are in C++. This
is realistic, because C++ is the dominant language for realtime and embed-
ded systems. But every language which supports inheritance, abstract classes,
and templates could be used, e.g., Eiffel, Ada, as well as generic extensions to
Java and C#. Based on this scenario, we explain how to integrate the binding
mechanism into the extended strategy pattern.

According to the first step, the client is implemented as a mixin. It inherits
from SyncSending or AsyncSending. This depends on the instantiation of the



1 class SyncSending {
2 public:
3 int send(char *buf) {/∗ synchronous sending ∗/}
4 int recv(char *buf) {/∗ synchronous receiving ∗/}
5 };
6
7 class AsyncSending {
8 public:
9 int send(char *buf) {/∗ asynchronous sending ∗/}

10 int recv(char *buf) {/∗ asynchronous receiving ∗/}
11 };

Fig. 12. Two concrete sending strategies.

1 template <class StrategyType >
2 class Client : public StrategyType {
3 ...
4 };
5 int main () {
6 Client <SyncSending > c1; // early binding of synchronous sending
7 c1.send("Hello World"); // synchronous sending
8 Client <AsyncSending > c2; // early binding of asynchronous sending
9 c2.send("Hello World"); // asynchronous sending

10 }

Fig. 13. The static case – early binding of strategies.

template parameter (cf. Fig. 13, Lines 6, 8). Figure 13 gives the code of the client
mixin and the two instances. Client c1 uses a synchronous sending mechanism
(Lines 6–7), c2 an asynchronous one (Lines 8–9).

As a second step, we introduce a dispatcher. It has the same interface as
the common strategies. It owns a pointer to a strategy object and a method to
set the strategy at runtime (cf. Fig. 14). If the programmer wants to exchange
strategies at runtime, he uses the class Dispatcher instead of concrete strategies
to instantiate the client. The client calls the send/recv method, as in the other
case. The dispatcher delegates calls to the strategy object currently registered.
By invoking setStrategy on the dispatcher, the programmer can register and
exchange strategy implementations at runtime.

In the third step we introduce an interface for the dynamic case. It denotes
all methods of the strategies as virtual (see Fig. 15, Lines 1–5). In the static case,
this is not necessary and not desired. To reuse strategy implementations in the
static as well as in the dynamic case, the interface for the dynamic case must be

1 class Dispatcher {
2 protected:
3 DynamicBinding * m_strategy;
4 public:
5 int send(char *buf) {return m_strategy ->send(buf );}
6 int recv(char *buf) {return m_strategy ->recv(buf );}
7 void setStrategy(DynamicBinding *s) { m_strategy = s;}
8 };

Fig. 14. The dispatcher allows runtime exchangeability of strategies.



1 class DynamicBinding {
2 public:
3 virtual int send(char *buf ) = 0;
4 virtual int recv(char *buf ) = 0;
5 };
6
7 class StaticBinding {
8 };

Fig. 15. The interface for dynamically exchangeable strategies.

1 template <class Binding >
2 class SyncSending : public Binding {
3 public:
4 int send(char *buf) {/∗ synchronous sending ∗/}
5 int recv(char *buf) {/∗ synchronous receiving ∗/}
6 };
7
8 template <class Binding >
9 class AsyncSending : public Binding {

10 public:
11 int send(char *buf) {/∗ asynchronous sending ∗/}
12 int recv(char *buf) {/∗ asynchronous receiving ∗/}
13 };

Fig. 16. Concrete strategies implement a binding interface by mixin-based inheritance.

different from the one for the static case: For the dynamic case, the strategies
have to implement the interface DynamicBinding. This is not necessary in the
static case and therefore their interface remains unchanged.

The fourth step overcomes the problem of declaring an interface for the dy-
namic and another for the static case. For that, we implement strategies as mix-
ins (cf. Fig. 16). Each strategy inherits from the template parameter Binding.
In the dynamic case, the programmer replaces this parameter by the interface
DynamicBinding (cf. Fig. 15, Lines 1–5). In the static case, the programmer uses
the empty interface StaticBinding (see Fig. 15, Line 7). Thus, virtual methods
are used, and indirect invocations (by invoking the dispatcher) occur only in the
dynamic case. The static case avoids this overhead. This is because the client
is instantiated directly with the concrete strategy implementation. Moreover,
there are no virtual methods. Figure 17 shows the class diagram of the extended
strategy pattern.

The following paragraphs say how to use our pattern at code level:

Static case. Figure 18 (Lines 1–4) shows how to use our pattern to implement
and (re)use strategies using early binding. This code snippet is similar to
Figure 13. We instantiated two client objects using two concrete strategies
(Lines 1 and 3). We instantiated the strategies in turn using the empty
interface StaticBinding. Thus, there is no runtime overhead or increased
resource consumption, but concrete strategies cannot be reset at runtime.
Figure 19 depicts the class hierarchy of the static case using early binding.

Dynamic case. Figure 18 (Line 6–12) depicts the use of our pattern for dy-
namic reconfiguration of strategies. The dispatcher instantiates the client
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virtual int send (char *buf);
virtual int recv (char *buf);

int send (char *buf);
int recv (char *buf);

SyncSending
int send (char *buf);
int recv (char *buf);

AsyncSending

Client

StaticBinding
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int recv (char *buf);
void set(DynamicBinding *);

DynamicBinding

Dispatcher

Fig. 17. The implementation of communication client using the extended pattern.

1 Client <SyncSending <StaticBinding > > c1; // synchronous sending
2 c1.send("Hello World");
3 Client <AsyncSending <StaticBinding > > c2; // asynchronous sending
4 c2.send("Hello World");
5
6 Client <Dispatcher > c1; // instantiation using the Dispatcher
7 SyncSending <DynamicBinding > sync; // creating an exchangeable strategy
8 AsyncSending <DynamicBinding > async ; // creating an exchangeable strategy
9 c1.setStrategy (&sync ); // use synchronous sending

10 c1.send("Hello World");
11 c1.setStrategy (& async ); // use asynchronous sending
12 c1.send("Hello World");

Fig. 18. Instantiation of strategies for sending using early and late binding.

(Line 6). By invoking the method setStrategy(), the programmer can ex-
change the strategy at runtime. This method is inherited from the dispatcher
and therefore only available in the dynamic case. In Lines 7 and 8, two dif-
ferent strategy objects are allocated. They inherit from the DynamicBind-
ing-interface by template instantiation. Thus their methods are virtual. The
effect is that strategies can be easily exchanged at runtime (Lines 9, 11).
Figure 20 depicts the class hierarchy of the dynamic case using late binding.

5 Measurements

The previous section has shown that our extended strategy pattern provides a
configurable binding mechanism. This section compares our extended pattern to
the native variants, the mixin-based and standard pattern approach. A standard
mixin-based implementation is the natural reference point to compare our early-
binding configuration to experimentally. When using late binding, we compare
our extended pattern to a standard pattern-based solution.
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Fig. 20. The dynamic case – late binding of sending
strategies.

5.1 Memory Footprint

We have implemented the traditional variants and our extended pattern in C++.
The code was compiled on a linux system (Athlon XP 2600+, Kernel 2.4) us-
ing the compiler g++ (GCC) 3.3.1. Each variant was compiled three times –
(1) without optimization (-c), (2) with highest optimization level (-O3 -c), and
(3) with optimization of the code size (-Os -c). We have created object files in-
stead of executable binaries to avoid the overhead of wrapper and startup code.
After the compilation we have stripped the symbol table using the strip com-
mand and determined the size of the code (using size on the compiled object
files).

Table 1 contains our measurements of the standard strategy pattern and of
the standard mixin variant (cf. Sec. 3). The results in the table are expected.
The template variant has a significantly smaller memory footprint than the pat-
tern variant. The results refer to one context and two strategies. Except for the
pointers, methods, and template-parameters required, all implementations are
empty. The context was instantiated only once. We used only one pattern or
template for the measurements, respectively. Naturally, the absolute difference
between template-based and pattern-based implementations becomes larger if
templates and patterns are used several times.

-c -O3 -c -Os -c

mixins 168 7 7

pattern 459 203 204

Table 1. Code sizes of the tradi-
tional implementations in byte.

-c -O3 -c -Os -c

static case 178 12 7

dynamic case 616 225 267

Table 2. Code sizes of the extended
pattern-variants in byte.



Table 2 shows the code size of our extended strategy pattern. We calculated
the footprint of the static and of the dynamic case (cf. Sec. 4). The table tells
us that memory consumption in the static case is much less, compared to the
dynamic variant. In both settings, resource consumption is similar to the one
of the native counterparts. The small overhead is due to the additional use of
templates. – This result is a success which we have not expected. We rather
had assumed a similar difference between the dynamic and the static variants,
compared to the native implementations. But we have not thought that the
footprint will not vary significantly.

5.2 Performance Measurements

Early binding has a better performance compared to late binding (approximately
20% [12, 4]). We have conducted performance measurements, in order to reveal
the effect of our configurable binding mechanism on performance in quantitative
terms. More specifically, we wonder if performance of our implementations is
comparable to the native variants, if the better performance of early binding is
preserved, and if the overhead of late binding is acceptable.

For the performance measurements we have kept the settings of the footprint
measurements, except for the following modifications: To determine the perfor-
mance of the different implementation variants, we used functions of the GNU C
library (declared in sys/time.h). To obtain comparable results we created one
message for each variant and called the send and receive methods 1.000.000 times
(using a for -loop). We need the iterations to overcome the limited resolution of
the timer. Moreover, real-world applications execute pattern code repeatedly,
e.g., container iterators or sending strategies for sockets. The methods of our
strategies were empty except for one pointer assignment. To minimize the im-
pact of side effects and inaccuracies, we calculated the total execution time (for
1.000.000 iterations) of each variant ten times. Table 3 shows the average execu-
tion times of the native implementations. As expected, the mixin variant is 20%
faster than the standard pattern variant on average. Table 4 shows the aver-
age execution time of our extended pattern. The static variant is approximately
25% faster than the dynamic variant. These results are in line with the observa-
tions in [12, 4]. An important new result is that the performance of the variants
of our extended pattern is comparable to their native-implementation counter-
parts. The additional delegation from the dispatcher to the concrete strategies
causes the negligible overhead of the dynamic case compared to the standard
pattern. The static variant of our extended pattern preserves the advantages
of early binding. The overhead of the dynamic variant is acceptable compared
to the native dynamic variant. As with the memory footprint, the impact on
performance becomes more significant with several patterns.

Next to these experiments, we have investigated which parameters affect the
performance of our extended pattern compared to the native implementations.
Table 5 and 6 show the execution times of the native implementations and of
our extended pattern against the number of arguments of the send and receive
methods. The numbers in braces are the percentage values of the execution time



against the implementation with no arguments. The experimental setting was
unmodified except for the number of arguments. As expected, this number affects
the execution time. The key observation is that the increase of the execution time
of the static variants (mixin and static case of the extended pattern) compared
to the dynamic variants (standard pattern and dynamic variant of the extended
pattern) is similar. We found no indication that our approach is not beneficial
for different numbers of arguments. The small overhead of the dynamic case is
caused by the additional delegation.

Further experiments examined which other parameters affect the perfor-
mance of our approach compared to the native ones. We hypothesized that the
following ones might be relevant: number of virtual methods of the strategies,
number of concrete strategies, and depth of the inheritance tree of the strategies.
The experiments (numbers are almost identical to Tables 3 and 4) told us that
none of these parameters affects performance, neither of the native implementa-
tions nor of our extended pattern.

5.3 Discussion

Our experiments have shown that the implementation of our extended strategy
pattern has a footprint and performance comparable to the one of the common
variants. The binding time is configurable. It affects performance and footprint
as well as flexibility and configurability. Moreover, programmers can reuse im-
plementations in all variants. This is in line with the well-known separation of
concerns [26, 21]. In addition to the separation of an object and its behavior, our
approach also provides a separation of the binding mechanism (i.e., a separation
of the concerns performance, memory footprint, configurability and flexibility)
from the application logic. All this does not conflict with technical requirements.
The benefits of our approach are most significant for resource-constrained and
realtime systems.

6 Application to other Approaches

The configurable binding mechanism is applicable to other patterns as well as
to other design and implementation methodologies. This section discusses the
most promising ones.

variant mixin pattern

time 131.7 160.5

Table 3. Average execution
time of the native implemen-
tations (in milliseconds for
1.000.000 iterations).

variant static case dynamic case

time 132.8 178.9

Table 4. Average execution time of
the extended pattern (in milliseconds
for 1.000.000 iterations).



arguments 0 5 10

mixin 131.7 165.6 (123.9%) 184.5 (140.9%)

std. pattern 160.5 183.4 (114.2%) 210.2 (130.9%)

Table 5. Average execution time of the native implementations against the number of
arguments (in milliseconds for 1.000.000 iterations).

arguments 0 5 10

static case 132.8 164.6 (123.9%) 180.8 (136.1%)

dynamic case 178.9 224.7 (125.6%) 259.9 (145.3%)

Table 6. Average execution time of the extended pattern against the number of argu-
ments (in milliseconds for 1.000.000 iterations).

Design Patterns. Next to the strategy pattern, we implemented and restruc-
tured several other patterns according to our approach, namely decorator,
composite, state, factory method, and builder (cf. [15]). In their extended
form, one can use them in resource-constrained environments as well. The
restructuring of patterns with only one abstract class (e.g., state) is analo-
gous to the one of the strategy pattern and is straightforward. Experiments
yield results similar to the extended strategy pattern. Patterns with several
abstract classes, e.g., factory method, are more interesting. Our approach
can eliminate several abstract classes. We illustrate this using the factory
method (cf. Fig. 21). The factory method defines an interface (Creator) for
creating an object. It lets subclasses decide which class (derived form the
interface Product) to instantiate, by overriding method factoryMethod. The
factory-method pattern lets a class defer instantiation to subclasses. This
pattern includes two abstract classes, Creator and Product. In the following
we discuss two restructured versions of the pattern. The first one eliminates
the interface Creator, and the second one eliminates both interfaces, Creator
and Product.

Product factoryMethod();
Concrete Creator A

Product factoryMethod();
Concrete Creator B

virtual Product factoryMethod();
void anOperation();

Creator

Concrete Product AConcrete Product B

Product

instantiates

instantiates

Fig. 21. The factory method pattern.



In the first version, we implemented the concrete creators as mixins. We in-
troduced a dispatcher for the dynamic case and an interface for the dynamic
binding. For the static case we need only an empty interface. The configu-
ration is analogous to the strategy pattern. In the second implementation of
the extended factory method pattern we eliminated the abstract product as
well. As with the creators and the strategies, we implemented the concrete
products as mixins, added a dispatcher and introduced binding interfaces for
the dynamic and the static case. A programmer can configure two binding
mechanisms independently of each other, one for the creators, the other one
for the products. Experiments with the extended factory method pattern
are positive: The restructuring affects the footprint and the performance as
expected. Consequently, the second version is faster and smaller than the
first one.

Program Families, Collaborations, and Mixin-Layers. The rationale be-
hind program families is to maximize the reuse of software components and to
tailor software to the requirements of an application scenario [26]. Thus, they
are particularly interesting for embedded or realtime systems. A program
family consists of a bottom-up layer of components. Collaboration-based de-
sign [2] and mixin-layers [29] map program families to the object-oriented
world. A collaboration of objects implements each layer. A programmer re-
fines layers by subclassing their objects.
We have already applied our approach to a program family of middleware
platforms [1]. We have used our extended strategy pattern to implement a
flexible synchronization mechanism (synchronous vs. asynchronous sending
of data) and different connection types (sending datagrams vs. streams) of
the internal socket model. Figure 22 and 23 depict connections implemented
as mixin layers in top-down order. We have embedded the connection (con-
text) in a basic layer. The connection owns a reference to a socket (strategy)
object. The socket layers are arranged below the connection. If a program-
mer requires late binding, he puts the dispatcher between connection and
sockets (cf. Fig. 22). The connection then refers to the dispatcher which del-
egates a call to the concrete socket implementation. With early binding, one
socket is directly bound to the connection (cf. Fig. 23). It must provide the
interface which the connection expects. – Integrating this approach into the
program family makes the program family more and easier configurable. It
preserves the reusability of the implementations of the concrete synchroniza-
tion mechanisms and connection types. This high degree of configurability
was one main objective [1, 28].

Frameworks. Frameworks provide domain-specific solutions for a problem do-
main in form of a set of classes [13, 11, 19]. Example domains are network-
or GUI-programming. The programmer can customize the functionality of
the framework by refining a set of abstract classes. They form the varia-
tion points of the framework. The drawbacks of an excessive use of abstract
classes are well-known, namely performance penalties and a higher mem-
ory consumption. To map our ideas to frameworks, the variation points do
not have to be implemented as abstract classes or interfaces, but as tem-



plate parameters (we argue). A programmer can then instantiate a variation
point (framework mixin-class) using a dispatcher (dynamic case) or concrete
classes (static case).

Aspects. Aspect-Oriented Programming aims to encapsulate and separate cross-
cutting concerns [21]. This prevents code-tangling and scattering. Many
aspect-oriented languages and frameworks provide aspect-inheritance, e.g.,
AspectJ [20], AspectC++ [30], PROSE [27], AspectWerkz [34]. Design pat-
terns are important for this programming paradigm as well. They are general
solutions to recurring problems. The aspect languages mentioned implement
aspects as classes. Thus, one could combine abstract aspects, inheritance and
template-based mechanisms [23, 16, 22] to implement a similar configurable
binding mechanism for aspects. This is advantageous for dynamic aspects,
which are instantiated at runtime.

Summing up, our approach is not only applicable to specific design patterns,
but to any software which must be customizable or variable. In particular, soft-
ware for embedded systems requires a binding that is configurable. Our binding
mechanism is applicable to restructure existing software. Typically points where
to insert are abstract classes, templates and template-based inheritance.

7 Related Work

Research on design patterns, mixins and aspect-oriented programming is related
to our approach, as we will explain.

The topic of design patterns and pattern-oriented software development has
a long tradition: Gamma et al. [15] and Buschmann et al. [6] give a comprehen-
sive overview on patterns and their use. Beuche et al. [4] argue that common
object-oriented methods such as design patterns fail in the domain of deeply
embedded systems. The excessive use of delegation and abstract classes/meth-
ods leads to performance penalties and to an unacceptable memory consumption.
They propose the combination of feature modeling, aspect-oriented programming
and design patterns to build reusable, configurable and lightweight software for
deeply embedded systems [3, 14]. In contrast to our approach, they have to use

Dispatcher

Dispatcher

Connection

StreamSocket

DatagramSocket

DynamicBinding

Fig. 22. Late binding of connections and sockets.

DatagramSocketConnection

DatagramSocket

Fig. 23. Early binding of
connections and sockets.



several tools like code analysis and transformation systems as well as definitions
of requirements. Our approach is less complex but also less flexible.

Bracha et al. [5] were first to propose mixin-based inheritance using tem-
plates. Batory et al. [29] have shown how to exploit this concept to achieve a
high degree of configurability. They propose mixin layers as large-scale compo-
nents. VanHilst et al. [33] and Czarnecki et al. [10] use similar mechanisms to
increase the level of configurability and reusability. Contrary to our approach,
these approaches focus on compile-time configurability. They do not consider
runtime configuration. Further, a programmer cannot reuse implementations for
runtime configuration.

Cardone et al. [7] have proposed a new type of design pattern, the sibling
pattern, to solve the extensibility problem [9]. To implement the sibling pattern,
mixin layers are used. Ostermann et al. [25] have proposed delegation layers to
achieve runtime configurability. Delegation layers have characteristics similar to
mixin layers, but are composable at runtime. Moreover, they solve the extensi-
bility problem in a way similar to the sibling pattern. But currently there is no
programming language with the features required to implement delegation lay-
ers that is usable in practice. The high degree of indirection causes a significant
runtime overhead.

Hanneman et al. [18] combined design patterns and aspect-oriented program-
ming to improve software reuse. Haneberg et al. [17] increase configurability and
reusability using parametric introductions. Loughran et al. [23] have proposed
framed aspects which combine templates and aspects to increase configurability.
These approaches focus on aspect-oriented programming only and cannot be
easily applied to other programming paradigms.

8 Conclusions

This article has proposed a new implementation scheme for software that is
reusable, a configurable binding mechanism. It allows to choose between late
and early binding and preserves reusability of application-specific classes. Our
approach is particularly useful for resource-contrained environments, e.g., real-
time and embedded systems, because of its nice performance characteristics and
scalable memory consumption.

The approach combines the virtues of mixins and common design patterns.
The application programmer can configure software to be either runtime-confi-
gurable or compile-time-configurable. This is important, since both variants have
their advantages. We have shown that an extended strategy pattern and its two
instances (static and dynamic) are comparable to common design patterns and
mixin implementations in terms of performance and resource consumption. An-
other big advantage is reusability of concrete strategy implementations. We have
explained that our results are applicable to other patterns as well as to other de-
sign and implementation methodologies, notably program families, frameworks,
and aspects. Thus, configurable binding is a general solution to build config-



urable, reusable and extensible software without performance penalties or exces-
sive memory consumption.
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