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University of Magdeburg

Through implicit invocation, procedures are called without explicitly referencing them. Implicit
announcement adds to this implicitness by not only keeping implicit which procedures are called,
but also where or when—under implicit invocation with implicit announcement, the call site con-
tains no signs of that, or what it calls. Recently, aspect-oriented programming has popularized
implicit invocation with implicit announcement as a possibility to separate concerns that lead to
interwoven code if conventional programming techniques are used. However, as has been noted
elsewhere, as currently implemented it establishes strong implicit dependencies between compo-
nents, hampering independent software development and evolution. To address this problem, we
present a type-based modularization of implicit invocation with implicit announcement that is
inspired by how interfaces and exceptions are realized in JAVA. By extending an existing compiler
and by rewriting several programs to make use of our proposed language constructs, we found
that the imposed declaration clutter tends to be moderate; in particular, we found that, for general
applications of implicit invocation with implicit announcement, fears that programs utilizing our
form of modularization become unreasonably verbose are unjustified.

Categories and Subject Descriptors: D.3.3 [Programming Languages]: Language Constructs
and Features—Abstract data types, polymorphism, control structures

General Terms: Design, Languages

Additional Key Words and Phrases: Implicit invocation, event-driven programming, publish/
subscribe, aspect-oriented programming, modularity, typing

Authors’ addresses: F. Steimann and T. Pawlitzki, Lehrgebiet Programmiersysteme, Fakultät
für Mathematik und Informatik, Fernuniversität in Hagen, D-58084 Hagen, Germany; email:
steinmann@acm.org; Thomas.Pawlitzki@fernuni.hagen.de; S. Apel, Lehrstuhl für Program-
mierung, Fakultät für Informatik und Mathematik, Universität Passau, D-94030 Passau, Ger-
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1. INTRODUCTION

Implicit invocation, which was first discussed by Reiss [1990] and Sulli-
van and Notkin [1990, 1992], is both an architectural style and a program-
ming paradigm (the latter also known as event-driven programming (EDP) or
publish/subscribe (P/S) [Eugster et al. 2003]). Garlan and Shaw have charac-
terized it succinctly as follows:

The idea behind implicit invocation is that instead of invoking a pro-
cedure directly, a component can announce (or broadcast) one or more
events. Other components in the system can register an interest in
an event by associating a procedure with the event. When the event
is announced the system itself invokes all of the procedures that have
been registered for the event. Thus an event announcement implic-
itly causes the invocation of procedures in other modules. [Garlan
and Shaw 1994, p. 9]

A special form of implicit invocation is implicit invocation with implicit an-
nouncement of events (hereafter abbreviated as IIIA), in which events are not
published through a dedicated statement, but are instead specified declara-
tively. IIIA permits “events to be announced as a side effect of calling a given
procedure” [Garlan and Scott 1993, p. 452], which is considered “attractive be-
cause it permits events to be announced without changing the module that is
causing the announcement to happen” [Notkin et al. 1993, p. 503]. According
to Garlan and Scott [1993] and Notkin et al. [1993], prominent applications
of IIIA are database triggers (allowing the interception of database operations
and their enhancement with stored procedures [Eswaran 1976]) and wrapper
functions in the Common Lisp Object System (CLOS) [Bobrow et al. 1988].

Aspect-oriented programming (AOP) [Kiczales et al. 1997; Elrad et al. 2001]
can be viewed as a contemporary form of IIIA [Xu et al. 2004]. Indeed, the most
popular AOP language to date, ASPECTJ, has a powerful, declarative pointcut
language that allows one to select from certain points of execution in a program,
called join points, those with which certain events can be associated.1 By bind-
ing pointcut expressions to methods called advice, implicit invocation of these
methods takes place whenever the corresponding pointcut fires (matches). The
announcement of the corresponding event can therefore be considered implicit.
Table I gives an overview of how the concepts of the event world (IIIA) and
AOP relate.

More recently, concerns have been raised that IIIA à la AOP compromises
modularity by establishing a strong, implicit coupling between the components

1The set of possible join points in a program is determined by the so-called join point model of the
aspect language. ASPECTJ also offers static introductions (injection of members into classes), which
we do not consider here.
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Table I. Terminology, Rough Equivalences

Event-Driven Programming, Publish/Subscribe Aspect-Oriented Programming, This Paper
Event Join point
Event handler Advice
Event type Join point type
Publishes declaration Exhibits declaration
Subscribes declaration Advises declaration
Implicit announcement Pointcut, join point type predicate

of a system [Gudmundson and Kiczales 2001; Clifton and Leavens 2003; Rajan
and Sullivan 2003; Xu et al. 2004; Störzer and Graf 2005; Sullivan et al. 2005;
Aldrich 2005; Dantas and Walker 2006; Griswold et al. 2006; Ongkingco et al.
2006; Steimann 2006]. Especially the absence of explicit interfaces, or other
hints in the places where behavior may get changed, is thought to hamper
independent development. While similar concerns had already been raised for
implicit invocation alone, namely that “when a component announces an event,
it has no idea what other components will respond to it” and that “reasoning
about correctness can be problematic, since the meaning of a procedure that
announces events will depend on the context of bindings in which it is invoked”
[Garlan and Shaw 1994, p. 10], it should be clear that all these objections are
in stark contrast to the expected benefit of IIIA, namely, the easing of software
evolution.

To alleviate the modularity problems in AOP, several mechanisms have been
proposed. One breed of works have suggested improvements in pointcut lan-
guages that aim at raising the level of abstraction of joint point specifications,
thereby decoupling the implementations of the base program and its aspects
(e.g., pattern-based pointcuts [Eichberg et al. 2004], structural and behavioral
property-based pointcuts [Gybels and Brichau 2003; Masuhara and Kawauchi
2003; Rho et al. 2006], test-based pointcuts [Sakurai and Masuhara 2008]), and
model-based pointcuts [Kellens et al. 2006]. Another breed, more in line with
our own work, has proposed various forms of interfaces that make the coupling
between aspects and the advised code more explicit (e.g., the aspect-implied
interfaces of Kiczales and Mezini [2005], the crosscutting interfaces of Gris-
wold et al. [2006], or the open modules of Aldrich [2005] and Ongkingco et al.
[2006]). However, all of these solutions have drawbacks: they either require a
whole-program analysis, or they rely on conventions that cannot be enforced
by the compiler, or they merely state dependencies, without achieving greater
decoupling. Also, they all introduce language constructs that do not align well
with the other constructs of their host language, including its type system.

1.1 Contribution

In this article, we present a simple solution to the problems of IIIA that restores
full modularity of the components involved. It evolved out of our own prior work
on avoiding accidental recursion in ASPECTJ by introducing type levels [Forster
and Steimann 2006; Bodden et al. 2006], and of our criticism of AOP as well as
the solutions to its problems as suggested in the literature to date [Steimann
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2006]. Our approach is based on the novel concepts of join point types as the
types of events that can be implicitly announced, and polymorphic pointcuts as
their intensional specifications that are defined as parts of the classes exhibit-
ing join points. Our solution, which we present as an ASPECTJ-based extension
to the JAVA programming language, blends naturally with JAVA’s native pro-
gramming concepts; in particular, it bears some similarities with its type-based
notions of interfaces and exceptions. More concretely:

—We interpret join points as runtime instances of user-declared join point
types, with fields of join point types representing the context of a join point
instance.

—We interpret pointcuts as the type predicates (characteristic functions) of
these join point types.

—We require that classes exhibit join points explicitly, as declared by an
exhibits <join point type> clause.

—We define pointcuts polymorphically by requiring classes that declare to ex-
hibit join points of a certain type, to define their branch of the corresponding
pointcut (type predicate) locally. The complete pointcut is thus defined as a
disjunction of its class-local branches.

—We allow the explicit creation of join points at runtime via an exhibit new
<join point type constructor> {<statement>} expression. This is useful
in cases in which a suitable pointcut is difficult or impossible to formulate
using the given pointcut language.

—We make the dependencies of aspects explicit, by requiring them to declare—
through an advises <join point type> clause—instances of which join
point types they intend to advise.

Thus, our join point types are like JAVA interfaces (analogies in parentheses)

—in that they are abstract, that is, provide no instances of their own, but take
them from the exhibiting (implementing) classes;

—in that they specify what the exhibiting (implementing) classes must provide,
namely, the values of the fields that are declared in the join point type, while
leaving the how, the pointcuts establishing the bindings to the context, to
the classes; and

—in that they allow the creation of anonymous inner join point types (anony-
mous inner classes) via exhibit new <join point type constructor>
{<statement>}.

As a result, each class can specify the sets of join points it exhibits individually
by providing its own intensional specification of the join point type (the class-
local pointcut), and the extension of each join point type is the union of the
sets of join points of that type as specified by each class. This is analogous to
interfaces, which let classes define the method implementations individually,
and whose extension is the union of those of its implementing classes.

At the same time, our join point types are like exceptions (analogies in
parentheses)

ACM Transactions on Software Engineering and Methodology, Vol. 20, No. 1, Article 1, Publication date: June 2010.



Modularity for Implicit Invocation with Implicit Announcement • 1:5

—in that their instances may either come into existence at some im-
plicitly specified point of program execution within the lexical scope of
the exhibits (throws) clause, or are explicitly created with an exhibit
new <join point type constructor> {<statement>} expression (throw new
<exception constructor> expression); and

—in that their occurrence is handled in some place remote from, and unknown
to, where they occurred.

Most strikingly, our dealing with join points resembles dealing with excep-
tions in that it avoids code tangling, but not scattering—each scope in which
a join point may occur must be explicitly marked with the corresponding join
point type. While this may raise fears that programs are becoming imprac-
ticably verbose (when compared to IIIA without explicit interfaces), the first
evidence we have collected by applying our approach to several programs sug-
gests that the imposed “declaration clutter” is moderate, and likely outweighed
by better readability and increased safety against programming errors.

1.2 Outline

The remainder of this article is organized as follows. We begin with an introduc-
tory example which demonstrates the problem we are attacking, namely, the
lack of explicit interfaces between the code hosting IIIA and the code being in-
voked. In Section 3 we introduce the basic concepts of our solution, namely, join
point types and polymorphic pointcuts. This solution naturally extends to ex-
plicit join points interpreted as anonymous inner subtypes, which in turn leads
to subtyping of join point types. Section 4 presents the syntax and semantics
of our conception of IIIA by describing its compiler. Section 5 summarizes our
findings obtained by rewriting two midsize applications, namely, BERKELEY DB
and JHOTDRAW, to IIIA. We give a comprehensive discussion of related work in
Section 6, and describe directions for future work in Section 7. This completes
our contribution.

One further remark before we begin. This article is at the intersection of
OOP, EDP (or P/S), and AOP. This imposes a terminological problem, namely,
which labels to use for the concepts we rely on. Since we are using the join point
model of ASPECTJ and also relevant parts of its pointcut language to specify IIIA,
we decided to stick with the jargon of AOP, ASPECTJ in particular. For readers
unfamiliar with AOP and better acquainted with EDP, Table I should help
throughout the article.

2. A MOTIVATING EXAMPLE

We develop our proposed language for IIIA step by step, resorting to a simple
example. The example consists of a class ShoppingSession and three referenced
classes ShoppingCart, Invoice, and Log. The referenced classes all offer meth-
ods for adding an amount of items, the only difference being that Invoice takes
a customer’s personal rebate into account, which is why its add method receives
the customer as an additional parameter. The corresponding JAVA program is
shown in Figure 1.
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Fig. 1. A standard shopping cart example.

Fig. 2. Aspect extending the shopping cart application with additional behavior.

Now assume that after the design of the classes has been finalized, the
marketing department wants to have installed a temporary customer bonus
program “buy 2 books, get 1 for free.” Using ASPECTJ, this added behavior
can be realized, without changing the original classes, by installing an aspect
BonusProgram (Figure 2) which adapts the amount of books for all add trans-
actions except that for Invoice. It does so by providing a (named) pointcut,2

buying (lines 5–6), which specifies the condition that leads to the implicit in-
vocation of the advice (lines 8–12). Note that the specification provided by the
pointcut is highly economical in that it specifies an open number of locations
in the source code (here lines 10 and 12 in Figure 1), a property sometimes
referred to as quantification [Filman and Friedman 2004].

2A pointcut is a predicate that selects from a set of join points (i.e., points in the execution of a
program) those that are considered to be worth noting, so that advice can be called (the implicit
invocation, implicitly announced by way of the predicate evaluating to true).
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Fig. 3. From standard aspects to typed and modular IIIA (dashed arrows indicate referencing
and change dependency, vertical dotted bars represent interfaces, and hollow arrows indicate
the direction from which they are programmed against). (a) Aspect with local pointcut. (b) Same
aspect with pointcut moved in proximity of targets. (c) Pointcut encapsulated by a join point type
(abbreviated as jptype) and classes declaring to exhibit corresponding join points (Section 3.1). (d)
Pointcut split and branches moved into targets (“polymorphic pointcut”; Section 3.2).

The problem with this approach is that only the aspect BonusProgram con-
tains hints that, and where or when, implicit invocation takes place. From a
software engineering perspective this poses a serious modularity issue: while
BonusProgram implicitly specifies on what it depends (through the pointcut
buying it defines), the targets ShoppingCart and Log contain no hints of this cou-
pling, a property referred to as obliviousness in Filman and Friedman [2004]. In
particular, the lack of an explicit interface on the side of the target means that,
whenever one wishes to change the implementation of that target, one does not
know which interfaces to respect. This situation is shown in Figure 3(a).

To illustrate this problem for the case of ASPECTJ, suppose that after
installation of the BonusProgram aspect it is discovered that the log needs a
customer entry (changes highlighted):

class Log {
void add(Item item, int amount, Customer cus) {. . .}

}
class ShoppingSession {

. . .

void buy(Item item, int amount) {
. . .

log.add(item, amount, cus);
}

}

This change breaks the buying pointcut from above, which no longer matches
Log’s add method. Although this can be fixed by adapting the pointcut as
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pointcut buying(Item item, int amount):
(execution(∗ ∗.add(Item, int)) && args(item, amount)) ||
(execution(∗ Log.add(Item,int, Customer)) && args(item, amount,..));

in or with similar code (but note that the new pointcut must not match
Invoice.add accidentally), nothing in Log informs the programmer of this nec-
essary change. The untoward effect this has on modularity (including modular
reasoning) and independent development has been discussed, for example, in
Gudmundson and Kiczales [2001], Clifton and Leavens [2003], Rajan and Sul-
livan [2003], Xu et al. [2004], Störzer and Graf [2005], Sullivan et al. [2005],
Aldrich [2005], Dantas and Walker [2006], Griswold et al. [2006], Ongkingco
et al. [2006], and Steimann [2006].

Modularity problems are usually solved through the introduction of in-
terfaces, that is, “shared boundaries across which information is passed”
[Geraci 1991, p. 112]. In our example, boundaries are shared between classes
ShoppingCart and Log on the one side and the aspect BonusProgram on the
other, and the information passed consists of the parameters Item item and int
amount. However, declaration of this interface remains implicit in BonusProgram
(it can be derived from the pointcut named buying), and is completely absent
from the classes.

A number of attempts have been undertaken to tackle this problem by in-
troducing more explicit interfaces.3 So-called aspect-aware interfaces [Kiczales
and Mezini 2005] annotate class members with the aspects they are advised by,
and aspects with the class members they advise. However, rather than letting
a designer specify these interfaces upfront, they are computed from the aspects
and the classes after a system has been composed, and consequently change
when the composition is changed. The support for independent development
and reuse (primary purposes of modules) is therefore rather weak. This problem
is avoided by the approach of Open Modules [Aldrich 2005; Ongkingco et al.
2006], by adding a new module construct to the base language whose inter-
face declares the pointcuts the encapsulated program entities expose. Aspects
then depend on the pointcuts declared in these interfaces, but nevertheless de-
pend on concrete pointcuts, which may need to be changed when the base pro-
gram changes. Coupling is therefore still strong and independent development
still compromised. So-called crosscut programming interfaces (XPIs) [Sullivan
et al. 2005; Griswold et al. 2006] rely on design rules to specify the requirements
for classes exposing join points; however, since most design rules cannot be en-
forced automatically, XPIs also largely rely on pointcut expressions that classes
must observe and aspects depend upon. To summarize, the decoupling achieved
by any of these approaches does not go beyond what is shown in Figure 3(b):
aspects depend on pointcuts that are defined external to them, and pointcuts
depend on classes whose join points they are to specify. By contrast, our goal is
to let classes and aspects both depend on a common interface between them,
and to leave the interface completely independent of both (Figure 3(d)).

3We look only at the most prominent examples here. Section 6 contains a comprehensive discussion
of related work.
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3. JOIN POINT TYPES AND POLYMORPHIC POINTCUTS

Our first step to achieve the modularity we envision is to make the shared
boundary and the information passed explicit, on both sides. We do this through
the introduction of join point types.

3.1 Join Point Types

Analogous to typed P/S [Eugster 2007] and also to JAVA’s type-based exception
handling, we interpret join points as typed events and introduce join point
types as first-class constructs that serve to specify the interface between classes
exhibiting join points and aspects handling them (Figure 3(c)). In the case of
our example, we define the following join point type:

joinpointtype Buying {
Item item;
int amount;
pointcut execution(∗ ∗.add(Item, int, ..)) &&
args(item, amount,..);

}
This type gets instantiated every time a join point covered by its pointcut gets
executed in the program. The resulting join point type instance is a record in
memory whose fields are set to the parameters of the context in which the
join point occurs, as prescribed by the pointcut. (In the given example, the first
actual parameter of an executed add method is assigned to item, and the second
is assigned to amount.) Because it characterizes the nature of its instances,
we think of the pointcut as the type predicate (or characteristic function, i.e.,
the intensional specification) of the join point type. Since there is only one
pointcut definition (type predicate) per join point type, the join point type’s
name identifies it uniquely so that it may be considered implicitly named. In
Section 3.2, we will move the pointcut out of the join point type definition into
the classes in which it applies; there, it will be named by the join point type to
which it belongs.

Join point types like the above let us declare interfaces (boundaries and
information passed) between classes and aspects. In our example, we add the
following clauses to make the interfaces explicit:

class ShoppingCart exhibits Buying {. . .}
class Log exhibits Buying {. . .}
aspect BonusProgram advises Buying {. . .}

The exhibits clauses mark the caller side of implicit invocation, and the advises
clause the called. This may appear counter to intuition, since the aspect (as the
“advisor”) seems to be the active, and the class (the “advised”) the passive, and
indeed the aspect depends on the classes it advises and not vice versa; however,
such reversal of dependency is not unusual for interfaces (so-called enabling
interfaces [Steimann and Mayer 2005]).

Definition of the join point type Buying as above allows us to rewrite the
aspect BonusProgram as follows (changes highlighted):
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aspect BonusProgram advises Buying {
void around (Buying jp) {

if (jp.item.category == Item.BOOK)
jp.amount += jp.amount / 2;

proceed(jp);
}

}
The advice is now parameterized by the variable jp of type Buying, which

holds the join point instance that led to the implicit invocation of the advice
and which is also the (sole) argument of the proceed statement.4 Its fields can
be written, in which case the changed values replace those of the join point for
the duration of the proceed statement. Following the semantics of JAVA, writing
to the fields can be prevented by declaring them final in the join point type
(cf. the discussion of spectators and assistants in Section 6).

Generally, a class can exhibit, and an aspect can advise, arbitrarily many
join point types. Currently, a class cannot possess an advises clause, nor can
an aspect possess an exhibits clause. This is to avoid self-reference and the
resulting problems addressed in Forster and Steimann [2006] and Bodden
et al. [2006], but may be changed in future work. For reasons given below
(Section 3.5), join point type exhibition is not inherited by the subclasses of
an exhibiting class. A class declaring to exhibit a join point type but providing
no join points statically matching its pointcut (having no join point shadows)
presents no error; yet the compiler issues a warning in such cases indicating
that either pointcut or class definition may be inappropriate. Note that it is
impossible to require that a class always produces a join point for every join
point type it exhibits, since, generally, the occurrence of a join point may depend
on dynamic conditions the satisfiability of which the compiler has no way of
checking. However, the compiler does make sure that a pointcut definition is
present for each join point type exhibited, and that it binds all fields of its join
point type (see Section 4.2).

Our use of join point types improves modularity in that maintainers of a class
wishing to make changes to it can consult the definitions of the join point types
the class exhibits, and observe the pointcuts specified there (Figure 4). However,
seemingly harmless changes such as the one performed at the end of Section 2,
and even refactorings believed to not change program behavior at all, may
require adaptation of the pointcut, establishing a strong change dependency
between a class and its exhibited join point types. Also, the surface structure
(appearance) of join points of a single join point type can vary greatly from class
to class, in ASPECTJ typically resulting in complex pointcuts consisting of many
disjuncts (the “quantification failure” noted in Sullivan et al. [2005]). Such
a pointcut then mirrors the diversity of the classes it covers; it compromises
independent development and presents a maintenance problem in its own right.
This leads us to polymorphic pointcuts.

4Note how this is reminiscent of the catch statement of exception handling in JAVA; this is deliberate
(cf. Section 1.1).
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Fig. 4. Classes ShoppingCart and Log both depend on the join point type Buying, as does aspect
BonusProgram (dashed arrows). The pointcut defined in Buying matches join points in the classes,
and is used to trigger the advice in BonusProgram. Note how this corresponds to Figure 3(c).

3.2 Polymorphic Pointcuts

The object-oriented answer to diversity is polymorphism: rather than having
the case analysis in a single place (e.g., a switch statement), the different cases
are represented by different implementations of the same feature in different
classes. Transferred to our problem, this means that each class exhibiting a
certain join point type specifies its own pointcut, which matches the join points
delivered by this class. In our example, the pointcut definition in Buying should
therefore be split among the classes ShoppingCart and Log as follows:

class ShoppingCart exhibits Buying {
pointcut Buying:

execution(∗ add(Item, int)) && args(item, amount);
. . .

}
class Log exhibits Buying {

pointcut Buying:
execution(∗ add(Item, int,..)) && args(item, amount,..);

. . .

}
The resulting dependencies are shown in Figure 5. Note that the local pointcuts
lack information to which class(es) they apply; the scope of each such pointcut is
implicitly constrained to the class in which its definition occurs. The disjunction
of all class-local pointcuts associated with a join point type then constitutes the
complete pointcut of that type. Because this is reminiscent of how different
classes implementing the same interface provide for polymorphic methods in
JAVA, we call such pointcuts polymorphic.

The question then is what remains of the pointcut in the join point type. Ide-
ally, something like a design-by-contract language [Meyer 1997] was available
that could specify the “semantics” of a join point type (i.e., the set of join points
it covers) independent of its “implementation” in the classes (a semantic point-
cut language [Lopes et al. 2003; Ostermann et al. 2005; Gybels and Brichau
2003; Masuhara and Kawauchi 2003] based on predefined tests [Sakurai and
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Fig. 5. Polymorphic pointcuts removing the dependency of join point types on exhibiting classes.
The decoupling achieved is thus that of Figure 3(d). Note how polymorphic pointcuts resemble
interface implementation in JAVA; here, however, (implicit) method invocations, not methods, are
implemented.

Masuhara 2008] or based on a conceptual model of the program [Kellens et al.
2006]). In the absence of such a language, we have to resort to an informal
description of the nature of the join points (as is also done for the crosscutting
interfaces described in Sullivan et al. [2005] and Griswold et al. [2006]; cf. Sec-
tion 6 for a discussion). It is then the responsibility of the developer of each
class exhibiting a join point type that the join points matched by the class’s
local (polymorphic) pointcut conform to this informal specification. Note how
this mirrors the current situation with JAVA’s interface types, which also leave
semantics to their implementing classes.

3.3 Explicit Announcement of Join Points

Our view of join points as instances of types opens up an interesting opportu-
nity: it allows us to create join point instances explicitly. For instance, suppose
that we want to add a counter cumulating the total number of items delivered,
and that we therefore extend ShoppingSession and its method buy as follows:

class ShoppingSession {
int totalAmount = 0;
. . .

void buy(Item item, int amount) {
sc.add(item, amount);
inv.add(item, amount, cus);
log.add(item, amount, cus);
totalAmount += amount;

}
}

The added statement must be advised by BonusProgram to maintain consis-
tency, but because this statement does not involve the variable item (access to
which is needed by the advice), formulation of a suitable pointcut is unobvious
(a combination of problems called state-point separation and inaccessible join
points in Sullivan et al. [2005] and reported to be quite common in Murphy
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et al. [2001] and Kästner et al. [2007]). Rather than rewriting our program so
as to allow pointcut matching (the intimacy described in Elrad et al. [2001], Xu
et al. [2004], and Sullivan et al. [2005]), we introduce the following construct
that creates the join point instance with all required parameters explicitly:

class ShoppingSession exhibits Buying {
. . .

void buy(Item item, int amount) {
sc.add(item, amount);
inv.add(item, amount, cus);
log.add(item, amount);
exhibit new Buying(item, amount) {
totalAmount += amount;
};

}
}

The type of this newly created join point, which does typically not fall
under the type predicate (pointcut) of its declared type Buying (because oth-
erwise the explicit creation would be redundant), can be thought of as an
anonymous inner subtype (analogous to the anonymous inner classes of JAVA),
that is, as a join point subtype that comes with its own, implicit type predicate.

Viewing explicit join point creation as a special application of a more general
concept of join point types (supporting implicit invocation with both implicit and
explicit announcement) distinguishes our approach from other recent propos-
als of making implicit invocation more explicit, most notably those of Hoffman
and Eugster [2007] and Rajan and Leavens [2008]). In particular, while Hoff-
man and Eugster also allowed arbitrary blocks of code to be marked through
explicit join points for being advised, and also to add pointcuts scoped to the
hosting class to these join points, the notion of a join point type, and thus
an explicit interface between the base code and the aspects, is absent from
their approach. By contrast, Rajan and Leavens introduced event types akin to
our join point types, but provided no means for class-locally specified implicit
announcement. We support the notion of implicit announcement, but tame it
by restricting its scope to that of the implementation of an explicit interface
(the exhibits clause), and supplement it with explicit announcement where
implicit announcement fails or requires awkward modification of code. Refer to
Section 6 for a more detailed discussion of related work.

3.4 Join Point Subtypes

Interpreting explicit join point creation as a form of anonymous subtyping
suggests that join point types can also have named subtypes. The notion of
subtyping in turn suggests that instances of join point types are also instances
of their supertypes (set inclusion semantics of subtyping) or, more concretely,
that instances of join point types should be allowed to occur wherever instances
of their supertypes are expected (the principle of substitutability [Liskov and
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Wing 1994]). This has implications for join point definition, join point creation,
and join point advising.

3.4.1 Defining Join Point Subtypes. Following the definition of Section 3.2,
a join point type definition consists of a set of field declarations and an infor-
mal characterization of the nature of its instances (i.e., what the occurrence
of a join point conveys to the aspects observing it). Join point subtyping can
then be defined by letting a join point subtype inherit the fields of its super-
type, and by letting it add new fields (so-called type extension [Wirth 1988]):
since the only purpose of join point types is to capture the relevant context in
which implicit invocation takes place, and since an advice (as the only client
of join point types) can use an instance of a join point subtype as if it were
an instance of one of its supertypes, simply by dropping the added fields, sub-
stitutability is always guaranteed. That the informal characterization of the
subtype does not contradict the ones of the supertypes cannot be checked—this
is in the responsibility of the designer of the subtype. As much as proper-
ties of a join point type (its intension) are caught in the definition of class-
local pointcuts, consistency must be maintained there; this will be discussed in
Section 3.4.3.

Based on these considerations, we extend our notion of join point types by
subtyping and require it to be declared using the extends keyword followed by
the name of the join point supertype. Continuing our running example, this
allows us to introduce a new, more general join point type CheckingOut defined
as

joinpointtype CheckingOut {
// going to take this item and amount from stock
Item item;
int amount;

}
and to let Buying subtype and inherit the fields from CheckingOut by writing

joinpointtype Buying extends CheckingOut {
// buying this item and amount

}
A sibling join point subtype Renting could then be defined as

joinpointtype Renting extends CheckingOut {
// renting this item and amount until returndate
Date returndate;

}
which adds a field.

3.4.2 Advising Join Point Subtypes. Regarding instances of a join point
subtype as instances of its supertypes implies that aspects advising join points
of a certain type can advise join points of subtypes of this type as well, sim-
ply by ignoring the added fields. For instance, if we introduce a new aspect
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BusinessRules which provides advice for checking out items, such as

aspect BusinessRules advises CheckingOut {
before (CheckingOut co) {
if (Stock.amount(co.item) < co.amount)
throw new OutOfStockException(co.item);

}
}

this advice is invoked equally for join points (events) of type Buying and of type
Renting, in the latter case simply ignoring the field returndate. Note that, for
the advice of BusinessRules to be invoked for Buying events, nothing has to
be changed in the base classes. In particular, no new pointcut is needed. This
will only become necessary if a join point of type CheckingOut that is not at the
same time a join point of type Buying is to be created.

If an aspect offers advice for a join point type and any of its subtypes, the
most specific advice for a join point instance (i.e., the one advising the most
specific join point type) is to be invoked. For instance, extending the above
aspect BusinessRules with advice for join points of type Renting allows us
to override the advice for join point type CheckingOut, for instance to require
renting to leave a minimum number of items in stock.

Note that accepting instances of join point subtypes where an advice expects
instances of a join point supertype suffices to ensure that instances of a join
point subtype are also instances of its supertypes. In particular, there is no
need for making sure that a (class-local) pointcut of a join point type includes
all join points of the (class-local) pointcuts of its subtypes—if this is not the
case, instances of the subtypes are nevertheless treated as if they were (direct)
instances of the supertype. Instead, it must be prevented that two instances
are created for the same event.

3.4.3 Exhibiting Join Point Subtypes. The previous subsection answered
the following question: which advice should be invoked by a join point instance?
Complementary to this question is another one: a join point instance of which
type should be created in case the pointcut of a join point type and one of its
subtypes match the same point of execution in a program? Clearly, creating
two instances for the same event where the type of one event subsumes the
type of the other does not reflect adequately what happened (and would lead
to the double execution of the same advice of an aspect if it were the most
specific for both instances, or to execution of advice for the type and the su-
pertype if the aspect offered both). Since instances of a join point type are
subsumed by its supertypes, but not vice versa, an instance of the more spe-
cific type—and only this—must be created. Figure 6 gives an example of the
situation.

Fortunately, what seems like a nontrivial technical problem can be solved
by a simple trick: rather than first checking whether the pointcut of a join
point type and one of its subtypes overlap and then making sure that, for
matches of this overlap, only one instance is created, we implicitly conjoin the
pointcut of the join point type with the negations of the pointcuts of its subtypes
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Fig. 6. Schematic view of class ShoppingSession exhibiting two join point types, CheckingOut and
Buying, one of which is a subtype of the other, and two aspects, BusinessRules and BonusProgram,
one advising both join point types, the other only the supertype. Join point 1 implicitly invokes
advice bound to CheckingOut in both aspect BusinessRules and BonusProgram, whereas join points
2 and 3 implicitly invoke advice CheckingOut in BusinessRules and Buying in BonusProgram.
Note that, although it matches the pointcut of CheckingOut, join point 2 does not invoke advice
CheckingOut in BonusProgram—it is caught by the more specific advice Buying (see text).

specified in the same class.5 Effectively, adding a join point subtype does not
reduce the extension of the join point type, since, as noted above, the instances
of the subtype that are created instead are always accepted as instances of
the type. However, if pointcuts of sibling join point types overlap and a join
point in the overlap gets executed, one join point instance is created for each
of the overlapping types. This is intentional, since the two instances represent
different events. On the other hand, it means that, if the most specific advice
of an aspect is one for a common supertype, this advice is executed twice.6

Figure 6 illustrates the semantics of join point subtyping for class
ShoppingSession exhibiting three join points of join point type CheckingOut
and one of its subtypes, Buying, and for the aspects BusinessRules and
BonusProgram. BusinessRules advises only the join point supertype, while
BonusProgram advises both the join point supertype and the join point sub-
type. The local pointcuts defined in ShoppingSession for the join point types
CheckingOut and Buying overlap such that CheckingOut matches join point 1
and join point 2, whereas Buying matches join point 2 and join point 3. Set
inclusion semantics of join point subtyping require that join point 3 belongs
to the extension of join point type CheckingOut even though the corresponding
pointcut does not match it; this is made up for by advice CheckingOut in aspect
BusinessRules handling this join point (because it is an instance of a subtype of

5Note that our trick is somewhat similar to the one employed by EIFFEL, which disjoins preconditions
and conjoins postconditions to meet the conditions of subtyping [Meyer 1997].
6This situation may appear somewhat awkward. It could be avoided by adopting the abstract
superclass rule for join point types: all join point types that have subtypes should be declared
abstract, that is, should not be allowed to have instances of their own. We leave this debate for
future exploration.
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CheckingOut). Join point 2 is matched by both pointcut CheckingOut and point-
cut Buying; since join point 2 is an instance of both join point type CheckingOut
and Buying, only one instance (of type Buying) is created, leading to the ex-
ecution of advice CheckingOut in aspect BusinessRules and advice Buying in
aspect BonusProgram (and not advice CheckingOut in aspect BonusProgram).

3.5 Inheritance of Join Point Exhibition

Orthogonal to the question of having join point subtypes is the question of
whether an exhibits clause of a class is inherited by its subclasses, and if so, if
the corresponding pointcuts are inherited with it. Since inheritance is a known
problem for modularity, and since modularity is a driving force for our capture
of IIIA, we decide this issue based on modularity considerations.

Letting a class declare that it exhibits join points of a certain type expresses
a statement of consent that some of the classes’ variables may be accessed by
aspects advising the exhibited join points. Moreover, the local pointcut speci-
fication specifies within the class which of its variables can get accessed. This
policy gives classes the opportunity to deny aspects access; in particular, and
much in the spirit of information hiding, variables can only be accessed if the
owning class explicitly grants access to them.

The fragile base class problem of object-oriented programming has taught
that seemingly innocuous changes to a base class can break the contracts of
subclasses (see Mikhajlov and Sekerinski [1998] for a discussion of a wide
range of such situations). This can directly be transferred to the inheritance
of (class local) pointcuts: a change in a pointcut expression that makes perfect
sense in the base class can have unintended effects in any of its subclasses
(which may not even be known to the changer of the base class). Therefore, we
decided that the scope of pointcut definitions of a class does not automatically
extend to its subclasses, so that the designer of a subclass does not have to be
aware of the pointcuts of its superclasses. Note that, if the subclass inherits
code from the superclass that is covered by pointcuts of the superclass (so
that join point instances may be created when the code is executed), execution
of this code in the context of the subclasss may nevertheless lead to join point
creation; however, this code is outside the control of the subclass and, if its effect
worries the programmer, the superclass’s specification should be consulted. The
situation is analogous to calling a method of a different class whose execution
leads to join point creation—this also does not give rise to a corresponding
exhibits clause in the calling class. Besides, and as will be seen from an example
in Section 5.3 (Figure 11), not letting subclasses inherit join point exhibition
preserves its crosscutting nature.

There are, however, situations in which a subclass should exhibit the same
join point type as one of its superclasses. In these cases, the exhibits clause
must be repeated in the subclass, and a new pointcut must be specified (whose
scope is again implicitly limited to the enclosing class). If the pointcut of the
subclass is syntactically identical to that of the superclass, the one of the su-
perclass can be reused by using the super keyword; if it is a variation of that
of the superclass, super can be part of a suitable logical expression.
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Fig. 7. Drawing example [Kiczales and Mezini 2005] with polymorphic pointcuts and explicit
pointcut inheritance (see text).

Figure 7 gives an example of how explicit pointcut inheritance (via the
super keyword) works in practice. In the example, which is based on the
standard drawing example from Kiczales and Mezini [2005], a hierarchy of
geometrical shapes (Shape, Point, and Line) has to notify a display when-
ever a shape is changed so that its representation on the display can be up-
dated. The join point type representing the corresponding event is named
UpdateSignalling; it has no fields and its informal intension is specified
by a comment (recall that the pointcuts are sourced out into the exhibiting
classes).

The class Shape serves as a common abstraction of the classes Point and
Line. It specifies an abstract method moveBy that should be supported by all
subclasses. Since moving a shape usually requires a display update, Shape also
specifies a pointcut for UpdateSignalling that matches every execution of the
moveBy method. However, since moveBy in Shape is abstract, this join point never
matches; its sole purpose is to serve reuse by join points in subclasses.

Subclass Point makes use of this pointcut by referring to it using super.
However, setting a coordinate of a point individually (via a corresponding set-
ter) also requires an update, so that it makes a corresponding addition to the
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inherited pointcut. Subclass Line, on the other hand, offers no such possibili-
ties, so that it can reuse its superclass’s pointcut without alterations.

One might argue that defining an abstract method and a pointcut matching
its execution as in the example can only mean that the pointcut should match
the concrete implementations of the method. Indeed, one could go one step
further and allow interfaces to define pointcuts on the methods they declare.
However, for reasons of modularity (a simple change of the interface a server
implements or a client relies on may exhibit data previously kept secret without
either knowing) and the analogy to the fragile base class problem (the fragile
pointcut problem [Störzer and Graf 2005]), and also because of the arguments
made in Section 5.3, we do not consider such possibilities here.

3.6 Inheritance of Join Point Advising

In ASPECTJ, an aspect (which is implemented as a special kind of class) can
inherit from a superclass or from an abstract superaspect. The semantics of in-
heritance of the class facet of aspects is the same as that for JAVA (i.e., members
are inherited by the subaspect, in which inherited methods can be overridden).
Pointcuts—like class members—are also inherited and can be overridden in
subaspects. Finally, advice, which is always unnamed, is inherited, but cannot
be overridden.

Aspect inheritance is mainly used for the possibility to specify abstract
pointcuts in an abstract superaspect, which are then overridden by concrete
pointcuts in concrete subaspects. This allows reuse of advice defined in the
superaspect (possibly relying on abstract pointcuts) by providing a different (or
concrete) set of pointcuts.

Since our conception of IIIA relies on the aspects of ASPECTJ as the containers
of advice, we need to consider inheritance among aspects as well. However, since
in our capture of IIIA pointcuts are not defined as parts of aspects, a subaspect
cannot inherit or override pointcuts. Overriding of advice on the other hand
would be possible in IIIA (since every advice is associated with the join point
type it advises), but this would require that aspects inherit advice from their
superaspects. This is not useful, however, since every join point instance is
dispatched to (and thus causes the execution of advice in) all aspects declaring
to advise its type (or any of its supertypes; cf. above), so that it would lead to
the duplicate execution of identical advice in all cases in which the advice is
not overridden in the subaspect. Therefore, a subaspect inherits neither the
advises clause from its superaspect, nor its advice bound to join point types.

3.7 Achievements

With IIIA designed as above, we have introduced a new kind of interfaces, join
point types, that specify the information passed between an implicit invoker,
the exhibiting class, and a set of implicitly invoked, the advising aspects (cf.
Figure 3(d)). By declaring which join point types it exhibits, not which aspects
may advise it, the declaring class remains completely unaware of its advising
aspects. At the same time, the class is in full control of the data it passes as
parameters of implicit invocations, and of where or when these invocations
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take place. Unlike with typed P/S [Eugster 2007] and related approaches (e.g.,
Rajan and Leavens [2008]), implicit invocation may be implicitly announced—
however, the pointcuts specifying the implicit announcements are always class
local, so that a programming tool can always mark their shadows [Hilsdale
and Hugunin 2004] in the source code of the class, without depending on any
other source. This is significantly different from, for example, aspect-aware
interfaces [Kiczales and Mezini 2005] and XPIs [Sullivan et al. 2005; Griswold
et al. 2006].

On the other side of the interfaces, the aspects and their advice can remain
unaware of the classes they advise—making reference to join point types as
interfaces only, they are completely decoupled from their advised classes, and
also from the pointcuts triggering the advice. This is significantly different from
other approaches preserving the modularity of aspects and classes in which
aspects still specify their own pointcuts [Aldrich 2005; Ongkingco et al. 2006],
and also to ones in which pointcuts are external to aspects, but nevertheless
directly referenced (and homomorphic) [Sullivan et al. 2005; Griswold et al.
2006], but similar to typed P/S [Eugster 2007] and PTOLEMY [Rajan and Leavens
2008].

As a consequence, our proposal makes evolution of classes completely inde-
pendent from aspects: anyone wishing to make changes to the class can check
locally, without resorting to any other declarations or definitions than those of
the exhibited join point types, whether or not one’s changes respect the advising
aspects’ interfaces. Much more: in case one must break with a (local) pointcut
definition (i.e., must change the program so that a pointcut no longer matches
where it should), one can adapt it without affecting the definitions in other
classes, because the scope of a local branch of a join point is always limited to
the owning class. In fact, the only thing the programmer must guarantee is that
the variables declared in the join point type are correctly bound to variables
in the context of the local join points (where that they are bound is checked
by the compiler; see Section 4.2). If that is impossible using a (local) pointcut
definition, one can still work around it with the explicit creation of a join point
instance. This means that the advised classes can be changed at will, as long
as the local pointcut can be adapted accordingly. The problems of state-point
separation and inaccessible join points described in Sullivan et al. [2005] and
also the fragile pointcut problem Störzer and Graf [2005] therefore no longer
exist.

On the other side of the coin, it should be clear that, with our form of IIIA and
its mutual explicit interfaces, it is impossible to extend code that has not been
written foreseeing extension, or cannot be changed to allow it. While this may
be viewed as a serious limitation of our approach, we counter that not allow-
ing arbitrary unforeseen extensions, that is, not allowing one to work around
existing interfaces, is the immanent price for modularity. In a way, our join
point interfaces declaring implicit invocation are similar to inheritance inter-
faces declaring dynamic binding and open recursion: they allow the extending
of base code at well-defined plug-points.

Last but not least, since our achievements in terms of modularization de-
pend to a large extent on the utilization of polymorphic, class-local pointcuts,
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Fig. 8. Syntax of the IIIA language extension of ASPECTJ (EBNF).

one might wonder what the specific cost of this feature of our proposal is. In par-
ticular, one might be concerned that a single global pointcut will translate to so
many, perhaps identical, class-local poincuts that our approach becomes infea-
sible. While this may indeed be the case for certain standard examples of point-
cuts (such as those used for tracing and debugging), we will see in Section 5 that,
for general applications of IIIA, proliferation of pointcut definitions is small.

4. IIIA LANGUAGE SPECIFICATION AND IMPLEMENTATION OF A COMPILER

We specify our language extension by giving its syntax rules, by describing the
semantic checks a compiler has to perform, and by describing the transforma-
tions of a program using our IIIA constructs into one suitable for an aspect
weaver. Note that we do not provide any formal soundness or completeness
proofs; however, during our practical experiments with our compiler imple-
menting the language as described here (the results of which are presented in
Section 5), we did not witness any type errors in the generated code.

4.1 Syntax

The syntax of our IIIA extension to JAVA and ASPECTJ is specified by the rules
shown in Figure 8. Note that join point type declarations have no access mod-
ifier; they are implicitly public. Also, the syntax requires that exhibit must
be followed by a new expression (a kind of default constructor call, where the
parameters are implicitly given by the join point type’s fields). This makes sure
that exhibits cannot be executed on a variable.
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4.2 Static Semantics (Informal)

A IIIA program must conform to the following static semantic constraints:

—The members of join point types must be fields. Their only allowed modifier is
final. A specified supertype must be a join point type. (These are semantic,
rather than syntactic, restrictions because join point types are defined as
special kinds of classes.)

—The types following the exhibits and the advises clauses must be join point
types.

—For every join point type declared to be exhibited by a class, there must be a
corresponding pointcut definition or explicit join point creation in the class, or
an error will be reported. For every pointcut defined in a class, there must be a
corresponding exhibits declaration, either of its associated type or one of its
supertypes. Each class-local pointcut must bind all fields of the corresponding
join point type to the context of a join point using this(), target() or
args(). Class-local pointcut definitions must have no access modifiers—they
would be meaningless, since the pointcuts are never referenced from the
program text (the names are necessary for solely disambiguation). (Again,
this is a semantic rather than a syntactic check since class-local pointcuts
are special cases of the more general ASPECTJ pointcuts).

—For every explicit join point creation (of the form exhibit new < join point
type > (. . .) {. . .}) in a class, the exhibited join point type or one of its
supertypes must be declared as being exhibited by the class. The parameters
to the instance creation (listed in the parentheses) must have the types of
the fields of the instantiated join point type.

—For every join point type declared to be advised by an aspect, there must be a
corresponding advice defined in the aspect. Every advice must name one and
only one join point type. For every advice defined in an aspect, there must be
a corresponding advises declaration.

—A proceed in the body of an advice must have precisely one parameter, which
must be a variable of the join point type to which the advice is bound.

—For every occurrence of super in a pointcut definition of a class, there must
be a pointcut definition for the same join point type in one of its superclasses.

The new language constructs of IIIA, join point types, polymorphic pointcuts,
and explicit join point creation, map to standard constructs of JAVA and ASPECTJ
as follows:

—A join point type maps to a class with the type’s fields and a constructor
for creating instances and setting the fields; a join point subtype maps to a
corresponding subclass.

—A class local pointcut for a join point type maps to a disjunct of the global
pointcut for that type. The disjunct is restricted to the scope of the class
by adding a within (< class name >) expression conjoined with !within
(<inner class name>) expressions, excluding matches in inner classes and
outside the class. If the class has pointcuts for subtypes of the visited
pointcut’s associated join point type, their generated disjuncts are negated
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and conjoined with the disjunct of the visited pointcut. For internal reference,
the global pointcut is named by the name of the join point type.

—An aspect maps to an aspect; an advice associated with a join point type
maps to advice bound to the correspondingly named global pointcut created
from the class-local branches.

—To realize substitutability (subtyping) of join point types on the aspect side,
subtypes of join point types advised in an aspect, for which no specific advice
exists in that aspect, are mapped to new advice whose body is identical to
that advising the supertype (cf. the discourse in Section 3.4.2).

—Finally, explicit announcement of a pointcut maps to a specially tagged block
(see the implementation of the compiler described below).

Note that exhibits and advises clauses are used for semantic checking only;
they are compiled away.

4.3 Implementation of a Compiler

We have implemented a compiler for IIIA on top of the AspectBench Compiler
(abc) [Avgustinov et al. 2006]. Our implementation adds a number of com-
piler passes, which are roughly characterized as follows (passes performing the
semantic checks omitted):

—The first pass collects all join point types and creates a new node holding
the fields, a constructor setting the fields (including those inherited from
supertypes), and an empty pointcut definition for each type.

—The second pass visits all classes, collects all pointcut branches specified
in each class, explicitly restricts the scope of each branch to the class in
which it occurred, excluding pointcuts for join point subtypes (see above),
and adds it so modified as a disjunct to the pointcut of the correspond-
ing join point type. Explicit join point creation (as expressed by the exhibit
statement) is handled by introducing a new node type, ExhibitBlock, to
the AST, which has a field for holding the exhibited join point type. This
new node type is complemented by a new pointcut designator matching
nodes that are tagged with the join point type with which a pointcut is to be
associated.

—The third pass visits all aspects and binds each of its advices to the cor-
responding pointcut constructed in the second pass, translating the fields
of the join point type to parameters of the advice. It inserts a constructor
call for the join point type at the beginning of each advice, which binds the
pointcut and advice parameters to the fields of the join point type advised.
It also creates copies of the advice for all join point types that are subtypes
of the types already advised by the aspect, and for which no specific advice
is defined in the aspect. Finally, it adds the fields of the join point type to the
proceed statement in around advice.

Our compiler thus converts a program making use of our IIIA syntax to stan-
dard constructs of JAVA and ASPECTJ, the sole additions being the ExhibitBlock
nodes and the corresponding new pointcut designator.
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The compiler together with additional material can be found online7.

5. APPLICATION AND FINDINGS

Experience with the design of object-oriented programming languages has
taught that subtyping and inheritance are sources of considerable (and also
often unexpected) complexity. However, while formal analyses can help avoid
inconsistencies and ill-definedness, they provide little help for making the right
design decisions, that is, for balancing issues such as usability and expressive-
ness. We believe that this can only be achieved by experimenting with a lan-
guage on actual programming projects, preferably involving people other than
the original designers of the language.8

To test the feasibility of our design decisions, we have refactored a number
of small standard examples of ASPECTJ to apply our conception of IIIA, and
rewrote two larger applications with it, namely, BERKELEY DB (used in a prior
case study of ours [Kästner et al. 2007]) and AJHOTDRAW, an ASPECTJ-based
refactoring of JHOTDRAW, a widely known drawing framework.

5.1 Standard ASPECTJ Examples

Applying IIIA to standard examples of AOP has led to code like that shown in
Figures 7 and 13, that is, to code making good use of polymorphic pointcuts,
and moderate use of join point subtyping. In particular, none of the examples
required the use of explicit join point creation (explicit announcement)—in fact,
most improvements over standard ASPECTJ solutions came from more explicit
program organization, that is, easily visible dependencies through declaration
of join point types, join point instance production, and consumption (advising).
On the other hand, the increased explicitness of program dependencies resulted
in a scattering of pointcut definitions and exhibits clauses that made certain
examples unconvincing. In particular, the usual debugging, profiling, and trac-
ing (which in the examples all use broadly generic pointcuts; but see Sullivan
et al. [2005] and Kästner et al. [2007] for how this fails in practice), are not
reasonably expressed using IIIA. This can be ascribed to the loss of oblivious-
ness and quantification brought by IIIA, and seems to be the necessary price
for achieving modularity (cf. the discussion in Section 6).

5.2 Case Study 1: BERKELEY DB

To evaluate IIIA in a larger, more realistic setting, we revisited a prior case
study of ours, in which we evaluated ASPECTJ’s adequacy as a target lan-
guage for a feature-oriented refactoring [Kästner et al. 2007]. As the basis
of this study, we had chosen BERKELEY DB, a widely used open source embed-
ded database engine implemented in JAVA (ca. 84 KLOC). BERKELEY DB offers

7www.fernuni-hagen.de/ps/prjs/IIIA/.
8This is in fact what we did: the first two authors are the original designers of the language and
its compiler, while the latter two have experimented with it on real projects and provided detailed
feedback on its usability.

ACM Transactions on Software Engineering and Methodology, Vol. 20, No. 1, Article 1, Publication date: June 2010.



Modularity for Implicit Invocation with Implicit Announcement • 1:25

Fig. 9. ASPECTJ pointcut with branches that are distributed to the exhibiting classes in IIIA.

several more or less interacting features such as transaction safety, caching,
multithreading, statistics, and debugging; in most of its installations, not all
of these features are actually needed. The literature suggests that AOP, AS-
PECTJ in particular, is ideally suited to host such a decomposition [Lee et al.
2006], and indeed, most of the features of BERKELEY DB (34 of 39) are cross-
cutting in character, in that they extended up to 30 (of about 300) classes per
feature.

Due to the nature of the problem, a large part of the necessary refactor-
ing consisted of introducing so-called intertype declarations, that is, removing
fields and dependent methods from classes and reintroducing them via as-
pects representing the corresponding features. This capability of ASPECTJ is
foreign to IIIA, but similar to other object-oriented extension mechanisms such
as mixins [Bracha and Cook 1990] or virtual classes [Madsen and Møller-
Pedersen 1989] so that IIIA should not be denied its practicality based on
not offering such possibilities.9 The remainder of the refactoring had to con-
nect the new feature code to the “base” code and to each other, for which
ASPECTJ’s implicit invocation mechanism using join points and pointcuts offered
itself.

Interestingly, the picture we found in this repeated case study was quite
different from that obtained by applying IIIA to the standard examples of AOP
as described above. First of all, polymorphic pointcut definitions could not be
used as often as expected; yet this was not because they would have led to
undue scattering, but rather because there were only a few cases in which a
single advice applied to more than one place (which questions the need for
quantification in an undertaking such as ours). In fact, we found that, of 214
advices, only 24 were designed to match more than one join point (shadow); of
these, five could use pattern expressions (wildcards) to specify their multiple
matches (typically overloaded methods with different parameters), while the
remainder resorted to enumeration (explicit disjunctions of single matches), as
exemplified in Figure 9. Splitting such disjunctions into class-local branches
is trivial (it could in fact be performed by a tool); the result is simply a shift
of responsibility—each target class now specifies for itself whether and which
matches it contributes.

On the other hand, explicit join point creation (which seemed mostly un-
needed for the standard AOP examples) turned out to be a huge improvement
over join point selection through pointcuts. Using ASPECTJ as the target lan-
guage (our original refactoring described in Kästner et al. [2007]), of the 484

9In fact, as has been argued in Apel et al. [2008], mixin techniques are in many situations sim-
pler than the static injection capabilities of ASPECTJ, so that integrating IIIA with a mixin-based
approach may be worthwhile.
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needed advices, 218 applied to a single statement or a sequence of statements
in the middle of a method, so that standard execution or call join points could
not be used. In the original study, we worked around these cases by extracting
methods (43 times), introducing calls to empty hook methods (121 times), or
matching nearby method calls or field access (54 cases; note how this hides
the semantics of an aspect and is extremely sensitive to change). To be able to
access temporary variables in aspects, we also had to resort to hook methods, to
method objects, to code replication in aspects [Sullivan et al. 2005], and to other
awkward workarounds. Literally all of these problems vanish with the avail-
ability of explicit join points, which therefore became the greatest facilitator of
the refactoring.10

Figure 10 exemplifies this finding on a simplified excerpt from BERKELEY

DB’s Tree class. In this example, the traceInsert call in the original insert
method is part of a feature and therefore should be moved to an aspect.11 In
the ASPECTJ implementation, an artificial hook method is necessary to expose
a join point in the middle of the method and to expose the temporary variables.
The IIIA solution uses an anonymous join point subtype (explicit join point
creation) instead. Note how this is different from using annotations: an anno-
tation cannot annotate a sequence of statements, nor can it provide access to
variables.

While explicit join point creation (i.e., anonymous inner join point subtyping)
proved extremely useful in our feature-oriented refactoring endeavor, named
join point subtyping did not. However, this could not be ascribed to a general
inappropriateness of the concept, but rather to the fact that, in BERKELEY DB,
the sets of join points covered by each join point type were usually quite small
(432 of 484 were singular and only 10 covered more than three points in the
program [Kästner et al. 2007]), so that set inclusion of extensions (indicative
of subtyping; cf. Section 3.4) did not occur. At the same time, only 28 join
points were shared by different aspects, which were, however, unrelated, also
providing no good opportunity for subtyping. On the other hand, Figure 10
shows how an abstract tracing join point type (Trace) can serve to structure
the domain even when there is no shared advice (i.e., advice applicable to a join
point type and its subtypes).

Our findings seem to be consistent with that of others, in particular those
reported in Sullivan et al. [2005] and Hoffman and Eugster [2007]. In fact, the
material presented in Sullivan et al. [2005] suggests that our anonymous join
point subtyping, or explicit join point creation, can help solve the problems of
state-point separation, inaccessible join points, and quantification failure. At
the same time, we found that the IIIA implementations of features in BERKELEY

10Also, use of explicit join points eliminated the need to use ASPECTJ’s more sophisticated pointcuts
such as cflow or cflowbelow, which in our prior refactoring were required to fix various matching
problems.
11The tracing feature in BERKELEY DB writes log messages at well-defined points in the execution of
the program, logging several context variables. These points are too heterogeneous to be matched
by generic pointcuts (quantification).
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Fig. 10. Reimplementation of a logging feature using IIIA. The explicit join point creation provides
access to local variables. Note the empty block: there is no statement to be advised, only a point
between two statements. before, after, and around all have the same effect here.

DB are easier to use and to read, but this of course lies in the eye of the
beholder.

5.3 Case Study 2: AJHOTDRAW

In a second case study, we migrated the aspect-oriented version of JHOTDRAW,
AJHOTDRAW, to our implementation of IIIA. AJHOTDRAW was written as a
demonstrator of the feasibility of using ASPECTJ in existing applications, and
was used as the basis of several recent case studies [van Deursen et al. 2005;
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Coelho et al. 2008]. Like our own migration of BERKELEY DB to ASPECTJ [Kästner
et al. 2007], AJHOTDRAW makes use of both intertype declarations (introduc-
tions) and implicit invocation. Since IIIA is orthogonal to introductions, we
refactored only the implicit invocation part.

Overall, we extracted 36 different join point types and implemented 19 as-
pects to advise them and 25 classes to exhibit them (for comparison: AJHOT-
DRAW implemented 31 aspects of which 14 contained advice, while 17 contained
only intertype declarations). Splitting the (global) pointcuts into class-local
branches was straightforward, since almost all applied to a single class only,
and the remaining three pointcuts used separate disjuncts to specify the point-
cuts for each class anyway (note how this amounts to inverting the transfor-
mation performed by our compiler). The situation was thus quite similar to
BERKELEY DB, where we also found only few pointcuts matching more than one
join point shadow (cf. Section 5.2). However, other than in the case of BERKELEY

DB, we found a convincing application of join point subtyping.

5.3.1 Uses of Join Point Subtyping. One striking observation we made was
that many (23 out of 36) of the join point types we introduced were strongly
related, both in terms of the meaning they carried and in terms of the fields they
defined. In fact, these join point types naturally arranged into three subtype
hierarchies, structuring the domain as in the BERKELEY DB case. However, in
AJHOTDRAW substitutability, that is, the application of an advice bound to a
join point type to instances of its subtypes, also proved useful.

JHOTDRAW has an AbstractCommand class, which is an abstract superclass
of all command classes. In AJHOTDRAW, the undo facility and some sanity
checks that apply to commands were extracted into aspects (UndoableCommand,
CommandPolicy, and CommandDamage). The pointcuts of these aspects were de-
fined as

pointcut commandExecuteCheckView(AbstractCommand acommand):
this(acommand)
&& execution(void AbstractCommand+.execute())
&& !within(∗..DrawApplication.∗)
&& !within(∗..CTXWindowMenu.∗)
&& !within(∗..WindowMenu.∗)
&& !within(∗..JavaDrawApp.∗);

and

pointcut commandExecuteNotifyView(AbstractCommand acommand):
commandExecuteCheckView(acommand)
&& !within(org.JHOTDRAW.util.UndoCommand)
&& !within(org.JHOTDRAW.util.RedoCommand)

&& !within(org.JHOTDRAW.standard.CopyCommand)
&& !within(org.JHOTDRAW.standard.ToggleGridCommand)
&& !within(org.JHotDraw.contrib.zoom.ZoomCommand);
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Fig. 11. Class hierarchy, the hierarchy of join point types exhibited, and the aspects advising
them. Note how join point exhibition is independent from subclassing.

Note how this first defines a pointcut applying to all classes of the
AbstractCommand hierarchy, and then removes matches in certain subclasses
(using !within expressions). This reflects the crosscutting nature of the
commandExecuteNotifyView pointcut, which means that, if a class is to be ad-
vised, its subclasses are not automatically to be advised, too. However, this
information is coded in rather unwieldy pointcut definitions.

Using our join point types and join point subtyping, it was easy to refactor
the code to reflect the relationships between commands and their aspects more
clearly. As can be seen from Figure 11, the classes of the AbstractCommand hi-
erarchy exhibit join point types from the CommandExecuted hierarchy. Note that
the two hierarchies are not parallel; in fact, if join point type exhibition is con-
sidered a form of classification, this classification is independent of the primary
(or “dominant” [Tarr et al. 1999]) classification established by subclassing. For
this to be the case, however, it is necessary that join point exhibition is not
inherited by subclasses (cf. the discussion in Section 3.5). If a subclass happens
to exhibit the same join point type as its supertype, it has to declare to do
so, and if it wants to use the same pointcut, it has to import it (using super).
Inheritance of join point exhibition by subclasses is not default behavior, but
an explicit act.

While explicitly marking each class with the join point types it exhibits mod-
els the crosscutting nature of the AbstractCommand and the CommandExecuted hi-
erarchies nicely, the aspect side also makes use of subtyping and substitutabil-
ity: here, all classes exhibiting a join point type from the CommandExecuted
hierarchy enjoy the advice bound to the CommandExecuted join point type (the
root of the join point type hierarchy) as expressed in the CommandPolicy as-
pect; all classes exhibiting a subtype of the DamagingCommandExecuted join
point type enjoy the advice of the aspect CommandDamage; and so forth. The
dispatching of a single event (the execution of a command) to advices of
several types is fully implicit, elegantly reducing the complexity of the
code.

5.3.2 Refactoring the OBSERVER Pattern. Beyond the refactoring of exist-
ing aspects in AJHOTDRAW, we found 16 opportunities for using IIIA in classic
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Fig. 12. Implementation of the OBSERVER pattern in JHOTDRAW using IIIA (strongly simplified).
Boilerplate code is needed to maintain the set of listeners and to dispatch event notification.

publish/subscribe constellations, that is, for occurrences of the OBSERVER pat-
tern. For this, we replaced the event class by a join point type, moved the calling
of the update() (or like) method to an aspect, replaced the registration of the
observer by an advises clause, and replaced notification by an exhibits clause
and a suitable pointcut in the subject class. However, due to the singleton
character of aspects, and due to the fact that, in the original code, individual
objects, not classes, are notified, boilerplate code had to be written in order to
dispatch updating to the observing object (Figure 12 gives an example of this).
This could have been avoided had a symmetrical approach to AOP been used
in which objects advise objects (such as classpects [Rajan and Sullivan 2005];
cf. the discussion in Section 6).

5.4 Summary of Findings

Table II summarizes our findings. Apart from the fact that join point types are
generally usable, the picture is not coherent—the only conclusion we can draw
is that all other features of our capture of IIIA are also useful, but not in all
applications. This, however, was to be expected.

Apart from this general observation, we found that, in our two case studies
of IIIA, using explicit join point creation seemed more convenient than writing
pointcuts, even when the latter posed no technical problems. Particularly con-
sidering the fact that in our case studies, the average degree of quantification
(i.e., the average number of join point shadows matched by pointcuts) is close
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Table II. Frequency of Use of IIIA Programming Constructs

IIIA Programming Standard (textbook) BERKELEY

Construct Examples of ASPECTJ DB JHOTDRAW

Join point type + + ++
Polymorphic pointcut ++ ◦ +
Explicit join point creation – ++ ◦
Join point subtyping ◦ – +
legend: – = no, ◦ = little, + = good, ++ = strong use.

to 1, and that, generally, the pointcut language of ASPECTJ often requires the
rewriting of code so that it can be matched, writing generic join point spec-
ifications seems rarely worth the effort.12 The picture is rather different for
the standard (text book) examples of ASPECTJ, which usually have much higher
degrees of quantification.13

The generally low degree of quantification has a like effect on the usefulness
of polymorphic pointcuts: the number of classes exhibiting the same join point
type is usually quite small, so that the scattering of join point type exhibition
as well as that of pointcuts is limited. This counters fears that use of our IIIA
will lead to annoyingly verbose programs, in particular ones in which implicit
calling information is widely scattered, where it would be nicer to have it all
in one place. In fact, given the low degree of quantification that we found,
it seemed more natural to specify join points (close to) where they occurred,
rather than (close to) where they are consumed.

Another observation in this vein is that, while our definition of IIIA intro-
duces some syntactic overhead (in the form of exhibits and advises clauses),
we felt that this overhead leads to better readable programs, which is basically
due to more explicitly stated dependencies. The effect is largely comparable
to that of the use of checked exceptions in JAVA: while throwing an exception
in the body of a method may seem a sufficient expression of the fact that the
method has exceptions, it is the repeating in the method signature that leads
to better readability (and that allows type-checking in the absence of an imple-
mentation).

Last but not least, there appears to be a correlation of the number of join
point types in a program and the opportunities for join point subtyping. This
could be explained by the fact that, the greater the number of join point types
in a program, the greater the chance that these are conceptually related, and
lend themselves to organization through subtyping.

6. RELATED WORK

—Event-driven programming and publish/subscribe. In EDP, registering
and unregistering of subscribers usually occur at runtime, whereas in our

12One notable exception is the writing of execution pointcuts, which seems more convenient than
an explicit join point creation. See Section 7 on future work for how this can be avoided using
standardized join points.
13However, a recent study of 11 ASPECTJ programs has shown that the degree of quantification is
generally low: only 2% of all pointcuts are homogenous, that is, match more than one join point
shadow [Apel and Batory 2008].
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Fig. 13. Event-driven consumer/producer communication based on IIIA. The Consumer class sig-
nals its instantiation, an event of type ConsumerCreation parameterized with the new consumer, to
the Dispatcher aspect. The Producer class signals the production of a new item to the Dispatcher,
which dispatches it to an idle consumer. Note how both Consumer and Producer remain completely
unaware of each other, and also of the dispatcher.

approach to IIIA they are “woven in” using the weaving mechanism of an
aspect-oriented programming language (see, e.g., Avgustinov et al. [2005]
and Hilsdale and Hugunin [2004], but also [Rajan et al. 2006] for a viable
alternative). Also, the announcement, or firing, of events in EDP is usually
explicit, while it is by definition implicit in our approach: as can be seen from
Figure 13, there is no publish statement or explicit call of a corresponding
procedure. Types have been introduced to EDP and P/S mainly as filters for
subscribers [Eugster 2007]: rather than accepting every event and checking
it individually for relevance, a subscriber subscribes only to certain types of
events. By contrast, we use types mostly to specify interfaces on the side of
the publisher, a purpose that is explicitly declined by proponents of implicit
invocation [Garlan and Scott 1993; Notkin et al. 1993]. However, denying
interfaces sacrifices modularity, which we want to restore.

—Aspect-oriented programming. According to most common definitions of
AOP, what we suggest is no longer aspect-oriented. For instance, compared
to ASPECTJ it does not perform well in the removal of scattered code, and
therefore does not modularize crosscutting concerns in the way expected by
many in the AOP community. Compared to symmetric approaches such as
HYPER/J [Ossher and Tarr 2000], it performs even worse—because of its re-
striction to implicit invocation, it does not support the merging of classes (or
aspects) delivering aspect-wise structure and behavior (introduction of new
features into classes is not supported). However, combining IIIA with mixin
techniques is a promising approach to solve this problem [Apel et al. 2008].
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It follows that implementing important standard aspects such as logging or
tracing, and also certain design patterns requiring structural introductions,
with our proposal is not a good idea. Also, in terms of the much-cited quan-
tification and obliviousness characterization [Filman and Friedman 2004],
our proposal does not make it as a form of AOP: quantification is restricted to
classes declaring to exhibit join points, and obliviousness is compromised to
the extent that all classes in which join points may occur must be explicitly
tagged as such. In fact, we even go as far as permitting explicit marking
of individual join points through the exhibit new <join point type> con-
struct, which eliminates obliviousness and quantification completely. On the
other hand, since aspects and classes depend on join point types, not on their
counterparts, they remain oblivious of each other.

—Reduction of AOP to implicit invocation. Xu et al. [2004] have shown how
aspect-oriented programs can be automatically reduced to implicit invoca-
tion, so that available model checking approaches designed for implicit in-
vocation can be used for aspect-orientated programs also. However, as the
authors themselves admitted, the practicality of their approach is limited by
the practicality of model checking in general: formulation of conditions to be
checked is difficult, scalability is poor, and translation of the results (found
counterexamples) back to the original input, in this case aspect-oriented
programs, is nontrivial. By contrast, we have suggested an intuitive and
simple-to-use type system that lets the compiler make certain checks.

—Explicit join points. In parallel but independent work, Hoffman and Eug-
ster [2007] have elaborated on a notion of explicit join points that is much
akin to ours. Syntactically, an explicit join point resembles a static method
call qualified by an aspect, but like our join point type instantiation it can be
associated with a block of statements the aspect is to advise. As an extension
to explicit join points, Hoffman and Eugster allowed the adding of pointcuts
whose scope is restricted to where they are defined in the base code. How-
ever, their relationship of pointcuts and explicit join points is the inverse
of ours: while we introduce polymorphic pointcuts as (class) local join point
type predicates and add explicit join point creation as a natural extension
(analogous to an anonymous subclass, specifying a pointcut with a single
match), the explicit join points of Hoffman and Eugster govern over local
pointcuts so that the latter are unavailable without the former. Also, since
their explicit join points are typeless, there is no opportunity of subtyping;
in fact, in Hoffman and Eugster’s approach, explicit join points are bound to
specific aspects, whereas in ours they are only bound to a join point type and
its supertypes, which can be advised by any aspect declaring to do so. This
gives us a broadcast semantics, and with it greater decoupling.

Another approach to modular AOP making the shift towards explicit an-
nouncement is the Rajan and Leavens [2008] language PTOLEMY. Like our
own work, PTOLEMY relies on event types to decouple the implicit invokers
and invokees (the sources and sinks of join points), and on fields of these
types as holders of context information. A minor difference is that PTOLEMY

binds the arguments of the context to the fields of an event using context
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variables of the same name; however, this kind of binding may cause prob-
lems in case of nested event announcement, when names, but not values of
arguments, are identical. Similar to Hoffman and Eugster’s [2007] approach
and also to our anonymous join point subtypes, PTOLEMY’s explicit announce-
ment can wrap arbitrary blocks of code, which event handlers can choose
to execute.14 However, unlike our own work, which offers explicit announce-
ment as a supplement to implicit announcement, the quantification property
of PTOLEMY seems rather limited: in particular, by relying entirely on the tag-
ging of events in source code using explicit event expressions, it is unclear
to us in which way their quantification differs from that of typed EDP [Eu-
gster 2007]. The disjunction of event types offered by PTOLEMY can easily be
emulated in EDP and our form of IIIA by supplying separate handlers that
invoke identical code.

Unlike in our work and also in ASPECTJ, in PTOLEMY event handlers are
methods associated with objects, not aspects, explicitly registered as having
an interest in announced events. This symmetry appears to be similar to
the approach of classpects [Rajan and Sullivan 2005] (see below), although
it appears that no provisions are made in PTOLEMY so as to let different
subscriber instances register to different publisher instances. The filtering of
events by objects having interest in events published by certain objects only
is then left to the subscribing objects, likely imposing significant overhead.

—Classpects and EOS-U. To achieve greater conceptual integrity, the
“classpects” of EOS-U [Rajan and Sullivan 2005] drop the distinction between
classes and aspects and let instances advise other instances. However, this
requires binding of advising to advised objects, which introduces additional
dependencies. By contrast, we have introduced join point instances that are
automatically created when a pointcut matches, and let advice operate on
these instances as if it were a method of the corresponding join point type
(advice is dynamically bound depending on the type of a join point). Our
gain in conceptual integrity is therefore comparable. On the other hand, we
believe that EOS-U would profit from the typing we suggest: for instance,
its addObject method could be typed to accept only objects exhibiting the
advised join point type.

—Crosscutting interfaces. Griswold et al. [2006] suggested the introduction
of crosscutting interfaces (XPIs) as interfaces “that base code designers ‘im-
plement’ and that aspects may depend upon” [Sullivan et al. 2005, p. 167].
For this, each XPI comes with a “syntactic part” that exposes the signature
of named pointcuts, and a “hidden implementation” [Griswold et al. 2006,
p. 54], the part that specifies the concrete pointcut expressions. XPIs are en-
hanced by informal, “semantic” specifications (“design rules”) of join points
that need to be observed by the maintainers of classes. Note that storing the
implementation, the pointcuts, in the interface is somewhat unusual (cf. the
discussion of attaching pointcuts to join point types in Sections 3.1 and 3.2),
but may be seen as technical tribute to ASPECTJ as the language in which

14Note that, as with many other ASPECTJ-related approaches, this can lead to the paradoxical
situation that the event that triggered the handler actually did not take place.
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XPIs are currently implemented. However, this technicality impairs inde-
pendent module evolution to a certain extent, since the implementation of
the interface is not part of the implementation of the module (so that decou-
pling reaches only stage (b) shown in Figure 3). At the same time, it does not
solve many of the problems noted in Sullivan et al. [2005], which are mostly
due to the inability to formulate pointcuts that readily match the intended
points in a program. By letting interfaces be implemented polymorphically,
that is, per implementing class as we do, XPIs would achieve full modularity
(stage (d) in Figure 3). Also, by letting join points be created explicitly, many
of the problems of state-point separation, inaccessible join points, and quan-
tification failure would be solved. From there, however, it is only a small step
to our concept of join point types as interfaces.

—Open modules. Following Aldrich’s [2005] influential work, Ongkingco et al.
[2006] presented an implementation of Open Modules for ASPECTJ. It intro-
duced a module concept as an owning collection of classes that together
declare a set of friend aspects (that can freely access all classes of the mod-
ule) as well as specific pointcuts advertised or exposed (the difference is of
little importance here) to aspects. All join points included in the module that
are not exposed are invisible from the outside. In addition, a module may
expose join points selectively to aspects that it names. This is somewhat com-
parable to, although still sufficiently different from, our approach in which
join points are exposed to aspects that declare to depend on the join points’
types. In sharp contrast to our work, Open Modules classes remain unaware
of the join points they expose, and also of the pointcuts specifying those
join points. In particular, in Open Modules à la Ongkingco et al. [2006], the
pointcuts used by an aspect cannot be adapted and maintained on a per class
basis, thereby limiting independent evolution of aspects and base classes to
a certain extent. Also, the ability to declare friend aspects of a module, while
allowing such things as debugging via aspects, provides for unspecified (im-
plicit) interfaces to the module, which basically implies that friend aspects
are part of the modules whose classes they advise.

—Spectators and assistants. Clifton and Leavens [2002] used the accept key-
word to let classes declare that they admit advice from the aspects listed
thereafter. In Figure 3, this would correspond to (a) with bidirectional de-
pendencies. We are taking a different route: by introducing join point types
as middle men between aspects and their targets, and by introducing class-
wise polymorphic pointcuts, we reach the degree of decoupling shown in
Figure 3(d). Clifton and Leavens [2002; 2003] further distinguished between
spectators (aspects that may only observe) and assistants (aspects that can
actually change state). Using our approach, and would JAVA offer a modi-
fier similar to C++’s const, we could allow declaring single fields of a join
point type as being observable only, or as being changeable, thereby grant-
ing finer-grained access control. On the other hand, preventing direct write
access to objects cannot prevent the behavior changing interception of meth-
ods. For a more detailed discussion of how potentially interfering aspects can
be separated from “harmless advice,” see Dantas and Walker [2006].
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—Modular aspects with ownership (MAO). In subsequent work, the distinc-
tion between spectators and assistants and the enforcement of corresponding
access policies have been implemented using an ownership type and effect
system [Clifton et al. 2007]. Using this system, it can be statically checked
whether an aspect can make changes to heap objects it does not itself own
(usually objects of the base program). Together with restrictions on aspects
regarding their alteration of the advised program’s control flow, the num-
ber of aspects that need to be considered when reasoning about a particular
piece of code can be reduced significantly. Compared to our introduction of
join point types as bilateral interfaces between aspects and base code (with
references to the interfaces in both the aspects and the base code), the in-
terfaces of modular aspects with ownership express obligations only for the
aspect, and need to be inspected by designers of base code for potential ef-
fects.

—Aspect-implied interfaces. In their effort to restore modularity of AOP,
Kiczales and Mezini [2005, p. 49] argued that “aspects cut new interfaces
through the primary module structure,” and that a tool can compute these
interfaces once a system has been assembled. This means that a module is no
longer sovereign over its own interfaces—rather, they are forced upon it by
system composition. It follows immediately that modules cannot be changed
independently of their use in a particular assembly, simply because it is un-
clear which interfaces to keep constant. This in turn hampers reuse in all
cases in which a module is to be used in more than one composition. By con-
trast, what we have suggested here is much more conservative: we require
that all interfaces of a module be made explicit at module design time, so
that programmers can observe them while doing whatever they need to do,
independently of each other. In our approach to IIIA, a change to an aspect
can never require a change of a class; changing the fields of a join point type,
the interface between a class and its advising aspects may require changes
(in both the class and its aspects), but these are enforced by the compiler.

—Adding polymorphism to ASPECTJ. Ernst and Lorenz [2003] noted that the
polymorphism present in ASPECTJ is basically ad hoc; all available inclusion
polymorphism is that of the base language (JAVA). In order to introduce late
binding of advice, the authors required some kind of advice grouping, so that
a binding algorithm can “choose exactly one most specific advice and invoke
it, ignoring all the others in the group (they are being overridden)” [Ernst and
Lorenz 2003, p. 153]. By our introduction of join point types and subtypes,
and by linking advice to join point types (providing some kind of “advice
signatures” [Ernst and Lorenz 2003]), we have installed such groupings.
However, with the language and its translation to ASPECTJ as defined above,
advice is still bound at compile time; in particular, we have not yet explored
whether and how our approach could open the door for separate compilation.

In a different line of work, Apel et al. [2007] proposed the notion of aspect
refinement to introduce polymorphism to ASPECTJ. Using aspect refinement,
advice can be named and thus overridden in specialized aspects, where it
can also be bound to specialized pointcuts. A specialized pointcut may refer
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to its base using the super keyword, which is similar to our specialization
of pointcuts as type predicates of join point subtypes. Even though in our
present work we did not consider specialization of aspects or advice, letting
join point handlers (advice) of a specialized join point type refer to handlers
of the more general type seems like a natural extension.

—Type-theoretic interpretation of pointcuts and advice. Ligatti et al. [2006]
presented formal semantics for an idealized AOPL. For this, they extended
the simply typed lambda calculus with two new abstractions covering join
points, pointcuts, and advice, and prove type safety for this calculus. They
presented a small functional language, MINIAML, and showed how this maps
to the core calculus. MINIAML has some similarities with our language, most
prominently that it allows scoping of advice: functions can be hidden from
advice, thereby allowing “programmers to retain some control over basic
information hiding and modularity principles in the presence of aspects”
[Ligatti et al. 2006, p. 251]. The mapping of MINIAML to the core calculus is
nontrivial; we expect a corresponding mapping of our own language, although
certainly desirable to prove the soundness of our type system, to be no easier.
On the other hand, what we have delivered can be immediately tried out in
practical settings, allowing the community to test and improve it until it is
maximally useful.

—Stratified aspects. In our own previous work, we proposed [Forster and
Steimann 2006] and implemented [Bodden et al. 2006] an extension of
ASPECTJ that adds type levels to its join points and aspects. In the resulting
language, type information in a program is partly implicit, and for the rest
consists of meta modifiers attached to aspects and pointcuts. According to
this type system, all join points contained in classes are of type level 0, all
in aspects of type level 1, all in aspects declared with a single meta modifier
of type level 2, and so forth. Pointcuts to range over join points of type level
0 remain unmodified, while those to range over type level 1 and higher have
to be modified with a corresponding number of meta modifiers. This allows
us to build towers of aspects as advertised in Rajan and Sullivan [2005],
albeit on the class rather than the instance level (cf. below). As can easily
be seen, our current type system can emulate our previous one, simply by
dividing the set of join point types into disjoint subsets each associated with
a type level, and requiring that aspects advise only join point types from
levels lower than the join points they themselves exhibit (if that is what they
do; aspects exhibiting join points are not discussed in this article). In fact, it
should even be possible to automatically construct the type strata from the
exhibits/advises relationships found in a program, and to report a typing
error (or warning) should the relationship contain circles (potentially leading
to self-application and recursion).

—Fine-grained generic aspects. Rho et al. [2006] proposed a mechanism for
capturing arbitrary join points in the execution and structure of a program.
Fine-grained pointcuts use a combination of metaprogramming and logic pro-
gramming to allow the programmer to precisely select join points. While the
fine granularity increases the expressive power of advice compared to present
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aspect-oriented languages, it decreases modularity further since more details
of a module’s implementation are exposed.

—Test-based pointcuts for robust and fine-grained join point specification.
Sakurai and Masuhara [2008] presented a pointcut mechanism for select-
ing join points using the unit test cases that are associated with the base
program. Test-based pointcuts can be used to distinguish between different
execution histories of a method and, thus, are more powerful for the spec-
ification of dynamic join points. Each test-based pointcut refers to one or
more unit test methods of a unit test class. Hence, the unit test class is like
an interface between the base program’s execution and the advices. Typing
and subtyping are not addressed in this work. Type checking is done like in
conventional ASPECTJ-like languages and join points do not have types that
can be checked against advice.

—Managing the evolution of aspect-oriented software with model-based point-
cuts. Kellens et al. [2006] introduced model-based pointcuts in order to
decouple the implementation of a base program from its aspects. Instead of
referring to the identifiers of the elements of a base program, model-based
pointcuts refer to a conceptual model of the base program. The advantage is
that the base program’s implementation may change without breaking the
pointcuts, as long as the model remains unchanged and consistent with the
intention of the base program. This burdens the programmer to make sure
that changes do not invalidate the model. The conceptual model is a kind of
interface between program and advice. However, type checking is not possi-
ble since the conceptual model is at a different level of abstraction, usually
written in another language with different type structure.

—Event patterns. Douence et al. [2001] have suggested looking at sequences
(or temporal patterns) of events for identifying the join points aspects are to
advise. Like ourselves, they equated points of interest with events; however,
they extended a pointcut language such as ASPECTJ’s to allow the specifica-
tion of patterns to be matched (also referred to as tracematches [Allan et al.
2005]). For this purpose, they introduced a single event type, Event, whose
instances consist of a name tag and a time stamp. Using this event type
in pattern specifications increases the expressiveness of the pointcut lan-
guage (by adding a temporal dimension), but it does not alleviate problems
of modularity in any way.

7. FUTURE WORK

During our experiments with IIIA and our compiler, a number of directions for
future work became apparent. The following seem most important to us.

—It may make sense to combine interface implementation with join point
exhibition: a class offering a method published in an interface it declares to
implement may at the same time declare to announce whenever this method
is being executed. Rather than specify a corresponding execution pointcut in
every class implementing this interface (as is currently required), it might be
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more convenient to specify this pointcut in the interface and have it inherited
by the implementing classes. To avoid untoward change dependencies (as
discussed at the end of Section 3.5), the pointcut could be standardized as
always binding the parameters of the method to the fields of a corresponding
join point type.

—Another issue that should be investigated is whether, rather than letting the
advice choose its kind (i.e., before, after, etc.), the kind of advice should be
associated with the join point type (so that both advised class and advising
aspect must agree on the kind). In fact, one could argue that a class should
not only have control over which join points it exhibits, but also whether
it admits advice before or after a join point is executed, and whether the
advice is allowed to change the context in which it executes (around advice).
Attaching the kind to the join point type poses new questions, however,
in particular with respect to subtyping: how can subtypes change (extend,
restrict) the kind of a join point type without breaking contracts of their
supertypes?

—A rather minor open issue is the problem of join point exhibition in anony-
mous inner classes: because the JAVA syntax of these classes leaves no
room for an exhibits clause, and since join point exhibition is not inher-
ited by subclasses, there is no consistent way for making these classes an-
nounce join points. We currently work around this problem by assuming
the exhibits clause of the superclass (making an exception to the rule that
these clauses are not inherited), but then this always requires the specifi-
cation of join points within the anonymous class, either through pointcut or
through an explicit announcement. An alternative would be to not require
an exhibits clause for anonymous classes, but this is not very satisfactory,
either.

—Last but not least, it may make sense to investigate the combination of join
point types with traits [Ducasse et al. 2006]. In fact, since join point types
can be viewed (and are currently implemented in our compiler) as classes
with state, but no behavior, attaching behavior through traits, rather than
aspects, may be a viable alternative. Together with the fact that mixin-
like constructs can replace for the introductions offered by ASPECTJ [Apel
et al. 2008], and that implicit invocation can be standardized as sketched
above, our IIIA could drop much of the dependence on AOP and its language
constructs.

8. CONCLUSION

Due to the lack of explicit interfaces, implicit invocation with implicit event
announcement mechanisms such as those offered by aspect-oriented program-
ming languages suffer from serious modularity problems. Inspired by how
typed exceptions are declared in JAVA, and how its interfaces-as-types allow
for polymorphic implementations while at the same time decoupling callers
from the called, we have introduced the notion of join point types as inter-
faces between producers and consumers of events. Borrowing the pointcut lan-
guage from ASPECTJ, the type predicates of our join point types are defined as
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class-local, polymorphic pointcuts. Join point types extend naturally to sub-
typing and to explicit join points as anonymous subtypes. Applications of the
so extended, fully modular language are the same as that for other implicit
invocation mechanisms with implicit or explicit event announcement, such
as (database) triggers or occurrences of the EVENT NOTIFICATION [Riehle 1996]
and OBSERVER [Gamma et al. 1995] patterns. Its limitations are clearly cases
in which the publisher should remain unaware of the fact that it publishes.
This includes, for practical reasons, some of the most prominent applications
of aspect-oriented programming, in particular all extensively crosscutting con-
cerns such as logging or tracing.
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