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Abstract—Uncertainty is particularly critical in software per-
formance engineering when it relates to the values of important
parameters such as workload, operational profile, and resource
demand, because such parameters inevitably affect the overall
system performance. Prior work focused on monitoring the per-
formance characteristics of software systems while considering
influence of configuration options. The problem of incorporating
uncertainty as a first-class concept in the software development
process to identify performance issues is still challenging. The
PLUS (Performance Learning for Uncertainty of Software) ap-
proach aims at addressing these limitations by investigating the
specification of a new class of performance models capturing
how the different uncertainties underlying a software system
affect its performance characteristics. The main goal of PLUS is
to answer a fundamental question in the software performance
engineering domain: How to model the variable configuration
options (i.e., software and hardware resources) and their in-
trinsic uncertainties (e.g., resource demand, processor speed) to
represent the performance characteristics of software systems?
This way, software engineers are exposed to a quantitative
evaluation of their systems that supports them in the task of
identifying performance critical configurations along with their
uncertainties.

Index Terms—Performance, Machine Learning, Uncertainty

I. INTRODUCTION

Many application domains, such as distributed systems and
cyber-physical systems, have strict performance requirements
(e.g., system response time). In fact, it has been demonstrated
that, if performance requirements are not met, a variety of
negative consequences (such as damaged customer relations,
business failures, lost income) can impact a software system’s
success [1]. Quantitative (predictive or measured) performance
models are of key relevance to understand the presence of
performance issues. However, it is often difficult to quantify
the performance behavior of a software system since per-
formance is affected by many factors: early design choices
(e.g., software component interactions), implementation details
(e.g., different choices of data structures), deployment (e.g.,
settings of hardware resources), and the execution environment
(e.g., operating system). Moreover, performance evaluation
is typically also affected by a certain degree of uncertainty
related to the development process, as there are parameters
that, at early stages, are simply unknown (e.g., the deployment
environment). This initial uncertainty propagates to later stages
involving the software system’s execution and evolution in that
there will be parameters varying at runtime (e.g., fluctuating
workloads) [2].

Uncertainty is a fact of today’s software-intensive systems,
and it is necessary to consider it as a first-class concern in
the design, implementation, and deployment of those systems
[3]. By uncertainty we mean not knowing the exact impact of
system’s constituents parts (e.g., software components) along
with external factors influencing the system’s execution (e.g.,
workload) on performance properties of interest. That is, we
are not able to precisely specify the impact of system settings
as a crisp performance value.

To keep track of uncertainties, feature models can be used.
In fact, they represent a well-known formalism for capturing
variability, commonalities, and configuration rules of software
systems. A feature model is a compact representation of the
set of products of a software product line or configurations
of a system, in terms of features and logical relationships
among them [4]. To illustrate the role and the importance
of uncertainty, an example of a feature model is shown
in Figure 1. It represents a wind generator system (WGS)
consisting of a set of services regulated by the speed of wind.
There are two mandatory features:

- SupplyEnergy (SE): provide energy sources to users that
are interested to acquire them from the system;

- MonitorSpeed (MS): check regularly the speed of tur-
bines to verify the correct functionality of the system.

If the wind is light, then one optional feature is activated:
- IncreasePrice (IP): the production of energy is reduced,

and it is necessary to increase the price to which the new
users buy the energy under production.

If the wind is strong, then IncreasePrice feature is deacti-
vated, the MonitorSpeed feature has an increased monitoring
frequency, and the

- PromoteEnergy (PE) optional feature is activated: the
production of energy is augmented, and it is necessary to
provide discounts for attracting a larger number of users.

The performance analysis of WGS involves uncertain pa-
rameters that are unknown at early development (e.g., the num-
ber of users interested in acquiring energy), but also further
time-varying parameters (e.g., the frequency of monitoring the
turbines conditioned by the speed of the wind).

Prior work focused on monitoring the performance of soft-
ware products while considering the influence of configuration
options [5]–[9]. But it is infeasible to evaluate all system vari-
ants when increasing the number of features and all possible
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Fig. 1. Feature Model of a Wind Generator System (WGS)

values for uncertain parameters since the configuration space
explodes. In this context, one challenge is to understand how
many samples are needed to provide accurate performance
estimates by means of machine learning (ML) techniques.
There is an inevitable trade-off between the number of evalu-
ated samples and the accuracy of ML techniques [10], hence
we have to derive an ideal set of performance measurements
leading to an acceptable prediction accuracy. The usage of
ML techniques mitigates the need for evaluation of all system
variants at the cost of providing performance indicators that
are approximations instead of actual measurements.

In this paper, we present a new approach, called PLUS (Per-
formance Learning for Uncertainty of Software), that aims at
integrating uncertainty into the software development process
as a first-class concern, deserving its own analysis to support
the performance evaluation of software systems. The key
intuition is that uncertain parameters can only be controlled
by making them explicit and by consulting their specification
(e.g., lower/upper bounds or probability distributions) to drive
the performance evaluation process. To this end, we propose a
new class of performance models, called uncertainty-influence
models, that quantify the influence of uncertain parameters on
system performance characteristics.

Uncertainty-influence models describe how configuration
options (i.e., software and hardware resources) and their
intrinsic uncertainties (e.g., system workload) influence the
performance behavior of a software system. For example, in
Figure 1, the two alternative features (i.e., IP and PE ) are
associated to the energy production; PromoteEnergy is acti-
vated if the wind is strong. This implies that the performance
(e.g., the system’s response time) is also affected by this
environmental aspect, since the system computation is exposed
to a varying presence of available features.

PLUS makes the performance analysis an integrated activity
in the software development process, so that performance char-
acteristics and their uncertainties are continuously exposed to
system engineers, who can proactively select the configuration
alternatives suitable to avoid performance issues.

II. RELATED WORK

Two lines of research are related to PLUS: (i) performance
evaluation based on machine learning (ML) and (ii) uncer-
tainty analysis. Guo et al. [11], [12] makes use of a statistical
learning technique to build an explicit performance model rep-
resenting the correlation between feature selections and their
performance characteristics. Product-line performance verifi-
cation is conducted to investigate the ability to identify defects
[8]. Sarkar et al. [10], [13], [14] study multiple sampling

strategies to evaluate the performance of configurable systems
considering the prediction accuracy and the measurement
effort simultaneously. Siegmund et al. [15] use a combination
of kernel density estimation and a genetic algorithm to rescale
a given attribute-value profile to a variability model. Nair
et al. [16] found that, even if performance models are not
accurate when deriving analysis results, they are valuable
in ranking system configurations. However, the state-of-the-
art approaches [8], [11], [13], [15]–[17] do not consider
uncertainties in the learning of performance characteristics.

Uncertainty may span multiple dimensions: (i) known
knowns (uncertainty does not exist); (ii) known unknowns
(uncertainty is shared among the stakeholders); (iii) unknown
unknowns (uncertainty is uncertain itself). Perez et al. [18]
propose a methodology to guide software engineers in recog-
nizing and managing different types of uncertainty. There are
some approaches aiming to optimize the Quality-of-Service
(QoS) properties of systems when variability is present, e.g.,
workload bursts are incorporated into models to derive more
accurate performance predictions [19], or reconfigurations at
runtime [20]. Esfahani et al. [21] outline that existing decision-
making approaches do not provide a quantitative method for
comparing architectural alternatives. This issue has been tack-
led by some approaches that investigate the idea of embedding
uncertainties in the software analysis process. Uncertainty and
its propagation in availability analytical models is investi-
gated by Devaraj et al. [22]; others consider to embed the
parameters uncertainties in model-based performance analysis
while dealing with variable features [23], and in the reliability
evaluation of software architectures [24]. However, none of
these approaches [18]–[24] quantifies the propagation of input
uncertainties into performance analysis results.

Summarizing, to the best of our knowledge, applying ML
to performance evaluation of software systems is not effective
without embedding the specification of uncertain parameters.
PLUS aims at embedding probability distribution functions
(PDFs) of uncertain parameters as part of the sampled system
configurations and determining an optimal set of these samples
balancing accuracy and analysis effort. To this end, we will
specify a new class of performance models, called uncertainty-
influence models, which capture the underlying uncertainties
of a software system with its performance characteristics,
allowing us to efficiently learn the influence of uncertain
parameters on performance.

III. THE PLUS APPROACH

Figure 2 provides an overview of PLUS, which consists
of four main activities: sampling, learning, prediction, and
optimization. Note that the feedback arrow from optimization
to sampling indicates a round-trip process; in fact, the se-
lected optimal system configurations can be evaluated until no
performance issues are experienced anymore. This introduces
the possibility of selecting different features and/or changes
the bounds and the distributions of uncertain parameters,
thus facilitating a deeper investigation of how uncertainty
propagates to the performance analysis results.



Fig. 2. Overview of PLUS

To better explain the proposed activities, Table I reports their
application on the WGS example (see Figure 1), and compares
PLUS w.r.t. the state of the art [6].

1: Sampling. The first step consists of selecting the system
configurations, along with their uncertain parameters, and
quantifying their performance. To sample uncertain parame-
ters, a common method is to associate an ad-hoc specification
to them that provides knowledge on their nature, such as lower
and upper bounds, PDFs, etc. Depending on the source of
uncertainty, parameters may involve different characteristics,
resulting in different distributions (e.g., Uniform, Normal, etc.)
of possible values. State-of-the-art approach [6] defines the
sampling step as follows: let C be the overall set of configura-
tions, that is, C = {c1, . . . , cn}, we measure them individually
and associate a real value with each, that is, π : C → R
(set of Real numbers); S ⊆ C is the sample set, which
depends on the sampling heuristics (e.g., t-wise sampling) [6].
Performance-influence models have been defined as a function
from system configurations to a performance measure, where
performance can be any quantifiable property (e.g., system
response time) [6]. In Table I, we can notice that feature
SE has been measured and shows a response time of 2
seconds. In PLUS, we define sampling as follows: let C be
the overall set of configurations, we measure each of them
and associate a probability distribution function (PDF) with
each, not a value, that is, π : C → P (set of Probability
values). For example, the normal distribution is denoted by
N (µ, σ2) with mean µ and variance σ2, or the uniform
distribution is denoted by U(a, b), where a and b are its
minimum and maximum values, respectively. From Table I, we
can see that the MS feature shows a response time varying
with a uniform distribution between 2 and 4 seconds. The
PDFs and their parameters capture the uncertainty that has
been observed while measuring the performance of the system
configurations. This information is then exploited to learn,
predict, and optimize the overall system performance.

2: Learning. The second step consists of deriving a model
that correlates the influence of individual configuration options
and their combinations with performance. The state of the
art [6] defines the learning step as follows: learn: S → M ;
M has the following form in our case: M =

∑
t∈T rt·t; T rep-

resents the set of terms including features and interactions
along with their factor structure, e.g., T = {SE ,MS, SE ·MS},
rt ∈ R, and t are the individual features or interactions among
the features, if any. For example, in Table I, the predictive
model for WGS includes the features: SE ,MS , IP , and PE ;
it includes further elements that are interactions between SE
and MS as well as IP and PE . In PLUS, we define learning
as follows: learn: S → M ; here M has the following form:
M =

∑
t∈T rt · pt · t; pt ∈ P represents the PDF of the

t-th feature or interaction. An issue that arises in this model
is how to combine different PDFs. For example, if features
include uncertain parameters regulated by normal and uniform
distributions, algebraic methods will be used to sum/combine
(on) these two probability functions, but it is unclear how to
do that for the general case. In Table I, the predictive model
for WGS reports the PDFs of specific features, e.g., pSE , and
the interactions to be handled as combination of PDFs, e.g.,
pSE on pMS .

3: Prediction. The third step consists of using the derived
model for predicting performance properties of system con-
figurations not measured before. State-of-the-art approach [6]
defines the prediction step as follows: pred: (C,M) → R.
In Table I, we can notice that the selection of SE ,MS , IP ,
and PE leads to a predicted response time of 140 seconds.
In PLUS, instead, we define prediction as follows: pred:
(C,M) → P. This causes the question of how to predict
the PDF of a configuration from the derived model. Specifi-
cally, starting from a system configuration C and the model
learned in the previous step, it is not obvious to predict the
interpolation of PDFs associated to the selected features, and
the resulting PDF for the performance results (e.g., system
response time) of such system configuration. For example, in
Table I, we can see that, when selecting two features showing
an interaction, say SE and MS , the PDF associated to the
prediction of performance results requires the combination of
their distributions: U(1, 2) on U(2, 4).

4: Optimization. The fourth step consists of deriving the
optimal system configuration, that is a selection of features
that optimizes a certain goal (e.g., response time). In PLUS,
we estimate the ability of the software system to tolerate
the uncertainty of intrinsic input parameters. Optimization
concerns the following actions: (i) select the features that do
not generate performance issues; (ii) identify the bounds of
uncertain parameters values that lead to performance issues;
(iii) modify the feature model and/or the uncertainty speci-
fication to get alternatives that meet the stated performance
requirements. State-of-the-art approach [6] defines the opti-
mization step as follows: opt: (O,M) → C where π(C) is
optimal according to O (e.g., max/min value). In Table I, when
minimizing the system response time (minVal ), SE and MS
are selected only. In PLUS, instead, we define optimization as
follows: opt: (O,M)→ C where π(C) is optimal according
to O (e.g., max/min variance, largest/smallest outside areas).
The difference to the state of the art is that for deriving the
optimal configuration, uncertain parameters play a crucial role
since they are associated to probabilities, and their distribu-
tions become a further source of optimization. In Table I
we report the case of maximizing the variance (maxVar )
of the system response time, and all features are selected.
Differently from [6], the optimality of performance results is
not determined by a single value, but we need to consider
the distribution of values obtained with PDFs of uncertain
parameters and their combinations, since they contribute to
the overall system performance.



TABLE I
COMPARING THE STATE OF THE ART [6] AND PLUS BY THE EXAMPLE OF THE WIND GENERATOR SYSTEM (WGS)

State of the art PLUS

Sampling:

Configurations Features π
c1 {SE} 2.0
c2 {MS} 4.0
c3 {PE} 6.0
c4 {IP} 8.0
c5 {SE , MS} 14.8
c6 {SE , PE} 20.3
c7 {SE , IP} 25.7
c8 {MS , PE} 30.2
. . . . . . . . .

Configurations Features π
c1 {SE} U(1, 2)
c2 {MS} U(2, 4)
c3 {PE} U(4, 6)
c4 {IP} U(6, 8)
c5 {SE , MS} N (15, 2)
c6 {SE , PE} N (20, 2)
c7 {SE , IP} N (25, 2)
c8 {MS , PE} N (30, 2)
. . . . . . . . .

Learning: learn(SWGS ) =
5 + 10 · SE + 20 ·MS + 30 · IP + 40 · PE +
15 · SE ·MS + 20 · IP · PE

learn(SWGS ) =
5+10 ·U(1, 2) ·SE+20 ·U(2, 4) ·MS+30 ·U(6, 8) ·IP+
40 · U(4, 6) · PE + 15 · N (15, 2) · SE ·MS + . . .

Prediction: pred(SE 7→ 1,MS 7→ 1, IP 7→ 1,PE 7→ 1),MWGS ) =
5 + 10 + 20 + 30 + 40 + 15 + 20 = 140

pred(SE 7→ 1,MS 7→ 1, IP 7→ 0,PE 7→ 0),MWGS ) =
5+10 ·U(1, 2)+20 ·U(2, 4)+15 ·U(1, 2) on U(2, 4)+ . . .

Optimization: opt(minVal ,MWGS ) =
(SE 7→ 1,MS 7→ 1, IP 7→ 0,PE 7→ 0)

opt(maxVar ,MWGS ) =
(SE 7→ 1,MS 7→ 1, IP 7→ 1,PE 7→ 1)

IV. SUMMARY

The key idea of PLUS is to specify a new class of per-
formance models, uncertainty-influence models, that embed
heterogeneous uncertainties (e.g., software components, hard-
ware platforms, workload, operational profile, environmental
changes) as first-class entities. Performance analysis captures
the system evolution through a dataset of configuration options
including: (i) the presence of features along the time, (ii)
system uncertainties regulated by PDFs and represented by
time series, and (iii) performance measurements expressed as
distributions of values. Uncertainty-influence models aim at
quantifying how the selected features and their uncertainties
affect the system performance, thus to identify the configura-
tion options that most likely generate performance issues. This
supports software engineers in the performance evaluation of
software systems subject to uncertainties.
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