
Comprehending Studies on Program Comprehension
Ivonne Schröter∗†, Jacob Krüger∗§, Janet Siegmund‡, Thomas Leich†§

∗ Otto-von-Guericke-University Magdeburg, Germany ‡ University of Passau, Germany
{ischroet, jkrueger}@ovgu.de siegmunj@fim.uni-passau.de

† METOP GmbH Magdeburg, Germany
thomas.leich@metop.de

§ Harz University of Applied Sciences Wernigerode, Germany

Abstract—Program comprehension is an important aspect of
developing and maintaining software, as programmers spend
most of their time comprehending source code. Thus, it is the
focus of many studies and experiments to evaluate approaches
and techniques that aim to improve program comprehension. As
the amount of corresponding work increases, the question arises
how researchers address program comprehension. To answer this
question, we conducted a literature review of papers published
at the International Conference on Program Comprehension, the
major venue for research on program comprehension. In this
article, we i) present preliminary results of the literature review
and ii) derive further research directions. The results indicate the
necessity for a more detailed analysis of program comprehension
and empirical research.

Keywords-Systematic Review, Study Comprehension, Empiri-
cal Research

I. INTRODUCTION

Understanding how a program works is essential for software
engineers. Consequently, numerous approaches to improve or
measure program comprehension exist [15, 18]. To evaluate
these approaches, empirical studies with human participants
are essential. Such studies are becoming standard in software
engineering [19], and several guidelines for conducting and re-
porting studies exist (e.g., by Kitchenham et al. [12], Jedlitschka
and Pfahl [8], or Ko et al. [14]). However, Maalej et al. [15]
report a gap between research on program comprehension and
its application in industry. The authors found that developers
tend to select comprehension strategies depending on the
context of their current work. Therefore, it is problematic
to compare and replicate studies on program comprehension.

However, an empirical study provides only benefits if
researchers can replicate it to confirm or contest the results.
Replicating studies is essential to construct and consolidate
empirical knowledge in a research area [1, 3, 10, 19]. To this
end, comprehensive descriptions are necessary [19], but these
often miss important details [7, 20]. For that purpose, Carver
[6] proposes guidelines to report replications and discusses
several information of an original study that should be provided,
for example, participants and design. Still, there are differences
regarding which and how authors report their data. This
can hamper researchers and practitioners in comprehending,
replicating, and comparing studies. Thus, several questions
arise, for example:

How do researchers investigate program comprehension?
How did the evaluation of program comprehension evolve?

How did the quality of studies and documentation evolve?
In this paper, we make the first step towards answering

these questions and assess the quality of empirical studies
on program comprehension at the International Conference
on Program Comprehension (ICPC). We focused on ICPC as
starting point, because it is the major venue for research on
program comprehension, so that we can expect that most of
the published papers report studies on program comprehension.

Hence, the published articles should contain studies on
program comprehension. Our goal is to give an overview of
the evolution of such studies over time and how clearly authors
specify researched topics and evaluations. To this end, we
conducted a manual literature review [11] on articles published
at ICPC from 2006 until 2016. We analyzed 540 available
papers to determine which details their authors report on context,
terminology, and threats to validity. The findings allow us to
gain first insights into past development of research on program
comprehension and empirical research in general. Based on
the preliminary results, we derive directions for investigating
the aforementioned questions in more detail.

II. RESEARCH METHOD

In this section, we describe our literature review, which we
based on the guidelines by Kitchenham and Charters [11].

A. Research Questions

In this paper, we address the following research questions:
RQ-1 Which part of program comprehension do re-

searchers investigate?
Program comprehension is related to several aspects
of software development, for instance, bug fixing or
implementation. We provide an initial set of categories
that can be used to categorize corresponding research
(i.e., source code, program behavior, testing, API, re-
quirements, documentation, and miscellaneous).

RQ-2 Which terminology is used to report evaluations?
By answering this research question, we aim to iden-
tify and provide an overview of commonly applied
methods to evaluate program comprehension. We found
no common terminology to describe evaluations (e.g.,
empirical study, exploratory study, or user study), which
may lead to potential misunderstandings (e.g., regarding
differences or commonalities of exploratory study vs.
exploratory case study). Hence, it seems necessary to



Fig. 1. Steps of identifying relevant articles.

clearly define evaluation approaches and the correspond-
ing terminology.

RQ-3 Do authors report threats to validity?
Threats to validity describe potential biases and are
essential to understand the quality of empirical stud-
ies [19]. Hence, we analyzed how many papers explicitly
discussed them, for instance, in an own section or
paragraph. We found an increase in papers discussing
threats to validity, indicating the growing importance of
these threats for the research community at ICPC.

By answering these questions, we provide a preliminary
overview of research on program comprehension. The main
goal of this paper is to illustrate and discuss potential problems
in comprehending papers on program comprehension.

B. Search Process

We selected ICPC as the major venue for research on
program comprehension to perform a manual search [22].
From these, we considered only the years since the conference
emerged from its corresponding workshop. Conferences are
assumed to have higher-quality standards, and this switch
indicates the increasing importance of the venue and topics.
Hence, our initial sample includes all 11 occasions from 2006 to
2016, for which 540 papers are available. We give an overview
of our selection process in Figure 1.

To this end, we used the following criteria sample the papers
and collect data:

• To answer our first research question, we determined the
investigated part of comprehension. We used open card
sorting to identify relevant categories for different parts
of program comprehension. We decided for each paper
to which category it fits best. If a paper addressed cross-
cutting research, we assessed the paper’s most prominent
topic by analyzing which one was described on more
detail. For this research question, we excluded articles
that do not describe new research, for example, invited
talks or working sessions. As we show in Figure 1, 429
papers remained.

• To answer our second research question, we extracted
from each paper which terminology authors use to report
their evaluations (e.g., empirical study, exploratory study,
or experiment).

TABLE I
CATEGORIES OF COMPREHENSION AT ICPC.

Category Definition # Articles
Source code Research on comprehending the source

code of a program.
229

Program behavior Research on comprehending the behav-
ior and architecture of a program based
on its execution.

104

Testing Research on identifying, managing, and
comprehending bugs to test and main-
tain a program.

38

API Research on the usage and comprehen-
sibility of APIs and their interfaces.

21

Requirements Research on comprehending require-
ments and their mapping them towards
a program.

16

Documentation Research on documenting and specify-
ing a program.

6

Miscellaneous Research on other parts of comprehen-
sion with few articles.

15

• To answer our third research question, we identified
whether threats to validity are reported.

For the second and third research questions, we excluded
articles that do not describe an evaluation, which was often
omitted in tool demos or short papers. From the 429 articles
of the previous step, 293 remained.

III. RESULTS

In this section, we present and discuss the results of our
literature review.

RQ-1: Which Part of Program Comprehension Do Researchers
Investigate?

Results: In Table I, we present and define parts of program
comprehension that were the focus of the reviewed articles.
We remark that we categorized each article into one category,
even if it addressed cross-cutting research. We decided to use
this categorization to provide an initial overview. In future
research, we intend to refine these categories and investigate
them in more detail. Under miscellaneous, we summarize all
approaches we found not to fit into a category and which
were rarely reported. For example, Wang et al. [21] investigate
fault diagnosis for automated configurations based on expert
knowledge.

Discussion: The results in Table I illustrate that research
at ICPC focuses on source code and program behavior. This
is not surprising, as ICPC is the premier venue for program
comprehension and both aspects are essential in this regard.
Still, there are some categories that occur occasionally, for
instance, testing, API, or requirements comprehension. During
our analysis, we found it challenging to categorize such articles.
For instance, Jiang et al. [9] address documentation, but in
the context of APIs. To assign a single category to a paper,
we selected the type of comprehension we identified to be the
overarching aspect of comprehension under research (i.e., API
in Jiang et al. [9]). The lack of clarity on which part of program
comprehension is under research may lead to problems while



TABLE II
EXAMPLES OF USED TERMS TO DESCRIBE THE EVALUATION APPROACH.

Additional Prefix Prefix # Term #
Empirical, exploratory Case 80

Study 171- Empirical 34
Qualitative Exploratory 15
Exploratory, quantitative User 12
- Controlled 18 Experiment 83- Within-subject 5
- Empirical 6 Evaluation 19
- - - Survey 10
- - - Analysis 10

comprehending papers or identifying related work, which may
result in incomplete consolidations or unnecessary replications.

To answer our first research question, we find that source
code and program behavior are the mostly addressed parts
of program comprehension at ICPC. Still, we see that the
articles cover a broad range of topics and all phases of software
development. To get a better overview of how different parts
of program comprehension are understood, we intend to look
into them in more detail and find definitions that are easier to
assign.

RQ-2: Which Terminology is Used to Report Evaluations?

Results: We identified numerous different terms that
authors used to describe their evaluation. The terms we present
in Table II appeared at least 10 times, for instance, study.
Combinations with their corresponding refinements (prefixes)
appeared 5 times at minimum (e.g., case study). Sparsely,
authors applied additional refinements (e.g., empirical case
study) to describe their evaluation.

Discussion: Case studies, empirical studies, and experi-
ments are common terms. However, we found several papers
that name rather unique evaluation methods, such as in-depth
qualitative observation [5]. The authors conducted a survey
with a quantitative study on variable declarations in Java
projects and manually analyzed a subset of their results.
Additional prefixes are used to refine the used terms. These
prefixes become rather similar and the authors do not clarify
whether there are defined differences or not. For instance, it is
problematic to separate between exploratory case studies [17],
exploratory user studies [2], and exploratory studies [16],
because in all these examples, authors observed the behavior of
users during different tasks (i.e., program comprehension [17],
maintenace [2], and programming [16]). While the tasks and
approaches of these papers differ, the general evaluation method
is the same, indicating synonymous and ambiguous use of
terminology. This may mislead researchers to identify which
type of evaluation is actually applied (i.e., a user study or case
study).

To answer our second research question, we find that
researchers use a diverse and often ambiguous terminology
to report their evaluation. This might be a threat to the
comprehensibility of empirical studies and also reduces the
possibility for comparable replications, because it can be
unclear which type of evaluation was actually applied. By

Fig. 2. Ratio of papers that include threats to validity for empirical studies.

consolidating and extending existing catalogs of evaluation
methods [8, 12], researchers have guidance on terminology,
which can avoid misunderstandings.

RQ-3: Do Authors Report Threats to Validity?

Results: We counted how often threats to validity were
reported for all evaluations and also separately for studies with
human participants. The results, which we illustrate in Figure 2,
indicate a paradigm shift at ICPC for the year 2009, in which
the highest number of articles was accepted (55), but 44%
(24) of them did not provide an evaluation. In addition, only
approximately 60% of the studies with participants (20%
overall) reported threats to validity.

Discussion: Since 2009, the situation changed consider-
ably. Especially in recent years, most accepted papers reported
an empirical evaluation and threats to validity. For example,
in 2016, 25 (out of 45) papers report both, an evaluation
and threats to validity, while only 10 papers consider neither.
While we found no clear trend for studies with participants, the
overall ratio of articles discussing threats to validity increased
considerably from approximately 20% in 2009 to 57% in 2016.
This indicates an increasing quality of papers at ICPC and
growing awareness of the community to report limitations of
their studies, which are results similar to those of Siegmund
et al. [19] for other venues. Thus, the knowledge about
empirical studies grew in recent years, but there is still a
large number of authors who do not seem to be aware of the
importance of potential bias to their studies.

To answer our third research question, the number of
empirical studies for which the authors report threats to validity
increased in recent years. We see strong points that these
become more important at ICPC. Hence, researchers consider
the corresponding discussion to be important and consolidating
this knowledge supports them in describing threats to their
own studies.

IV. THREATS TO VALIDITY

Before discussing threats to validity, we emphasize that
the literature review and results presented in this work are
preliminary. Hence, we described only parts of our review,
currently preventing replication. We aim to extend our analysis
and provide a detailed report in future work.



A threat to internal validity is that we deviated from the
guidelines of Kitchenham and Charters [11], as only the
first author manually searched a single venue [4, 13]. To
mitigate this threat, we reduced the number of papers to
be analyzed by focusing on ICPC as the premier venue for
program comprehension. Other authors double checked the
results, limiting potential biases on our preliminary analysis.

A threat to external validity is the focus on ICPC as one
venue. Analyzing further venues can be used to confirm, extend,
or contest our findings, for example, regarding the extracted
categories, which may be different in other venues.

A threat to construct validity is that we found it challenging
to correctly analyze all articles mainly for two reasons:
First, the ambiguous terminology among different and also
within the same papers hampers the understanding of which
approach is actually used. Second, cross-cutting research
made it problematic to unambiguously assign a paper to a
category. Due to these points, other researchers may decide
differently during their analysis. However, our findings provide
an initial point for further research and highlight the problems
of comprehending studies on program comprehension.

V. CONCLUSION AND FUTURE WORK

In this paper, we present initial results of a literature review
at the International Conference on Program Comprehension
to understand how program comprehension is addressed and
evaluated in papers. Overall, the results show that:

• Corresponding to ICPC’s focus, most papers address the
topics source code and program behavior.

• Ambiguous terminology is used to report studies, which
makes it difficult to compare studies.

• Our initial assessment of reported threats to validity
indicates an increasing quality of papers in recent years.

In future work, we aim to deepen the initial analysis
presented in this paper. To this end, we will extend our scope,
for example, by including further venues and assessing the
papers in more detail. We also aim to evaluate connections
between the different topics of program comprehension, such
as how documentation is used to comprehend API usage [9].

Since we detected that one can not rely on terminology used
to describe evaluations, we want to analyze in more detail
how evaluations on software comprehension are performed, for
example, regarding typical evaluation tasks and comprehension
measurements, and investigate the acceptance of professional
developers regarding research-related evaluation tasks. In a
more long-term perspective, we aim at a catalog for empirical
studies, refining existing ones [8, 12] with concrete guidelines,
for example, on reporting evaluation tasks, measurements, and
threats to validity.

ACKNOWLEDGMENT

This research is supported by DFG grants LE 3382/2-1 and
SI 2045/2-1, and Volkswagen Financial Services AG.

REFERENCES

[1] V. R. Basili, F. Shull, and F. Lanubile. Building Knowledge
Through Families of Experiments. IEEE Trans. Software Eng.,
25(4):456–473, 1999.

[2] F. Beck, O. Moseler, S. Diehl, and G. D. Rey. In Situ
Understanding of Performance Bottlenecks through Visually
Augmented Code. In ICPC, pages 63–72. IEEE, 2013.

[3] R. M. M. Bezerra, F. Q. B. da Silva, A. M. Santana, C. V. C.
Magalhaes, and R. E. S. Santos. Replication of Empirical Studies
in Software Engineering: An Update of a Systematic Mapping
Study. In ESEM, pages 1–4. IEEE, 2015.

[4] O. P. Brereton, B. A. Kitchenham, D. Budgen, M. Turner, and
M. Khalil. Lessons from Applying the Systematic Literature
Review Process within the Software Engineering Domain. J.
Syst. Software, 80(4):571–583, 2007.

[5] S. Butler, M. Wermelinger, and Y. Yu. A Survey of the Forms of
Java Reference Names. In ICPC, pages 196–206. IEEE, 2015.

[6] J. C. Carver. Towards Reporting Guidelines for Experimental
Replications: A Proposal. In RESE. 2010.

[7] T. Dybå, V. B. Kampenes, and D. I. K. Sjøberg. A Systematic Re-
view of Statistical Power in Software Engineering Experiments.
Inform. Software Tech., 48(8):745–755, 2006.

[8] A. Jedlitschka and D. Pfahl. Reporting Guidelines for Controlled
Experiments in Software Engineering. In ISESE, pages 95–104.
IEEE, 2005.

[9] J. Jiang, J. Koskinen, A. Ruokonen, and T. Systa. Constructing
Usage Scenarios for API Redocumentation. In ICPC, pages
259–264. IEEE, 2007.

[10] N. Juristo and S. Vegas. Using Differences Among Replications
of Software Engineering Experiments to Gain Knowledge. In
ESEM, pages 356–366. IEEE, 2009.

[11] B. A. Kitchenham and S. Charters. Guidelines for Performing
Systematic Literature Reviews in Software Engineering. Techni-
cal Report EBSE-2007-01, Keele University and University of
Durham, 2007.

[12] B. A. Kitchenham, S. L. Pfleeger, L. M. Pickard, P. W. Jones,
D. C. Hoaglin, K. El Emam, and J. Rosenberg. Preliminary
Guidelines for Empirical Research in Software Engineering.
IEEE Trans. Software Eng., 28(8):721–734, 2002.

[13] B. A. Kitchenham, O. P. Brereton, D. Budgen, M. Turner,
J. Bailey, and S. Linkman. Systematic Literature Reviews in
Software Engineering – A Systematic Literature Review. Inform.
Software Tech., 51(1):7–15, 2009.

[14] A. J. Ko, T. D. Latoza, and M. M. Burnett. A Practical Guide
to Controlled Experiments of Software Engineering Tools with
Human Participants. Empir. Software Eng., 20(1):110–141, 2015.

[15] W. Maalej, R. Tiarks, T. Roehm, and R. Koschke. On the
Comprehension of Program Comprehension. ACM Trans.
Software Eng. Methodol., 23(4):31:1–31:37, 2014.

[16] P. Petersen, S. Hanenberg, and R. Robbes. An Empirical
Comparison of Static and Dynamic Type Systems on API Usage
in the Presence of an IDE: Java vs. Groovy with Eclipse. In
ICPC, pages 212–222. ACM, 2014.

[17] T. Roehm. Two User Perspectives in Program Comprehension:
End Users and Developer Users. In ICPC ’15, pages 129–139.
IEEE, 2015.

[18] J. Siegmund. Program Comprehension: Past, Present, and Future.
In SANER, pages 13–20. IEEE, 2016.

[19] J. Siegmund, N. Siegmund, and S. Apel. Views on Internal and
External Validity in Empirical Software Engineering. In ICSE,
pages 9–19. IEEE, 2015.

[20] D. I. K. Sjøberg, B. Anda, E. Arisholm, T. Dyba, M. Jørgensen,
A. Karahasanovic, E. F. Koren, and M. Vokác. Conducting
Realistic Experiments in Software Engineering. In ISESE, pages
17–26. IEEE, 2002.

[21] M. Wang, X. Shi, and K. Wong. Capturing Expert Knowledge
for Automated Configuration Fault Diagnosis. In ICPC, pages
205–208. IEEE, 2011.

[22] H. Zhang, M. A. Babar, and P. Tell. Identifying Relevant Studies
in Software Engineering. Inform. Software Tech., 53(6):625–637,
2011.


