
Feature-Context Interfaces: Tailored Programming
Interfaces for Software Product Lines

Reimar Schröter
University of Magdeburg

Germany

Norbert Siegmund
University of Passau

Germany

Thomas Thüm,
Gunter Saake

University of Magdeburg
Germany

ABSTRACT
Despite the wide use of software product lines, their imple-
mentation and evolution is a challenging task. When im-
plementing a feature, a developer has to know which code
fragments of other (already implemented) features are ac-
cessible in each program variant in which the feature is in-
cluded. Especially for composition-based implementation
techniques, in which the code is implemented in separated
modules, it is an exhausting and error-prone task to find
safely accessible code fragments of other modules. State-of-
the-art tool support, such as product-line type checkers, de-
tect errors a posteriori (i.e., during compilation), but fails to
prevent errors during the implementation. To overcome this
problem, we propose feature-context interfaces, which pro-
vide a modular and non-variable programming interface to
the variable source code of a product line. These interfaces
ease changes, extensions, and the maintainability of product
lines. To demonstrate applicability, we implemented a con-
tent assist and an outline view in Eclipse based on feature-
context interfaces. We evaluate the potential of our method
by analyzing the number of potential type errors we prevent
compared to state-of-the-art techniques.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Tech-
niques—Modules and interfaces

General Terms
Design, Reliability

Keywords
Software product lines, syntactic interface, modularity

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
SPLC ’14, September 15 - 19 2014, Florence, Italy
Copyright 2014 ACM 978-1-4503-2740-4/14/09 ...$15.00.
http://dx.doi.org/10.1145/2648511.2648522

1. INTRODUCTION
Software product-line (SPL) engineering aims at the de-

velopment of similar programs based on a common code
base [8]. Features describe the commonalities and variabili-
ties of different program variants [10]. To generate a tailored
program, called variant, stakeholders select features, satis-
fying their requirements. Selected features are mapped to
their corresponding implementation units, which are then
composed and compiled to obtain customized program vari-
ants. The benefits of reduced time-to-market and high re-
usability led to the development of an increasing number of
SPLs in practice, such as HP printer driver, Siemens medical
care SPL, the Linux kernel, and Nokia’s SPLs [24].

Time-to-market is one of the main benefits of SPLs that is
strongly influenced by the development process of the prod-
uct line itself. An incorrect implementation of a feature can
increase development time resulting in higher costs. Several
techniques exist to identify an incorrect feature implemen-
tation, such as product-line type checkers [2, 15]. However,
these techniques identify errors only after the implemen-
tation of a code artifact, but fail to prevent them, again,
leading to an increased development time. Moreover, there
is no composition-based technique supporting programmers
in identifying safely accessible code fragments during the
implementation. In detail, on the one hand, there is no
overview about accessible code that would prevent compile-
time errors. On the other hand, the lack of not knowing
which code fragments are safely accessible can lead to un-
exploited reuse opportunities that hinder the maintenance
and the development of new features.

Especially the development of composition-based SPLs, in
which developers implement features locally into separate
code modules (e.g., components, aspects, or feature mod-
ules), challenges the identification of safely accessible code.
Let us consider a small example in which we add a new fea-
ture to an existing SPL. A developer implementing the new
feature f wants to use a class C only introduced by feature
g. If, on the one hand, g is not necessarily part of every
variant that includes the new feature f, a dangling reference
to C will occur in some variants. On the other hand, if all
variants containing f will indeed contain g, not using C could
be a missed opportunity for reuse. Beside the extension of a
product line by feature f, we need to know which code frag-
ment is safe to use for changes in feature implementations
or other maintenance tasks of SPLs. With the increasing
trend of reusing SPLs itself (i.e., in a multi software product
line (MPL) [20]), the problem becomes even worse. A de-
veloper has additionally to know the dependencies between



the involved SPLs to identify accessible code artifacts.
In general, how can the developer know which methods

exist and are safely callable from a certain feature? The de-
veloper needs to consider the domain dependencies among
features in the SPL (e.g., one feature requires another fea-
ture) and has to infer from these dependencies all accessible
code fragments. With an increasing number of features and
their dependencies, this approach quickly becomes infeasi-
ble. To the best of our knowledge, there is no approach that
supports the developer and presents a modular and non-var-
iable view on safely reusable code fragments for a currently
implemented module.

We propose an interface depending on the current feature
context. The feature context represents the feature in which
the developer is working to extend, maintain, or change
the SPL. Based on this context, we compute a non-variable
interface, called feature-context interface, to the remaining
code of the SPL that is safely accessible. By using members
of the interface only, we are able to prevent compile-time
errors before the compilation and we are aware of reuse op-
portunities.

We demonstrate the applicability of feature-context in-
terfaces by implementing tool support in FeatureIDE [22],
an Eclipse extension for the development of SPLs. In de-
tail, we realize an auto-completion mechanism and an out-
line view, making feature-context interfaces available for
a large community. The current implementation supports
software product lines written in Java based on Feature-
House [3]. Our general approach supports a large range of
composition-based implementation techniques and program-
ming languages.

To evaluate the potential of feature-context interfaces, we
compute the variable interface of an SPL. The variable in-
terface contains the union of all members defined in all code
modules and is used as baseline for comparisons. Our evalu-
ation of eight SPLs indicates that feature-context interfaces
reduce the number of members compared to the variable in-
terface, by 39 %, on average. Furthermore, we found that we
can reduce up to 28 % of potential type errors compared to a
state-of-the-art development. Moreover, some state-of-the-
art approaches hide, on average, 51% of members relative
to the variable interface that are accessible in the feature-
context interface hindering the reusability of code fragments
during the development of new features.

In summary, we make the following contributions:
• We introduce feature-context interfaces as a non-vari-

able view to the variable program interface of a com-
position-based SPL.
• We implemented auto-completion support for code and

an outline view in FeatureIDE based on feature-con-
text interfaces.
• We compare feature-context interfaces regarding error

prevention to state-of-the-art approaches, such as APIs
of program variants and the variable SPL interface.

2. PRELIMINARIES
Next, we give some background on feature modeling and

composition-based implementation mechanisms that are rel-
evant for feature-context interfaces.

2.1 Feature Models
A feature model specifies combinations of features that

give rise to valid variants [10, 1]. A feature diagram is a

Figure 1: Different program interfaces through fea-
ture selection.

graphical representation of a feature model in form of a tree,
in which each child feature requires the presence of its parent
feature. In Figure 1, we show the feature diagram of a nav-
igation SPL (ignore source code for now). The root feature
Navigation is present in all variants, similar to all manda-
tory child features (Graph, Wgt, and Gtp), which must be
included in a variant iff the parent (i.e., feature Navigation)
is included. In contrast, feature Connected is an optional
feature that can be included if the parent is included. Fur-
thermore, feature diagrams allow us to define or groups and
alternative groups. If the parent feature of an or group is
part of a variant, at least one grouped feature has to be
included, too. Features Car and Pedestrian are defined in
an alternative group (represented as an arc) meaning that
exactly one of these features must be included if the par-
ent is included. A feature diagram can have also cross-tree
constraints in the form of propositional formulas, or exclude
(↔) and require (→) edges. The Navigation SPL defines
two cross-tree constraints (Car →Weighted and Car → Di-
rected), which enforce that each variant with feature Car
also includes features Weighted and Directed.

A propositional formula is an alternative feature-model
representation which we can also use to describe the depen-
dencies in the navigation SPL:

n ∧ r ∧ g ∧ t ∧ (a↔ ¬p)
∧(u ↔ ¬w) ∧ (d ↔ ¬i) ∧ (a → w ∧ d)

Each feature is represented by a unique variable (we use
the underlined characters of Figure 1 for brevity). Based
on this representation, a satisfiability solver allows us to
check whether a given feature selection is valid [7]. In this
paper, we use the representation as propositional formula to
retrieve feature-context interfaces.

2.2 Composition-Based Implementation
In feature-oriented SPLs, software is decomposed in units

of functionality that map to a set of features F [1]. Whereas
composition-based techniques modularize a feature’s imple-
mentation (e.g., using feature modules), annotation-based
approaches use annotations to map code to features (e.g.,
#ifdef directives). We focus on composition-based tech-
niques, especially on feature-oriented programming [6, 17],
in which the code of a feature fi ∈ F is implemented by a
dedicated feature module denoted as impl(fi). Feature mod-
ules that correspond to selected features are composed to
generate a variant v :

impl(v) = impl(f1 ) • ... • impl(fn) with f1 , ..., fn ∈ F



where • : I × I → I is the composition operator that is de-
fined over the set I of implementation units and f1, ..., fn are
the selected features of the variant v [5]. In detail, each fea-
ture module consists of a set of classes (including methods,
fields, etc.), which are composed via superimposition with
equally named classes of other selected feature modules, and
recursively with equally named members in classes having
the same type. The resulting classes contain the superim-
posed members of all selected implementation units.

For example, each feature Graph,Wgt , ..., Connected ∈ F
of the navigation SPL has its own feature module impl(
Graph), impl(Wgt), ..., impl(Connected). In Figure 2, we
depict the composition of feature modules impl(Graph) and
impl(Unweighted). Here, the class Graph is defined in both
features, but with different methods and fields. Class Ver-

tex is defined only in feature Graph, but used in both feature
modules. The superimposition of both feature modules re-
sult in two classes Graph and Vertex containing the members
of both modules.

3. PROBLEM STATEMENT
Implementing SPLs is challenging. Depending on the cur-

rently implemented feature, the code fragments (i.e., the set
of classes, methods, and fields) that are safely accessible
differ caused by domain constraints that require or forbid
a different set of features. We denote the feature context
(i.e., the currently implemented feature module) FC as one
feature in F , such that FC ∈ F .

Example. In Figure 1, we show the feature model of a nav-
igation system using a graph implementation as underlying
data structure. The type of the graph data structure de-
pends on the application scenario of the navigation system.
For instance, we need directed, weighted edges for car nav-
igation, but only undirected edges when navigating pedes-
trians. When implementing feature Car, programmers are
interested in code fragments of already implemented fea-
tures to reuse existing functionality. Therefore, the feature
context is: FC = Car . If we consider the feature context
with respect to the given dependencies of the feature model
(cf. Figure 1), we can conclude which features must be also
considered to identify safely accessible members. We see
that each variant, in which feature Car is included, also
contains feature Weighted (cf. Figure 1). This causes the
feature Wgt to be selected and the feature Unweighted to
be deselected. Because of these dependencies, further fea-
tures have to be selected and deselected.

State-of-the-Art Approaches
State-of-the-art approaches are currently conceivable to de-
termine accessible members (i.e., classes, methods, fields)
for an SPL and feature context. We analyze the approaches
Feature Module, Minimal Variant, and Always Available re-
lated to the criteria completeness and soundness.
• Completeness: An approach is complete if it contains

all members of an SPL that are safely accessible for
each feature context.
• Soundness: An approach is sound if it contains only

members that are safely accessible for each feature con-
text.

In general, an incomplete approach hinders code reusing
by not showing all safely accessible members of other fea-
tures. By contrast, an unsound approach can lead to dan-

Graph
v:Vertex[]
addVertex(a:Vertex):void             

Vertex
...
...

Graph

addEdge(a:Vertex, b:Vertex):void
getVertexes():Vertex[]
display():void

Graph
v:Vertex[]
addVertex(a:Vertex):void
addEdge(a:Vertex, b:Vertex):void
getVertexes():Vertex[]
display():void

Vertex
...
...

Graph

Unweigthed

Graph

Unweigthed

=

Figure 2: Composition of features Graph and Un-
weighted.

gling references that result in compile-time errors. There-
fore, a developer needs an overview of members that is com-
plete and sound to easily support changes, maintenance, or
extensions of SPLs.

Feature Module. One way to identify members that are
safely accessible in a given feature context FC is to collect
all members that are defined in the corresponding feature
module impl(FC ) of the feature context. All members that
are defined in this feature module are safely accessible and,
thus, we classify the approach as sound. However, this ap-
proach certainly neglects all members outside of this feature
module that are also always safe to access. If there exists a
dependency in the feature model that forces the selection of
another feature that is outside of FC (e.g., a parent feature),
the result will be incomplete.

For instance, we are interested in accessible members re-
lated to the feature context of Car (i.e., FC = Car). Using
this approach, we look only into the feature module of fea-
ture Car. This is an easy procedure, but neglects safely
accessible members, such as method addEdge and getVer-

texes of feature Weighted.

Minimal Variant. A state-of-the-art approach to gather
safely accessible members is to use the members of certain
variants impl(v) of an SPL. We generate a variant contain-
ing feature FC by additionally selecting a minimal number
of features to yield a valid variant. For instance, if our fea-
ture context contains feature Graph (i.e., FC = Graph), in
addition to other features, we need to select one of the fea-
tures Weighted and Unweighted to obtain a valid variant.
This decision, however, influences the members present in
the resulting variant. If we select feature Weighted, method
addEdge(Vertex, Vertex, int) is included in the resulting
set of members, although it is not always safely accessible
(i.e., when we decide to select feature Unweighted).

The ambiguity to define a variant that can be used as pro-
gram API is one of the negative aspects of this approach.
Furthermore, the manual selection to define a specific vari-
ant leads to additional members influencing the soundness.
For instance, if we create all variants VFC related to the
feature context FC , the approach would present only sound
results iff the difference of the given variant’s members is
empty. However, it cannot be ensured that there is no mem-
ber that is defined only in one of these variants. Therefore,
we classify the approach as complete but unsound. Nev-
ertheless, the approach presents complete results, so that



Incomplete Complete

Unsound Minimal Variant
Sound Feature Module

Always Available

Table 1: Classification of state-of-the-art techniques.

all safely accessible members are included in the variants of
VFC .

To reduce the number of unsound members in the gener-
ated variant, it is possible to reduce the number of features
that are included in a valid configuration. Therefore, we se-
lect only those features that are required to obtain a valid
variant. We call this resulting variant – Minimal Variant.

Always Available. The approach always available uses in-
formation given in the feature model to obtain a set of fea-
tures that are present in all variants such that we can safely
rely on the members of these features. An advantage of
this approach is the independence to the feature context.
We need to determine only the set of core features, which
is non-variable and which will only change if the feature
model is changed. However, we are unable to determine all
members that are safely accessible from any given feature
context. Therefore, this approach is sound but incomplete.

In Table 1, we summarize the results of our discussion
and classify each approach related to the soundness and
completeness. In contrast to the presented approaches, we
are interested in an approach that is sound and complete.
Therefore, we introduce feature-context interfaces that fulfill
our requirements.

4. FEATURE-CONTEXT INTERFACES
In this section, we present feature-context interfaces; a

special view to an SPL’s implementation that presents safely
accessible members tailored to a given feature context. As
a necessary step toward the creation of feature-context in-
terfaces, we explain the variable interface (VInt) of an SPL.
Afterwards, we provide a definition of feature-context inter-
faces and describe an algorithm to generate them.

4.1 Variable Interface
The variable interface of an SPL contains all unique sig-

natures of all existing members (i.e., classes, methods, and
fields) with a presence condition describing in which fea-
tures the member is defined. That is, if a member is defined
in several modules, it is included in the variable interface
only once, but with the list of the defining features (i.e.,
the presence condition). Because of the presence condition,
the existence of each member is variable depending on their
definitions in the feature modules. Therefore, we call the
resulting structure a variable interface VInt .

We specify the signature of each feature module impl(fi)
with fi ∈ F as a function sig , which takes as input an im-
plementation module impl(fi) and gives as output the corre-
sponding set of signatures (i.e., classes, methods and fields)
in the corresponding implementation module impl(fi). Ac-
cordingly, an SPL’s signature M is the union of all signatures
of its implementation modules:

M = sig(impl(f1 )) ∪ ... ∪ sig(impl(fn))

1: function CreateVariableInterface(F )
2: VInt := ∅
3: for fi ∈ F do
4: for m ∈ sig(impl(fi)) do
5: Fm := getFeatures(VInt ,m)
6: if (Fm 6= null) then
7: Fm := Fm ∪ {fi}
8: else
9: Fm := {fi}

10: VInt := VInt ∪ {(m,Fm)}
11: end if
12: end for
13: end for
14: return VInt
15: end function

Figure 3: Algorithm to create the variable interface.

Now, we can use the set M to define the variable interface
denoted as VInt . We define the variable interface as a set
of tuples (m,Fm), whereas m is a member of M and Fm

denotes a subset of all features, in which m is defined. Thus,
we define the variable interface as follows:

VInt = {(m,Fm) | m ∈M,Fm ⊆ F}

Algorithm. In Figure 3, we depict our algorithm to cre-
ate the variable interface VInt . We use the set of features
as input from which we can get all signatures of the corre-
sponding feature modules. We calculate the variable inter-
face by starting with an empty set (Line 2). Then, we ana-
lyze each member m from the signature of each feature mod-
ule (Line 3-13). In detail, function getFeatures searches for
the member’s signature (m) in VInt and returns the pres-
ence condition Fm if it is already defined (Line 5). If the
result of function getFeatures is defined (i.e., not null),
we add the feature fi , in which the current member m was
found, to the set of features Fm (Line 7). Otherwise, we cre-
ate a new set Fm and add feature fi to Fm (Line 9). Then,
we create a new tuple (m,Fm) and add it to the variable
interface VInt (Line 10). Afterwards, we can continue with
the next member.

Example. Let us consider the variable interface of our nav-
igation SPL. Class Graph is defined in features Graph, Di-
rected, Undirected, Weighted, Unweighted, and Connected.
By contrast, the field v of class Graph is defined only in
feature Graph. This leads to the first entries of the follow-
ing subset of the variable interface (features are represented
with underscored characters of Figure 1):

VInt = {
(class Graph,{c, d , i , r , u,w}),
(Graph.v : Vertex [],{r}),
(void Graph.addVertex (Vertex ),{r}),
(void Graph.addEdge(Vertex ,Vertex , int),{w}),
(void Graph.addEdge(Vertex ,Vertex ),{u}),
(Vertex [] Graph.getVertexes(),{u,w}),
(void Graph.display(),{c, d , i , u,w}),
...
(class Vertex ,{c, d , i , r}),
...

}



4.2 Feature-Context Interfaces
A feature-context interface is a non-variable view of the

variable interface VInt . Variability is not required as the
feature-context interface is tailored to a given feature con-
text. This means that the feature context acts as a filter
on VInt and, thus, the feature-context interface presents
only members that are safely accessible in the correspond-
ing feature context. Similar to the variable interface VInt ,
we start with a definition followed by the presentation of an
algorithm to compute the feature-context interface.

The feature-context interface FCI is a subset of all exist-
ing SPL members M (i.e., FCIFM ,FC ,VInt ⊆ M ). The pres-
ence of each member m depends on the feature model FM ,
the feature context FC , and the presence condition Fm that
has been precomputed in VInt .

For the computation of the feature-context interface FCI ,
we filter the existing members given in the variable interface
VInt using the presence condition of each member relative
to a propositional formula of the feature model FM and
the feature context FC . That is, all variants that can be
generated by selecting the feature of the feature context FC .
Therefore, we create a new feature model FMFC that exactly
describes those variants.

FMFC =FM ∧ FC

Afterwards, we check the accessibility of each member m us-
ing its presence condition Fm and the propositional formula
FMFC . Therefore, we reformulate the presence condition Fm

of the current member m into the propositional constraint
Constraintm , which is a disjunction of all the features in Fm .

Constraintm = (
∨

f∈Fm

f ) | (m,Fm) ∈ VInt

For each evaluation of the propositional formula FMFC that
leads to a valid variant, we have to check whether at least
one of the features in Constraintm is true. Consequently, we
have to check whether the following propositional formula is
a tautology:

FMFC → Constraintm

Based on these definitions, we are able to define the feature-
context interface as follows:

FCIFM ,FC ,VInt = {m | (FMFC |= Constraintm),

(m,Fm) ∈ VInt}

Algorithm. In Figure 4, we show the algorithm that com-
putes a feature-context interface, using the feature model
FM , the feature context FC , and the variable interface VInt
as input. First, we initialize an empty set representing the
feature-context interface, in which the result will be stored
(Line 2). Afterwards, we create the propositional formula
FMFC that represents the input feature model FM with the
feature context (Line 5). Based on FMFC , we check which
members of the variable interface VInt are accessible in the
feature context (Line 8-15). Therefore, we create a new
propositional formula FMm for each member’s presence con-
dition that can be used to check the member’s accessibility.
We transform the presence condition Fm of the current mem-
ber m to the propositional constraint Constraintm (Line 9)
and create an implication of FMFC and Constraintm . If the

1: function createFCI(FM ,FC ,VInt)
2: FCI := ∅ // feature-context interface
3:
4: // Add the feature context to the feature model
5: FMFC := FM ∧ FC
6:
7: // Check the existence of each member
8: for (m,Fm) ∈ VInt do
9: Constraintm := (

∨
f∈Fm

f )
10: FMm := FMFC → Constraintm
11: // Check for tautology
12: if (!isSatisfiable(¬FMm)) then
13: FCI ← FCI ∪ {m}
14: end if
15: end for
16: return FCI
17: end function

Figure 4: Creation of a feature-context interface.

resulting formula is a tautology, the member is added to the
feature-context interface (Line 13).

Example. Let us consider our navigation SPL with the fea-
ture context FC = Car . For each member m in VInt , we
check the accessibility using the corresponding presence con-
dition of m. For member

(Vertex [] Graph.getVertexes(), {u, w}),

we create the constraint Constraintm with (u ∨ w). After-
wards, we check whether the formula FMFC → (u ∨ w) is a
tautology. In this case, the formula is a tautology, because
in every variable assignment in which FMFC is true one of
the variable w or u is also true. Thus, we add member m
to the feature-context interface FCI . In the following, we
present the feature-context interface of feature Car related
to our navigation example of Figure 1. We can see that the
feature-context interface contains not only members from
the features Weighted and Directed, but also from other fea-
tures (e.g., field v of class Graph).

FCIFM ,Car,VINT = {
class Graph,
Graph.v : Vertex [],
void Graph.addVertex (Vertex ),
void Graph.addEdge(Vertex ,Vertex , int),
Vertex [] Graph.getVertexes(),
void Graph.display(),
...further members
class Vertex ,
...further classes

}

5. TOOL SUPPORT
We implemented feature-context interfaces as an exten-

sion to FeatureIDE. FeatureIDE is an integrated develop-
ment environment based on Eclipse for SPL development [22].
It is used worldwide by researchers as well as students, and
supports a number of composition tools. Our implementa-
tion of feature-context interfaces is targeted at the compo-
sition tool FeatureHouse [3], which can be used to develop
SPLs with feature-oriented programming.



Figure 5: Feature-context outline and content assist
for class Graph of feature Connected.

We use Fuji to identify all members related to all exist-
ing feature modules. Fuji is a compiler and type checker for
feature-oriented programming [4], which allows us to guar-
antee the type safe comparison of members that we need
to produce a correct variable interface VInt . The resulting
list of members is stored in FeatureIDE and is the basis to
compute a specific feature-context interface. We automat-
ically determine the current feature context by evaluating
which class is currently opened in the editor of FeatureIDE
and to which feature module this class belongs. Based on
the variable interface, the current feature context, and the
feature model that is maintained by FeatureIDE, we auto-
matically derive the corresponding feature-context interface.
In the following, we present two application scenarios for
feature-context interfaces that support an SPL’s develop-
ment. We extended FeatureIDE with an outline view and
an auto-completion support.

Feature-Context Outline. Based on feature-context inter-
faces, we implemented an extended outline view, the feature-
context outline (see Figure 5). In this outline, we present all
classes that are accessible in the feature context of a given
feature. Members that are not safely accessible in the cur-
rent feature context are omitted. We illustrate the func-
tionality using our running example. When we modify class
Graph of the feature Connected the feature context is given
by FC = Connected , which we use to determine the set of
members. As result, we get an overview about all safely
accessible members depicted in our feature-context outline.

Content Assist. Beside outline views, Eclipse provides con-
tent assists to support developers. FeatureIDE already pro-
vides content assist for FeatureHouse based on variants. This
content assist helps implementing a feature only for a single
variant but can result in compile-time errors in other vari-
ants (cf. Section 3). In contrast, we implemented a new con-
tent assist based on feature-context interfaces that presents

only safely accessible members. In Figure 5, we present the
functionality of our content assist. Here, the developer types
“fi” and the content assist proposes the methods findsEdge
and findsVertex, which can be used in the context of fea-
ture Connected in class Graph.

6. EVALUATION
So far, we argued that feature-context interfaces can be

used to prevent errors during the development of SPLs by
showing only members to the developer that are safely ac-
cessible. Two kinds of evaluations are possible to investigate
the potential of feature-context interfaces: a user study and
a quantitative evaluation.

We decided to perform a quantitative evaluation, because
if we would find no evidence in a quantitative study, a fur-
ther user study would be pointless. Furthermore, we can
draw important insights in which use cases feature-context
interfaces reach their full potential. Such conclusions have
a broader generality than user studies and represent a ba-
sis for future experiments. In our user study, we want to
estimate the support for error prevention of feature-context
interfaces in relation to state-of-the-art approaches. For this
future work, again, we need the results of the quantitative
evaluation of this work first.

To quantify the prevention of potential errors of feature-
context interface against state-of-the-art approaches (see Sec-
tion 3), we conducted an empirical study with two goals in
mind:

(a) We analyze whether state-of-the-art approaches present
incomplete or unsound results for existing SPLs.

(b) We quantify how evident potential errors are in exist-
ing SPLs.

Hence, we analyze SPLs that were also used in previous
research papers.

While state-of-the-art approaches are either unsound (i.e.,
minimal variant) or incomplete (i.e., always available, fea-
ture module) an open question is whether they are also un-
sound and incomplete in practice. In addition, dependencies
between features given in the feature model may influence
the available members of a feature context, but it is an open
question to which extent.

Subject SPLs. Our evaluation is based on eight feature-
oriented SPLs written in Java taken from publicly available
repositories.1 These SPLs are selected from different do-
mains with different sizes in terms of the derivable variants
and the number of features. All SPLs exhibit no compile-
time errors in all valid variants. Furthermore, these SPLs
were used in previous studies by other researchers and can
be considered as a benchmark in SPL analysis [3, 15, 23].
In detail, we use two graph libraries GPL and GraphLib, two
games TankWar and GameOfLife, the text editor Notepad,
the chat client PKJab, the search engine DesktopSearcher,
and the compression library ZipMe as subject SPLs (see Ta-
ble 2).

6.1 Experimental Design
To compare each state-of-the-art approach to the feature-

context interface, we investigate a typical implementation
scenario of a developer in which a feature module is to be
extended by new functionality.

1More information is available on our website (http://
www.fosd.de/multiple/).

http://www.fosd.de/multiple/
http://www.fosd.de/multiple/


●

0.0

0.2

0.4

0.6

0.8

1.0

62

199

DesktopSearcher

●
●

100

175

GameOfLife

●

●

36

138

GPL

● ●

12

29

GraphLib

●

●

●

15

82

Notepad

● 505

570

PKJab

●

●

300

371

TankWar_PC

●

●

530

619

ZipMe

legend

feature module
minimal variant
always available
feature−context interface
variable interface

nu
m

be
r 

of
 m

em
be

rs
 r

el
at

iv
e 

to
 v

ar
ia

bl
e 

in
te

rf
ac

e 
(1

.0
)

Figure 6: Analysis results of the number of presented members relative (scaled) to the members represented
in the variable interface VInt.

SPL Features
(Alternative)

Products Unique
Classes

DesktopSearcher 22 (8) 462 21
GameOfLife 23 (2) 65 21
GPL 38 (15) 156 16
GraphLib 6 (0) 16 5
Notepad 15 (4) 512 8
PKJab 12 (0) 48 51
TankWar PC 37 (7) 87360 21
ZipMe 17 (0) 24 31

Table 2: Investigated product lines of our evaluation
(determined by the statistics view of FeatureIDE).

(a) Incomplete or Unsound Results. The experimental
procedure to address goal (a) is as follows: we select each
feature of an SPL as the feature context and compute for
each approach the number of all accessible members. We
consider the approaches described in Section 3: feature mod-
ule, minimal variant, and always available. In addition, we
use the feature context to determine the existing members in
the feature-context interface. We determine the number of
existing members in the variable interface VInt and scale the
results of all approaches to this set of members, to achieve
visually comparable results.

As mentioned in Section 3, the result of the approach min-
imal variant heavily depends on the selection of a specific
variant. It is possible that two or more variants are mini-
mal variants related to their number of features but contain
different sets of members. To represent the number of mem-
bers for the approach minimal variant, we select for each
feature context a minimal variant that results in the mini-
mum number of members.

(b) Potential Errors. The experimental procedure to ad-
dress goal (b) is similar. First, we compute for each approach
and feature context all accessible members. In contrast to
procedure (a), we consider not only the number of accessible

members, but compare the resulting members directly with
the members of the feature-context interface. If a member is
available in an approach but not part of the feature-context
interface, we count this member as a potential error lead-
ing to compile-time errors in the implementation. Thus, all
errors that we count for the minimal variant are potential
compile-time errors. By contrast, each member that is avail-
able in the feature-context interface but not part of a spe-
cific approach effectively limits reuse opportunities. There-
fore, we count each non-existing member in the approaches
feature module and always available also as a potential er-
ror. For illustration purposes, we also scale the number of
counted errors for each approach to the number of members
in the variable interface VInt . This allows us to summa-
rize the counted errors for each approach about all subject
systems. As result, we reason about the potential of feature-
context interface compared to state-of-the-art approaches.

In contrast to the procedure (a), we investigate all min-
imal variants related to a feature context and include the
results in our evaluation. This allows us to identify all possi-
ble errors that can occur only in one of all minimal variants.

6.2 Quantitative Results
Based on our experimental design, we also divide the re-

sults in two parts that address (a) the completeness and
soundness of state-of-the-art approaches and (b) the analy-
sis of potential errors in our subject SPLs.

(a) Incomplete and Unsound Results. In Figure 6, we
show the results of our evaluation related to goal (a), in
which we analyze the soundness and completeness of each
approach. We show the number of all members in the vari-
able interface as the top line in Figure 6. We scale the
number of members presented by the other approaches ac-
cordingly. The number of members given by the approach
always available is independent of the feature context and,
thus, illustrated as a horizontal line. For example, Notepad
has 15 members that are always available, which are 18 % of
all members. The results of the other three approaches (i.e.,
feature module, minimal variant, and feature-context inter-



face) yield one value per feature context. Hence, we show
for each approach a box plot indicating the distribution of
the number of presented members.2 That is, a box plot
shows for a single approach the distribution of the number
of presented members for all feature contexts.

To illustrate the meaning of our results, let us consider
the graph product line (GPL). The variable interface VInt
of the GPL contains exactly 138 members (orange line). For
the approach always available, we identified 36 members,
which correspond to 26 % of the members represented in the
variable interface VInt . Furthermore, the approach feature
module (lime-green) has a median of 7 %, minimal variant
(yellow) a median of 41 %, and the approach feature-context
interface (red) a median of 36 %.

The number of members given in the feature-context in-
terface and the minimal variant of SPLs ZipMe, PKJab, and
GraphLib are equal, and the number of members given in
SPL TankWar_PC is almost equal. In two systems the ap-
proach feature-context interface presents noticeably less mem-
bers as in the corresponding minimal variants of a feature
context (i.e., DesktopSearcher and GPL). The SPLs Notepad
and GameOfLife present marginal advantages if a developer
uses feature-context interfaces instead of minimal variants.

We observe that whereas the number of members in the
feature-context interface and the minimal variant often pre-
sent similar results, the available number of members in the
feature modules strongly differs. Furthermore, the difference
between the median of the feature-context interface and the
median of the feature module can lead to extreme differences,
such as SPL PKJab which results in 86 % different members.

We further analyze how feature dependencies affect the
number of members shown by the different approaches. In Ta-
ble 2, we present the number of alternative features of each
SPL that lead to an interesting finding. The SPLs ZipMe,
PKJab, and GraphLib do not contain alternative features. If
we correlate this with the results of the approaches feature-
context interface and minimal variant exactly these SPLs
exhibit the same number of members. In addition, the SPL
TankWar_PC contains only two alternative features which is
also an SPL in which the results of the feature-context in-
terface and the minimal variant are almost identical.

(b) Potential Errors. In Figure 7, we present a summary
over all SPLs regarding potential errors of the state-of-the-
art approaches. Again, we scale the counted errors to the
number of presented members in the variable interface. The
results are the following: feature module (lime-green) has
a median of 45 %, minimal variant (yellow) has a median
of 1 % and always available (light-brown) has a median of
6 % of potential errors relative to the number of members
given in the variable interface. On average, 6 % of the mem-
bers in minimal variants can cause compile-time errors that
we can prevent using the feature-context interface. In addi-
tion, Figure 7 shows that the approach feature module does
not present 52 % members on average. In the worst case,
the approach feature modules does not present up to 92 % of
members that are available in the feature-context interface

2We created all box plots with R using the default setting
(http://www.r-project.org/). The thick black line repre-
sents the median of all values. The box itself represents the
distribution of 50 % of all values. The whiskers are extended
to the data extreme points if they are less than 1.5 times of
the interquartile range away from the box. Other points are
represented as outliers.

●●●●●●
●

●

er
ro

rs
 r

el
at

iv
e 

to
 V

In
t

0.0

0.2

0.4

0.6

0.8

1.0

all subject SPLs

legend

feature module
minimal variant
always available
feature−context interface
variable interface

Figure 7: Potential errors of each state-of-the-art
approach relative to VInt and compared to the
feature-context interface.

and, thus, safely accessible. By contrast, the members pre-
sented by the approach always available causes, on average,
7 % potential errors that can hinder the development of new
features. This is significantly less than the potential error
caused by the feature module, whereas the maximum value
of potential errors in always available is lower than the mean
value of the feature module.

6.3 Discussion
Next, we discuss the results of our evaluation according

to each technique. Furthermore, we present suggestions for
the usage of a specific technique in a particular scenario.

Feature Modules. Also in our subject SPLs, the feature
module presents only a small subset of all accessible mem-
bers in a given feature context. In all evaluated SPLs, this
approach does not show even half of all possible accessible
members. Although determining the available members is
comparatively easy and the approach is classified as sound
(cf. Section 3), it is likely that the approach is insufficient in
practice.

Minimal Variant. The approach minimal variant indicates
the best results of all state-of-the-art approaches. In detail,
in 3 of 8 SPLs it is sufficient to detect accessible members
using the approach minimal variant. However, in our SPLs,
we can achieve correct results only if there are no alterna-
tives (or constraints acting in a similar fashion) in the fea-
ture model. Using alternative features, we would show also
members whose usage would end up in compile-time errors,
which we also witnessed in our evaluation. Hence, as many
feature models contain alternative features [21], we cannot
recommend this approach either.

Always Available. Although the approach always available
presents only parts of all accessible members related to a
feature context, this approach could be a good alternative
compared to the approach feature module. In detail, a devel-
oper gets up to 84 % more members compared to the feature
module (cf. PKJab). Hence, the approach always available
is a sound alternative to using minimal variants. Further-
more, the approach is independent of the feature context
and, thus, we can compute always-available members once
and not for each feature context.

Feature-Context Interface. The results have shown that
there are cases in our subject SPLs in which none of the
above approaches is sufficient. Therefore, our approach of

http://www.r-project.org/


feature-context interfaces is an improvement over state-of-
the-art approaches. We have shown that the simple ap-
proaches may lead to compile-time errors or that they limit
reusability. Compared to the variable interface, it is a non-
variable view that requires no further reasoning by program-
mers. Compared to all other non-variable techniques, it is
sound and complete, but also for most of our subject SPLs
we experienced superiority.

Based on the evaluation results, we identify two subject
systems that can be used for our planed user study. In
detail, the SPLs DesktopSearcher and GPL results in huge
differences between the presented members in the minimal
variant and the feature-context interface and, thus, we iden-
tified these SPLs as suitable for our user study. By contrast,
we have seen that a user study without this evaluation as
preliminary step can distort the result using subject sys-
tems such as ZipMe or TankWar_PC. As a further step, we
can investigate the impact of feature-context interface on
development time.

6.4 Threats to Validity
In the following, we discuss possible threats to validity.

External Validity. External validity refers to how general-
izable our results are. We address this threat by first con-
ducting a formal comparison of the feature-context interface
with state-of-the-art approaches independent of subject sys-
tems (cf. Section 3). Furthermore, we use open-source case
studies from a publicly available repository. These case stud-
ies have also been used in other research papers [3, 15, 23].

We are aware that the size of the SPLs in terms of number
of members can influence the study results. Therefore, we
varied the sizes from 29 to 619 members given in the vari-
able interface VInt . Having SPLs for various domains, we
can draw practical conclusion as to how our feature-context
interface relate to state-of-the-art approaches.

Internal Validity. Compile-time errors can lead to distorted
results related to the computed members of each approach
(e.g., by showing false positive members). Therefore, we
selected only subject SPLs without compile-time errors.

The correct composition of defined members in each fea-
ture module to the variable interface VInt strongly depends
on the collection and comparison method. So that a string-
based method on the source code can lead to an incor-
rect variable interface. To avoid an incorrect identification
of SPL’s members, our algorithm is based on the feature-
oriented Java compiler Fuji [4]. Using Fuji, we are able to
identify all code artifacts that are used in an SPL. In our
analysis, we count each defined method and field of a Java-
class as a member. During method or field comparisons,
we rely again on Fuji. For instance, if we compare the pa-
rameters and return types of two methods, Fuji presents us
the fully-qualified name of the types. Furthermore, we do
not compare methods and fields as Java-method and Java-
field signatures. In detail, we use full-qualified names of the
member as well as full-qualified names of the parameter and
return types.

7. RELATED WORK
Efficient approaches exist for type checking SPLs in fea-

ture-oriented programming [2, 15] as well as in annotation-
based approaches [12]. These approaches are able to detect
errors posterior, whereas we present an approach that is able

to prevent some errors a priori during the implementation.
Tools such as Colored Integrated Development Environ-

ment (CIDE) [11] for annotation-based approaches highlight
the source code of individual features using a special color
per feature. Furthermore, CIDE present views that involve
a special variant, representing a compilable unit (variant
view), or represent code of a set of selected features and their
needed dependencies (realization view) [14]. The realization
view in CIDE is similar to the feature-context interfaces,
because they also present code for the currently developed
feature. The realization view uses an abstract syntax tree
to calculate the visible code, in which each parent of the
currently developed code and each mandatory child is pre-
sented to the developer. By contrast, the feature-context
interface presents not only mandatory children of the ab-
stract syntax tree but presents also optional code by taking
the dependencies of the SPL’s feature model into account.

Another possibility to filter visibility of code is to use ac-
cess modifiers, such as private and protected in Java. To
overcome the limitation of existing modifiers in feature-ori-
ented programming, Apel et al. present three new modifiers
feature, subsequent, and program [4]. For instance, the mod-
ifier feature restricts the visibility of members to specific
features. The developer can restrict the visibility of code
manually. Hence, this approach is orthogonal to ours and
both approaches can benefit from each other. Therefore, we
plan to integrate this functionality in future.

Several approaches exist that address the visibility of fea-
tures in feature models and present techniques to define
views to these models [9, 16, 19]. This way, feature models
are tailored to the specific needs of stakeholders. Using these
approaches, irrelevant functionality related to the current
use case (i.e., context) of the stakeholder can be hidden (i.e.,
feature-model elements). This is similar to our approach for
the implementation of SPLs, in which we hide irrelevant
members of code related to the current feature context, but
all these approaches do not consider source code.

Kästner et al. present a variability-aware module system
that enables to combine variable modules [13]. Their ap-
proach includes variability inside modules as well as vari-
ability in their interfaces. The module itself can be seen as
a product line in which existing variability is partly assigned
to the interface of the module, so that configuration options
are presented to the interface for other modules. The ben-
efit is that these modules can be type checked without the
knowledge of other (variable) modules. The variability in the
module interface is comparable with our variable interface,
but presents only the external variability that can be used
by other modules. While we rely on the variable interface for
the calculation of feature-context interfaces, the advantages
of feature-context interface is that they show exactly those
members being safely accessible. This avoids reasoning on
variability for programmers and possibly prevents compile-
time errors.

Ribeiro et al. present emergent interfaces, which support
safe maintenance of annotation-based SPLs [18]. The au-
thors present require and provide information to/from other
features related to the current part that should be main-
tained. The selected maintenance part is similar to our de-
scribed feature context and supports the development of safe
annotation-based SPLs. By contrast to our approach that
determines accessible members for reuse, the emergent in-
terface presents information based on dataflow analyses that



indicates where the maintained code is reused to prevent
breaking other features.

8. CONCLUSION
Software product-line (SPL) engineering facilitates the gen-

eration of similar program variants based on a common code
base. Although many approaches exist dealing with the im-
plementation of SPLs, their development is still far from
trivial, especially for composition-based implementation tech-
niques. Previous research aimed at the detection of compile-
time errors, whereas we aim to prevent errors. In detail, if
the developer knows which code is safe to access related
to the currently implemented feature (i.e., the feature con-
text), compile-time errors, such as dangling references, can
be avoided up-front.

We propose feature-context interfaces that provide a non-
variable view to all safely accessible code in a given fea-
ture context. Based on feature-context interfaces, we imple-
mented a content assist and an outline view in FeatureIDE.
We evaluated our approach using a set of publicly available
SPLs. In these SPLs, we found that only feature-context
interfaces can provide exactly all members that are safe to
access (not more and not less).

In future work, we extend our tool support for feature-con-
text interfaces so that it can be used as well for annotation-
based approaches and for suggestions of new feature depen-
dencies. For instance, if a developer wants to use code that
is not accessible in a current feature context, we propose
new constraints to the feature model to change the accessi-
bility. Furthermore, based on the results of our evaluation,
we plan to conduct a user study to investigate differences
in development time and occurrences of errors when using
feature-context interfaces compared to state-of-the-art tech-
niques.

Acknowledgments
We thank Sven Apel for suggestions and constructive discus-
sions of previous versions of the paper. In addition, we thank
Sebastian Krieter for assisting us with the implementation
in FeatureIDE. The work is partially funded by German Re-
search Foundation (DFG), project number SA 465/34-2.

9. REFERENCES
[1] S. Apel, D. Batory, C. Kästner, and G. Saake.

Feature-Oriented Software Product Lines: Concepts
and Implementation. Springer, 2013.

[2] S. Apel, C. Kästner, A. Größlinger, and C. Lengauer.
Type Safety for Feature-Oriented Product Lines. ASE,
17(3):251–300, 2010.

[3] S. Apel, C. Kästner, and C. Lengauer.
Language-Independent and Automated Software
Composition: The FeatureHouse Experience. TSE,
39(1):63–79, 2013.

[4] S. Apel, S. Kolesnikov, J. Liebig, C. Kästner,
M. Kuhlemann, and T. Leich. Access Control in
Feature-Oriented Programming. SCP, 77(3):174–187,
2012.

[5] S. Apel, A. von Rhein, T. Thüm, and C. Kästner.
Feature-Interaction Detection based on Feature-Based
Specifications. ComNet, 57(12):2399–2409, 2013.

[6] D. Batory, J. N. Sarvela, and A. Rauschmayer. Scaling
Step-Wise Refinement. TSE, 30(6):355–371, 2004.

[7] D. Benavides, S. Segura, and A. Ruiz-Cortés.
Automated Analysis of Feature Models 20 Years
Later: A Literature Review. Information Systems,
35(6):615–708, 2010.

[8] K. Czarnecki and U. Eisenecker. Generative
Programming: Methods, Tools, and Applications.
ACM/Addison-Wesley, 2000.

[9] A. Hubaux, P. Heymans, P.-Y. Schobbens,
D. Deridder, and E. Abbasi. Supporting Multiple
Perspectives in Feature-Based Configuration. SoSyM,
12(3):641–663, 2011.

[10] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak,
and A. S. Peterson. Feature-Oriented Domain
Analysis (FODA) Feasibility Study. Technical Report
CMU/SEI-90-TR-21, Software Engineering Institute,
1990.

[11] C. Kästner, S. Apel, and M. Kuhlemann. Granularity
in Software Product Lines. In ICSE, pages 311–320.
ACM, 2008.

[12] C. Kästner, S. Apel, T. Thüm, and G. Saake. Type
Checking Annotation-Based Product Lines. TOSEM,
21(3):14:1–14:39, 2012.

[13] C. Kästner, K. Ostermann, and S. Erdweg. A
Variability-Aware Module System. In OOPSLA, pages
773–792. ACM, 2012.

[14] C. Kästner, S. Trujillo, and S. Apel. Visualizing
Software Product Line Variabilities in Source Code. In
ViSPLE, pages 303–313, 2008.

[15] S. Kolesnikov, A. von Rhein, C. Hunsen, and S. Apel.
A Comparison of Product-based, Feature-based, and
Family-based Type Checking. In GPCE, pages
115–124. ACM, 2013.

[16] M. Mannion, J. Savolainen, and T. Asikainen.
Viewpoint-Oriented Variability Modeling. In
COMPSAC, pages 67–72. IEEE, 2009.

[17] C. Prehofer. Feature-Oriented Programming: A Fresh
Look at Objects. In ECOOP, volume 1241 of LNCS,
pages 419–443. Springer, 1997.

[18] M. Ribeiro, H. Pacheco, L. Teixeira, and P. Borba.
Emergent Feature Modularization. In SPLASH, pages
11–18. ACM, 2010.

[19] J. Schroeter, M. Lochau, and T. Winkelmann.
Multi-Perspectives on Feature Models. In MODELS,
pages 252–268. Springer, 2012.

[20] R. Schröter, N. Siegmund, and T. Thüm. Towards
Modular Analysis of Multi Product Lines. In
MultiPLE, pages 96–99. ACM, 2013.

[21] T. Thüm, D. Batory, and C. Kästner. Reasoning
about Edits to Feature Models. In ICSE, pages
254–264. IEEE, 2009.

[22] T. Thüm, C. Kästner, F. Benduhn, J. Meinicke,
G. Saake, and T. Leich. FeatureIDE: An Extensible
Framework for Feature-Oriented Software
Development. SCP, 79(0):70–85, 2014.

[23] T. Thüm, C. Kästner, S. Erdweg, and N. Siegmund.
Abstract Features in Feature Modeling. In SPLC,
pages 191–200. IEEE, 2011.

[24] F. J. van der Linden, K. Schmid, and E. Rommes.
Software Product Lines in Action: The Best Industrial
Practice in Product Line Engineering. Springer, 2007.


	Introduction
	Preliminaries
	Feature Models
	Composition-Based Implementation

	Problem Statement
	Feature-Context Interfaces
	Variable Interface
	Feature-Context Interfaces

	Tool Support
	Evaluation
	Experimental Design
	Quantitative Results
	Discussion
	Threats to Validity

	Related Work
	Conclusion
	References

