
Scaling Interprocedural Static Data-Flow Analysis1

to Large C/C++ Applications2

An Experience Report3

Fabian Schiebel #4

Fraunhofer Institute for Mechatronic Systems Design IEM, Germany5

Florian Sattler #6

Saarland University, Saarland Informatics Campus, Germany7

Philipp Dominik Schubert #8

Heinz Nixdorf Institute, Germany9

Sven Apel #10

Saarland University, Saarland Informatics Campus, Germany11

Eric Bodden #12

Paderborn University, Department of Computer Science, Heinz Nixdorf Institute, Germany13

Fraunhofer IEM, Germany14

Abstract15

Interprocedural data-flow analysis is important for computing precise information on whole programs.16

In theory, the popular algorithmic framework interprocedural distributive environments (IDE)17

provides a tool to solve distributive interprocedural data-flow problems efficiently. Yet, unfortunately,18

available state-of-the-art implementations of the IDE framework start to run into scalability issues19

for programs with several thousands of lines of code, depending on the static analysis domain.20

Since the IDE framework is a basic building block for many static program analyses, this presents21

a serious limitation. In this paper, we report on our experience with making the IDE algorithm22

scale to C/C++ applications with up to 500 000 lines of code. We analyze the IDE algorithm and23

its state-of-the-art implementations to identify their weaknesses related to scalability at both a24

conceptual and implementation level. Based on this analysis, we propose several optimizations to25

overcome these weaknesses, aiming at a sweet spot between reducing running time and memory26

consumption. As a result, we provide an improved IDE solver that implements our optimizations27

within the PhASAR static analysis framework. Our evaluation on real-world C/C++ applications28

shows that applying the optimizations speeds up the analysis on average by up to 7×, while also29

reducing memory consumption by 7× on average as well. For the first time, these optimizations allow30

us to analyze programs with several hundreds of thousands of lines of LLVM-IR code in reasonable31

time and space.32

2012 ACM Subject Classification Theory of computation → Program analysis33

Keywords and phrases Interprocedural data-flow analysis, IDE, LLVM, C/C++34

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2024.3735

Funding This work was partially supported by the Fraunhofer Internal Programs under Grant No.36

PREPARE 840 231, and by the German Research Foundation under Grant No. AP 206/11-2, and37

within the Collaborative Research Center TRR 248 under Grant No. 389792660.38

1 Introduction39

Over the recent years static program analysis has become an important tool for finding40

bugs and security vulnerabilities [7, 11,16,26–28,30]. To produce results that actually help41

developers in these tasks, static analyses are ideally both sound (or at least soundy [14]) and42

precise, i.e., they report only true findings without missing any real bugs and vulnerabilities.43

© Fabian Schiebel, Florian Sattler, Philipp Dominik Schubert, Sven Apel, and Eric Bodden;
licensed under Creative Commons License CC-BY 4.0

38th European Conference on Object-Oriented Programming (ECOOP 2024).
Editors: Jonathan Aldrich and Guido Salvaneschi; Article No. 37; pp. 37:1–37:28

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:fabian.schiebel@iem.fraunhofer.de
https://orcid.org/0009-0008-6867-9802
mailto:sattlerf@cs.uni-saarland.de
https://orcid.org/0000-0003-2523-1158
mailto:philipp.schubert@upb.de
https://orcid.org/0000-0002-8674-1859
mailto:apel@cs.uni-saarland.de
https://orcid.org/0000-0003-3687-2233
mailto:eric.bodden@upb.de
https://orcid.org/0000-0003-3470-3647
https://doi.org/10.4230/LIPIcs.ECOOP.2024.37
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

37:2 Scaling Interprocedural Data-Flow Analysis

The analyses need to obtain a complete picture about the program under analysis and44

therefore have to be interprocedural, i.e., following procedure calls. But it is a major45

challenge to develop sound and precise inter-procedural analyses that scale well with large46

real-world target programs [6, 19,31,32].47

The interprocedural distributive environments (IDE) framework [20] operates on data-flow48

problems whose flow functions distribute over the analysis’ merge operator. Following the49

functional approach to interprocedural analysis [24], for such distributive data-flow problems50

IDE constructs fine-grained, per-fact, procedure summaries that can be reapplied in each51

subsequent calling context of a given procedure. This allows IDE to scale to larger programs52

relatively well even though its time complexity is O(|N | · |D|3), where N is the set of nodes53

of the target program’s interprocedural control-flow graph and D is the symbol domain of54

the data-flow analysis.55

Common static analysis frameworks such as Heros [5] and PhASAR [22] provide generic56

and parameterizable IDE solver implementations; they even implement the simpler IFDS [17]57

algorithm in terms of IDE. For an analysis problem on the desired target program to be58

solved in an automated manner, users of these frameworks merely have to specify its flow59

(and edge) functions and provide this specification to the IDE implementation. Current IDE60

implementations, also known as solvers, aim at analyzing real-world target programs in a61

fully flow and context-sensitive manner, computing precise and informative results depending62

on the quality of the flow (and edge) functions’ specification. Nonetheless, the authors of63

this paper can tell from many years of experience in program analysis that all publicly64

available IDE implementations run into severe scalability issues for larger target programs—a65

major problem. This effectively impedes or even prevents the analysis of many real-world66

programs, or forces analysis developers to resort to simpler analysis domains, which reduces67

the precision and usefulness of the analysis results. Sattler et al., for instance, present a novel68

concept to combine program analysis and repository mining that addresses numerous relevant69

software engineering problems [21]. This approach, however, requires one to run an exhaustive70

IDE-based taint analysis that needs to generate and propagate all program variables, which,71

in turn, produces millions of data flows. In this vein, we use PhASAR’s current IDE72

implementation to demonstrate that sound and precise analyses that produce more than73

100 million data flow edges cannot be completed using ordinary consumer hardware. Such a74

huge number of data flows can easily arise already when analyzing programs that comprise75

fewer than 100 000 instructions in LLVM’s [13] intermediate representation (IR). The number76

of IR instructions is relevant, since PhASAR performs its analyses on the LLVM-IR level,77

and even seemingly small C/C++ programs can lead to a large number of IR instructions.78

Still, using an IR enables analysis writers to develop analyses for programs originating from79

complex languages, such as C++, that would otherwise add drastic implementation overhead.80

Further, we can support analyzing programs from multiple different source languages (in81

our case C and C++) with just one analysis implementation, whereas a source-level analysis82

would need different implementations per language. Therefore, we prefer analyzing LLVM83

IR and handle the program size from within the solver.84

In this work, we report on our experiences analyzing real-world programs with the IDE85

framework, identifying two critical optimization levers when implementing a generic state-of-86

the art IDE solver. Specifically, using 31 real-world C and C++ target programs, we evaluate87

PhASAR’s state-of-the-art IDE solver implementation with regard to runtime and memory88

consumption. Based on insights gained from these experiments, we propose and evaluate two89

optimizations that we have devised to improve the performance of the IDE implementation.90

One optimization chooses an optimized data layout for storing required data, while the other91

F. Schiebel, F. Sattler, P. D. Schubert, S. Apel, and E. Bodden 37:3

one extends the garbage collection procedure from Arzt [1].92

The improved IDE solver, which incorporates the abovementioned optimizations and93

insights, reduces analysis running times as well as memory consumption by up to 7× on94

average, depending on the client-analysis problem that should be solved. The experiments95

show that this allows one to conduct sound and precise inter-procedural data-flow analyses96

on interesting target programs such as FastDownward, a domain-independent planning97

system, in reasonable time and space.98

In summary, we make the following contributions:99

We analyze the IDE algorithm as described in the literature and its state-of-the-art,100

openly-available implementations with regard to runtime and memory consumption.101

Based on the analysis, we propose optimizations that overcome these weaknesses.102

We report on an empirical study on our optimized IDE solver, showing that it improves103

runtime and memory usage of IDE-based analysis by up to 7× on average.104

We provide an open-source implementation of the IDE algorithm that incorporates our105

optimizations within PhASAR [22] and make it available as supplementary material1.106

The remainder of this paper is structured as follows: Section 2 gives an introduction to107

the IDE algorithm and Section 3 analyzes the state-of-the-art in IDE-based analysis and108

describes the problems that we identify. Section 4 presents our optimizations to IDE to109

mitigate these problems and Section 5 describes the highlights of our implementation. In110

Section 6, we detail on our empirical evaluation on real-world C/C++ programs and Section 8111

concludes this paper.112

2 Background on IDE113

In this section, we introduce the conceptual Interprocedural Distributive Environments114

(IDE) [20] algorithm. IDE solves a data-flow problem by constructing an exploded supergraph115

(ESG). By construction, a data-flow fact d holds at instruction n, if a node (n, d) in the ESG is116

reachable from a special, tautological node (n0,Λ) for an entry point statement n0. The ESG117

is constructed by replacing each node in the target program’s interprocedural control-flow118

graph (ICFG) with a bipartite graph representation of the respective flow functions. IDE119

requires all flow-functions to distribute over the merge operator (usually set union). Such120

distributive flow functions can be represented as bipartite graphs without loss of precision.121

The common flow functions identity, gen (generate), and kill (remove) are distributive and122

thus, all gen/kill data-flow problems can be encoded in IDE.123

To enable a context-sensitive, interprocedural analysis, IDE follows the summary-based124

approach [24] to inter-procedural static data-flow analysis: It constructs per-fact summaries125

for sequences of instructions by composing their flow functions. The composition h = g ◦ f126

of two flow functions f and g, called jump function, can be produced by merging the nodes127

of g with the corresponding nodes of the domain of f . A jump function ranging from a given128

procedure p’s starting point to its exit point builds up a summary ψ of p. Once summary ψ129

has been constructed for procedure p, it can be re-applied in any other context in which the130

procedure p is called. The runtime complexity of IDE is O(|N | · |D|3), where N is the set of131

nodes of the target program’s ICFG and D is the data-flow domain of the analysis.132

In addition, IDE allows to annotate the ESG’s edges with lambda functions—so-called133

edge functions f ∈ J—which operate on a separate value domain V and encode an additional134

1 Supplementary Material: https://zenodo.org/doi/10.5281/zenodo.13137081

ECOOP 2024

https://zenodo.org/doi/10.5281/zenodo.13137081

37:4 Scaling Interprocedural Data-Flow Analysis

Λ pa b

(𝑛1) int a = 1;

(𝑛2) a = a + 2;

(𝑛3) int b = p * 5;

(𝑛4) foo(b);

𝜆ℓ. 1

𝜆ℓ. ℓ + 2

𝜆ℓ. ℓ ⋅ 5

Figure 1 An example exploded supergraph for a linear constant analysis encoded in IDE [17].
The solid edges represent the individual flow functions, whereas the jump functions are denoted by
the colored dashed edges. All (solid) flow edges are annotated with their edge functions; identity
edge functions have been omitted to avoid cluttering. By following the flow edges in backwards
direction, we can see that at (n4) variable a is reachable from Λ and thus holds as data-flow fact.
This information is also encoded as green dashed jump function from (n1, Λ) to (n4, a). Composing
the annotated edge functions, we can see that at (n4), variable a has the constant value 3.

value-computation problem. The value-computation problem specified using the ESG edges135

is solved when performing a reachability check. This way, IDE is able to effectively encode136

problems with infinite domains such as linear-constant propagation with D = V, where V137

is the set of program variables and V = Z⊤
⊥. In this setup, IDE would propagate constant138

variables through the program and compute their constant values using the edge functions.139

An exemplary ESG for a linear-constant propagation encoded in the aforementioned manner140

is shown in Figure 1. The ESG nodes are visualized in a matrix structure where the rows141

represent the program statements n1, . . . , n4 and the columns represent the data-flow facts142

a, b, p and the special Λ fact. This way, Figure 1 also shows the bipartite nature of the143

encoded flow functions.144

The jump functions constructed by the IDE algorithm describe data flows (and corres-145

ponding value computations). They comprise quadruples ⟨d1, n, d2, f⟩, where d1 ∈ D is the146

data-flow fact that holds at the source instruction (or node in the ICFG) sp ∈ N , n ∈ N147

is the target instruction, d2 ∈ D is the data-flow fact at the target instruction, and f ∈ J148

is a function that describes the respective value computation. The source instruction sp149

is implicit—it is the first instruction of the procedure that is being analyzed. In Figure 1,150

the jump function that describes that the data-flow fact a holds at ICFG node (n4) in the151

program shown thus is: ⟨Λ, n4, a, λℓ.ℓ ◦λℓ.ℓ+ 2 ◦λℓ.1⟩ ≡ ⟨Λ, n4, a, λℓ.3⟩. Its evaluation yields152

that variable a carries the constant value 3 at ICFG node (n4).153

If an ESG node (n, d) is reachable along multiple program paths, the edge functions154

associated with the respective jump functions are combined using a join operation. Similar to155

flow functions, edge functions must distribute over the join operation. Hence, edge functions156

must be evaluable functions supporting regular function composition as well as the binary157

join operation and an equality relation. These operations—and the implementations for the158

flow and edge functions—need to be specified by analysis writers for the specific data-flow159

problem at hand.160

The number of edges in an ESG is in O(|N | · |D|2). Even though D must be finite, D can161

be very large. Constructing the full ESG can easily lead to a graph containing millions of162

F. Schiebel, F. Sattler, P. D. Schubert, S. Apel, and E. Bodden 37:5

nodes and edges even for moderately-sized programs. Nearly all open-source state-of-the-art163

IDE implementations therefore construct only the valid paths reachable from the entry point164

(smain,Λ) in an on-the-fly manner, as proposed by Naeem et al. [15].165

Naeem’s on-the-fly algorithm requires the following essential structures to solve an analysis166

problem:167

JumpFn (D × N × D → J): Jump functions ⟨d1, n, d2, f⟩ tabulated by the IDE algorithm168

that describe the data-flow facts reachable from (smain,Λ).169

Incoming (N × D → N × D): A set that records nodes ⟨sp, d⟩ that the analysis has170

observed to be reachable and predecessors of ⟨sp, d⟩, where sp ∈ N a start point of171

procedure p. Using this set avoids the need to compute inverse flow functions, which172

might not be possible for all analysis problems.173

EndSummary (N ×D → N ×D×J): A table that stores jump functions that summarize174

the effect of a complete procedure p: ⟨sp, d1, ep, d2, f⟩, where ep ∈ N an exit point of p.175

These per-fact procedure summaries are reapplied in each subsequent context p is called.176

2.1 IDE Algorithm Overview177

The IDE algorithm works in two phases: (I) Constructing the relevant part of the ESG and178

(II) computing the values associated to the node-data-flow-fact pairs (n, d) by evaluating all179

edge functions f annotated to the jump functions in the ESG. We provide a copy of the180

original IDE algorithm as part of our supplementary website for this paper2.181

Phase I works as fixed point iteration starting from initial ESG nodes, called seeds. Based182

on the ICFG and the set of flow- and edge functions, the procedure ForwardComputeJump-183

FunctionsSLRPs (see algorithm Phase I) incrementally extends the ESG by adding new edges184

or updating the annotated edge functions of existing edges. This extending and updating185

of the ESG is performed by the Propagate (see algorithm Propagate) procedure, which gets186

iteratively called by the solver until a fixed point is reached. The final ESG for the example187

code snippet in Figure 1 is shown in the same figure (excluding the content of function foo).188

Phase II (see algorithm Phase II) works in two steps: value propagation and value189

computation. First, in the value propagation phase, the initial edge values are propagated190

iteratively through the ESG from the seeds to the beginning of all analyzed procedures. After191

that, in the value computation phase, the edge functions of all remaining jump functions are192

evaluated with the values previously aggregated at the beginning of the respective procedure.193

For example, consider the code snippet in Figure 1. Assuming that it is part of a function194

that gets called with p = 4, the value propagation will create the relation (n1, p) 7→ 4. If the195

code snippet is called with multiple different values for p, the relation gets updated using the196

lattice join of the value domain. Further, to aggregate the starting values for all procedures,197

the value propagation computes the relevant edge values for the call-site, in this case for b198

at n4. It computes b = (λℓ.ℓ · 5)(4) = 20 and iteratively propagates it into foo. After the199

value-propagation phase has finished, all remaining result relations can be computed, which200

leads to (n2, a) 7→ 1, (n2, p) 7→ 4, (n3, a) 7→ 3, etc.201

3 The State of the Art202

In many years of developing static data-flow analyses, we have found that state-of-the art203

analysis implementations, many of them implementing IDE (or a subset of it), do not scale to204

2 Supplementary website: https://secure-software-engineering.github.io/paper-idesolverxx/

ECOOP 2024

https://secure-software-engineering.github.io/paper-idesolverxx/algorithm#phase-i
https://secure-software-engineering.github.io/paper-idesolverxx/algorithm#propagate
https://secure-software-engineering.github.io/paper-idesolverxx/algorithm#phase-ii
https://secure-software-engineering.github.io/paper-idesolverxx/

37:6 Scaling Interprocedural Data-Flow Analysis

large programs comprising several hundreds of thousands to millions of lines of code. In the205

following, we report on the problems with current IDE implementations, with the example of206

PhASAR, that has lead us to define the optimizations to IDE that we present in Section 4.207

To show the performance of a current state-of-the-art IDE implementation, we use the208

current IDESolver from PhASAR3 in version v2403, which is the most recent stable version209

of the open-source framework at the time. To assess the state-of-the-art, we have applied the210

IDESolver to 31 real-world C and C++ programs4 denoted in Table 1 and solved a typestate211

analysis (TSA), a linear constant analysis (LCA), and an instruction-interaction analysis212

(IIA) [21]. In Table 1 the columns with the analysis problems are sorted in ascending order213

by analysis complexity.214

Measuring runtime and memory usage of the analysis runs, as Table 1 shows, we observed215

that, with increased analysis complexity, the number of recorded timeout (t/o) and out-of-216

memory (OOM) events grows. While the IDESolver was able to complete the LCA and TSA217

on almost all target programs, the solver performed worse on the IIA: In fact, we observed218

that six out of 31 could not be run on an ordinary developer machine, seven others ran219

out-of-memory while four others timed out.220

The current situation, as illustrated by Table 1, that many interesting data-flow analyses221

cannot be solved on medium-sized to large target programs is inacceptable. While long222

runtimes can be tackled by running the analysis less often (e.g., in a CI/CD pipeline) or223

by increasing the time budget, the high memory requirements are often impossible to solve224

due to hardware limits; more memory might be integrated which then—depending on the225

system—would incur high procurement- and operating costs.226

As some state-of-the-art IDE implementations, such as PhASAR and Heros, are open-227

source, we are able to analyze them to gain insights where the performance bottlenecks are228

and propose optimizations (cf. Section 4) for lowering the time- and memory requirements229

of IDE.230

4 Optimizations231

To mitigate the scalability issues of IDE identified in Section 3, we reviewed state-of-the art232

literature regarding IDE implementations, profiled the IDE solver implementation within the233

PhASAR framework, and identified two aspects that suggest to offer potential for effective234

optimizations in terms of both runtime and memory consumption. Although the IDE235

algorithm works in two phases (see Section 2.1), we can tell from our experience that IDE236

spends the majority of its time during phase I—the part that IFDS and IDE have in common.237

Thus, we aim to optimize phase I.238

First, while computing the target analysis’ fixed point, an IDE implementation must239

efficiently store the set of jump functions. This corresponds to the JumpFn map [20] in240

the original algorithm. The jump-functions table stores all ESG edges that are computed241

by the IDE solver. That is, it stores quadruples drawn from (D × N × D) → J . The242

size of the jump-functions table is therefore bound by O(|N | · |D|2). As it is unlikely to243

reduce this worst case bound, we propose in Section 4.1 to lower the constant factors of244

these bounds by optimizing the memory layout of the jump-functions table, which enables245

practical performance gains. Second, most jump functions computed by IDE are just needed246

temporarily to craft the procedure summaries ψ. Once a summary has been created, the247

3 PhASAR: https://github.com/secure-software-engineering/phasar/tree/v2403
4 Section 6.2 provides details on how the results were obtained and how the analyses were configured.

https://github.com/secure-software-engineering/phasar/tree/v2403

F. Schiebel, F. Sattler, P. D. Schubert, S. Apel, and E. Bodden 37:7

Table 1. On the left, we see all evaluation targets with additional information, such as the revision
we analyzed and the amount of LLVM-IR code. The IR code size is important because PhASAR’s
IDE solver works at the IR level. In addition, we report the number of procedures (Proc), the
number of globals (Glob), and the number of call-sites (Calls) in the IR, which may influence the
performance of the analysis. The three rightmost columns show time [s] and memory consumption
[MiB] of the benchmarked analyses utilizing the IDESolver from PhASAR. Orange cells indicate
that the memory of a common consumer machine (32 GiB) was exceeded. Dark orange cells indicate
that even a compute cluster with 128 GiB would be insufficient. Red cells indicate the analysis
ran out-of-memory with a memory limit of 250 GiB, and blue cells represent timeout (t/o) events
exceeding four hours of analysis time.

Typestate LCA IIA

Revision Domain LOC Proc Global Calls Time Mem Time Mem Time Mem

FastDownward 641d70b3 Planning 849k 35k 5k 176k 20 1 407 81 7 709 - OOM
asterisk a0946200 Signal processing 626k 8k 15k 85k 72 4 131 t/o - - OOM
bison 849ba01b Parser 123k 1k 1k 13k 38 1 974 82 8 885 - OOM
bitlbee fb774da0 Chat client 91k 1k 2k 12k 1 203 17 2 126 - OOM
brotli 9801a2c5 Compression 103k 978 173 10k 2 315 9 1 640 505 43 220
bzip2 1ea1ac18 Compression 29k 154 182 1k 3 166 20 1 829 842 34 006
cat 1913bfcf UNIX utils 6k 223 139 736 <1 45 1 243 40 1 986
cp 1913bfcf UNIX utils 23k 524 373 3k <1 86 4 577 288 12 398
dd 1913bfcf UNIX utils 19k 319 287 2k <1 69 11 1 214 497 16 014
file e94d5264 UNIX utils 1k 66 170 314 <1 39 <1 53 3 413
fold 1913bfcf UNIX utils 6k 210 130 715 <1 52 2 245 41 1 943
grep cb15dfa4 UNIX utils 79k 808 424 6k 1 207 25 3 208 545 44 827
gzip 23a870d1 Compression 17k 251 351 1k <1 67 7 1 049 91 9 364
htop bc22bee6 UNIX utils 58k 917 1k 7k 19 290 12 1 647 1 680 102 431
hypre f69f8ef4 Solver 713k 3k 3k 71k 86 6 461 1 259 77 313 t/o -
join 1913bfcf UNIX utils 10k 267 184 1k <1 66 2 324 55 3 098
kill 1913bfcf UNIX utils 5k 196 135 663 <1 43 1 215 39 1 689
lepton 429fe880 Compression 139k 3k 889 24k 3 331 35 4 062 2 902 87 637
libjpeg_turbo 2cad2169 File format 142k 582 184 7k 1 242 161 9 172 - OOM
libsigrok 68321f73 Signal processing 148k 1k 4k 16k 2 338 8 1 257 t/o -
libzmq ec6f3b1d C++ Library 162k 5k 1k 26k 29 2 120 9 901 t/o -
ls 1913bfcf UNIX utils 31k 646 515 3k <1 111 14 1 642 301 21 901
lz4 4a555363 Compression 35k 445 424 4k 12 221 5 847 749 23 597
openvpn cec4353b Security 187k 3k 4k 24k 10 540 74 8 135 t/o -
opus bce1f392 Codec 131k 851 472 10k 1 233 38 5 160 3 851 143 264
poppler 315ab300 Rendering 546k 15k 15k 87k 207 3 573 125 11 788 - OOM
uniq 1913bfcf UNIX utils 7k 242 181 939 <1 54 2 260 44 2 316
wc 1913bfcf UNIX utils 10k 272 187 1k <1 61 2 338 52 3 056
whoami 1913bfcf UNIX utils 5k 180 113 539 <1 42 1 209 36 1 489
x264 e067ab0b Codec 500k 2k 2k 33k 48 3 151 203 19 605 - OOM
xz e7da44d5 Compression 10k 252 455 1k <1 57 2 327 31 4 740

corresponding intermediate jump functions are no longer needed. Hence, to reduce IDE’s248

memory footprint, we propose in Section 4.2 to remove such intermediate entries from the249

jump-functions table. In fact, we extend the work from Arzt [1] by designing a garbage250

collector for jump functions that—in contrast to the one proposed by Arzt—is applicable to251

arbitrary IDE problems.252

It is important to note that our optimizations do not target just one particular implemen-253

tation; our optimizations are generally applicable.254

4.1 Data Structures for the Exploded Supergraph255

While solving an IDE data-flow analysis problem, the solver incrementally creates jump256

functions (see Section 2) that need to be stored in memory. To solve the analysis problem257

efficiently, the jump functions need to be stored efficiently, allowing for short lookup and258

insertion times as well as for a small memory footprint.259

ECOOP 2024

37:8 Scaling Interprocedural Data-Flow Analysis

(𝑛1) int a = 1;

(𝑛2) a = a + 2;

(𝑛3) int b = p * 5;

(𝑛4);

Λ p a b

Λ, n1, Λ ↦ 𝜆ℓ. ℓ

p, n1, p ↦ 𝜆ℓ. ℓ

Λ, n2, Λ ↦ 𝜆ℓ. ℓ

p, n2, p ↦ 𝜆ℓ. ℓ

Λ, n2, a ↦ 𝜆ℓ. 1

Λ, n3, Λ ↦ 𝜆ℓ. ℓ

p, n3, p ↦ 𝜆ℓ. ℓ

Λ, n3, a ↦ 𝜆ℓ. 3

Λ, n4, Λ ↦ 𝜆ℓ. ℓ

p, n4, p ↦ 𝜆ℓ. ℓ

Λ, n4, a ↦ 𝜆ℓ. 3

p, n4, b ↦ 𝜆ℓ. ℓ ⋅ 5

(𝒅𝟏, 𝒏, 𝒅𝟐) ↦ 𝒇

Figure 2a. The jump-functions table similar to
the FastSolver of FlowDroid. Without nesting,
the whole jump functions ⟨d1, n, d2, f⟩ of the ESG
for Figure 1 are stored in one level which may lead
some of d1, d2, and n being stored redundantly.

(𝑛1) int a = 1;

(𝑛2) a = a + 2;

(𝑛3) int b = p * 5;

(𝑛4);

Λ p a b

n1

n2

n3

n4

Λ

p

Λ

p

Λ

p

Λ

p

Λ ↦ 𝜆ℓ. ℓ

p ↦ 𝜆ℓ. ℓ

Λ ↦ 𝜆ℓ. ℓ

p ↦ 𝜆ℓ. ℓ

a ↦ 𝜆ℓ. 1

Λ ↦ 𝜆ℓ. ℓ

p ↦ 𝜆ℓ. ℓ

a ↦ 𝜆ℓ. 3

Λ ↦ 𝜆ℓ. ℓ

p ↦ 𝜆ℓ. ℓ

a ↦ 𝜆ℓ. 3

b ↦ 𝜆ℓ. ℓ ⋅ 5

𝒏 𝒅𝟏 𝒅𝟐 ↦ 𝒇

Figure 2b. The main jump-functions table from
PhASAR and Heros. For each jump function
⟨d1, n, d2, f⟩, it maps the nodes n to inner maps,
which map the source data-flow facts d1 to the
respective target facts d2 and edge functions f .
This avoids some nodes n and source facts d1
to be stored multiple times, as they would be
in Figure 2a, but adds extra cost for the inner
mappings.

4.1.1 Jump Functions Table Analysis260

Existing IDE solver implementations such as Heros [5], PhASAR [22] and FlowDroid [4]261

use different representations to store jump functions, each of which comes with different262

performance properties. PhASAR and Heros use nested mappings N → (D → (D → J))263

that map a target node n ∈ N to a map of source data-flow fact d1 ∈ D to a map of target264

fact d2 ∈ D to the associated edge function f ∈ J . Yet, to speed up algorithm-specific265

lookup and insert tasks, Heros and PhASAR store each jump function redundantly in two266

additional maps, effectively modeling a multi-index table. In what follows, when referring267

to the jump-functions table structure used by PhASAR and Heros, we focus on the nested268

mapping described above, but keep in mind that the multi-index may have a drastic impact269

on the overall memory consumption of the solving process.270

FlowDroid uses a flat (N ×D ×D) → D representation to map a full jump function271

(n, d1, d2) ∈ N × D × D to the same target fact d2. As FlowDroid only implements272

IFDS, which is a subset of IDE where all edge functions are implicity the identity function273

λx.x, it does not need to store edge functions f ∈ J . It stores the target fact twice for274

implementation-specific support for path-tracking. As path tracking is out of scope for this275

work, we concentrate on the (N ×D ×D) part of the data structure.276

Both data structures (nested and flat) have their advantages and drawbacks. Consider277

the example in Figure 1. Having no nested mappings, as shown in Figure 2a, makes lookup278

and insertion fast, since they only consist of a single hash-map operation. In contrast, the279

nested approach, as shown in Figure 2b, requires three hash-map operations for each lookup280

or insert as for each of n, d1 and d2 in a jump-function entry a separate hash-map lookup or281

insertion is required.282

In both designs, the noticeable duplication of the edge functions f could be solved283

by storing them in a separate cache. PhASAR, in fact, supports such a cache already.284

However, even with caching edge functions, nodes n and source facts d1 may be stored285

redundantly in memory. This is, because it is likely that there are multiple jump functions286

that lead to the same target node, which corresponds to the existence of the jump functions287

F. Schiebel, F. Sattler, P. D. Schubert, S. Apel, and E. Bodden 37:9

(d1,1, n, d2,1), . . . , (d1,k, n, d2,m) for n ∈ N , {d1,1, . . . , d1,k, d2,1, . . . d2,m} ⊆ D and k,m ∈ N.288

Such jump functions may store the target node n multiple times in a flat structure, such as289

Figure 2a, but store n only once in a nested representation such as Figure 2b.290

In the same vein, when generating data-flow facts, it is also likely that there are multiple291

target facts for the same source-fact and target node, for example, jump functions of the form292

(d1, n, d2,1), . . . , (d1, n, d2,m) for n ∈ N, {d1, d2,1, . . . , d2,m} ⊆ D and m ∈ N. For instance,293

the jump functions (Λ, n2,Λ, λℓ.ℓ) and (Λ, n2, a, λℓ.1) from Figure 1 fall in that category.294

In a flat representation such as of Figure 2a, jump functions store both source fact d1 and295

target node n redundantly, but avoid the redundant storage in a nested representation as296

shown in Figure 2b.297

In summary, nested mappings store less data from the jump functions redundantly and298

therefore are likely to expose a lower memory usage than a shallow representation. Conversely,299

common operations such as lookup and insertion of jump functions in the table are likely300

to be faster in the flat representation as there are fewer indirections and fewer hashing301

operations. Furthermore, map data structures themselves have implementation-specific302

memory overhead. Therefore, a nested representation is more memory efficient than a303

flat one only if the additionally introduced maps grow beyond an implementation-specific304

threshold to compensate the overhead of these maps.305

4.1.2 Optimized Jump Functions Table306

Given the analysis in Section 4.1.1, we propose a compromise between nested and flat data307

structure representations that harnesses the advantages of both to drastically improve both308

the memory usage as well as the runtime of the IDE algorithm. We acknowledge that a nested309

mapping is necessary to avoid duplicate storage of nodes and data-flow facts. However, to310

keep lookup times low and to keep the individual maps sufficiently large, we aim at reducing311

the nesting depth as well. Specifically, we propose a two-level nested map as a compromise312

between fast lookup times and low memory usage. For a design with two levels of nesting,313

there are six possible mappings to store jump functions:

1. (n, d1) 7→ (d2 7→ f)
2. (n, d2) 7→ (d1 7→ f)
3. (d1, d2) 7→ (n 7→ f)

4. n 7→ (d1, d2) 7→ f

5. d1 7→ (n, d2) 7→ f

6. d2 7→ (n, d1) 7→ f

314

To reduce the number of candidate representations, we consider one more optimization:315

As we limit ourselves to two-level nested maps, each jump functions access requires at316

least two indirections. However, with intelligent batch-processing, the effective number317

of indirections can be reduced. We observe that during ESG construction in the IDE318

algorithm(cf. Section 2.1), the only direct access to the jump-functions table is inside the319

Propagate function depicted on the left side of Algorithm 1. Here, the expression JumpFn(e)320

performs the jump-functions table access where e represents a complete jump edge consisting321

of the target node n and the source- and target data-flow facts d1 and d2. We further observe322

that in the original algorithm Propagate is always called from within a loop where parts of n,323

d1, or d2 are loop-invariant.324

So, if we design the jump-functions table accordingly, we can optimize the Propagate325

procedure (shown on the right side of Algorithm 1), by batching the access to the outer326

map for multiple jump functions accesses together. Here, Propagate receives an additional327

parameter j that denotes a view into the jump-functions table where the loop-invariant parts328

are already fixed. In the example, j only contains jump functions where the target node is329

ECOOP 2024

37:10 Scaling Interprocedural Data-Flow Analysis

Algorithm 1 The modifications in the Propagate procedure that support batch processing.
An exemplary use of Propagate for the case in which the target node n is loop-invariant is
shown in Lines 8-11. To highlight changes compared to the original algorithm from Sagiv et
al. [20], additions are shown in green and removals are shown in red.

1 Procedure Propagate(e, f)
2 let f ′ = f ⊓ JumpFn(e);
3 if f ′ ̸= JumpFn(e) then
4 JumpFn(e) = f ′;
5 Insert e into PathWorkList;
6 end
7 end

// Example use:
8

9 for . . . do
10 Propagate(⟨sp, d1⟩ → ⟨n, d2⟩, f);
11 end

Procedure Propagate(j, e, f)
let f ′ = f ⊓ j(e);
if f ′ ̸= j(e) then

j(e) = f ′;
Insert e into PathWorkList;

end
end
// Example use:
j = JumpFn(⟨∗, ∗⟩ → ⟨n, ∗⟩);
for . . . do

Propagate(j, ⟨sp, d1⟩ → ⟨n, d2⟩, f);
end

Table 2 Access patterns of the jump-functions table with their number of occurrences within the
original IDE algorithm [20] (cf. Section 2.1).

Invariant parts # Occurrences

n 1 (call-flow)
n, d1 2 (call-to-return-flow, summary-flow)
n, d2 1 (return-flow)
d1 1 (normal-flow)

a previously fixed n. It is important that the extraction of j happens outside of the loop330

that calls Propagate. Using the smaller map j for accessing the jump functions instead of331

the complete table JumpFn may improve the performance of Propagate. In fact, if j is one332

of the inner maps of our two-level nested jump-functions representation, using j effectively333

reduces the nesting depth of the table within Propagate, which in turn reduces the runtime334

cost of accessing individual jump functions.335

Efficiently extracting the view j from the jump-functions table requires that the jump-336

functions table is laid out in a way that supports this operation. This can be achieved by337

placing the loop-invariant parts as keys into the outer map and the loop-variant parts into338

the inner maps. To decide which view j is best suited to achieve maximum performance339

improvement, we have to analyze which parts, n, d1, or d2, of a jump function are most340

frequently loop-invariant.341

Based on careful analysis of the original algorithm [20], we identify four different access342

patterns, as depicted in Table 2. Although n is not strictly invariant in the normal-flow343

case, it may still be beneficial to consider n as invariant for the purpose of selecting a344

jump-functions representation, as most intraprocedural control-flow nodes mostly have only345

one (statement-sequence) or two (conditional branch) successors. Furthermore, to propagate346

all normal flows, the algorithm needs to iterate over all relevant n, d2 pairs which is usually347

implemented as nested loop, effectively making n or d2 temporarily loop-invariant. This348

consideration has no influence on the algorithmic correctness, but on the effectiveness of349

batch-processing jump functions accesses in the table.350

F. Schiebel, F. Sattler, P. D. Schubert, S. Apel, and E. Bodden 37:11

Based on these observations, we conclude that it is beneficial to store the target fact d2 in351

the inner map and n in the outer map. This enables us to filter out most of the six possible352

mappings presented above, leaving only353

1. (n, d1) 7→ (d2 7→ f) 4. n 7→ (d1, d2) 7→ f

as possible candidates, which we call JFND and JFN , respectively, denoting the domain used354

in the outer map.355

Furthermore, we also conjecture that a multi-index representation of the jump-functions356

table is not necessary. With any of JFND or JFN we can efficiently model all access patterns357

that occur in the IDE algorithm. Hence, we introduce a third jump-functions representation,358

JFold, that uses the deep nesting from PhASAR and Heros (n 7→ d1 7→ d2 7→ f), but avoids359

the multi-index.360

Our theoretical analysis also yields that, with JFND, we already have efficient access to361

the procedure summaries, eliminating the need for an extra EndSummary table that was362

proposed by Naeem et al. [15]. To access a summary5 of procedure p, we can directly lookup363

the necessary jump functions at p’s exit statements. With JFN , to find matching summaries364

without the EndSummary table, one requires a linear search over the inner maps at p’s exit365

statements. Depending on the size of these inner maps, this linear search may still be fast, so366

we split JFN into two candidates: JFN and JFNE where JFNE uses the explicit EndSummary367

table while JFN omits it.368

4.1.3 Discussion369

From the observations in Section 4.1.2, one could conclude that JFND is superior to JFN370

because, in three out of the five Propagate calls, d1 is loop-invariant. However, in JFND371

(depicted in Figure 3a) the outer map is larger than in JFN (depicted in Figure 3b) as its key372

space is larger: |N | ≤ |N ×D|. Therefore, JFND needs to store more inner maps than JFN373

although, in the end, both store the exact same number of jump functions. Furthermore,374

the inner maps in JFND are smaller than the inner maps in JFN , as there are more of them375

and depending on the concrete implementation-specific overhead of a single inner map, the376

memory cost of the inner maps might outweigh their potential benefit. Hence, from a sole377

theoretical analysis, we cannot conclude which jump-functions representation performs better378

in practice; we need to perform an empirical evaluation to draw a final conclusion (Section 6).379

4.2 Garbage Collection of Jump Functions380

As discussed in Section 4.1, the jump-functions table has a great influence on the overall381

memory consumption of the IDE algorithm. Arzt [1] has shown that it is possible to remove382

entries in the jump-functions table without preventing the algorithm from reaching a fixed383

point. They present a garbage collector (GC) that runs concurrently to the actual IDE384

implementation, improving both memory usage and runtime of the underlying analysis. The385

GC removes jump functions when they are no longer needed. This applies when the complete386

data flow represented by a jump function has already been composed to a summary.387

One limitation of the approach of Arzt [1] is that it only applies to an IFDS analysis388

and therefore does not need to deal with edge functions. In IDE, the value computation389

problem on data-flow edges can only be performed if the corresponding jump functions are390

5 Processing summaries as described in line 15.2 by Naeem et al. [15].

ECOOP 2024

37:12 Scaling Interprocedural Data-Flow Analysis

Λ p a b

(n1, Λ) Λ ↦ 𝜆ℓ. ℓ

p ↦ 𝜆ℓ. ℓ(n1, p)

(n2, Λ)

(n2, p)

Λ ↦ 𝜆ℓ. ℓ

p ↦ 𝜆ℓ. ℓ

a ↦ 𝜆ℓ. 1

(n3, Λ)

(n3, p)

Λ ↦ 𝜆ℓ. ℓ

p ↦ 𝜆ℓ. ℓ

a ↦ 𝜆ℓ. 3

b ↦ 𝜆ℓ. ℓ ⋅ 5

(n4, Λ)

(n4, p)

Λ ↦ 𝜆ℓ. ℓ

p ↦ 𝜆ℓ. ℓ

a ↦ 𝜆ℓ. 3

(𝑛1) int a = 1;

(𝑛2) a = a + 2;

(𝑛3) int b = p * 5;

(𝑛4);

(𝒏, 𝒅𝟏) 𝒅𝟐 ↦ 𝒇

Figure 3a. jump-functions representation JFND
for the example shown in Figure 1. The outer
map has a two-dimensional key space consisting
of the target node n and the source fact d1, which
reduces the size of the inner maps, containing only
the target fact d2 and the edge function f .

(𝑛1) int a = 1;

(𝑛2) a = a + 2;

(𝑛3) int b = p * 5;

(𝑛4);

Λ p a b

n1

n2

n3

n4

Λ, Λ ↦ 𝜆ℓ. ℓ

p, p ↦ 𝜆ℓ. ℓ

Λ, Λ ↦ 𝜆ℓ. ℓ

p, p ↦ 𝜆ℓ. ℓ

Λ, a ↦ 𝜆ℓ. 1

Λ, Λ ↦ 𝜆ℓ. ℓ

p, p ↦ 𝜆ℓ. ℓ

Λ, a ↦ 𝜆ℓ. 3

Λ, Λ ↦ 𝜆ℓ. ℓ
p, p ↦ 𝜆ℓ. ℓ

Λ, a ↦ 𝜆ℓ. 3

p, b ↦ 𝜆ℓ. ℓ ⋅ 5

𝒏 (𝒅𝟏, 𝒅𝟐) ↦ 𝒇

Figure 3b. jump-functions representation JFN for
the example shown in Figure 1. The outer map has
a one-dimensional key space only consisting of the
target node n, whereas the inner maps have a two
dimensional key space containing the source- and
target facts d1 and d2 as well as the associated edge
functions f . Compared to JFND, JFN contains
fewer inner maps which in turn grow larger.

present. This makes garbage collecting jump functions more complicated in a general IDE391

setting with associated edge functions. Although Arzt describes a possible extension of the392

GC to IDE as trivial, we recognize that the correct handling of corner cases makes it less393

obvious than it seems on the first glance. Especially, we need to ensure that subsequent394

result queries can still evaluate the edge-functions correctly that are annotated to the jump395

functions. Secondly, the garbage collection by Arzt [1] exploits multithreading at the level396

of the data-flow analysis solver. This requires the complete analysis toolchain to be thread397

safe. While some IDE implementations do satisfy this requirement and make use of multiple398

cores to speedup the solving process, other implementations are only single-threaded and do399

not provide thread-safe data structures. Specifically, PhASAR’s analyses are not thread-safe400

and even LLVM—which PhASAR builds upon—is not generally thread-safe. Additionally,401

since we conduct a comprehensive study evaluating the runtime and memory consumption of402

IDE, we need to ensure that external factors, such as OS scheduling do not influence our403

evaluation results. Hence, we prefer using only a single thread, which eliminates many of404

these issues by removing non-determinism from the implementation.405

In the following, we describe how we mitigate both limitations, the restriction to a subset406

of IDE and the enforced multi-threading.407

4.2.1 Single-Threaded Garbage Collection408

To keep the GC scalable, Arzt designed it to work on a procedure-level. That is, all jump409

functions corresponding to procedure p can be erased once there is no longer any worklist410

item that contains a node from inside p or from any procedure that can be transitively411

called by p [1]. We call this the GC Condition. Unfortunately, the order in which the412

ESG is constructed is not specified by the underlying algorithm [20], which is why one413

cannot precisely predict these points. If the garbage collector runs concurrently to the414

actual analysis-solving thread, it can be invoked periodically based on a timer. Additional415

computations that the GC needs to perform to determine for which procedures the jump416

F. Schiebel, F. Sattler, P. D. Schubert, S. Apel, and E. Bodden 37:13

functions can be erased do not necessarily pause the analysis. However, as explained above,417

we decided to aim for a single-threaded solution here. The GC thus needs to be called418

explicitly at suitable points within the IDE algorithm and will pause the data-flow analysis419

for the garbage collection.420

We observe that a procedure p can only become a candidate for garbage collection once421

the analysis within p has reached an exit statement. In theory, it is possible to invoke the422

GC after exiting any procedure, yet this has a non-negligible overhead that would render the423

analysis unscalable. Hence, we aim for finding a point in the IDE algorithm to place the GC,424

such that it gets called frequently enough to keep it effective, but not too frequent to keep it425

scalable. This means, that the GC should be invoked, once a sufficient amount of procedures426

have computed their summary.427

There are several ways of deciding when the GC should be invoked, each with different428

characteristics and implications. One approach is to increment a counter, whenever a429

procedure has computed a new summary, and invoke the GC when the counter reaches a430

certain threshold. This approach has the advantage that it is easy to implement. On the431

downside, it does not decide to invoke the GC based on concrete information on the internal432

solver state, such as the content of the worklist or the jump-functions table. Therefore, many433

candidate procedures may actually fail the GC Condition and are not eligible for garbage434

collection yet. Hence, its performance may not be predictable and requires a decent amount435

of tuning. An alternative is to take the contents of the solver’s worklist into account when436

deciding on when to invoke the GC. Since the GC Condition is based on the content of the437

worklist, we can invoke the GC when it is guaranteed that the candidate procedures will438

pass the GC Condition. In our implementation, we opted for this more informed procedure.439

For deciding, when to invoke the GC, we split IDE’s worklist into two separate worklists:440

One PathWorkList for top-down propagations, which stores jump functions in D×N×D×J441

to be processed, and another worklist, RetWorklist, for bottom-up summary applications442

that stores entries of the form (d1, p) ∈ D× P , where P is the domain of callable procedures443

in the target program. On a high level, the fixed-point iteration uses the PathWorkList, but444

also fills the RetWorklist on-the-fly when a procedure has reached its exit point. Once the445

PathWorkList becomes empty, the algorithm handles the work-items from the RetWorklist,446

which may fill the PathWorkList again. Although the data-flow propagations have stayed447

the same, using two worklists we now have structured the fixed-point iteration into stages (a448

stage ends, whenever the PathWorkList becomes empty) that allow placing a call to the GC.449

For the two worklists to function properly, we modify the IDE algorithm as sketched450

in Algorithm 2. The pseudo code for handling procedure exit points that we removed in451

Line 9 of Algorithm 2 has moved to a new outer loop depicted in Algorithm 3. As applying452

procedure summaries may lead to new intra-procedural propagations at their return sites,453

the whole process runs in a loop until both worklists are empty, as shown in Algorithm 3.454

Note that in subsequent iterations, the ForwardComputeJumpFunctionsSLRPs procedure455

must skip its initialization phase to not over-write the already computed results. Apart from456

that, we did not change the original IDE algorithm, as we describe in Section 4.2.1.1.457

Using two worklists, the garbage collection condition now slightly changes. The jump458

functions of a procedure p can only be collected if none of the PathWorkList and the459

RetWorklist contain a node from inside p or its transitive callees. This is, because when460

processing the worklist items (d1, p) from the RetWorklist, the callers of p may be added to461

the PathWorkList again preventing garbage collection for p. Whenever the PathWorkList is462

empty, we have the guarantee that for all currently analyzed procedures (and their transitive463

callees), the analysis has reached their exit points, making them candidates for garbage464

ECOOP 2024

37:14 Scaling Interprocedural Data-Flow Analysis

Algorithm 2 Modification in the ForwardComputeJumpFunctionsSLRPs procedure from
the original IDE algorithm [20].

1 Procedure ForwardComputeJumpFunctionsSLRPs(. . .)
2 . . . ;
3 while PathWorkList ̸= ∅ do
4 Select and remove an item ⟨sp, d1⟩ → ⟨n, d2⟩ from PathWorkList;
5 . . . ;
6 switch n do
7 . . . ;
8 case n is the exit node of p do
9 Insert (d1, p) into RetWorklist;

10 end
11 . . . ;
12 end
13 end
14 end

Algorithm 3 High-level overview of the two-step fixed point computation with garbage
collection. The foreach loop in Line 5 denotes the content from ForwardComputeJumpFunc-
tionsSLRPs [20] that we have removed from Algorithm 2. The function RunGarbageCollector
behaves exactly as described by Arzt [1].

1 while PathWorkList ̸= ∅ do
2 ForwardComputeJumpFunctionsSLRPs(. . .);
3 while RetWorklist ̸= ∅ do
4 Remove (d1, p) from RetWorklist;
5 foreach call node c that calls p with corresponding return-site r do
6 . . . ;
7 end
8 end
9 RunGarbageCollector();

10 end

collection. Hence, we now have a structure that precisely defines points for placing the GC.465

In particular, we now have two candidate locations to place the garbage collection in466

Algorithm 3: Line 3: Right after the returning from ForwardComputeJumpFunctionsSLRPs467

(i.e., when the PathWorkList becomes empty) or Line 9: After the RetWorklist becomes468

empty. In Line 3, the RetWorklist is potentially non-empty as it may contain procedures p469

that have computed a new summary for the propagation of a source data-flow fact d1 that470

needs to be propagated back to all callers of p. In Line 9, though, the RetWorklist is empty,471

whereas the PathWorkList may be filled with return flows again.472

Both insertion points at Line 3 and Line 9 are very similar, however, Line 9 has one small473

benefit: Having a jump function from a procedure p in the RetWorklist prevents all caller474

procedures of p from being garbage collected. After processing the RetWorklist items, only475

those callers of p have jump functions in the PathWorkList for which the new information476

from p requires further propagation. All other caller procedures can still be garbage collected477

(unless there are other callees that prevent the collection). This leads to our preference to478

F. Schiebel, F. Sattler, P. D. Schubert, S. Apel, and E. Bodden 37:15

place the garbage collection at Line 9. Note, although the worklists are processed until479

completion in one iteration of the outer loop, there are still potentially many iterations such480

that the garbage collector is run many times as well.481

4.2.1.1 Correctness482

Our modifications to the IDE algorithm and the integration of the garbage collection do not483

violate the correctness and complexity of the IDE algorithm. Splitting the worklist into two484

smaller worklists, as we have done in Algorithm 2 and Algorithm 3, does not create new485

worklist items that would not be created in the original, and also does not drop worklist486

items that would be processed in the original. Only the order, in which the worklist items487

are processed, may change. This is, because (1) the processing of exit nodes (cf. Line 9)488

gets delayed through the RetWorklist to Algorithm 3 without modifying the corresponding489

worklist items, and (2) since the processing order of the worklist items is not defined in the490

algorithm [20], any modification on the processing order has no influence on the correctness491

or complexity of the algorithm.492

In addition, we use the same RunGarbageCollector function from Arzt without modification.493

Only the garbage collection condition, has slightly changed: Whereas in the original GC,494

a procedure p’s jump functions can be erased, if the worklist does not contain a node495

from inside p or its transitive callees, in our extension, this requirement holds for both the496

PathWorkList and the RetWorklist. Since we argue above that both PathWorkList and497

RetWorklist in combination express the same worklist items as the original worklist, the498

correctness argumentation from Arzt still holds.499

4.2.2 Generalizing Garbage Collection for IDE500

When a procedure p gets evicted by the original GC from Arzt, all jump functions corres-501

ponding to that procedure are removed. However, when performing an analysis that uses502

IDE’s edge functions, one needs to ensure that the value computation (cf. Section 2.1) can503

still be performed correctly. To solve the value computation problem for an ESG node504

(n, d) ∈ N ×D, the edge functions annotated to all jump functions that lead to node (n, d)505

have to be evaluated and thus need to be present. For example, removing the intermediate506

jump function ⟨Λ, n3, a, λℓ.3⟩ in Figure 1 would prevent that the analysis computes the result507

relation (n3, a) 7→ 3. This makes garbage collection for IDE’s jump functions impossible508

when the values for all ESG nodes must be computed. Fortunately, many analyses can509

define for which ICFG nodes ni ∈ N analysis-result queries may be raised before starting510

the solving process. For example, in a typestate analysis, only the API call nodes that are511

relevant for the analyzed usage pattern may be queried. We call those nodes ni interesting.512

At interesting nodes, we erase no jump functions in the GC to ensure that at those nodes513

the complete analysis results including edge values will be present.514

However, we have to retain additional jump functions: The value-propagation phase (cf.515

Section 2.1) first propagates initial edge values from the entry points to the starting nodes516

of all reachable procedures. This is done by iteratively querying and evaluating the jump517

functions at all call sites to map the initial values to the start of all reachable procedures.518

This initial value-propagation is necessary for the other jump functions to be evaluated, as it519

determines the input values for these jump functions. Therefore, for the value propagation520

to work properly, one must also retain the jump functions at all call sites, even if they are521

not considered interesting, such that the value propagation to the starting points of all522

procedures can succeed. Hence, when using IDE’s edge functions, the garbage collection must523

ECOOP 2024

37:16 Scaling Interprocedural Data-Flow Analysis

retain more jump functions than just the ones corresponding to interesting nodes, making it524

potentially less effective.525

In the evaluation, we demonstrate that the garbage collection is still effective in a real526

world setting, even in a single-threaded environment and when using IDE without restrictions.527

5 Implementation528

We implemented the IDE algorithm including the optimizations proposed in Section 4 on529

top of the PhASAR framework [22]. PhASAR is able to analyze LLVM IR [13] in a fully530

automated manner and already provides an implementation of IDE, called IDESolver [22,23].531

The IDESolver is parametrizable with an user-defined description of an IDE analysis problem532

that shall be solved. After solving the analysis problem, the IDESolver can answer queries533

about which data-flow facts hold at a given ICFG node and which edge value has been534

computed for a given node–data-flow fact pair (n, d) ∈ N ×D. We chose to provide the same535

interface in the new solver such that it can be used as a drop-in replacement. Note that the536

determination of interesting nodes for the garbage collector is completely opt-in, so only IDE537

analyses that use both the garbage collector and edge functions may need to implement it.538

We call our new solver IDESolver++.539

The existing solver provides several configuration options that influence how the analysis540

problem should be solved (e.g., whether the value computation in IDE Phase II should541

be performed). Our new implementation is configurable as well, but we chose to lift the542

configuration from runtime to compile-time. This allows to specialize the solver for the543

selected configuration such that the algorithms and data structures can be selected precisely544

for the requested needs. For example, if the implementation detects at compile-time that the545

to-be-solved analysis problem does not need edge functions, the jump functions table will546

replace its inner map by a set, eliding the storage for associated edge functions that would547

otherwise all default to the identity function λx.x.548

In Section 4, we have shown different representations of the table storing the jump549

functions, and we concluded that this representation is critical for optimal performance of550

the overall solving process. Therefore, we chose to use open-addressing6 hash maps to store551

the concrete mappings of the structures JFND and JFN , as well as JFold. Open-addressing552

hash maps are particularly performant because of their cache efficiency and small number of553

dynamic memory allocations. However, their performance degrades with increasing size of554

the entries to store. The domains N and D are user defined for both solvers (the current555

IDESolver and our IDESolver++) making them generic over the program representation to556

analyze and the type of data-flow facts. Therefore, we do not use these types directly as557

keys and values in the hash maps to guarantee predictable performance. Instead, we chose558

to introduce an intermediate layer that maps each used node and data-flow fact to 32-bit559

integers in the contiguous ranges [0, . . . , |N | − 1] and [0, . . . , |D| − 1]. These integers are then560

used as keys/values in the actual jump-functions table. The sizes of the intermediate maps561

are negligible compared to the size of the jump-functions table. We reasonably assume that562

both N and D do not grow larger than 232 − 1, since these domains are bound by the size of563

the input program. For the JFN (and JFNE) approach, the intermediate layer enables one564

more optimization: The outer map can be replaced by a plain array to further reduce the565

memory footprint and to improve lookup performance.566

6 Open-addressing hash tables store all buckets in a contiguous block of memory, using probing for collison
resolution.

F. Schiebel, F. Sattler, P. D. Schubert, S. Apel, and E. Bodden 37:17

Since the inner maps are very small in many cases, we chose to use llvm::SmallDense-567

Map<K,V,4> for the inner maps to optimize for the case in which these maps do not exceed a568

capacity of 4. This optimization is critical, especially for JFND and JFold, because they store569

a large number of small inner maps, where their sizes mostly do not exceed the initial capacity570

(48 entries) of a regular llvm::DenseMap. Independent from the selected jump-functions571

representation, the corresponding outer hash map is pre-allocated with a reasonable size that572

scales linearly with the size of the input program. Together with the small-size optimization,573

this pre-allocation reduces the total number of potentially expensive (re-)allocations.574

Our implementation is openly available in the supplementary material of this paper and575

we are already in contact with the maintainers of PhASAR for rapid integration into the576

open source framework.577

6 Empirical Study578

To empirically evaluate the optimizations proposed in Section 4, we use our IDE implemen-579

tation (see Section 5) to analyze 31 real-world C/C++ programs. We start with defining our580

research questions.581

6.1 Research Questions582

Jump-Functions Table Structure583

In Section 4.1, we have argued that the structure of the jump-functions table directly584

influences the performance of the analysis, especially regarding memory consumption. Hence,585

we ask:586

RQ1 What is the influence of choosing one of the proposed data structures, JFND,
JFN , and JFNE , in terms of runtime and memory consumption when analyzing
real-world C/C++ programs?

587

588

Jump-Functions Garbage Collection589

Arzt [1] has shown that a garbage collector for jump functions not only significantly reduces590

memory usage of the underlying analysis, but reduces runtime as well. As we have applied591

significant changes (cf. Section 4.2) to the garbage collection by extending it to general IDE592

problems and mitigating its restriction to multi-threaded analyses, we ask:593

RQ2 How effective is the jump functions garbage collector in reducing memory usage
and running time when analyzing real-world C/C++ applications without the
restrictions to a subset of IDE and a multi-threaded implementation?

594

595

6.2 Experiment Setup596

To ensure that our experiments are easily reproducible and comprehensible, we detail on our597

setup in the following. In Section 6.2.1, we define what kind of analyses we consider during598

the evaluation, and in Section 6.2.3 we present how we perform our measurements as well as599

the required actions to answer the research questions.600

ECOOP 2024

37:18 Scaling Interprocedural Data-Flow Analysis

6.2.1 Analysis Problems601

To test our solver implementation, we choose to evaluate it using three commonly used602

analysis problems that put a different amount of load to the solver:603

TSA: Typestate analysis, configured to find invalid usage patterns of libc’s file-IO API604

LCA: Linear constant analysis605

IIA: Instruction-interaction analysis, to generate git-blame reports [21].606

These analysis problems are available within PhASAR, and we use them unchanged. The607

typestate analysis is expected to put low load on the solver as many programs use libc’s608

file-IO only in few small regions of their code. The linear constant analysis should put609

medium load on the solver, as it needs to propagate all potentially constant integer values;610

however, the implementation in PhASAR currently is not alias aware, so the load on the611

solver is still less than for the instruction-interaction analysis, which propagates all potential612

aliases of the generated data-flow facts. Finally, the instruction-interaction analysis puts613

an extreme load on the solver as it needs to exhaustively track all of the target program’s614

variables and capture their interactions with the program’s instructions [21]. This way, the615

size of the data-flow domain D approaches |N | allowing us to approximate the worst-case616

scenario for field-insensitive analyses.617

6.2.2 Target Programs618

To ensure that our evaluation results reflect real-world analysis usage as closely as possible,619

we carefully select the set of 31 target programs shown in Table 1. We select the target620

programs out of 12 different domains to achieve broad coverage. Further, we choose the621

target programs in various sizes in the range from 1 676 to 849 623 lines of code in LLVM IR622

to test the IDE solver with different loads. The target programs have varying properties,623

such as the number of procedures (66 to 35 134), the number of address-taken functions (0 to624

2 696), the number of globals (113 to 15 108), the number of call-sites (314 to 176 350), the625

number of indirect call-sites (0 to 2 155), and the number of basic-blocks (266 to 111 521).626

We include the benchmarked programs from the initial PhASAR paper [22] excluding627

PhASAR itself, because it has grown significantly since 2019, such that expensive analyses,628

e.g., the IIA, do not work on that large programs anymore. Still, our evaluation results cannot629

be compared to the results from Schubert et al. [22], since we use different client analysis630

problems; the taint analysis used by Schubert et al. is of less interest for our work, since it631

does not require IDE to be solved efficiently. We also include programs from the evaluation of632

Sattler et al. [21] as they explicitly report performance problems of PhASAR’s IDE solver on633

their benchmark. In contrast to the PhASAR benchmark, the time and memory results for634

the programs analyzed by Sattler et al. can be compared to our evaluation results, because635

the implementation and configuration of the IIA has not changed.636

6.2.3 Measurement Setup637

Each individual experiment is performed separately for each analysis problem. As analysis638

targets we use 31 real-world C/C++ programs, which we compile to LLVM 14 IR using639

WLLVM7, so that PhASAR’s analyses can consume them. To reduce measurement bias,640

we run each experiment (solver configuration × analysis problem × analysis target) three641

7 WLLVM: https://github.com/travitch/whole-program-llvm

https://github.com/travitch/whole-program-llvm

F. Schiebel, F. Sattler, P. D. Schubert, S. Apel, and E. Bodden 37:19

times and report average values. To validate that our experiments indeed show low variance,642

we compute the standard deviation of the runtime measurements of the three repetitions.643

We observe an average standard deviation of 2.2s to 8.3s depending on the jump-functions644

representation. Normalizing that by the total runtime, the average standard deviation lays645

between 0.99% and 1.5% of the measured runtime. As we expect running times in the area646

of hours instead of seconds, the impact of measurement bias, as well as the variance between647

repetition is expected to be negligible and therefore, we consider the relative small number648

of repetitions k = 3 as sufficient to achieve reliable results.649

We use the UNIX time utility to measure the total runtime and peak memory usage for
all experiments. We compute speedups for runtime and memory consumption (maximum
resident set size) by comparing the statistics of the to-be-evaluated configuration of the
IDESolver++ to the statistics of the respective baseline. Given runtime measurement samples
MN = {mn1 , . . . ,mnk

} and baseline-measurements MB = {mb1 , . . . ,mbk
} with the number

of samples k = 3, the speedup is defined as

S = 1
k2

∑
(mn,mb)∈(MN ×MB)

mb

mn

For memory measurements, we use the inverse 1
S of the above formular to compute the650

relative memory usage in percent. We compare each combination of mn and mb, as these651

samples are unordered. This prevents potential biases due to sample ordering. Note that652

in contrast to Arzt [1] we can make use of the external tool time for measuring memory653

consumption, because our experiments do not run in the JVM that makes external memory654

measurements unreliable.655

We conducted our evaluation on a compute cluster in an isolated and controlled environ-656

ment to ensure that our measurements are not influenced by external factors. Each compute657

node is equipped with an AMD EPYC 72F3 8-Core processor and 250GiB of RAM, running658

a minimal Debian 10.659

In addition, to increase the reproducibility of our results, we automate the evaluation660

process with the VaRA Tool-Suite8.661

Baseline: We also evaluate the existing state-of-the-art IDESolver that is openly662

available in PhASAR as shown in Section 3. As a baseline for our further experiments, we663

use the IDESolver++ with the deeply nested jump-functions representation JFold, which664

the IDESolver uses as well. In addition, we compare the both solvers in terms of runtime665

and memory consumption to assess the influence of our implementation in comparison with666

the current state-of-the art, when not applying the optimizations proposed in Section 4.667

Note that we do not implement the multi-index table for storing jump functions since the668

IDESolver++ does not need it, as discussed in Section 4.1.2. To achieve a fair comparison,669

we need to configure the IDESolver. We set the configuration option recordEdges to false670

to avoid storing the ESG edges in a path sensitive way. We record runtime and memory671

usage, as well as out-of-memory (OOM) and timeout events of both solvers, providing a672

baseline to compare against in the evaluations of our research questions.673

RQ1: We evaluate four configurations of our IDESolver++, one using JFND, JFN ,674

JFNE , and JFold as jump-functions table respectively. JFold serves as a baseline for the675

others. To judge which jump-functions table structure performs best on our target programs,676

we compute the speedups compared to the baseline and consider the configuration with the677

8 VaRA Tool-Suite: https://vara.readthedocs.io/en/vara-dev/

ECOOP 2024

https://vara.readthedocs.io/en/vara-dev/

37:20 Scaling Interprocedural Data-Flow Analysis

highest speedup as best. To verify whether the best configuration is significantly best, we678

perform a t-test with significance level α = 0.05. The garbage collector is turned off.679

RQ2: We configure the IDESolver++ as follows: turning the GC on or off and using680

JFND or JFN . The IDESolver++ with GC turned off is used as baseline. We exclude JFNE681

here, because it stores the jump functions in exactly the same way as JFN , just with one682

additional table that only contains jump functions which cannot be evicted by the GC at683

all. So, in total, we have four configurations for this experiment. For the typestate analysis684

all state transition instructions are considered interesting, whereas for the linear constant685

analysis, all branch conditions are considered interesting, which is useful when eliminating686

dead code, for example. All jump functions at those interesting instructions are ignored687

by the garbage collector. We exclude the instruction-interaction analysis for RQ2 as its688

post-processing needs the results at all instructions [21] rendering the garbage collection689

useless. To examine the influence of the jump functions garbage collector on the analysis, we690

compute the speedups of the IDESolver++ compared to its corresponding versions without691

GC. We consider the configuration with the highest speedup to perform best.692

6.3 Results693

We have conducted our experiments on the 31 real-world C/C++ programs listed in Table 1.694

Although we have already argued on the correctness of our optimizations, we ran an additional,695

non-measured analysis batch to confirm that the new IDESolver++ indeed computes the696

same results as the IDESolver. In what follows, we detail on the results of our experiments697

and answer the before defined research questions.698

6.3.1 Baseline699

Our evaluation of the baseline shows that in almost all measured configurations the IDE-700

Solver++ is faster and consumes less memory than the IDESolver. We measured runtime701

speedups ranging from 1.16× to 7.2× on average and memory savings from 0.96× to 4.8×702

compared to the IDESolver as shown in Table 3. Due to the variance, the benefits of703

using our IDESolver++ may be program dependent. Note that sometimes the IDESolver++704

consumes more memory in the typestate analysis than the IDESolver. This is because the705

IDESolver++ allocates large buffers in advance to lower the number of re-allocations (cf.706

Section 5); in addition, the typestate analysis is very sparse; it propagates only a very small707

number of data-flow facts and therefore does not fill out the pre-allocated buffers which we708

do not consider as a problem since the total memory usage is negligible.709

In contrast to the IDESolver, the IDESolver++ ran out-of-memory very rarely, as is710

apparent in Figure 4. However, the figure also shows that the number of timeouts is higher711

for the IDESolver++ than for the IDESolver. That is because analyses that ran out-of-712

memory in the IDESolver were able to run long enough to exceed the given time budget713

in the IDESolver++. All of the experiments that completed with the IDESolver were also714

completed with the IDESolver++, showing that the performance does not degrade. In fact,715

out of the 7 experiments that exceeded the time limit of four hours, three were solved in time716

with the new solver; out of the five experiments that ran out of memory, one can now be717

completed within the memory limit of 250GiB. Furthermore, all 7 experiments that required718

up to 143GiB of RAM can now be solved on an consumer hardware with only 32GiB RAM.719

There are several aspects that contribute to the improvements in this baseline experiment.720

The most notable ones are: The elision of the multi-index storage for jump functions (see721

F. Schiebel, F. Sattler, P. D. Schubert, S. Apel, and E. Bodden 37:21

Table 3 The average speedups/memory savings of
the IDESolver++ with JFold compared to PhASAR’s
IDESolver together with their standard deviations

Analysis Memory Runtime

IIA 4.811 ±1.192 7.227 ±2.042
LCA 1.729 ±0.365 4.683 ±2.150
Typestate 0.968 ±0.050 1.162 ±0.143

Old Timeout - 7

Old OOM - 5
Old ≥ 128GiB - 1
Old ≥ 32GiB - 6

Old < 32GiB - 74

New Timeout - 7

New OOM - 2
New ≥ 32GiB - 3

New < 32GiB - 81

Event Flow

Figure 4 A sankey-plot showing
how the number of (target program ×
analysis type) that finish with out-of-
memory (OOM), timeout, or completed
changes when switching from PhASAR’s
IDESolver (Old) to our IDESolver++
(New) with JFold keeping the time-limit
of four hours and the memory limit of
250GiB.

Table 4 Results of our per-analysis comparision between the jump-function representations
within our IDESolver++. We report the mean speedup and its standard deviation for both runtime
and memory. Cells highlighted with green background indicate the JF with highest runtime speedup
or memory savings for that analysis. In case, the highest speedup is <1 or the difference to the
other jump-functions representations is not significant, we omit the highlight.

JF1 JF2 JF3
Memory Runtime Memory Runtime Memory Runtime

IIA 1.270 ±0.231 0.927 ±0.059 1.382 ±0.230 0.949 ±0.071 1.371 ±0.221 0.957 ±0.096
LCA 1.126 ±0.097 0.939 ±0.102 1.406 ±0.267 1.064 ±0.061 1.400 ±0.261 1.063 ±0.061
Typestate 1.059 ±0.053 0.996 ±0.023 1.057 ±0.042 1.013 ±0.035 1.057 ±0.042 1.005 ±0.022

Section 4.1.2), the batch-processing (see Algorithm 1) of data-flow fact propagations, and722

the switch from the std::unordered_map to llvm::SmallDenseMap (see Section 5).723

Hence, we can already conclude that based on the high speedups for both runtime and724

memory as well as avoiding out-of-memory events, it is crucial to implement IDE in a725

performance-oriented way and just changing the implementation of the same underlying IDE726

algorithm can enable analyses that were not feasible before.727

6.3.2 RQ1: Jump-Functions Table Structure728

We evaluated all three data structures JFND, JFN , and JFNE . We found that they behave729

differently depending on the target program and analysis. As expected, the instruction-730

interaction analysis puts a high load onto the solver, whereas the typestate analysis is very731

sparse and therefore completes within seconds.732

Figure 5 shows both the runtime speedups and the memory savings of the different733

jump-functions representations compared to the deeply nested jump-functions representation734

ECOOP 2024

37:22 Scaling Interprocedural Data-Flow Analysis

fil
e

wh
oa

m
i

kil
l

fol
dca
t

un
iq

joi
nxzwcgz
ipddcp

bz
ip
2 lslz4ht

op
gr

ep
bi
tlb

ee
br

ot
li

bi
so

n
op

us
lep

to
n

lib
jp
eg

_t
ur

bo
lib

sig
ro

k
lib

zm
q

op
en

vp
n

x2
64

po
pp

ler
as

te
ris

k
hy

pr
e

Fa
stD

ow
nw

ar
d

Target Program

0.50

0.75

1.00

1.25

1.50
R

un
ti
m

e
Sp

ee
du

p

IIA
LCA
TSA

fil
e

wh
oa

m
i

kil
l

fol
dca
t

un
iq

joi
nxzwcgz
ipddcp

bz
ip
2 lslz4ht

op
gr

ep
bi
tlb

ee
br

ot
li

bi
so

n
op

us
lep

to
n

lib
jp
eg

_t
ur

bo
lib

sig
ro

k
lib

zm
q

op
en

vp
n

x2
64

po
pp

ler
as

te
ris

k
hy

pr
e

Fa
stD

ow
nw

ar
d

Target Program

50%

75%

100%

R
el

at
iv

e
M

em
or

y
U

sa
ge

JFND

JFN

JFNE

faster

slower

Figure 5 Scatter plots showing the IDESolver++ with the proposed jump-functions representations
compared to the IDESolver++ using the nested representation inherited from PhASAR’s current
IDESolver. The left plot shows the runtime speedup (higher is better), whereas the right plot shows
the relative memory usage (smaller is better). The target programs are sorted in ascending order
based on their number of LLVM-IR instructions. The IDESolver++ was configured to use JFND
(blue), JFN (orange), and JFNE (green). The both horizontal lines are set at 1 meaning no speedup.
We use a log-scale to account for the non-linear distribution of speedups.

JFold. Both the runtime speedups and memory savings differ depending on the client analysis735

and have high variance over the target programs. In the (left) runtime speedup plot we can736

see that the speedups of the analyses are approximately centered around 1 with a small737

advantage of JFN and JFNE over JFND for the LCA. In the (right) relative memory usage738

plot, it becomes visible that the IIA and LCA consume less memory with any of the proposed739

jump-functions representations than with JFold. However, the variance across the analyzed740

target programs is high. For the TSA, the relative memory consumption is close to 94% for741

all jump-functions representations. The target programs in the plots of Figure 5 are sorted742

in ascending order by their number of LLVM-IR instructions. We provide variants of these743

plots with different program orderings on our supplementary website (see visualizations).744

Still, the orderings did not show observable correlations between the speedups and any of745

the tested program characteristics.746

So, there is no clear overall “best” jump-functions table structure, and project- and747

analysis specific tradeoffs have to be made. However, by taking an analysis-centric view, we748

can determine the “best” jump-functions representation per analysis as shown in Table 4.749

For the IIA, JFN has highest average memory improvement with 1.382×(consuming 72% of750

the memory from JFold), but the significance test shows that the difference to JFND and751

JFNE is not significant, so in terms of memory, they share the first place. In terms of running752

time, JFold performed significantly best. For the LCA, JFN is best in terms of both runtime753

and memory improvements, consuming only 71% of the memory from JFold while being 6.4%754

faster; the difference to JFNE is not significant, so we consider both JFN and JFNE best for755

the LCA. While for memory improvement, JFND is with using 97% of the memory slightly,756

but significantly better than JFold, for runtime speedup, the difference between JFND and757

JFold is insignificant. Finally, for the typestate analysis, the jump-functions representations758

https://secure-software-engineering.github.io/paper-idesolverxx/plots

F. Schiebel, F. Sattler, P. D. Schubert, S. Apel, and E. Bodden 37:23

LCA TSA
Analysis

0.625

0.750

0.875

1.000

1.250

1.500
R

un
ti
m

e
Sp

ee
du

p
/w

 G
C

JFND

JFN

faster

slower

Figure 6a. A violin plot showing the runtime
speedups of the IDESolver++ with garbage collection
compared to their versions without GC. The solver
was configured to use JFND (blue) and JFN (orange).
Note, that the y-axis is in log-scale to account for the
non-linear distribution of speedups <1 (slowdowns).

LCA TSA
Analysis

50.0%

62.5%

75.0%

87.5%

100.0%

R
el

at
iv

e
M

em
or

y
U

sa
ge

 /
w

 G
C

JFND

JFN

Figure 6b. A violin plot showing the
relative memory usage of the IDESolver++ with GC
compared to its versions without GC. The solver was
configured to use JFND (blue) and JFN (orange).
We use a log-scale for the relative memory usages
here.

performed similarly; yet the memory improvement of JFND, JFN , and JFNE over JFold is759

significant, consuming around 94% of the memory from JFold.760

To answer RQ1: The performance of the jump-functions representations highly depends
on the performed analysis. However, JFN and JFNE have shown significantly best
memory usage for the LCA and perform well for the IIA and TSA; this makes them
a generally reasonable default choice. We also conclude that picking the right data
structure oftentimes is no tradeoff between runtime speedup and memory savings; the
same data structure can improve runtime and memory usage at the same time.

6.3.3 RQ2: Jump-Functions Garbage Collection761

The results of evaluating the jump functions garbage collector with JFN are shown in762

Figure 6a and Figure 6b. For the LCA we see memory savings, where the analysis consumed,763

on average, 12% less memory (±10%). Furthermore, Figure 6b shows higher memory savings764

with JFND than with JFN . For the TSA, the analysis with GC saved around 0.4% memory,765

which is significant, but we consider it negligible in most cases. This is expected because766

the TSA is very sparse and therefore does not have much to erase during garbage collection.767

Some analysis runs consumed even more memory than with disabled garbage collection.768

This is because of the additional book keeping meta-data that the garbage collector requires.769

In summary, the generalization to IDE indeed makes the GC less effective, but still it can770

drastically reduce the memory footprint of IDE analyses.771

As expected, enabling jump functions garbage collection has non-negligible runtime-772

performance impact. The reason for this is that—in contrast to the experiments of Arzt [1]—773

the GC runs in the same thread as the analysis and therefore blocks the analysis process774

while performing the garbage collection. However, the mean speedup is close to 1 with 96.6%775

(±8.6%) for LCA and 98.3% (±6.3%) for TSA. Hence, the average runtime cost is still low.776

Enabling the GC in single-threaded mode is a tradeoff between runtime and memory, as777

the GC reduces the memory consumption of IDE at the cost of increased runtime.778

ECOOP 2024

37:24 Scaling Interprocedural Data-Flow Analysis

To answer RQ2: Constraining the jump functions garbage collector to work in a single-
threaded scenario results in a reduction of the memory consumption of the linear constant
analysis of 12%, with only minimal runtime overhead. However, the effectiveness of the
GC compared to the original GC from Arzt [1] is reduced, making it impractical for
smaller analyses, and for those that do not propagate many data-flow facts.

6.4 Threads to Validity779

Internal Validity780

Runtime measurement on modern computing systems is a challenging task due to automatic781

clock boost and throttling as well as context switches enforced by the operating system. This782

makes reliable runtime measurements hard. We therefore ran our experiments three times783

and report averages to compensate for this noise. In addition, we ran each experiment in784

isolation on equivalent machines, ensuring that no other task is running in parallel. Our785

experiments each utilize only one thread to minimize the influence of the OS scheduler on786

the measurements.787

We evaluated our experiments on a fixed set of target programs, on which we verified788

that the IDESolver++ produces the same results as the IDESolver. We cannot rule out789

that there are programs where the solvers produce different results because of bugs in the790

implementations of either of them. To mitigate this risk, we performed our evaluation on a791

large set of real-world programs and configured the IDE solvers with three different client792

analysis problems.793

External Validity794

The performance of the analysis solvers may be different depending on the target program,795

that is, there may be programs that we did not benchmark where the analysis solvers behave796

differently. To mitigate this threat, we selected a diverse set of target programs from various797

domains and with different sizes and complexities. Furthermore, we configured the analysis798

solvers with three differently complex analysis problems to have greatest possible variation.799

This gives us for the first time a comprehensive study on a substantial number of real-world800

C/C++ programs.801

6.5 Discussion802

In Section 6, we presented the results of our evaluation, some of them require interpretation.803

We have observed that JFN in many cases has a lower memory consumption than JFND.804

This can be explained by the distribution of jump functions: For many analyses an extra805

experiment run with statistics instrumentation shows that the average size of the inner maps806

in JFND is < 4, but still with a high number of total jump functions. Hence, JFND pays807

the memory overhead of a hash map for the majority of jump functions, whereas JFN and808

JFNE oftentimes store more than 1000 elements in their inner maps which can lead to more809

efficient use of the provided memory.810

On the other hand, depending on the access patterns of the jump-functions table, JFND811

can lead to faster jump functions access. For the IIA, we see drastic performance benefits of812

JFND and JFold compared to JFN and JFNE when analyzing bison. This can be explained by813

the handling of aliasing in the IIA. All aliases of a data-flow fact are propagated individually814

F. Schiebel, F. Sattler, P. D. Schubert, S. Apel, and E. Bodden 37:25

in the IIA. Therefore, for memory-indirection statements, such as store a to b, for all815

aliases of the stored pointer a all aliases of the target pointer b must be generated, which are816

independent from each other. This leads to the same jump functions to be accessed multiple817

times, which may be faster if the inner maps do not incur memory indirections because they818

are small enough for small-size optimization.819

Combining the measurements from our baseline (cf. Figure 3) with our specific optimiza-820

tions from Section 4, we achieve the following overall mean speedups in the IDESolver++821

compared to PhASAR’s current IDESolver: Memory improvements of 6.9× for IIA, and822

2.7× for LCA; runtime speedups of 6.9× for IIA, and 4.9× for LCA. For the typestate823

analysis, there is no overall mean speedup, but also no mean slowdown.824

7 Related Work825

Performance problems of IDE implementations are a known issue. He et al. [9] perform826

sparsification on the ESG by propagating data-flow facts not along ICFG edges, but on their827

corresponding def-use chains. Arzt and Bodden [3] automatically generate IDE summaries828

for libraries, which prevents re-analyzing commonly used libraries and lowers the size of the829

analyzed target programs. Arzt and Bodden [2] improve re-analysis of already analyzed830

programs by incrementally analyzing only the changes compared to the previously analyzed831

version. These approaches let any existing implementation of IDE scale better in the832

circumstances that they optimize. Nonetheless, they can still further profit from an improved833

solver that scales better in the first place.834

Weiss et al. [29] use a database system to store their internal data structures partially835

on disk effectively increasing the amount of available memory. However, they focus on the836

specific problem of error-code propagation and do not generalize to arbitrary IDE analyses.837

Hsu et al. [10] propose a modified IFDS algorithm that no longer needs to store the ESG838

explicitly and computes the reachability based on Depth-First Tree Intervals instead. While839

this approach works well for IFDS problems, it cannot be applied to IDE problems directly840

as composing edge functions requires to store the jump functions in some way.841

He et al. [8] improve the garbage collection presented by Arzt [1] by increasing the GC’s842

granularity from method-level to data-flow fact level. However, it suffers from the same843

restrictions of required multi-threading and also only applies to the same subset of IDE as844

the original garbage collector [1] that we generalize in this paper.845

Apart from IDE, there are other approaches to precise interprocedural static data-flow846

analysis, such as weighted pushdown systems (WPDS) [12, 18]. As WPDS has the same847

runtime- and memory complexities as IDE, similar optimizations as the ones presented in848

this paper may be possible for WPDS as well. Other approaches, such as Boomerang [25]849

reduce their resource requirements by conducting demand-driven analyses, only computing850

the data-flow information for specific program locations. While demand-driven analyses851

work well for pointer analysis where a client analysis requests the demand, exhaustive taint852

analyses, e.g., a use-after-free analysis would need to issue a demand for each potential sink853

statement effectively degenerating the demand-driven analysis to a whole-program analysis854

with similar performance issues.855

Yu et al. [31] tackle the performance problem by bringing data-flow analysis to the GPU856

and optimizing the algorithm, as well as the data-layout for GPU processing. As the CPU857

and GPU are particularly different hardware components, optimizations for GPU programs858

usually do not apply to CPU programs, and vice versa.859

ECOOP 2024

37:26 Scaling Interprocedural Data-Flow Analysis

8 Conclusion860

Current state-of-the-art IDE implementations do not scale well to large programs preventing861

the analysis of many interesting data-flow problems that can be used for bug- and vulnerability862

detection, as well as other important fields in software engineering. Based on years863

of experience with implementing and using IDE-based program analyses, we identified864

two different optimizations of the IDE algorithm. We found that choosing an efficient865

representation for the jump-functions table structure within the solver implementation has866

great influence on the performance of the algorithm. Still, it requires further research to867

select the right data structure for an analysis, or to even automate this process. Yet, we868

learned that an implementation of IDE has to be designed with performance in mind from869

the beginning to achieve a scalable implementation. Furthermore, we extended the jump870

functions garbage collection from Arzt to general IDE problems and removed the restriction871

to a multi-threaded solver implementation. We evaluated that it still reduces the memory872

footprint of the IDE analyses, though being less effective than the original.873

Our experiments on 31 real-world C/C++ programs show runtime and memory speedups874

of up to 7× on average compared to the existing IDE implementation in PhASAR and enable875

the analysis of more target programs than before. We found that especially extremely heavy876

analyses such as the instruction interaction analysis presented by Sattler et al. [21] can now877

be run on medium-to large programs that was not possible previously, even with larger server878

hardware. Still, some analyses require too much memory for being executed on an ordinary879

developer machine.880

References881

1 Steven Arzt. Sustainable Solving: Reducing The Memory Footprint of IFDS-Based Data882

Flow Analyses Using Intelligent Garbage Collection. In Proc. Int. Conf. Software Engineering883

(ICSE), pages 1098–1110. IEEE, 2021.884

2 Steven Arzt and Eric Bodden. Reviser: Efficiently Updating IDE-/IFDS-Based Data-Flow885

Analyses in Response to Incremental Program Changes. In Proc. Int. Conf. Software886

Engineering (ICSE), pages 288–298. ACM, 2014.887

3 Steven Arzt and Eric Bodden. StubDroid: Automatic Inference of Precise Data-Flow Summaries888

for the Android Framework. In Proc. Int. Conf. Software Engineering (ICSE), pages 725–735.889

ACM, 2016.890

4 Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel, Jacques891

Klein, Yves Le Traon, Damien Octeau, and Patrick D. McDaniel. FlowDroid: precise context,892

flow, field, object-sensitive and lifecycle-aware taint analysis for Android apps. In Proc. Conf.893

Programming Language Design and Implementation (PLDI), pages 259–269. ACM, 2014.894

5 Eric Bodden. Inter-Procedural Data-Flow Analysis with IFDS/IDE and Soot. In Proc. Int.895

Workshop on State Of the Art in Java Program Analysis (SOAP), pages 3–8. ACM, 2012.896

6 Eric Bodden. The secret sauce in efficient and precise static analysis: the beauty of distributive,897

summary-based static analyses (and how to master them). In Comp. Proc. ISSTA/ECOOP898

Workshops, pages 85–93. ACM, 2018.899

7 Sigmund Cherem, Lonnie Princehouse, and Radu Rugina. Practical memory leak detection900

using guarded value-flow analysis. In Proc. Conf. Programming Language Design and901

Implementation (PLDI), pages 480–491. ACM, 2007.902

8 Dongjie He, Yujiang Gui, Yaoqing Gao, and Jingling Xue. Reducing the Memory Footprint of903

IFDS-Based Data-Flow Analyses using Fine-Grained Garbage Collection. In Proc. Int. Symp.904

Software Testing and Analysis (ISSTA), pages 101–113. ACM, 2023.905

9 Dongjie He, Haofeng Li, Lei Wang, Haining Meng, Hengjie Zheng, Jie Liu, Shuangwei Hu,906

Lian Li, and Jingling Xue. Performance-Boosting Sparsification of the IFDS Algorithm with907

F. Schiebel, F. Sattler, P. D. Schubert, S. Apel, and E. Bodden 37:27

Applications to Taint Analysis. In Proc. Int. Conf. Automated Software Engineering (ASE),908

pages 267–279. IEEE, 2020.909

10 Min-Yih Hsu, Felicitas Hetzelt, and Michael Franz. DFI: An Interprocedural Value-910

Flow Analysis Framework that Scales to Large Codebases. Comput. Research Repository,911

abs/2209.02638, 2022.912

11 Michalis Kokologiannakis, Azalea Raad, and Viktor Vafeiadis. Model checking for weakly913

consistent libraries. In Proc. Conf. Programming Language Design and Implementation (PLDI),914

pages 96–110. ACM, 2019.915

12 Akash Lal, Thomas Reps, and Gogul Balakrishnan. Extended Weighted Pushdown Systems.916

In Proc. Int. Conf. Computer Aided Verification (CAV), pages 434–448. Springer-Verlag, 2005.917

13 Chris Lattner and Vikram Adve. LLVM: A Compilation Framework for Lifelong Program918

Analysis & Transformation. In Proc. Int. Symp. Code Generation and Optimization (CGO),919

pages 75–88. IEEE, 2004.920

14 Benjamin Livshits, Manu Sridharan, Yannis Smaragdakis, Ondrej Lhoták, José Nelson Amaral,921

Bor-Yuh Evan Chang, Samuel Z. Guyer, Uday P. Khedker, Anders Møller, and Dimitrios922

Vardoulakis. In Defense of Soundiness: A Manifesto. Commun. ACM, 58(2):44–46, 2015.923

15 Nomair A Naeem, Ondřej Lhoták, and Jonathan Rodriguez. Practical Extensions to the IFDS924

Algorithm. In Proc. Int. Conf. on Compiler Construction (CC), pages 124–144. Springer-Verlag,925

2010.926

16 Oswaldo Olivo, Isil Dillig, and Calvin Lin. Static detection of asymptotic performance bugs927

in collection traversals. In Proc. Conf. Programming Language Design and Implementation928

(PLDI), pages 369–378. ACM, 2015.929

17 Thomas Reps, Susan Horwitz, and Mooly Sagiv. Precise Interprocedural Dataflow Analysis930

via Graph Reachability. In Proc. Symp. Principles of Programming Languages (POPL), pages931

49–61. ACM, 1995.932

18 Thomas Reps, Stefan Schwoon, and Somesh Jha. Weighted Pushdown Systems and Their933

Application to Interprocedural Dataflow Analysis. In Proc. Int. Symp. Static Analysis (SAS),934

pages 189–213. Springer-Verlag, 2003.935

19 Atanas Rountev, Mariana Sharp, and Guoqing Xu. IDE Dataflow Analysis in the Presence of936

Large Object-Oriented Libraries. In Proc. Int. Conf. on Compiler Construction (CC), pages937

53–68. Springer-Verlag, 2008.938

20 Mooly Sagiv, Thomas Reps, and Susan Horwitz. Precise Interprocedural Dataflow Analysis939

with Applications to Constant Propagation. Theor. Comput. Sci., 167(1-2):131–170, 1996.940

21 Florian Sattler, Sebastian Böhm, Philipp Dominik Schubert, Norbert Siegmund, and Sven941

Apel. SEAL: Integrating Program Analysis and Repository Mining. ACM Trans. Softw. Eng.942

Methodol., 32(5):121:1–121:34, 2023.943

22 Philipp Dominik Schubert, Ben Hermann, and Eric Bodden. PhASAR: An Inter-procedural944

Static Analysis Framework for C/C++. In Proc. Int. Conf. Tools and Algorithms for the945

Construction and Analysis of Systems (TACAS), pages 393–410. Springer-Verlag, 2019.946

23 Philipp Dominik Schubert, Richard Leer, Ben Hermann, and Eric Bodden. Know your analysis:947

How instrumentation aids understanding static analysis. In Proc. Int. Workshop on State Of948

the Art in Program Analysis (SOAP), pages 8–13. ACM, 2019.949

24 M Sharir and A Pnueli. Two approaches to interprocedural data flow analysis. New York Univ.950

Comput. Sci. Dept., 1978.951

25 Johannes Späth, Lisa Nguyen Quang Do, Karim Ali, and Eric Bodden. Boomerang: Demand-952

Driven Flow- and Context-Sensitive Pointer Analysis for Java. In Proc. Europ. Conf. Object-953

Oriented Programming (ECOOP), pages 22:1–22:26. Schloss Dagstuhl - Leibniz-Zentrum für954

Informatik, 2016.955

26 Yulei Sui, Ding Ye, and Jingling Xue. Static memory leak detection using full-sparse value-flow956

analysis. In Proc. Int. Symp. Software Testing and Analysis (ISSTA), pages 254–264. ACM,957

2012.958

ECOOP 2024

37:28 Scaling Interprocedural Data-Flow Analysis

27 Yulei Sui, Ding Ye, and Jingling Xue. Detecting Memory Leaks Statically with Full-Sparse959

Value-Flow Analysis. IEEE Trans. Software Eng., 40(2):107–122, 2014.960

28 Erik van der Kouwe, Vinod Nigade, and Cristiano Giuffrida. DangSan: Scalable Use-after-free961

Detection. In Proc. Europ. Conf. Computer Systems (EuroSys), pages 405–419. ACM, 2017.962

29 Cathrin Weiss, Cindy Rubio-González, and Ben Liblit. Database-backed program analysis for963

scalable error propagation. In Proc. Int. Conf. Software Engineering (ICSE), pages 586–597.964

IEEE, 2015.965

30 Hua Yan, Yulei Sui, Shiping Chen, and Jingling Xue. Spatio-temporal context reduction: a966

pointer-analysis-based static approach for detecting use-after-free vulnerabilities. In Proc. Int.967

Conf. Software Engineering (ICSE), pages 327–337. ACM, 2018.968

31 Xiaodong Yu, Fengguo Wei, Xinming Ou, Michela Becchi, Tekin Bicer, and Danfeng Daphne969

Yao. GPU-Based Static Data-Flow Analysis for Fast and Scalable Android App Vetting. In970

Int. Symp. Parallel and Distributed Processing (IPDPS), pages 274–284. IEEE, 2020.971

32 Zhiqiang Zuo, Yiyu Zhang, Qiuhong Pan, Shenming Lu, Yue Li, Linzhang Wang, Xuandong972

Li, and Guoqing Harry Xu. Chianina: an evolving graph system for flow- and context-973

sensitive analyses of million lines of C code. In Proc. Conf. Programming Language Design974

and Implementation (PLDI), pages 914–929. ACM, 2021.975

	1 Introduction
	2 Background on IDE
	2.1 IDE Algorithm Overview

	3 The State of the Art
	4 Optimizations
	4.1 Data Structures for the Exploded Supergraph
	4.1.1 Jump Functions Table Analysis
	4.1.2 Optimized Jump Functions Table
	4.1.3 Discussion

	4.2 Garbage Collection of Jump Functions
	4.2.1 Single-Threaded Garbage Collection
	4.2.2 Generalizing Garbage Collection for IDE

	5 Implementation
	6 Empirical Study
	6.1 Research Questions
	6.2 Experiment Setup
	6.2.1 Analysis Problems
	6.2.2 Target Programs
	6.2.3 Measurement Setup

	6.3 Results
	6.3.1 [iteride:par:baseline]Baseline
	6.3.2 rq:1RQ1: Jump-Functions Table Structure
	6.3.3 rq:2RQ2: Jump-Functions Garbage Collection

	6.4 Threads to Validity
	6.5 Discussion

	7 Related Work
	8 Conclusion

