
Noname manuscript No.
(will be inserted by the editor)

Lifting Inter-App Data-Flow Analysis to Large App
Sets

Florian Sattler · Alexander von Rhein ·
Thorsten Berger · Niklas Schalck
Johansson · Mikael Mark Hardø · Sven
Apel

the date of receipt and acceptance should be inserted later

Abstract Mobile apps process increasing amounts of private data, giving rise
to privacy concerns. Such concerns do not arise only from single apps, which
might—accidentally or intentionally—leak private information to untrusted
parties, but also from multiple apps communicating with each other. Certain
combinations of apps can create critical data flows not detectable by analyzing
single apps individually. While sophisticated tools exist to analyze data flows
inside and across apps, none of these scale to large numbers of apps, given
the combinatorial explosion of possible (inter-app) data flows. We present a
scalable approach to analyze data flows across Android apps. At the heart of
our approach is a graph-based data structure that represents inter-app flows
efficiently. Following ideas from product-line analysis, the data structure exploits
redundancies among flows and thereby tames the combinatorial explosion.
Instead of focusing on specific installations of app sets on mobile devices, we lift
traditional data-flow analysis approaches to analyze and represent data flows
of all possible combinations of apps. We developed the tool Sifta and applied
it to several existing app benchmarks and real-world app sets, demonstrating
its scalability and accuracy.

Florian Sattler
University of Passau, Germany

Alexander von Rhein
CQSE GmbH, Germany

Thorsten Berger
Chalmers | University of Gothenburg, Sweden

Niklas Schalck Johansson
IT University of Copenhagen, Denmark

Mikael Mark Hardø
IT University of Copenhagen, Denmark

Sven Apel
University of Passau, Germany

2 Florian Sattler et al.

1 Introduction

The growing popularity and adoption of mobile devices—such as smartphones
and tablets—has led to a tremendous rise of mobile apps. By January 2014,
Apple’s app store offered more than one million apps [2] and had a yearly revenue
of $10 billion. Other app-store providers, including Google and Microsoft,
experienced a similar growth. The large number of apps available and the
increasing diversity of mobile devices lead to very different sets of apps installed
on mobile devices today.

Privacy of data is an increasing concern. While apps often process private
data, such as passwords, device identifiers, or position data, they also commonly
possess unrestricted access to communication channels, which may not be
trustworthy. To prevent security escalation, mobile operating systems employ
a range of methods, such as sandboxing of apps, dedicated communication
mechanisms (e.g., Android intents), and a permission system for accessing
sensitive data. Additionally, various analysis techniques have been developed
to detect so-called tainted data flows—flows of data from private sources to
untrusted public sinks [3,18].

Yet, as apps are allowed to communicate with each other, a combination of
apps can create a privacy leak even if individual apps are considered safe [8,
31,33]. For instance, an app could obtain the current location and send it—
accidentally or maliciously—to a second app, which then forwards it via the
Internet to an untrusted party. Such scenarios are hard to detect as they
could, in principle, involve a chain of many apps [17]. Malicious apps can even
intercept or eavesdrop on unsecured communication between apps.

The presence of critical inter-app data flows depends on the set of apps
installed on a device. Consider an accidental privacy leak, where an app sends
private information to apps that can display it. If multiple target apps are
installed, most systems display a choice dialog, possibly creating awareness
of a potential privacy leak. When only one alternative, potentially malicious,
app is present, communication occurs without user interaction. Consequently,
all possible combinations of apps of a given set would need to be analyzed to
detect inter-app leaks, whether accidental or malicious.

Unfortunately, inter-app data-flow analysis is expensive and difficult to scale
to larger app sets or even to a whole app store. First, the communication between
apps is often redundant, since many apps send similar messages, leading to
substantial numbers of flows (many apps are also cloned or use common code [35,
23]). Second, the representation of flows is prone to a combinatorial explosion
in the number of apps, when flows arise from apps that may communicate. So,
installing a new app may double the number of possible inter-app flows. Recent
taint-analysis tools for Android are reasonably precise in detecting critical
data flows, tackling all the peculiarities of Android apps (e.g., permissions,
Android API, intents), but they do not scale well to large sets of apps.

A major problem of existing approaches lies in the representation of inter-
app data flows, which does not exploit redundancies between and inside apps.
More importantly, they do not explicitly consider variability [4]—an app can

Lifting Inter-App Data-Flow Analysis to Large App Sets 3

be installed or not, thereby contributing to the global data flows that may
exist. Instead of duplicating detected flows, variability inside flows should be
represented explicitly. Recognizing synergies, we adopt concepts known from
product-line analysis [34,36,20,16,25], which incorporates variability to avoid
redundancies and to tame the combinatorial explosion.

Our overarching goal is to explore how inter-app data flows can be efficiently
represented. To this end, we present a scalable graph-based data structure
representing flows annotated with presence conditions [11]—Boolean expressions
over the presence and absence of apps. We compare this variational data
structure to the structure used by the state-of-the-art tool DidFail [17].
Furthermore, we lift an analysis approach that analyzes data flows inside
individual apps to whole app sets by extending and combining existing tools—
that is, we make the approach variability-aware; we use and aggregate the
analysis results in a graph that is variational [36] to efficiently represent
inter-app communication.

Overall, we strive to answer two research questions:
RQ1: Can a variability-aware data-flow analysis based on a variational
representation of inter-app data flows maintain accuracy?
RQ2: Does a variability-aware data-flow analysis based on a variational
representation of inter-app data flows scale to very large sets of real-world
apps?

To address these questions, we evaluate the our variability-aware approach by
means of two third-party community benchmarks and a set of 51 935 analyzed
real-world apps that we mined from the Google Play app store. It is important
to note that, while aiming at scalability, our tool maintains an accuracy that is
similar to existing tools focusing on intra-app analysis, which we also evaluate
with two third-party benchmarks and with our own benchmark. As a further
feature, our approach supports the incremental generation of the inter-app
data-flow graph: When new apps are added or changed (e.g., a new app is
uploaded to the app store or developers publish a new version of an existing
app), the inter-app data-flow graph can be updated with information for such
apps, instead of generating a new graph.

Finally, to illustrate possible insights one can gain when analyzing large-scale
inter-app data-flow graphs using our approach, we implemented a standard
analysis that traverses the lifted graph and reports tainted inter-app data flows.
For example, we use the graph to reason about global communication patterns,
identifying central apps that are responsible for many global flows.

Overall, we make the following contributions:
– An efficient variational, graph-based representation of inter-app data flows,

which captures Android-specific information (sources and sinks of poten-
tially private data and inter-app communication metadata). The graph
benefits from redundancies between data flows and from the optionality of
apps (variability).

– An algorithm implemented in our tool Sifta to efficiently construct varia-
tional inter-app data-flow graphs.

4 Florian Sattler et al.

– A variability-aware taint-propagation analysis based on the graph (reporting
malicious flows). We evaluated its accuracy in one experiment with three
benchmarks, and its scalability in three experiments using three other,
larger-scale benchmarks, comparing Sifta to other state-of-the-art tools.

– Two new benchmarks for the community: IACBench with 9 apps (accuracy)
and a large-scale benchmark with 51 935 real-world apps (scalability).

Sifta, links to all other tools in our evaluation, and information on how to
replicate our results are available on a supplementary Web site: http://www.
fosd.net/siftaeval/.

2 Background and Motivation

In this section, we describe the app communication mechanisms of Android
and discuss existing analysis strategies and their limitations. We distinguish
between intra-app communication (when components inside one app com-
municate) and inter-app communication (when components of different apps
communicate).

2.1 Android Apps and the Intent Mechanism

Android apps are delivered in Android application packages (APKs) and
consist of multiple components that communicate with each other. Components
can be GUI elements (activities) shown to the user or non-visible elements
that process or store information (services, broadcast receivers, and content
providers). Components have a dedicated lifecycle and are encapsulated. They
communicate via dedicated messages, called intents,1 both for intra-app and
inter-app communication. Intents contain various pieces of data, such as routing
and payload information.

Intents can be explicit or implicit. The former identify the target compo-
nent directly using its fully qualified name. The latter describe the minimal
capabilities a target component needs to fulfill, which are then matched against
the maximal capabilities of components defined in intent filters. Such capabil-
ities could be the ability to show a URL or to display an image of a certain
type. If multiple components of installed apps qualify, Android displays a
choice dialog and lets the user select. Usually, intents pass information to other
components. However, they can also query information (e.g., user information
from a data-storage component), initiating an information flow back to the
sender. With these so-called intent results, the target app sends a second intent
back to the source app.

1 Other means of communication (e.g., shared files, native code) exist, but are outside of
the scope of this paper.

http://www.fosd.net/siftaeval/
http://www.fosd.net/siftaeval/

Lifting Inter-App Data-Flow Analysis to Large App Sets 5

2.2 Intra-App Communication

Intent-based communication is the primary mechanism for data exchange
between components inside an app. For example, an activity could send data
entered by the user to a service that processes the data. Here, an explicit intent
is typically used to unambiguously identify the receiver.

Analysis of communication inside an app is important to detect data flows
that leak private data by accident. For example, a developer of a popular
Android app might want to analyze her own app to confirm that private
user data are not passed to third-party components used in the app. In this
intra-app scenario, the set of components is known.

Several analysis tools focus on an intra-app scenario. One comparatively
precise tool is IccTA [18], which relies on FlowDroid [3] and Epicc [29].
IccTA composes all components of an app into one “super” component sub-
suming all the flows. A challenge is to connect components—that is, mapping
intent calls of one component to incoming intents of another component. The
parameters of an intent object, which is dynamically instantiated at run time,
need to be known and matched to intent filters. For this purpose, Epicc (or
alternative tools, such as IC3 [28]) performs a static analysis to retrieve the
intent parameters. Once the “super” component is created, it is analyzed with
FlowDroid, a precise inter-procedural data-flow–analysis tool. The intra-
component data flows reported by FlowDroid connect sources and sinks,
which are Android API methods, intent calls, or incoming intents.

2.3 Inter-App Communication

Communication between apps (i.e., their inner components) is realized using
the same intent-based mechanism as for intra-app communication. The main
difference is that the set of installed apps is not pre-determined. An implicit
intent can be processed by different apps (e.g., different e-mail clients) in
different mobile-device configurations, with different implications for data
privacy.

Fig. 1 shows a simple inter-app communication. The app LocationReader-
App is one of many alternative apps that read the current location from the
GPS device, enhance it with context information (e.g., near landmarks), and
send it via an intent (Loc). If installed, each of the two apps FitnessApp and
MaliciousApp can receive the intent (determined by their intent filters, shown
as little rectangles). If the latter obtains the data, they are forwarded over the
Internet to an untrusted third party.

Similar scenarios have been reported in the literature [5,33,8,31,17]. Ideally,
Android’s permission system should prevent apps from accessing private data
without user consent. However, Android permissions are not sufficient for
this, as commonly stated in the literature (see Sec. 8). In the scenario of Fig. 1,
MaliciousApp might lack permission to read GPS data from the Android API,
but can still get it by interacting with LocationReaderApp. It does not matter

6 Florian Sattler et al.

GPS Location
Reader

Malicious

Loc

Untrusted
Party

FitnessApp

Intent with
GPS location

User choice

Intent Filter

Fig. 1: Inter-app communication example, where GPS location information is
forwarded to untrusted receivers

whether LocationReaderApp sends the data out via an intent or has a component
that is accessible via an intent, and whether both happens accidentally or
whether the app was maliciously developed to enable this scenario. This problem
is generally known as permission re-delegation [31,8] (a.k.a. confused-deputy
problem [15]).

Analyzing inter-app communication is important for maintainers and users
of app stores or pools. It is desirable to ensure that each possible combination
of apps respects privacy of user data and that no inter-app data-flow leak exists.
Even without actual leaks, it is desirable to identify apps that heavily forward
data, which in combination could be exploited for privacy leaks in the future.
This scenario is more complex than intra-app communication, since apps can
be present or absent (resulting in different global flows—this is why we pursue
a variability-aware approach). Furthermore, apps are regularly added, removed,
and updated. Thus, analysis results of inter-app communication should be kept
updated after each change in the pool, without the need of re-analyzing the
entire pool (this is why we pursue an incremental approach).

To analyze inter-app communication, one could, in principle, use tools that
have been developed for intra-app analysis, since both kinds of communication
rely on intents. Such an approach is taken by DidFail [17], which, like IccTA,
relies on FlowDroid and Epicc. DidFail runs FlowDroid to obtain data
flows within each component on each app. Based on the intent parameters
obtained with Epicc, DidFail connects the possible outgoing intents to intent
receivers and builds a global data-flow graph involving all apps.

2.4 Limitations of Existing Tools

Both IccTA and DidFail rely on the assumption that the set of components is
known, invariable, and rather small. IccTA’s approach would cause scalability
problems when inter-app communication is analyzed, as the generated “super”

Lifting Inter-App Data-Flow Analysis to Large App Sets 7

implicit intent
action: send

category: default

implicit intent
action: send

category: default

explicit intent

implicit intent
action: send

category: default

Fig. 2: Example of inter-app communication2

component easily becomes large, with many—likely redundant—flows. But
the IccTA developers focus on intra-app communication in their experiments
anyway [18]. In contrast to IccTA, DidFail addresses inter-app communica-
tion explicitly. Yet, it stores detected flows in a simple graph data structure
without exploiting redundancies between flows, harming scalability (as we will
demonstrate).

To understand how a larger app set can influence the number of flows,
consider the following thought experiment, illustrated in Fig. 2. We build a
scenario based on the three apps of Fig. 1: LocationReaderApp obtains private
data, and sends it with a valid intent to FitnessApp. However, MaliciousApp can
also receive the intent—its presence establishes a data flow to an untrusted
network receiver outside the phone. MaliciousApp has the permission to access
the Internet, but not to obtain GPS data from the Android API. Further-
more, we extend the scenario slightly, adding (1) a typical internal data flow
between two components inside FitnessApp and (2) another accidental leak
from FitnessApp to MaliciousApp, so that we have two privacy leaks.

Now, consider a larger scenario, where we have an additional alternative
app for each of the three apps. The alternative apps have roughly the same
functionality (the same data sources and sinks and the same intents), but they
are implemented by different developers. In this scenario, the number of flows
grows: For example, both variants of LocationReaderApp can send information
to both variants of MaliciousApp. Now, there are 12 leaks in total. In general, the
number of flows is cubic in the number of apps of each kind, which shows that
an efficient inter-app analysis has to exploit redundancies between flows. Even
though this thought experiment shows an extreme example, our experiments
(Sec. 5.2) confirm this problem for DidFail. A key insight is that the problem

2 For readability, we do not show additional, doubled or tripled, edges and nodes that get
added during the thought experiment.

8 Florian Sattler et al.

lies in the representation of the underlying graph and of the flows. DidFail
does not address sharing between apps or redundancies between flows.

The limitations of existing tools motivated us to develop our own tool, called
Sifta, which addresses these challenges when analyzing inter-app communica-
tion. We reused parts of DidFail’s code, but completely re-implemented the
graph construction and the identification and analysis of tainted flows.

2.5 Variability-Aware Analysis and Variational Data Structures

We assume that significant redundancies in the communication paths between
apps exist. There are many reasons that back this assumption, such as the
existence of commonly used intents (e.g., ACTION_VIEW, which requests
that data is displayed to the user) or duplicated code [35,23]. Consequently,
exploiting redundancy using a dedicated data structure should have considerable
influence on the size of inter-app data-flow graphs and their analysis time.

Technically, we draw on ideas from variability-aware product-line analy-
sis [34]. In particular, we use the concept of presence conditions [11] Boolean
expressions denoting which apps need to be present to enable a given data flow.
Using presence conditions, we can compress the data-flow graph and make it
variational such that its generation and analysis scales much better than for a
non-variational repesentation (e.g., as used in DidFail).

We borrow the presence-condition idea and its efficient encoding and analysis
from recent advancements in product-line analysis, such as variability-aware
static analysis [20,6], type checking [16,25], and model checking [9,1] as well
as variational data structures [36,10].

3 Representing Inter-App Flows

The communication between apps is typically analyzed in two steps. First,
information about individual apps (e.g., using static code analysis) is collected
and stored in a suitable data structure. Second, the stored data are analyzed
for interesting facts. This two-phase process avoids the need to deal with app
internals (e.g., source code) in the second step. The key factor is how to abstract
from and store app internals. In Sec. 3.1, we describe a basic representation of
inter-app data flows in the form of a graph; in Sec. 3.2, we introduce our efficient,
variational representation; and, in Sec. 3.3, we describe the construction of
variational inter-app data-flow graphs in detail.

3.1 Representation without Sharing

We first present a graph data structure that is not variational. The graph
is defined as a set VDF of nodes, with VDF ⊆ Int ∪ PrivSrc ∪ PubSnk, and a
set EDF of directed edges, with EDF ⊆ VDF × VDF × Comp. VDF contains
all intent objects (Int), private-source methods (PrivSrc), and public-sink

Lifting Inter-App Data-Flow Analysis to Large App Sets 9

methods (PubSnk). For each component comp ∈ Comp that receives data from
a private-source method or an intent object src and that delivers data to an
intent object or a public-sink method snk, the set of edges contains the triple
(src, snk, comp) ∈ EDF . A path through the graph represents a potential data
flow from a private source through a number of components (possibly across
multiple apps) to a public sink.3 As a component is automatically present when
the app it belongs to is installed, we only store app names on edges (instead of
component names).

Recall our thought experiment from Sec. 2.4: With an increasing number
of apps, the graph quickly becomes very large and its generation and analysis
expensive. The reason is that often different apps have (partly) similar func-
tionality. For example, they receive data from the same sources (Int or PrivSrc)
and send data to the same sinks (Int or PubSnk). Thus, the graph has many
edges that differ only in the app component, such as (a, b, c1) and (a, b, c2).
Fig. 3a shows an example with four flows of private data (GPS location and
private key) to a public sink (Internet). The middle edges of the flows have
the same source (Int1) and the same sink (Int2), and only differ by the app
enabling this edge. The key point is that similarities among data flows are not
shared. Such a representation is used in DidFail [17].4

3.2 Variational Representation

Our innovation is to represent flows within and across apps in a variational
fashion. The difference is that each edge in the graph is annotated with the
condition when it is present in the system. This presence condition (cf. Sec. 2.5)
is a predicate over the (optional) apps in the pool. Each path in the graph
represents a variational flow corresponding to multiple concrete flows (e.g.,
flows in the DidFail representation).

We define the set of edges such that each holds a set comps of components
(or, equivalently, a predicate over Comp): EVA ⊆ VDF × VDF × P(Comp).
Instead of mapping each edge to a component, we now map each edge to a
set of components (or, equivalently, a predicate over component identifiers).
The semantics is that an edge (a, b, comps) is present in the graph (or on the
mobile device) iff one of the components in comps is installed.

Fig. 3b shows the same scenario as Fig. 3a, but using a variational represen-
tation. The four edges from Int1 to Int2 are replaced by one, with a presence
condition denoting the components that give rise to the flow. This lifted repre-
sentation is efficient when app sets contain many inter-app flows that share
common parts (intents or partial flows). Such sharing can be caused by common

3 The flow is only a potential flow, as our analysis is static and can produce false positives
(as taint analysis, in general)

4 Our experiments are based on the DidFail variant published at the SOAP workshop [17].
More recently, the authors describe an improvement of DidFail [7], however the focus of the
improvement is DidFail’s accuracy, not its scalability. Therefore, our analysis of DidFail’s
scalability does still hold even though the accuracy of the new DidFail version is better than
suggested in our experiments (Section 5.1).

10 Florian Sattler et al.

GPS Loc.

Int1

Int2

Internet

App1

App3

App5

GPS Loc.

Int1

Int2

Internet

App1

App4

App5

Private Key

Int1

Int2

Internet

App2

App3

App5

Private Key

Int1

Int2

Internet

App2

App4

App5

(a) non-variational (DidFail)

GPS Loc.

Int1

Int2

Internet

App1

App3 ∨ App4

App5

Private Key

App2

(b) variational (Sifta)

Fig. 3: Example of an inter-app data flow, non-variational and variational.
Edges are annotated with app names instead of component names.

intents used by many apps (e.g., ACTION_VIEW) or by code in differently
named components that process information in the same way (e.g., through
code duplication [35,23]).

It is important to note that this variability encoding does not introduce
any false positives or false negatives, as is always ensured in variational data
structures [36] and variability-aware analysis [34].

3.3 Graph Construction

We now describe step by step the construction of a variational inter-app data-
flow graph based on results that we obtain from FlowDroid and Epicc. The
goal is to create a directed graph where a path represents a potential data flow
from a private source through a number of nodes (possibly across multiple apps)
to a public sink. There are various possibilities of flows among the constituents
of the graph. Table 1 shows all possible intra-app flows together with examples
of methods from PrivSrc and PubSnk representing start and end points.

Lifting Inter-App Data-Flow Analysis to Large App Sets 11

Table 1: Potential intra-app data flows

Kind of Flow Example

Source → Sink Src: TelephonyManager.getDeviceId
Snk: Log.v

Source → Intent Src: Location.getLatitude
Snk: startActivity1

Intent Filter → Sink Src: getIntent1

Snk: FileOutputStream.write

Intent Filter → Intent Src: getIntent1

Snk: startActivity1

Source → Intent Result Src: Location.getLongitude
Snk: startActivityForResult1

Intent → Intent Result Src: getIntent1

Snk: startActivityForResult1

Intent Result → Sink Src: onActivityResult1

Snk: HttpClient.execute

Intent Result → Intent Src: onActivityResult1

Snk: startActivity1

1 non-qualified methods belong to Android’s Activity class

For illustration, we introduce a runnning example in Fig. 4. It shows the
data flows within an app App1, which consists of two components Comp1 and
Comp2. In our representation, components may contain sources (Src) (API
method calls representing user input, for example) and sinks (Snk) as well as
intent calls (Int) and intent receivers (IntRecv), each of which are sources and
sinks on their own.

3.3.1 Source and Sinks

For each app, we identify the private sources and public sinks that participate in
intra-component flows using an intra-app data-flow analysis, such as provided
by FlowDroid. All identified sources and sinks become nodes in the graph,
connected with edges representing these flows. Each flow uniquely belongs to a
component comp ∈ Comp, which is annotated to each edge of the graph. The
result is an intermediate graph like the one in Fig. 4 with VDF ⊆ PrivSrc ∪
PubSnk and EVA ⊆ VDF × VDF × Comp.

3.3.2 Intents, Intent Results, and Intent Filters

Next, we need to handle flows across components (inside apps). Specifically, we
need to connect flows ending in an intent (e.g., using startActivity ∈ PubSnk)
with flows starting with an intent (e.g., using getIntent ∈ PrivSrc). We obtain

12 Florian Sattler et al.

Comp1

Src1
getDeviceID

Int1
startActivity

Int2
startService

Snk1
Log.v

IntRecv1
getIntent

App1

App1

App1

Comp2

IntRecv2
getIntent

Snk2
HttpClient.execute

App1

Fig. 4: An app with two components (Comp1, Comp2 ∈ Comp) with intra-
component flows, connecting a source (Src1 ∈ PrivSrc) with two intent calls
(Int1, Int2 ∈ PubSnk) as well as two intent receivers (IntRecv1, IntRecv2 ∈
PrivSrc) with two sinks each (Snk1, Snk2 ∈ PubSnk). The apps involved are
annotated to the edges.

details about the intent by one of the various static analysis tools, such as
Epicc [29] and IC3 [28], that extract parameters of the instantiated intent
object from source or byte code. Likewise, we obtain intent-filter information
from the app’s manifest file, relating it to the intent-filter method that starts
the flow (e.g., getIntent ∈ PrivSrc) by package and component name.
Explicit Intents: If a method that starts a flow has no corresponding intent
filter, it corresponds to an explicit intent. We completely remove the respective
intent and intent-receiver nodes and directly connect the flows. This eliminates
any information that the resulting inter-component flow was based on an
explicit intent, which is not needed anymore and keeps the graph concise. The
rationale is that explicit intents are almost exclusively used for intra-app and
not inter-app communication. New apps that are added later cannot connect to
already processed explicit intents or the receiving method. The elimination of
explicit intents already has considerable influence on performance, as it reduces
the flows within one app dramatically, and allows us to focus on sources, sinks,
and implicit intents. Fig. 5 shows the example of Fig. 4 with the explicit intent
Int1 ∈ PubSnk and its matching receiver IntRecv2 ∈ PrivSrc resolved.
Implicit Intents: Next, we match flows ending in an implicit intent method
with flows starting with an intent-receiver method that has a corresponding
intent filter. Since such spots can later be extended (see Sec. 4.2), we keep
the intent method and the intent-receiver method as nodes in the graph. We
directly connect the intent method with the sink of the matching flow. More
precisely, as we will explain shortly, we actually replace the intent-method
node with an intent-object node, which abstractly represents an intent object

Lifting Inter-App Data-Flow Analysis to Large App Sets 13

Comp1

Src1
getDeviceID

Int2
startService

Snk1
Log.v

IntRecv1
getIntent

App1

App1

App1

Comp2

Snk2
HttpClient.execute

Fig. 5: Example of Fig. 4 with flows via explicit intents resolved

by its metadata. Furthermore, note that we also take services and broadcast
receivers into account, which also communicate via intents and only differ in
the method used to start the intent. Fig. 6 shows an example with explicit and
implicit intents resolved.

Whether an intent can be accepted by an intent filter is decided by Android
based on the intent object’s metadata, the component’s intent filter, the type
of the component, and the method used to call the intent. An intent object is
defined by an action key, a list of categories, and a MIME type.5 An intent
filter is defined by a list of action keys, a list of categories, and a list of MIME
types. Based on this information, Android matches intent objects with intent
filters to deliver the intent object to a component [12].

To collapse the same intent-object nodes across apps, we describe them
purely based on their properties, and only add the components (respectively
the app names, as discussed in Sec. 3.2) of the flows they belong to (from
source to intent, and from intent receiver to sink) to the respective edges
in our variational graph representation. Specifically, we define intent-object
nodes for implicit intents as Intimplicit = Keys × P(Categories) × bURIsc ×
{service, activity, broadcast receiver}, where Keys is the set of all possible action
keys, Categories the set of all possible Categories, and URIs the set of all
possible MIME types that can be used as for data specification in Android
intents. Note that the latter is optional.6

This representation allows collapsing the graph, since all nodes are app-
independent and only described based on their properties. If a flow between
the source getDeviceId ∈ PrivSrc and the sink Log.i ∈ PubSnk is found in two

5 The MIME standards define content types (e.g., JPEG, GIF, or AVI) of data attached to
communication messages. They are also used in e-mail and HTTP protocols. There, clients
use MIME types to determine how attached data should be opened.

6 bURIsc = URIs ∪ ⊥, where ⊥ represents an absent MIME type.

14 Florian Sattler et al.

Src2
getLatitude

Int3
sendBroadcast

Comp1

Src1
getDeviceID

Int2
startService

Snk1
Log.v

Snk2
HttpClient.execute

App1

App1

App1

Comp2 Comp3

App2

App1 App2

Fig. 6: Extended example of Fig. 5 with flows via explicit and implicit intents
resolved

applications, the graph will still only have two nodes, but with two app names
on the edge between them. So we exploit the sharing of elements in different
apps, where components such as ad libraries and common patterns used in
multiple apps will not increase the number of nodes or edges in the graph, only
the information associated with each edge.

Intent Results: Finally, we need to handle intent results—another form of
inter-app communication. They are initiated by intent methods (e.g., startAc-
tivityForResult) that also return a result (another intent object) to the sender
app by calling the target activity’s setResult method. An intent result includes
several possible flows, whereas the first two are the same as for ordinary intents:
(i) in the source app, from a private source to method startActivityForResult;
(ii) in the target app, from getIntent to a sink; (iii) in the target app, from
getIntent or a source to setResult; and (iv) in the source app, from onActivityRe-
sult to a sink. We add the respective flows as edges to the variational graph.
Since we need to keep the information whether an intent node represents an
intent result, we finally define Intimplicit = Keys ×P(Categories)× bURIsc ×
{service, activity, broadcast receiver} × {intent, intent result}.

The Final Graph: Using this construction and our definitions of Intimplicit,
PrivSrc, and PubSnk, we obtain our final, variational graph with VDF ⊆
Intimplicit ∪PrivSrc ∪PubSnk and EVA ⊆ VDF × VDF ×P(Comp). Recall that
in this directed graph, a node represents either a start or end point of a
potentially critical data flow, that is, from a private source to a public sink, or
an intent that forwards information. Furthermore, explicit intents have been
resolved already at this point (see above), and edges represent apps that receive

Lifting Inter-App Data-Flow Analysis to Large App Sets 15

and process intents, receive data from private sources, or forward data to public
sinks.

Note that such a variational representation is concise and still amenable to
data-flow analysis. It might appear surprising, since apps are essentially repre-
sented as edges. But, intents are the central means of inter-app communication
in Android. It would have been possible (and might seem more intuitive) to
represent apps as nodes, but this representation would either lead to dangling
edges or some temporary additional nodes that might need to be replaced once
more apps are added to the graph.

4 Implementation

We implemented our variability-aware approach in the tool Sifta. It reuses
some code from DidFail, such as the parser for Epicc output files. Sifta
implements all concepts discussed in Sec. 3 and, in addition, supports services
and broadcast receivers, which are types of Android components that are not
covered by DidFail.

4.1 A Two-Phase Approach

Like DidFail, Sifta uses a two-phase approach. In the first phase, it uses
FlowDroid and Epicc7 to analyze one app at a time. FlowDroid generates
information on (i) which intents contain private information and (ii) which
information from intents is sent to public sinks of an app. Epicc provides
detailed information on the metadata of the intents, which is necessary to
match them to intent filters of other apps (cf. Sec. 3.1). In the second phase,
Sifta performs intent-matching procedures as described in the Android API
and generates the inter-app data-flow graph (cf. Sec. 3.2 and Sec. 3.3). It uses
the FlowDroid and Epicc output from the first phase and the manifest files
(containing details of intent filters) of the apps. Based on this information,
Sifta (and DidFail) determines which intent is matched by which component’s
intent filter. In addition to DidFail’s matching criteria, Sifta implements
matching of MIME types, as specified in the Android API. Finally, note
that the first phase may fail (cf. Sec. 5.2) on real-world apps. In such cases,
FlowDroid or Epicc usually hit timeouts. Improving these third-party tools
is well beyond the scope of this paper, and some failures are to be expected,
as we use static-analysis tools on real-world apps that might actively prevent
analysis by code obfuscation. Still, our two-phase design allows to easily use
results from other tools in the first phase.

Recall that paths in the graph correspond potentially to one or more
private-data leaks. When edges in a path have alternative apps (i.e., a presence
condition consists of more than one app), the path corresponds to multiple

7 There are alternatives to Epicc, such as IC3 [28], but our considerations and results are
not affected by this choice, as we discuss in Section 6.2.

16 Florian Sattler et al.

Phase 1
(FlowDroid/Epicc)

Phase 2
(Sifta)

App1

App2

IA

IB

IC

ID

Old graph with
presence conditions

New graph with
presence conditions

Src1 → App2
in apps App1 ∨ App3

Src2 → Int1 → Snk2
in apps App4 ∧ (App3 ∨ App2)

. . .

Fig. 7: Sifta’s inter-app analysis. IA, IB, IC , and ID represent intermediary
results generated by the first phase. IC and ID are reused from a previous run
of the analysis. The intermediary results are added to the old graph, which is
also reused from a previous analysis run.

concrete leaks. In contrast to product-line analysis [34], our presence conditions
are simple (disjunctions), though, such that we do not need SAT queries to
generate the graph or to derive feasible flows from it.

4.2 Incremental Graph Construction

Furthermore, we implemented an incremental graph-construction procedure—a
feature that we needed for our largest experiment (see Sec. 5.2). As a consid-
erable computation effort lies in the first phase, we support reuse of already
computed partial results. This includes two types of intermediate results, as
illustrated in Fig. 7. The apps App1 and App2 are analyzed for the first time.
Two other apps have been analyzed before (results from phase 1 are reused),
and an old graph with information about more apps exists already. In the first
phase, App1 and App2 are analyzed by FlowDroid/Epicc. In the second
phase, Sifta uses the newly generated results and the reused results and inte-
grates them into the existing graph. To this end, Sifta keeps data structures
(dictionaries) that save the information about intent filters, which were not
added to the graph (cf. Sec. 3.3), and about implicit intents that did not match
any filter so far. These need to be re-considered when new apps are added, since
new flows and connections could arise in the graph. Finally, Sifta produces

Lifting Inter-App Data-Flow Analysis to Large App Sets 17

an updated graph containing all the edges of the old graph and the new edges
introduced by the new apps.

This persistence and reuse of results enables Sifta to analyze large-scale,
evolving sets of apps in short time. If only few apps change, Sifta does not
need to analyze the entire app set from scratch, but can reuse old results if they
are still valid (when the apps have not changed). To update a graph, we remove
all updated apps from the graph (delete the app from all presence conditions)
and integrate the FlowDroid/Epicc results for the updated apps.

4.3 Taint Propagation

Once the data-flow graph has been generated, it can be used in various ways.
An example, which we implemented in Sifta, is a standard taint analysis
implemented with a depth-first graph traversal algorithm: We simply report all
paths from sources to sinks in the graph. These paths correspond to potentially
malicious data flows. This is, in fact, a taint-propagation analysis as the
(tainted) private data is forwarded along the path until it reaches a sink. The
apps on edges along the path constitute the presence condition of the data
flow.

5 Evaluation

In a series of experiments, we evaluated the accuracy and scalability of our
approach, comparing it to the other state-of-the-art tools DidFail and IccTA.
In Sec. 5.1, we discuss our evaluation of the accuracy of Sifta on benchmark
sets comprising a total of 44 test cases with inter-component and inter-app
leaks (RQ1). Yet, accuracy is only a necessary condition and highly relies on
the underlying data-flow–analysis tools we use. Since our main contribution
is a scalable approach for inter-app communication scenarios, we present our
analysis of large sets of real-world apps in Sec. 5.2, where we compared the
variational representation of Sifta to the non-variational representation of
DidFail, measuring to what extent our approach is able to exploit redundancies
in app communication (RQ2).

5.1 Experiment 1: Accuracy

To answer RQ1, in the first experiment, E1, we measured the accuracy of
Sifta by calculating precision and recall of detected privacy leaks using a
ground truth of established, third-party community benchmarks and our own
hand-crafted benchmark. To understand the accuracy that is achievable with
state-of-the-art tools, we compare our results to those obtained by IccTA (only
intra-app) and DidFail (also inter-app). Overall, we analyzed three different
sets of apps:

18 Florian Sattler et al.

– IACBench contains 9 app sets (two apps per set) created by us to cover
basic (intents with and without results, comprising activities, services, and
broadcast receivers) and advanced inter-app flows (e.g., loops).

– ICC-Bench8 contains 9 apps with intra-app flows developed by the authors
of Amandroid [37].

– DroidBench9 comprises 23 apps testing inter-component communication
(provided by the IccTA authors [18]) and 3 sets of apps testing inter-app
communication (provided by the DidFail authors [17]), among many more
apps not relevant for our approach.
Our own benchmark IACBench contains test cases with critical data flows

via implicit intents across apps from the source TelephonyManager.getDeviceId
to the sink Log.i. Details on IACBench are provided in Table 2. For the third-
party benchmarks ICC-Bench and the parts of DroidBench that we use in
our evaluation, we refer to the literature: Amandroid [37], DidFail [17], and
IccTA [18]. All benchmarks comprise apps developed to test whether analysis
tools capture specific means of communication. The apps are much smaller and
cleaner than real apps and are thus ideal to compare the tools’ accuracy.

Table 2: IACBench test cases

Test Case Description

B
as

ic

startActivity intent from Activity to Activity via startActivity
startService intent from Activity to Service via startService
bindService intent from Activity to Service via bindService
sendBroadcast intent from Activity to BroadcastReceiver via sendBroadcast
sendOrderedBroadcast intent from Activity to BroadcastReceiver via

sendOrderedBroadcast

A
dv

an
ce

d

multipleIntents two identical intents from the same source to the same sink
loop intent from Activity to Activity, but the first Activity can also

receive its own intent, creating a loop
intentChain intent from Activity1 to Service, to Activity2, to Activity3, back

to Activity2 (result), to BroadcastReceiver
identicalIntentFilter intent sent to three different components (Activity, Service,

BroadcastReceiver), each of which has the same intent filter

5.1.1 Methodology and Setup

We ran Sifta and DidFail on all benchmarks and measured precision and
recall. While Sifta focuses on inter-app communication, it can still analyze
intra-app flows. Thus, we do not only compare against DidFail, but also against
IccTA, which is specialized on inter-component, intra-app communication.
Consequently, we can run IccTA only on the ICC-Bench and DroidBench-
ICC benchmarks, not on IACBench. We ran experiment E1 on a Ubuntu

8 Obtained from the authors of Amandroid.
9 http://github.com/secure-software-engineering/DroidBench/

http://github.com/secure-software-engineering/DroidBench/

Lifting Inter-App Data-Flow Analysis to Large App Sets 19

14.04 workstation with four cores (Intel Xeon Processor X3470 @ 2.93GHz).
Timeouts and memory consumption were not an issue for these rather small
test cases.

5.1.2 Results

Table 3 shows all precision and recall values of E1. Note that, to better compare
accuracy values, we calculated two versions, one incorporating failed test cases
(e.g., cases were developers did not implement functionality to handle a test
case, such as specific kinds of intents or broadcast receivers) in the overall
set and one not. If we compare the overall results from Table 3 we see that
Sifta outperforms DidFail in precision and recall, even without including
negative n/i values. Furthermore, Siftas precision is even near our ground
truth IccTA. Next, we discuss the individual benchmarks, emphasizing test
cases where Sifta produced worse results than DidFail or IccTA. Table 4
provides detailed information on all test cases.

Table 3: Precision and recall values of experiment E1. Values in parentheses
include not implemented test cases in the calculation (‘n/i’ in Table 4.

Benchmark DidFail Sifta IccTA

IACBench Precision 100% (50%) 100% (100%) n/a
Recall 80% (80%) 100% (100%) n/a

ICC-Bench Precision 100% (100%) 100% (100%) 100% (100%)
Recall 67% (67%) 56% (56%) 89% (89%)

DroidBench IAC Precision 100% (33%) 100% (100%) n/a
Recall 100% (33%) 82% (82%) n/a

DroidBench ICC Precision 0% (0%) 83% (83%) 95% (95%)
Recall 0% (0%) 79% (79%) 100% (100%)

Total Precision 85% (41%) 91% (91%) 96% (96%)
Recall 42% (28%) 80% (80%) 96% (96%)

IACBench focuses on inter-app communication. Thus, we could not evalu-
ate IccTA on this benchmark. Sifta solved all tests correctly. DidFail could
not solve four test cases, because it lacks support for services and broadcast
receivers.

20 Florian Sattler et al.

Table 4: Results of experiment E1 : accuracy evaluation (IccTA results accord-
ing to Li et al. [18])

Benchmark Test Case DidFail Sifta IccTA

IACBench startActivity + + n/a
(basic) startService n/i + n/a

bindService n/i + n/a
sendBroadcast n/i + n/a
sendOrderedBroadcast n/i + n/a

(advanced) multipleIntents + + n/a
loop + + n/a
intentChain 	 + n/a
identicalIntentFilter + + n/a

ICC-Bench Explicit1 	 + +
Implicit1 + + +
Implicit2 + + +
Implicit3 + + +
Implicit4 + + +
Implicit5 + 	 +
Implicit6 + 	 +
DynRegister1 	 	 +
DynRegister2 	 	 	

DroidBench sendBroadcast1 n/i + n/a
(IAC) startActivity1 + + n/a

startService1 n/i + n/a

DroidBench startActivity1 	 + +
(ICC) startActivity2 	 + +

startActivity3 	 + +
startActivity4 ⊕ ⊕ −
startActivity5 ⊕ − −
startActivity6 − ⊕ −
startActivity7 − ⊕ ⊕
startActivityForResult1 	 + +
startActivityForResult2 	 	 +
startActivityForResult3 	 	 +
startActivityForResult4 	 + +
startService1 n/i + +
startService2 n/i + +
bindService1 n/i + +
bindService2 n/i 	 +
bindService3 n/i 	 +
bindService4 n/i + +
sendBroadcast1 n/i + +
stickyBroadcast1 n/i + +
insert1 	 + +
delete1 	 + +
update1 	 + +
query1 	 + +

true positive: + (analysis reported an existing leak)
true negative: − (no leak and no leak reported)
false positive: ⊕ (a reported leak does not exist)
false negative: 	 (analysis misses an existing leak)
not implemented: n/i (DidFail on services or broadcasts)
not applicable: n/a (intra-app tool on inter-app scenario)

Lifting Inter-App Data-Flow Analysis to Large App Sets 21

On some apps in the ICC-Bench benchmark set, Sifta failed to report
privacy leaks. In particular, in the test cases Implicit5 and Implicit6, Sifta
reported no flows as opposed to DidFail. The reason is a limitation of the
underlying tool Epicc and of DidFail, which ignores the faulty Epicc output.
In both cases, the flows are enabled by MIME types set on the intent objects
in the code (Intent.setDataAndType). Apparently, Epicc does not handle this
function, as it does not include the MIME type in its output. Based on this
output, Sifta assumes that no MIME type is given and the intent does not
match the intent filter in the test case. DidFail does not test for MIME types
and therefore, by accident, correctly reports a flow. Furthermore, in the test
cases DynRegister1 and DynRegister2, intent filters are registered dynamically
and not declared in the manifest file. Epicc does not find such intent filters,
which are therefore not visible to Sifta or DidFail. IccTA fails to detect the
leak in DynRegister2, because the app uses string operations, which cannot be
parsed by IccTA [18].

DroidBench is a much larger benchmark that tests many possible com-
munication paths. Table 4 shows that Sifta reports correct results much more
often than DidFail, but not as often as IccTA. The test startActivity4 has an
intent that uses an URI scheme (http:) that is not listed in the test’s intent filter.
Therefore, the intent does not match the filter. Sifta does not test for URI
schemes, because this information is not provided by Epicc and FlowDroid.
The tests startActivity6 and startActivity7 check whether information retrieval
from an intent is handled correctly. In these cases, an intent with private infor-
mation is accepted by an intent filter, but, instead of the private information,
other information is retrieved from the intent. The information available to
Sifta contains no details on which information is retrieved from an intent.
As long as the intent with private information is accepted and information
from that intent is sent to a public sink, Sifta reports a flow. The bindService
tests transfer private data via an intent to a service that logs the data. In
bindService2 and bindService3, FlowDroid did not report that an intent is
sent, therefore the flow is invisible to Sifta. The tests startActivityForResult2
and startActivityForResult3 failed because Sifta cannot handle some aspects of
the return communication in startActivityForResult intents. We intentionally
omitted these aspects for scalability reasons (see Sec. 5.2). Finally, the inter-app
communication tests (IAC) of DroidBench were all solved correctly by Sifta.

E1 demonstrates that our variability-aware tool Sifta produces more
accurate results than DidFail. Yet, it is less accurate than IccTA, which was
to be expected as IccTA, for each test, combines all components and analyzes
them in one run. Sifta relies on necessarily filtered information gained in
separate per-component analyses, but this is exactly the lever that enables
large-scale inter-app analysis.

Surprisingly, Sifta has some wrong results where DidFail’s results are
correct. This is not caused by Sifta’s graph reduction (which does not influence
the set of reported flows, as discussed in Sec. 3.2), but by additional matching
criteria (for the MIME types, cf. Sec. 4) that we implemented.

22 Florian Sattler et al.

Regarding RQ1, we can conclude that Sifta’s variability-aware approach
maintains a reasonable degree of accuracy.

5.2 Experiments 2–4: Scalability

To answer RQ2, evaluating the scalability of Sifta and DidFail, we used
three sets of apps:
– Experiment E2 : IccRE is a set of 523 real apps deployed with IccTA. These

apps leak private user data through inter-component communication [18].
– Experiment E3 : MalGenome is a set of 1260 real apps published by the

Android Malware Genome Project [38]. They are known to be malicious,
51.1% harvest user data, but not necessarily using inter-app communication.

– Experiment E4 : GooglePlaySet is a set of 172 779 apps that we randomly
downloaded from Google Play, covering various categories and developers.
We started off by obtaining popular apps (see Sec. 6.1, for details about the
selection process).

5.2.1 Methodology and Setup

In E2, we compared Sifta against DidFail, however, given DidFail’s scala-
bility limitations, we were not able to use it in E3 and E4.

We ran E2 on a Ubuntu machine with 32 Cores (AMD Opteron 6386 SE @
2,8 GHz) and 100GB reserved RAM. Because DidFail and Sifta are both
based on the data-flow information generated by FlowDroid and Epicc,
we ran this pre-analysis separately. First, FlowDroid and Epicc analyzed
all IccRE apps with a timeout of 10 minutes. This pre-analysis generated
results for 324 of the 523 apps. We excluded uninteresting flows that have no
influence on other apps. Then, we let DidFail and Sifta build their data-flow
graphs based on this output. For both tools, we measured the time needed
both to generate the graphs and to report detected critical flows. To evaluate
the scalability of DidFail and Sifta, we generated subsets of increasing size
from the IccRE app set. We ran DidFail and Sifta on each subset (without
reusing results from smaller subsets).

For E3 and E4 (MalGenome and GooglePlaySet), given their size,
we switched to a cluster of 17 nodes, each with an Intel Xeon E-5 2690v2 CPU
@ 3,0GHz, 10 cores and 2 hyperthreads per core. We allowed 6GB RAM and
20 minutes each for FlowDroid and Epicc.

5.2.2 Experiment E2 (IccRE)

Fig. 8 shows the result of the scalability experiment on IccRE. Even for only
five apps, Sifta generates the graph faster than DidFail. For larger app sets,
the difference between the tools gets larger (speedup of up to 7620). We stopped
the experiment for DidFail after analyzing the app set with size 100, as the
effect was clear.

Lifting Inter-App Data-Flow Analysis to Large App Sets 23
Ti

m
e

in
 s

ec
 (l

og
 s

ca
le

)

Number of apps in app set (log scale)

1
10

10
0

1
00

0

5 10 50 100

ᴅɪᴅꜰᴀɪʟ
Sɪꜰᴛᴀ

Fig. 8: Results for Sifta and DidFail on IccRE. Both axes have a logarithmic
scale.

A closer look at the output of DidFail and Sifta reveals the reason for
this difference in scalability. For the app set with size 100, DidFail generates
a data-flow graph with 1610 nodes and 51 709 edges. Sifta’s graph has only 51
nodes and 96 edges—illustrating the effectiveness of our compressed variational
representation. Even for the largest app set with 324 apps, Sifta’s graph
has only 66 nodes. This result shows that there is large potential for storing
inter-app data-flow graphs more compactly without losing information. It is
the variability-aware approach that achieves this compression and that enables
efficient analysis of inter-app communication on large app sets.

5.2.3 Experiment E3 (MalGenome)

We analyzed the MalGenome benchmark set only with Sifta (DidFail
does not scale to this size). The analysis ran in two phases: In the first
phase, FlowDroid and Epicc ran on each of the 1260 apps. This phase is
computationally very expensive. It took about 50 hours (sum across all cluster
cores). This phase failed on 421 of the 1260 apps due to 20-minute timeouts or
other errors outside Sifta. In the second phase, we applied Sifta to generate
a global graph of inter-app and intra-app communication. This generation took
only 26 seconds. We had to drop 9 further apps due to parsing errors on the
FlowDroid or Epicc output.

The resulting graph contained 283 flows representing 839 apps. 248 flows
are intra-app flows that go directly from a private source to a public sink. These
would also be found by other tools that focus on intra-app communication.
However, we also found 35 flows that involve two or more apps and therefore
cannot be found with intra-app analysis. The maximum number of apps
annotated on an edge is 220 (average is 10), which means that we have a high
degree of sharing in the graph. If we would use a tool like DidFail, which is
not variability aware, it would produce 220 clones of this edge instead of a

24 Florian Sattler et al.

single edge. This shows the benefit of our representation even if there are no
inter-app data leaks.

5.2.4 Experiment E4 (GooglePlaySet)

To evaluate the scalability of Sifta on even larger app sets, we downloaded
172 779 apps from the Google Play store. Our strategy to select the apps
was to start with one of the most popular apps, facebook, to scan its Web
site, following links to apps listed under “similar” and “more from developer”.
This process was continued, allowing us to download apps across various app
categories. The strategy targets apps that are likely to communicate, leading
to a dataset suitable to evaluate Sifta’s scalability. The mining script and the
list of apps are available on our supplementary Web site. Then, we used Sifta
to analyze inter-app communication and to build the data-flow graph. Next,
we report on the time needed to execute Sifta and on characteristics of the
generated graph.

The first phase of Sifta (running FlowDroid and Epicc) was executed
on the AMD Opteron Cluster that we also used for E2. This phase generated
results for 51 935 of the initial 172 779 apps. The others mainly failed due to
FlowDroid timeouts. This phase of the analysis took 1705 days (4.6 years)
in total (sum of wall times consumed by cluster nodes). We set a timeout
of 20 minutes each for FlowDroid and for Epicc. The rather low yield of
this phase can be explained by the fact that we rely on research tools on a
very diverse set of real apps. Although FlowDroid is one of the most precise
tools for data-flow analysis of Android apps [3], improving it to an industrial
strength is an effort that was not taken yet.

Next, we allocated the results generated by the first phase and ran the
second phase of Sifta, to generate the global variational data-flow graph.
We executed this phase on the previously described Intel Xeon workstation,
because it has not been parallelized so far. We first tried running the graph
generation for all apps at once, however the machine’s main memory was not
sufficient. After loading less than half of the apps, the process already used
more than 5.7 GB. Instead, we used the incremental graph-generation feature
of Sifta (cf. Sec. 4): We partitioned the results of the first phase into four sets
and generated the graph in four steps, as shown in Fig. 9. The graph generation
took 13 minutes, and each step used less than 3.5 GB RAM.

Overall, the graph contains 126 205 variational flows from a private source
to a public sink. The graph has 1387 nodes and 5848 edges. The maximum
flow length is 8: 5154 of the flows pass through 8 apps before leaking private
information.10 The edges’ presence conditions contain an average of 32 (median
3) apps. The maximum of 14 164 apps has an edge that represents a set of
intra-app data flows from Bundle.getBoolean to Bundle.putBoolean. This makes
sense as these very common API methods can be used to read/write data
from/to Bundle objects, which are the payload of intents. Fig. 10 shows the

10 We provide histograms for the path lengths of E3 and E4 on our Web site.

Lifting Inter-App Data-Flow Analysis to Large App Sets 25

Phase 1
(FlowDroid/Epicc)

Phase 2
(Sifta)

App1

App2

App3

App4

App5

App6

. . .

Appn

IA

IB

IC

ID

IE

IF

. . .

IN

Fig. 9: Incremental setup for E4. We chose this setup due to memory limitations
when building the graph from all apps at once. In our experiment, each partition
comprised a quarter of the 51 935 apps.

frequency of presence condition sizes (number of unique apps) in the graph.
Sizes lie between 10 and 200 apps for many edges. That is, each of these
edges would be repeated 10 to 200 times in a graph without sharing. This
demonstrates that, for large app sets, it would be infeasible to generate and
store the graph in a non-variational manner.

Regarding RQ2, we can conclude that the construction of inter-app data-flow
graphs is much more efficient using a variational representation (in terms of
size) than using a non-variational representation without sharing. This way,
we are able to scale the analysis of app sets to a substantial size, which is not
possible otherwise.

6 Threats to Validity

6.1 External Validity

The external validity of our evaluation depends on the choice of (i) the app
benchmark sets and on (ii) the tools we compare Sifta with.

ICC-Bench and DroidBench are established third-party benchmarks
used also in other studies. To evaluate accuracy, we also created IACBench
to include cases not covered by ICC-Bench and DroidBench, especially,
advanced communication scenarios, such as loops, intent chains, and recog-
nition of multiple identical intents. IACBench is publicly available at our
supplementary Web site. To evaluate scalability, we go beyond existing bench-

26 Florian Sattler et al.

●

●

●

● ●

●●

●●
●●

●
●●

●
●
●●

●

●

●
●
●
●

●●●

●
●●●

●

●●●

●

●

●

●
●
●

●●

●

●

●
●

●

●

●

●

●
●

●
●
●
●

●

●

●
●

●●

●

●

●●

●

●

●

●●●●

●

●

●

●

●

●●

●

●

●

●

●●●●●

●●

●

●●

●●

●

●

●

●
●

●

●

●

●●●●

●●

●

●

●

●●

●●

●

●

●●●●

●

●●

●

●●

●

●

●

●

●●

●●●●

●

●

●

●●

●

●●

●

●●

●

●●●●●●●●●●●

●●

●●●●●●●●●●●●

●

●●●●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●● ●●●●●●● ● ●●

1 10 100 1000 10000

1
5

5
0

5
0
0

Degree of sharing: number of apps per edge / size of presence conditions (log scale)

F
re

q
u
e
n
c
y
 (

lo
g
)

Fig. 10: Frequencies of presence-condition sizes illustrating the reason for
sharing in inter-app flows. The graph shows how often different numbers of
apps on edges in the graph occur. Both axes have a logarithmic scale.

marks (IccRE with 523 and MalGenome with 1260 apps) by analyzing 51 935
real-world apps from Google Play.

Empirical studies on real-world apps are commonly prone to the app-
sampling problem [22]. In fact, obtaining a truly random sample of apps of an
app store is almost impossible, due to the store’s size. However, this problem
does not affect our evaluation, since we do not aim at such a representative
sample. Instead, we sought to obtain apps that are likely to communicate as
described in Sec. 5.2.

In our accuracy and scalability experiments, we compared Sifta to two
state-of-the-art tools for intra-app (IccTA) and inter-app communication
analysis (DidFail). Further tools exist for intra-app analysis (e.g., Permis-
sionFlow [33], CHEX [21]), but we chose the most recent and mature tool
IccTA, focusing specifically on analyzing data flows. Although IccTA is more
precise than Sifta, this limitation is acceptable, given that our focus is scala-
bility. Achieving more precision is possible, but requires significant effort for
creating an industry-strength tool. For scalability, our comparison is limited to
DidFail, as it is the only other tool that supports inter-app communication.
We tried another tool, Covert [32], that is also developed for inter-app com-
munication, however, it failed with a Java reflection exception, which we were
not able to solve, even with support from the authors. For comparison, in their
publication, Covert is evaluated with “hundreds of apps”, which is an order
of magnitude smaller than our evaluation.

6.2 Internal Validity

In Sifta, we implemented the matching procedure of intents to receiver com-
ponents, which is essentially a re-implementation of the Android systems’

Lifting Inter-App Data-Flow Analysis to Large App Sets 27

intent-matching algorithm. For this purpose, we relied on Android’s doc-
umentation. Yet, a threat to validity is that we may have missed (possibly
undocumented) corner cases of intent matching or that we mis-interpreted the
documentation. However, our results show that Sifta agrees with IccTA on
most ICC-Bench test cases, which indicates proper matching.

In our experiments, we found that FlowDroid reports many false-positive
flows on real apps (experiments E3 and E4). Usually, these arise from private
data being stored in class fields and intents being instantiated in the same
class. Reproducing the detected data flows “in the wild” is often impossible,
since many apps require extensive setup (e.g., registration of user accounts).
Instead, we looked at several of these flows manually. We found that, in many
cases, private data are visible to the code that generates the intent, but they
are not attached to the intent. FlowDroid reports a flow in these situations.
After consulting with a FlowDroid developer, we implemented a filter that
removes such flows from FlowDroid’s output. For similar reasons, we filter
intent results and intents with empty actions. However, this may remove too
many flows. Still, we argue that missing a few true positives is better than
reporting thousands of false-positive privacy leaks, which would render the
analysis useless. We only used this filtering in experiments E3 and E4, which
aimed at scalability.

Furthermore, in cases where Epicc cannot extract the correct intent pa-
rameters, it returns a wild card ’*’ (i.e., meaning we have to assume every
intent parameter is possible), which can lead to more false positives. To deal
with false positives in inter-app communication, Octeau et al. [27] developed a
static analysis that determines, for each inter-component link, its correctness
probability. Based on these probabilities, they can eliminate 95% of the links
and focus on a smaller number of flows. This approach could be combined with
our scalable data-flow representation, but could also mean that we exclude
existing leaks due to a low correctness probability. Additionally, we can also
replace Epicc with a more accurate tool, such as IC3 [28]. In fact, we built a
parser to integrate IC3 and reevaluated the accuracy test cases from E1 with
Sifta using IC3. Essentially, we found no influence on the precision of Sifta
and, more importantly, there was little to no influence on the graph size, which
is given as input. That is, the choice of using Epicc or IC3 does not practically
affect the runtime of our Sifta analysis. We could further confirm this by
reanalyzing 500 aps from our scalability analysis. We stress that our analysis
does not add new imprecisions and, therefore, can always be combined with
newer and more precise tools.

7 Outlook: Analyzing Large-Scale Inter-App Data-Flow Graphs

To illustrate the potential of analyzing large-scale variational inter-app data-flow
graphs, we share further insights obtained from analyzing the GooglePlaySet.
As a promising use case, the graphs we generate allow us to reason about the

28 Florian Sattler et al.

0
.2

0
.4

0
.6

0
.8

1
.0

C
u

m
u

la
ti
ve

 D
e

n
s
it
y
 F

u
n

c
ti
o

n

 0 40000 80000

0
.9

9
6

5
0

.9
9

8
0

0
.9

9
9

5

C
u

m
u

la
ti
ve

 D
e

n
s
it
y
 F

u
n

c
ti
o

n

 5000 45000 85000

Number of flows in which an app occurs

Fig. 11: Cumulative Density Function (CDF) of the number of flows in which
apps participate. The left plot shows all apps, the right plot only apps that are
part of >5000 flows.

positions of apps in the global communication structure, which is novel for
large app sets.

As an example, let us look at how often apps occur in the flows’ presence
conditions. The rationale is that apps that enable many flows have a larger
potential for being exploited maliciously—it may be desirable to further analyze
them. Fig. 11 shows cumulative density plots illustrating how often apps occur
in flows. The plots show which fraction of the apps (y axis) participates in,
at most, x flows. The left diagram shows the data from all apps, the right
focuses on apps participating in more than 5000 flows. Both show that a
very large fraction of apps participates only in few flows and that few apps
participate in very many flows (right-hand side of the right plot)—a classic
Pareto distribution. Looking closer at these apps may be beneficial, as securing
their inter-app communication would have significant impact. Table 5 shows
the top five of these apps (our supplementary Web site lists all).

Table 5: Top five apps occurring in flow presence conditions

Rank App # Flows

1 com.doeiqts.SpeakHereNow 105 776
2 pl.imoney.praca 105 485
3 com.t3hh4xx0r.pwiccer 105 202
4 mbk.yap.pl4a 92 419
5 com.vnandroid.news4mobile 89 892

Lifting Inter-App Data-Flow Analysis to Large App Sets 29

As a further example, let us take a look at the app that appears on the
most edges (Table 5). It is called ‘Speak Here Now’ and belongs to the category
‘Social Networks’ in Google Play. It was quite often downloaded (10 000–
50 000 downloads), asks for many permissions (e.g., access to all networks),
and can receive a wide range of intents through broad intent filters. It has been
updated last in May 2014. The app enables voice actions on the Android
device. For example, a user can dictate and send tweets or specify music to be
played. Moreover, there is a library that allows other apps to accept custom
voice commands (recorded by Speak Here Now). Therefore, it is plausible
that this app has access to private information (e.g., microphone) and can be
exploited.

Let us now specifically look at apps that forward data between apps (i.e.,
occur in the middle of a flow). Our analysis cannot determine whether they
are definitely malicious or not. However, forwarding apps are particularly
sensible apps that can be exploited for constructing data leaks, with or without
knowledge of the app author. Forwarding apps are typically unsuspicious
because they do not necessarily use permissions, such as Internet access. Any
app (forwarder or other) that participates in a flow can be removed to prevent
the corresponding leaks. In our data set, we identified 88 forwarder apps
(including all apps from Table 5), which receive data from an intent and
deliver it to another intent. We provide the full list of forwarder apps on our
supplementary Web site.

To further illustrate the potential of digging deeper into the inter-app
data-flow graphs, we analyzed one forwarder app manually by decompiling
and inspecting it. This app, called ‘Tentacle’ (category ‘Business’ in Google
Play) provides telemarketing support (e.g., sales, customer service) for small
companies. It integrates deeply with Android’s call management. We found
that its component BrowserCallActivity has a fairly broad intent filter, which can
receive many intents (e.g., any intent with an Android VIEW or CALL action
key). Once received, the app obtains a phone number from the intent, which is
then internally passed to another intent (trying to make a phone call) sent by
the component CallActivity. The app could, in principle, be used to forward
private data (a number) by appending it to an attacker’s phone number and
causing ‘Tentacle’ to call this number. Also, the call intent sent by ‘Tentacle’
could be intercepted by another app, using ‘Tentacle’ as a forwarder, which
would allow an arbitrary string to be leaked (with ‘Tentacle’ in the middle of a
flow).

In summary, while well beyond the scope of this article, we believe there lies
great potential in analyzing large-scale app stores based on inter-app data-flow
graphs. Without a variational representation, this would be infeasible.

30 Florian Sattler et al.

8 Related Work

8.1 Privacy Leaks in Apps

Our variational data-flow representation and variabiliy-aware analysis has vari-
ous applications in software engineering (build secure apps, prevent accidental
flows) and security analysis (detect privacy leaks or high-risk apps).

Privacy leaks inside and across mobile apps have been studied extensively [5].
Several researchers argue that the permission system used in Android is
insufficient to prevent tainted data flows. For instance, permissions are too
coarse-grained [26,30] and surprisingly rarely used in practice [29].

Enck et al. [14] studied 1100 popular Android apps, analyzing their use of
libraries and misuse of private information. They found that apps often access
personal information, combined with account information. Many apps also
heavily use ad libraries [24], forcing acquisition of many permissions.

8.2 Data-Flow Analysis of Android Apps

To the best of our knowledge, our approach is the first to effectively scale
inter-app data-flow analysis to large app sets. According to a recent literature
review [19], most tools focus on intra-app analysis. A main challenge of inter-
app analyses is the support of scalability for market-scale analyses. Inter-app
analysis is addressed by some tools (e.g., DidFail), but they do not optimize
for analysis of very large app sets such as Sifta.

Apart from DidFail, many tools focusing on intra-app communication
exist. Yet, most stop at component boundaries, such as PermissionFlow [33],
which does not incorporate intents and their flows, or FlowDroid [3], which
we use for our component analysis. Some tools can track data flows across
components. The most notable intra-app, but inter-component analysis tools
are Amandroid [37] and IccTA [18]. We explained the difference between
Sifta and IccTA already in Sec. 2. Amandroid is similar in accuracy to
IccTA [18], and also resolves flows across components (using its own points-to
analysis, where we use Epicc). We considered Amandroid for our accuracy
experiments, but were not able to execute it. Anyway, Amandroid targets
intra-app analysis only (as confirmed by the developers).

All these tools differ in their accuracy and how they handle the peculiarities
of Android, such as the main Android library and native calls. Our approach
is able to use these and other underlying tools and leverage them to create
highly compressed data-flow graphs effective in identifying tainted data flows.

Dynamic analysis tools, such as TaintDroid [13], track data flows across
applications at run time. While these conceptually provide the highest accuracy,
they are limited by the dynamic analysis, not being able to confirm the absence
of tainted flows. Most importantly, they can only analyze fixed sets of apps.

Octeau et al. address the problem of large numbers of false positives when
analyzing flows between apps, which results in an explosion of potential inter-

Lifting Inter-App Data-Flow Analysis to Large App Sets 31

app flows [27]. Their approach, which is based on probabilistic modeling, is
orthogonal to our approach. While we aim at compressing the inter-app com-
munication graph by representing flows more efficiently, they aim at removing
flows that cannot occur during execution (false positives).

8.3 Analysis of Software Product Lines

Our variational graph representation is inspired by product-line analysis, where
all possible products or systems (exponentially many, in the worst case) need
to be described in a compact representation (e.g., code and models). From
this representation, individual (variant-specific) representations can be derived,
or statements about all possible variants can be made (e.g., all variants are
consistent or safe) [34]. A mobile-device setup (a specific combination of apps)
can be seen as a specific variant of a product line, where combinations of
selectable features—apps in our case—constitute a system variant [4].

The analysis of product lines relies on variability awareness [34]. For instance,
in product-line model checking, presence conditions are used to compactly
store program states incorporating variability [9,1]. A survey of variability-
aware analyses gives an overview of related techniques [34]; Walkingshaw et
al. [36] provide a broader perspective on variational data structures, discussing
applications in product-line analysis and beyond.

9 Conclusion

We presented a variability-aware approach to inter-app data-flow analysis of
mobile apps. It effectively tames the combinatorial explosion that previous
analysis techniques faced. At its heart is a variational inter-app data-flow graph
that explicitly takes variability—the diversity of apps that can be installed on
a mobile device—into account. Its scalability is superior, proven on a large
benchmark set of 51 935 real-world apps from Google Play, which is well
beyond related work (few hundreds [17]). At the same time, our approach’s
accuracy can compete with state-of-the art tools, which primarily focus on
intra-app flows. Our tool Sifta and a replication package are freely available
on our supplementary Web site.

Perspectively, our approach enables a whole class of analyses that needs
to reason about all possible combinations of apps. For demonstration, we
implemented a taint analysis on top of it, which illustrates the potential
to identify malicious data flows across multiple apps and to gain insight by
analyzing global communication patterns.

While our focus was on scalability, further improving the precision of the
static data-flow analysis is an important direction for future work. Specifically,
adding more information to the graph, such as type information, could enhance
the precision, by ruling out flows that cannot exist due to type incompatibilities.
Since this type information would also be conditional, research in this direction

32 Florian Sattler et al.

would require identifying effective ways to combine type information with
presence conditions, inferring (conditional) types in data flows across apps,
and incorporating this type information into intra-app data-flow analysis.

Acknowledgments

We thank Eric Bodden, Steven Arzt, Li Li, Fengguo Wei, and Yajin Zhou
for helpful discussions on our implementation, on their tools (IccTA and
Amandroid), and for making their benchmark sets available. The work has
been supported by the German Research Foundation (AP 206/4 and AP 206/6).

References

1. S. Apel, A. von Rhein, P. Wendler, A. Größlinger, and D. Beyer. Strategies for Product-
Line Verification: Case Studies and Experiments. In Proc. ICSE, pages 482–491. IEEE,
2013.

2. Apple. App Store Sales Top $10 Billion in 2013. http://www.apple.com/pr/library/
2014/01/07App-Store-Sales-Top-10-Billion-in-2013.html, 2014.

3. S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein, Y. Le Traon, D. Octeau,
and P. McDaniel. FlowDroid: Precise Context, Flow, Field, Object-sensitive and Lifecycle-
aware Taint Analysis for Android Apps. In Proc. PLDI, pages 259–269. ACM, 2014.

4. T. Berger, R.-H. Pfeiffer, R. Tartler, S. Dienst, K. Czarnecki, A. Wasowski, and S. She.
Variability Mechanisms in Software Ecosystems. Information and Software Technology,
56(11):1520–1535, 2014.

5. N. Al Bidani and M. Vigant Raffay. A Systematic Literature Review of Mobile Inter-
Application Security. Master’s thesis, IT University of Copenhagen, 2014.

6. E. Bodden, T. Tolêdo, M. Ribeiro, C. Brabrand, P. Borba, and M. Mezini. SPLLIFT:
Statically Analyzing Software Product Lines in Minutes instead of Years. In Proc. PLDI,
pages 355–364. ACM, 2013.

7. J. Burket, L. Flynn, W. Klieber, J. Lim, W. Shen, and W. Snavely. Making DidFail
Succeed: Enhancing the CERT Static Taint Analyzer for Android App Sets. Technical
Report CMU/SEI-2015-TR-001, Software Engineering Institute, 2015.

8. E. Chin, A. Porter Felt, K. Greenwood, and D. Wagner. Analyzing Inter-application
Communication in Android. In Proc. MobiSys, pages 239–252. ACM, 2011.

9. A. Classen, P. Heymans, P.-Y. Schobbens, A. Legay, and J.-F. Raskin. Model Checking
Lots of Systems: Efficient Verification of Temporal Properties in Software Product Lines.
In Proc. ICSE, pages 335–344. ACM, 2010.

10. K. Czarnecki and M. Antkiewicz. Mapping Features to Models: A Template Approach
Based on Superimposed Variants. In Proc. GPCE, pages 422–437. Springer, 2005.

11. K. Czarnecki and K. Pietroszek. Verifying Feature-based Model Templates Against
Well-formedness OCL Constraints. In Proc. GPCE, pages 211–220. ACM, 2006.

12. S. Dienst and T. Berger. Static Analysis of App Dependencies in Android Bytecode, 2012.
Tech. note, available at http://informatik.uni-leipzig.de/~berger/tr/2012-dienst.pdf.

13. W. Enck, P. Gilbert, S. Han, V. Tendulkar, B. Chun, L. Cox, J. Jung, P. McDaniel,
and A. Sheth. TaintDroid: An Information-Flow Tracking System for Realtime Privacy
Monitoring on Smartphones. ACM TOCS, 32(2):5:1–5:29, 2014.

14. W. Enck, D. Octeau, P. McDaniel, and S. Chaudhuri. A Study of Android Application
Security. In Proc. USENIX, pages 21–21. USENIX Association, 2011.

15. N. Hardy. The Confused Deputy (or Why Capabilities Might Have Been Invented).
ACM SIGOPS, 22(4):36–38, 1988.

16. C. Kästner, P. Giarrusso, T. Rendel, S. Erdweg, K. Ostermann, and T. Berger. Variability-
Aware Parsing in the Presence of Lexical Macros and Conditional Compilation. In Proc.
OOPSLA, pages 805–824. ACM, 2011.

http://www.apple.com/pr/library/2014/01/07App-Store-Sales-Top-10-Billion-in-2013.html
http://www.apple.com/pr/library/2014/01/07App-Store-Sales-Top-10-Billion-in-2013.html
http://informatik.uni-leipzig.de/~berger/tr/2012-dienst.pdf

Lifting Inter-App Data-Flow Analysis to Large App Sets 33

17. W. Klieber, L. Flynn, A. Bhosale, L. Jia, and L. Bauer. Android Taint Flow Analysis
for App Sets. In Proc. SOAP, pages 1–6. ACM, 2014.

18. L. Li, A. Bartel, T. Bissyande, J. Klein, Y. Le Traon, S. Arzt, S. Rasthofer, E. Bodden,
D. Octeau, and P. McDaniel. IccTA: Detecting Inter-Component Privacy Leaks in
Android Apps. In Proc. ICSE, pages 280–292. IEEE, 2015.

19. L. Li, T. Bissyande, M. Papadakis, S. Rasthofer, A. Bartel, D. Octeau, J. Klein, and
Y. Le Traon. Static Analysis of Android Apps: A Systematic Literature Review. Tech-
nical report, University of Luxembourg, Fraunhofer SIT/TU Darmstadt, University of
Wisconsin and Pennsylvania State University, 2016.

20. J. Liebig, A. von Rhein, C. Kästner, S. Apel, J. Dörre, and C. Lengauer. Scalable
Analysis of Variable Software. In Proc. ESEC/FSE, pages 81–91. ACM, 2013.

21. L. Lu, Z. Li, Z. Wu, W. Lee, and G. Jiang. CHEX: Statically Vetting Android Apps for
Component Hijacking Vulnerabilities. In Proc. CCS, pages 229–240. ACM, 2012.

22. W. Martin, M. Harman, Y. Jia, F. Sarro, and Y. Zhang. The App Sampling Problem
for App Store Mining. In Proc. MSR, pages 123–133. ACM, 2015.

23. I. Mojica, B. Adams, M. Nagappan, S. Dienst, T. Berger, and A. Hassan. A Large Scale
Empirical Study on Software Reuse in Mobile Apps. IEEE Software, 31(2):78–86, 2014.

24. I. J. Mojica, M. Nagappan, B. Adams, T. Berger, S. Dienst, and A. E. Hassan. On Ad
Library Updates in Android Apps. IEEE Software, 2015. Online first.

25. S. Nadi, T. Berger, C. Kästner, and K. Czarnecki. Mining Configuration Constraints:
Static Analyses and Empirical Results. In Proc. ICSE, pages 140–151. ACM, 2014.

26. Mohammad Nauman, Sohail Khan, and Xinwen Zhang. Apex: Extending Android
Permission Model and Enforcement with User-defined Runtime Constraints. In Proc.
ASIACCS, pages 328–332. ACM, 2010.

27. D. Octeau, S. Jha, M. Dering, P. McDaniel, A. Bartel, L. Li, J. Klein, , and Y. Le Traon.
Combining Static Analysis with Probabilistic Models to Enable Market-Scale Android
Inter-Component Analysis. In Proc. Int. Symp. Principles of Programming Languages
(POPL), pages 469–484. ACM, 2016.

28. D. Octeau, D. Luchaup, M. Dering, S. Jha, and P. McDaniel. Composite Constant
Propagation: Application to Android Inter-Component Communication Analysis. In
Proc. ICSE, pages 77–88. IEEE, 2015.

29. D. Octeau, P. McDaniel, S. Jha, A. Bartel, E. Bodden, J. Klein, and Y. Le Traon.
Effective Inter-Component Communication Mapping in Android with Epicc: An essential
Step Towards Holistic Security Analysis. In Proc. USENIX, pages 543–558. USENIX
Association, 2013.

30. M. Ongtang, S. McLaughlin, W. Enck, and P. McDaniel. Semantically Rich Application-
centric Security in Android. Security and Communication Networks, 5(6):658–673,
2012.

31. A. Porter Felt, H. Wang, A. Moshchuk, S. Hanna, and E. Chin. Permission Re-delegation:
Attacks and Defenses. In Proc. USENIX, pages 22–22. USENIX Association, 2011.

32. A. Sadeghi, H. Bagheri, and S. Malek. Analysis of Android Inter-App Security Vulnera-
bilities Using COVERT. In Proc. ICSE, pages 725–728. IEEE, 2015.

33. D. Sbîrlea, M.G. Burke, S. Guarnieri, M. Pistoia, and V. Sarkar. Automatic Detection of
Inter-Application Permission Leaks in Android Applications. IBM Journal of Research
and Development, 57(6):10:1–10:12, 2013.

34. T. Thüm, S. Apel, C. Kästner, I. Schaefer, and G. Saake. A Classification and Survey of
Analysis Strategies for Software Product Lines. ACM Comput. Surv., 47(1):6:1–6:45,
2014.

35. N. Viennot, E. Garcia, and J. Nieh. A Measurement Study of Google Play. In Proc.
SIGMETRICS, pages 221–233. ACM, 2014.

36. E. Walkingshaw, C. Kästner, M. Erwig, S. Apel, and E. Bodden. Variational Data
Structures: Exploring Trade-Offs in Computing with Variability. In Proc. Onward!,
pages 213–226. ACM, 2014.

37. F. Wei, S. Roy, X. Ou, and Robby. Amandroid: A Precise and General Inter-component
Data Flow Analysis Framework for Security Vetting of Android Apps. In Proc. CCS,
pages 1329–1341. ACM, 2014.

38. Yajin Zhou and Xuxian Jiang. Dissecting Android Malware: Characterization and
Evolution. In Proc. SSP, pages 95–109. IEEE, 2012.

	Introduction
	Background and Motivation
	Representing Inter-App Flows
	Implementation
	Evaluation
	Threats to Validity
	Outlook: Analyzing Large-Scale Inter-App Data-Flow Graphs
	Related Work
	Conclusion

