
Product Lines that supply other Product Lines: A Service-Oriented Approach

Salvador Trujillo
IKERLAN Research Centre

Mondragon, Spain
strujillo@ikerlan.es

Christian Kästner
University of Magdeburg

Magdeburg, Germany
ckaestne@ovgu.de

Sven Apel
University of Passau

Passau, Germany
apel@uni-passau.de

Abstract

A software product line is a family of software products
that share a set of core assets with the goal of reuse. In this
paper, we focus on a scenario in which different products
from different product lines are combined together in a third
product line to yield more elaborate products, i.e., a prod-
uct line consumes products from third product line suppli-
ers. The issue is not how different products can be produced
separately, but how they can be combined together. We pro-
pose a service-oriented architecture, in which product lines
are regarded as services, yielding a service-oriented prod-
uct line. This paper illustrates the approach with an ex-
ample for a service-oriented architecture of a web portal
product line supplied by portlet product lines.

1. Introduction

The goal of a software product line is to produce a set of
distinct but similar products. Typically, this is achieved by
reusing a common product line infrastructure, which con-
sists not only of traditional reusable software (e.g., code,
models, documentation, etc), but contains product line spe-
cific assets as well (e.g., feature model, production plan,
product line architecture, etc).

Currently, product lines in software development are tar-
geted primarily at producing software products that are used
in isolation. They can depend on third-party software (e.g.,
operating system, embedded system, or web container), but
this third-party software is usually regarded as fixed because
it is considered to be part of the execution environment. So,
they do not depend on other software developed by third-
party product lines.

Service-oriented architecture (SOA) is a novel paradigm
that may change this scenario. Typically, an SOA appli-
cation comprises a set of third-party services, which may
be distributed. Each of such services supplies some spe-
cific functionality, and all together complete the distributed
application functionality (i.e., the web services with fine-

grained functionality are combined together to serve an ap-
plication with coarse-grained functionality). SOA promotes
services to be easily consumed by diverse applications be-
cause the discovery and consumption of services are stan-
dardized. The usefulness of SOA rests on existing standard-
ization efforts and tooling [16].

Reusing services can be further ameliorated by creating
a product line that satisfies diverse variability requirements
from different customer applications (e.g., a product line
of customized portlets for customer portals where existing
techniques are used [10, 18]). This way, not only the ap-
plication interface is customized by using standards to con-
sume supplied services, but also the application function-
ality is customized by using product lines of supplied ser-
vices.

However, the entire SOA application itself could require
its customization (e.g., not only is each portlet customized
from a product line, but the portal as well). When the SOA
application itself turns into a product line, a new scenario
emerges. This scenario requires that a product line con-
sumes products that are supplied from third-party product
lines. We call such scenario a service-oriented product line
(SOPL).

Such situations are well-known in real industrial assem-
bly lines. Consider a carmaker with an assembly line (e.g.,
from the chassis to the end-product) where third-party sup-
plied components provided by other product lines are as-
sembled together. These non-trivial components are the en-
gine, the gear, the front-end, etc., which are also customized
products of other product lines. In this case, there is a prod-
uct line of cars that is supplied by other product lines of
components.

Although this context seems futuristic for traditional
software at first, it occurs for example when developing
software for consumer electronics (e.g., several components
like a TV receiver with different options are built into a
TV product line) [19]. Here, product populations offer an
architecture-centric approach to combine multiple product
lines where human intervention is required [19]. Our work
strives to homogenize the combination of products from

1



product lines using the SOA paradigm. This reduces hu-
man intervention during product line discovery and mini-
mizes human intervention from consumption. This way, the
challenge is how to enable the automatic consumption of
products from a third-party product line, which we address
in this paper.

2. Service-Oriented Product Lines

There is nothing new on how multiple, distributed and
heterogeneous product lines are developed in isolation, i.e.
existing techniques can be used to create an individual
SOPL. It is even possible for a product line to manually
supply a product to a product line (e.g., when two prod-
ucts from two product lines are manually combined to-
gether). We envisage (semi-)automatic combination of mul-
tiple product lines.

The issue on how a product is plugged into a more
complex end-product is addressed by product populations,
which describe an architecture-centric approach to attain
this coupling [19] (see Section 5). This approach requires
human intervention.

We envisage the composition of software products sup-
plied from different product lines with only little human
intervention. To achieve this, several issues must be ad-
dressed. We have to (i) describe a supplier product line, (ii)
sketch how to consume products supplied by other product
lines, (iii) establish the product line operation, where per-
formance, production schedule, bill of materials and other
elements should be considered beforehand, and (iv) provide
adequate tool support.

2.1. Supplier

First, we need to analyze which information a supplier
product line should publish in order to enable its automatic
consumption afterwards. A supplier is characterized by (i)
descriptive information, (ii) product information, and (iii) a
production interface.

• Descriptive information contains a unique identifier, a
name, and a brief description of the product line. It is
used later during the discovery and registration of the
supplier product line.

• Product information describes how products are distin-
guished in a product line setting. A product is charac-
terized usually by its features. This is the basic specifi-
cation we need to build a product. Further information
about core assets should be offered as well for descrip-
tive purposes.

• A production interface provides information such as
the production time, delivery time, average product

cost, average product LOC, average product size, etc.
An important piece of information is related to the in-
terface for consumption (e.g., which URL should be
invoked in the case of a web service and which param-
eters used). This information is useful when choosing
among similar product lines.

Starting from this information provided by a supplier, a con-
sumer might consume such supplier product line.

2.2. Consumer

A consumer product line demands products from third-
party product lines. This demand is specified in terms of the
suppliers’ characteristics (e.g. descriptive information, etc).
The purpose of a consumer product line is to effectively en-
able the access to a supplier. Each consumer product line
is realized by a consumer stub, which links with its corre-
sponding product line supplier. In SOA terms, a supplier is
supplying services, and the consumer aggregates services to
offer an application.

Nonetheless, our aim is not only to consume a single sup-
plier, but to consume multiple supplier product lines. This
can be achieved by combining a set of consumer product
lines together. So, a set of consumer stubs can be used si-
multaneously.

This combination of consumers exposes an entire SOPL
architecture representing all the product line suppliers in-
volved. We envisage SOPLs for automating the operation
of the entire product line.

2.3. Operation

We define a sequence of operations between the con-
sumer and their suppliers in order to enable their commu-
nication. This is roughly divided into registration and con-
sumption (see Figure 1).

Registration. The registration requires the discovery of
each product line supplier (i.e., human intervention is re-
quired)1. Figure 1 shows how a consumer can register to
an individual supplier product line where PL_A registers to
PL_1. The sequence of operations involves first a getSer-
viceDescription() call. Then, a register() operation estab-
lishes a relationship for future consumptions in which the
supplier provides average production time, delivery time,
etc. The general case would encompass registrations with
several suppliers.

1The UDDI standard (for web-services) can be used in this context
(http://www.uddi.org/).

2



Figure 1. Operation - Sequence Diagram

Consumption. The consumption refers to the production
and delivery of a product. In general, when the product
line production or derivation process is automated, we can
invoke such product line specifying desired features and re-
ceive a product [2, 6].

Figure 1 shows the sequence of operations where a sup-
plyProduct() calls for the production and delivery of a spe-
cific Product (e.g., A1 from PL_1 in Figure 3). The supplied
product is considered as a reusable asset by the product line
consumer (PL_A). Nonetheless, tool support is needed to
automate such consumption.

2.4. Tool Support

The ideas presented here benefit from SOA ideas. More
to the point, existing SOA standardization efforts and tool
support may readily enable the creation of such infrastruc-
ture.

In general, we envisage two kinds of consumptions.
First, when the consumer and all supplier product lines are
in the same workspace (same vendors), which is named in-
ternal consumption. Second, when the product lines are in
distinct workspaces (distinct vendors), which is named ex-
ternal consumption. So far, we created initial tool support
for the internal consumption (not detailed), and are planning
to work on external.

Figure 2. Portal / Portlet Architecture

3. An Example

Portals and Portlets. We choose portals of portlets to il-
lustrate the idea of SOPL [10]. A portal is a web page that
provides centralized access to a variety of services [8]. An
increasing number of these services are not offered by the
portal itself, but by a third-party component called a portlet,
which is a presentation oriented web service [12, 15].

Figure 2 depicts a 3-tier architecture for portlets, where
MyBrowser accesses the Portal_1 page through HTTP. Por-
tal_1 is hosted by Consumer1 and consists of a layout ag-
gregating the Alpha, Beta, and Delta portlets that are hosted
by different producers (a.k.a. suppliers).

When a family of similar portals (e.g., research group
sites) is required, a customized portal can be the outcome
of a product line that consumes portlets that are supplied by
third-party product lines. Figure 2 shows this where Por-
tal_2 consists of a version of Alpha different from that used
by Portal_1 (same holds for Beta), and other portlets (e.g.,
Lamnda, Theta). This setting is commonplace in SOA.

Scenario. As a specific example, consider an SOPL on a
product line of enterprise web portals, in which different
services are offered. Each company requires a similar, but
different version of the portal. So, there is a family of prod-
ucts. The services in each instance of the portal are offered
by portlets (e.g., meeting room reservation, calendar, hotel
reservation, flight reservation, etc), which as well vary and
hence come from a product-line.

Figure 3 sketches our motivating scenario for a set of
product lines of portlets, which supply to a product line of
portals. PL_A is the product line of enterprise portals. This
product line uses several portlets (from A1 to A6). Note that
some of them (A1 and A4) are directly supplied by third-
party product lines. A1 is a meeting-room reservation port-
let supplied from PL_1 product line while A4 comes from

3



Figure 3. SOPL Scenario

PL_2 product line, which offers flight reservation function-
ality. A1 and A4 are actually portlets that are integrated into
the entire portal2.

A mechanism is needed for each product line supplier to
receive the product configuration as input (e.g., selection of
product features [2, 7]), and manufacture as output the final
product3.

The challenge of SOPL is to consume products that are
supplied by PL_1 and PL_2 as composable artifacts in the
PL_A product line (i.e., invoking third-party product lines
and obtaining the product as a reusable asset for another
product line). We believe that existing SOA tool support
provides an adequate foundation for SOPL.

4. Discussion

Consistency. Products to be reused within a consumer
product line need to fit precisely. Hence, the consistency is
crucial to assure that the product, e.g., the configured port-
let, fits as an artifact of a larger product, e.g., the portal.
This consistency issue appears when features from a con-
sumer require propagation to a supplier (e.g., the features
from supplier should be consistent with the product features
where it is to be aggregated4). It is not trivial how to do so as
different names could designate same functionality and vice
versa. Similarly, when dealing with heterogeneous prod-
uct lines (e.g., products implemented in different platforms)
consistency issues may appear as well.

2This does not preclude that the portlet is physically deployed on the
same machine as the portal, but can be deployed externally, and reused
solely by this specific portal.

3Such manufacturing (e.g., portlet product lines PL_1 and PL_2) in-
volves to (i) compose target product code, (ii) compile the resulting com-
position, (iii) create a Portlet bundle, and (iv) deploy it to a given location.

4This refers to a feature model, whose terminal features are replaced
with an entire feature model [1, 7].

Production. Production does not only depend on product
line artifacts, but also depends on third-party artifacts. If
these artifacts are not available within schedule, the product
would not be produced. Hence, production schedule and
timing should be carefully planned. Otherwise, undesirable
production bottlenecks would appear in the performance.

Orchestration. Consistency and timing issues are symp-
tomatic of a more general issue, which is orchestration (i.e.,
how different product lines are smoothly orchestrated to-
gether). This way, consistency, timing and production is-
sues could be catered for. To attain this, experience from
“real-world” manufacturing seems beneficial for produc-
tion experiences. Business Process Execution Language
(BPEL) is a case in point5.

Service-Oriented Refactoring. The idea of SOPL to
yield a product is backed by a non-trivial SOA scenario.
However, the use of multiple product lines is not restricted
to this case. Consider an individual product line, which has
grown in time into a large product line. When this occurs,
both technical and organizational management of the prod-
uct line becomes highly intricate (e.g., core assets manage-
ment, production planning, etc). There is an ancient princi-
ple to face this: “divide and conquer” (a.k.a. separation of
concerns in software engineering). Applying such a prin-
ciple leads to divide an original product line into a set of
product lines. This refactoring of an original product line
into a set of product lines would eventually enable to ease
product line management (as they are smaller). This refac-
toring is also motivated when the newly created product line
is to supply products to new customers that demand only re-
stricted functionality (i.e., fewer than original product line
functionality). Therefore, we envisage that several situa-
tions would demand service-oriented refactoring.

5. Related Work

As industrialization of the automobile manufacturing
process led to increased productivity and higher quality at
lower costs, industrialization of the software development
process is leading to the same advantages [11]. A software
factory6 is defined as "a facility that assembles (not codes)
software applications to conform to a specification follow-
ing a strict methodology". In general, to set-up a factory
is to create a production capability. An important piece of

5BPEL is a business process language that grew out of WSFL and
XLANG. It is serialized in XML and aims to enable programming in the
large. The concepts of programming in the large and programming in the
small distinguish between two aspects of writing the type of long-running
asynchronous processes that one typically sees in business processes (from
http://en.wikipedia.org/wiki/BPEL).

6http://en.wikipedia.org/wiki/Software_factory

4



work is how such factories connect with third-party facto-
ries.

In a product line setting, a factory uses a production plan,
which is “a description of how core assets are to be used
to develop a product in a product line” [4]. A production
plan describes how a product is developed [3, 4, 14]. Lee et
al. describe an approach for production planning based on
features [13]. Recently, Wang et al. describe production “on
the fly” where dynamic reconfiguration was used to support
privacy in web applications [21].

Consider a typical production plan that implies the se-
lection of product desired features in order to compose such
selected features [9]. Then, when the raw compound prod-
uct is obtained, it is necessary to create a binary (e.g., an
executable, a JAR or a WAR). To this end, the raw is com-
piled, packaged, and deployed. Optionally, it may be mea-
sured, tested, versioned or even have documentation cre-
ated. In general, it describes how the factory operates the
reusable artifacts [17]. Such production techniques reuse
not only the artifacts, but even the process that are present
in the product line infrastructure. However, they do not en-
able invocation of a third-party product line and reuse the
third-party product.

The notion of product populations is not far from SOPL.
The difference stems from the fact that product populations
focus on how a product is integrated into a product line (i.e.,
the architectural interfaces that glue them together) [19, 20].
This work focuses on the automation of this combination
rather than on how products are glued together.

Product line products are usually produced reusing a
common infrastructure. This infrastructure is usually in-
ternal to the product line. Even though there is experience
with COTS components [5], they are not part of a product
line. Hence, to the best of our knowledge, we are unaware
of tooling to enable the automated consumption of a product
line supplier.

6. Conclusions

This paper presented our ongoing work on the vision
of SOPL, which consumes products from supplier prod-
uct lines. We motivated our idea with an example for a
product line of portals consuming supplier product lines
of portlets. We introduced preliminary representations for
consumer and supplier product lines, described the basic
operation of registration and consumption, and sketched the
initial tool support required.

SOPLs rely on SOA for product line production. To an-
swer the workshop question, existing SOA techniques are
used to build more complex SPL systems. Our longstand-
ing aim is to facilitate the emergence of a concurrent market
where atomic products from supplier product lines can be
automatically integrated into a product line.

Acknowledgments. We thank Maider Azanza, Don Ba-
tory, Rafael Capilla, Oscar Diaz and Jon Iturrioz for their
helpful comments on earlier drafts of this paper.

References

[1] D. Batory, D. Benavides, and A. Ruiz-Cortes. Au-
tomated Analysis of Feature Models: Challenges
Ahead. Comm. of the ACM - Special Issue on Soft-
ware Product Lines, Dec 2006.

[2] D. Batory, J.Neal Sarvela, and A. Rauschmayer. Scal-
ing Step-Wise Refinement. IEEE Transactions on
Software Engineering, 30(6):355–371, June 2004.

[3] G. Chastek, P. Donohoe, and J.D. McGregor. Prod-
uct Line Production Planning for the Home Integra-
tion System Example. Technical report, CMU/SEI,
September 2002. CMU/SEI-2002-TN-029.

[4] G. Chastek and J.D. McGregor. Guidelines for De-
veloping a Product Line Production Plan. Technical
report, CMU/SEI, June 2002. CMU/SEI-2002-TR-06.

[5] P. Clements and L.M. Northrop. Software Prod-
uct Lines - Practices and Patterns. Addison-Wesley,
2001.

[6] K. Czarnecki and U. Eisenecker. Generative Program-
ming. Addison-Wesley, 2000.

[7] K. Czarnecki and K. Pietroszek. Verifying Feature-
Based Model Templates Against Well-Formed OCL
Constraints. In 5th International Conference on Gen-
erative Programming and Component Engineering
(GPCE 2006), Portland, Oregon, USA, Oct 24-27,
2006.

[8] O. Díaz and J.J. Rodríguez. Portlets as Web Compo-
nents: an Introduction. J. UCS, 10(4):454–472, 2004.

[9] O. Diaz, S. Trujillo, and F. I. Anfurrutia. Supporting
Production Strategies as Refinements of the Produc-
tion Process. In Software Product Lines, 9th Interna-
tional Conference (SPLC), Rennes, France, Septem-
ber 26-29, pages 210–221, 2005.

[10] O. Díaz, S. Trujillo, and S. Perez. Turning Portlets
into Services: Introducing the Organization Profile.
In 16th International World Wide Web Conference
(WWW), Banff, Canada, May 8-12, November 2007.

[11] J. Greenfield et Al. Software Factories: Assembling
Applications with Patterns, Models, Frameworks, and
Tools. Wiley, 2004.

5



[12] JCP. JSR 168 Portlet Specifica-
tion Version 1.0, September 2003. at
http://www.jcp.org/en/jsr/detail?id=168.

[13] J. Lee, K. Kang, and S. Kim. A feature-based ap-
proach to product line production planning. In SPLC,
2004.

[14] J.D. McGregor. Product Production. Journal Object
Technology, 3(10):89–98, November/December 2004.

[15] OASIS. Web Service for Remote Portals
(WSRP) Version 1.0, 2003. http://www.oasis-
open.org/commitees/wsrp/.

[16] T. Erl. Service-Oriented Architecture : A Field Guide
to Integrating XML and Web Services. Prentice Hall,
2004.

[17] S. Trujillo, M. Azanza, and O. Diaz. Generative
Metaprogramming. In 6th International Conference
on Generative Programming and Component Engi-
neering (GPCE), Salzburg, Austria, 2007.

[18] S. Trujillo, D. Batory, and O. Díaz. Feature Ori-
ented Model Driven Development: A Case Study for
Portlets. In 29th International Conference on Software
Engineering (ICSE), Minneapolis, Minnesota, USA,
May 20-26, 2007.

[19] R. van Ommering. Building Product Populations with
Software Components. In 24th International Con-
ference on Software Engineering (ICSE), Orlando,
Florida (USA), 2002.

[20] R. C. van Ommering, F. van der Linden, J. Kramer,
and J. Magee. The Koala Component Model for
Consumer Electronics Software. IEEE Computer,
33(3):78–85, 2000.

[21] Y. Wang, A. Kobsa, A. van der Hoek, and
J. White. PLA-based Runtime Dynamism in Support
of Privacy-Enhanced Web Personalization. In SPLC,
2006.

6


