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Abstract Several variability representations have been proposed over the years. Soft-
ware maintenance in the presence of variability is known to be hard. One of the reasons
is that maintenance tasks require a large amount of cognitive effort for program com-
prehension. In fact, the different ways of representing variability in source code might
influence the comprehension process in different ways. Despite the differences, there
is little evidence about how these variability representations – such as conditional-
compilation directives or feature-oriented programming – influence program compre-
hension. Existing research has focused primarily on either understanding how code
using modern paradigms evolves compared to the traditional way of realizing variabil-
ity, namely conditional compilation, or on the aspects influencing the comprehension
of conditional compilation only. We used two different programs implemented in Java
and each of these variability representations. As Java does not support conditional
compilation natively, we relied on the mimicking (i.e., preprocessing annotations in
comments) that has been used in the literature. Our results show no significant sta-
tistical differences regarding the evaluated measures (correctness, understanding, or
response time) in the tasks. Our heterogeneous sample allowed us to produce evidence
about the influence of using CC and FOP variability representations on the aspects in-
volved in the comprehension of feature-oriented software, while addressing bug-finding
tasks.
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1 Introduction

Several variability representations have been proposed over the years to handle vari-
ability in source code, and they have been increasingly applied in the development
of large and complex software systems [3]. Some of them have reached high levels of
popularity in industry, such as Conditional Compilation (CC) [17], whereas others are
still mostly known in academia, such as Feature-Oriented Programming (FOP) [5].

The research community has attempted to bridge existing gaps from both paradigms
to improve their adoption and make them easier to understand. Nevertheless, software
maintenance in the presence of variability can still be considered hard [17]. The main-
tenance of source code in the presence of variability might require a large amount of
cognitive work for comprehension, for a set of different factors, such as the need of
language processing or the visual perception of the source code [28]. However, apart
from the studies addressing (i) the differences in the effort to evolve software systems
using different variability representations [12,14] and (ii) the work focused on program
comprehension from the perspective of a given particular variability implementation
mechanism - (CC) - [16, 19, 26], there is still a lack of understanding about how such
representations might influence program comprehension, in particular to carry out
bug-finding tasks. To the best of our knowledge, only three studies specifically ad-
dressed the influence of variability representation differences on the topic [23, 24, 29].
First, Siegmund et al. [29] conducted a pilot of a (quasi-)experiment with Java sys-
tems implemented with FOP and CC. Later, Santos et al. [23] carried out a study
with JavaScript systems implemented with the “standard” way to implement vari-
ability and the RiPLE-HC approach. Santos et al. [24] stressed different aspects from
which software engineers could either benefit or be confused with while addressing
bug-finding tasks in code using FOP and CC variability representations. Indeed, it is
important to address such differences from the perspective of program comprehension
because of two main aspects: (i) the ever increasing complexity of software systems
with variability in their code; and (ii) the difficulty to assess and select one among the
plethora of currently available variability representations.

Shull et al. [27] highlighted benefits of replications in Empirical Software Engineer-
ing. This fact motivated us to carry out two replications of Siegmund et al.’s [29] pilot
to add to our earlier efforts [23, 24], as a means to contribute to a better understand-
ing of the influence of different variability representations on feature-oriented software
comprehension. Their pilot targeted software developed with two different variabil-
ity representations: FOP and CC. We believe these two variability representations
are representative of the emerging and solid approaches to handle variability. While
FOP is language-independent, CC could be considered the most widely used vari-
ability representation (e.g., the C and Java preprocessors, such as Antenna, Munge,
and JavaPP) [17]. Therefore, likewise Siegmund et al. [29], we recruited 33 graduate
students as participants and designed a number of bug-finding tasks in two versions
(FOP and CC) of two open-source systems. We assessed three dependent variables:
understanding, correctness, and response time. We believe these variables could capture
important aspects of the influence of variability representations on the feature-oriented
software comprehension.

Regarding the two replications, we performed one dependent (or exact) replication
using the same design and artifacts, and one independent (or conceptual) replication,
in which we extended the original design with a second round using a system from a
different domain to strengthen validity.
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In summary, our hypotheses testing did not allow us to reject our null hypotheses
on no difference regarding the dependent variables (understanding, correctness, and
response time) while using the the varaiability representations used in this study. In
summary, we make the following contributions:

– A more robust design for experimentation with FOP and CC variability represen-
tations if compared with previous ones;

– Indicators of no statistical difference regarding (i) the effort to understand, (ii) the
effort to find errors in source code, and (iii) the time required to finish bug-finding
tasks while using CC and FOP;

– A supplementary Web site with the experimentation artifacts of the carried exper-
iments1, which may provide researchers with a replication package.

The remainder of this article is organized as follows: Section 2 presents underlying
concepts about Feature-Oriented Software Development. Section 3 describes the plan-
ning, preparation, and execution of the (quasi-)experiments, including the addressed
research questions and hypotheses. Section 4 presents the results of the empirical eval-
uation. Section 5 discusses the influence of the participants’ motivation and difficulty
perception concerning their results in our replications comparing the current with the
original study, as well as the answers to the stated research questions. Section 6 dis-
cusses the threats to validity and Section 7 discusses existing related work. Finally,
Section 8 draws concluding remarks and pinpoints opportunities for further investiga-
tions.

2 Feature-Oriented Software Development (FOSD)

FOSD is a paradigm used for the construction, customization, and synthesis of large-
scale software systems relying on features [4]. A feature satisfies a requirement while
performing design decisions, which in other words means an increment in the program
functionality [6]. In fact, a software manufacturer can generate a software product
based on the requirements of a specific customer based on a set of reusable parts [3].
The ability of handling features in FOSD is known as variability management and is
accomplished at the implementation level by a variability representation. Apel et al. [3]
built an extensive catalog of variability representations, which might be used to handle
such reusable parts.

In this study, we addressed two variability representations: FOP and CC. Figure 1
illustrates the main differences between (a) (CC) and (b) (FOP) approaches to FOSD.
The latter emphasizes the modularization. FeatureHouse [5] was selected as the tool
implementing FOP, whereas Antenna and JavaPP are tools implementing CC. In
addition, FeatureHouse is representative of the group of techniques that physically
separate the implemented features in the code base, whereas Antenna and JavaPP
are representative of the group of approaches that virtually separate the implemented
features. We use Antenna and JavaPP instead of C-preprocessor, because we needed
subject systems implemented in both FOP and CC. Next, we present these tools.
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Fig. 1 CC and FOP approaches of Feature-Oriented Software Development. Adapted from
Apel et al. [3].

2.1 FeatureHouse

FOP supports the so-called positive variability – when composition units are added on
demand – and aims at keeping a traceable mapping between features and composition
units [3]. More specifically, FeatureHouse [5] is a programming-language-independent
FOP technique to implement variability, which provides mechanisms to compose arti-
facts to derive products in a composition-based approach. Moreover, feature modules
are represented by file-system directories – called containment hierarchies, in which the
classes and their refinements (i.e., feature-specific lines of code of a class) are stored in
files inside the corresponding containment hierarchies [3].

Figure 2 shows three code snippets with the refinement of a given method by
different features in the MobileMedia application [13] with FeatureHouse [29].
MobileMedia is one of our subject systems, and it is further discussed in Section 3.
Each code snippet concerns a different feature implementation located in a Java file
with the same filename, class name, and method signature, but a different feature code
container, namely “Music_OR_Video”, “Music”, and “Video”. These different snippets
are supposed to be composed depending on the product configuration and the order
in which they were listed for binding. Indeed, FeatureHouse preserves most of the
language syntax (Java, in this case), but it introduces mechanisms to compose pieces
of refinement code as defined in these snippets by using the original() method call
and Feature Structure Tree [5] for composition. This method is the link among the
existing refinements in these three implementations. It guides the execution of the
instructions sequence, depending on which features are selected for binding and their
order of composition.

2.2 Antenna and JavaPP

CC is a technique well known from the C/C++ languages and later implemented in
other languages, either natively or supported by third-party tools. Antenna2 and
JavaPP3 are examples of these third-party tools that enable the implementation of C-
preprocessor directives (e.g., #if, #ifdef, #ifndef, #else, #elif, and #endif) in Java

1 http://rise.com.br/riselabs/vicc/
2 Available at http://antenna.sourceforge.net/
3 Available at http://www.slashdev.ca/javapp/

http://antenna.sourceforge.net/
http://www.slashdev.ca/javapp/
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(a) Music_OR_Video

(b) Music

(c) Video

Fig. 2 Java with FeatureHouse code example extracted from MobileMedia [29].

programs. They allow software developers to control the inclusion of the code that
belongs to the selected features or the exclusion of the code from the deselected ones.
The CC version of our subject systems use Antenna and JavaPP to represent their
variability. Several studies have considered preprocessors in Java while investigating
the effects of existing differences among variability representations [12,14].

CC supports “negative variability” – when parts of the code are removed from the
final product on demand. The drawbacks of the annotative approaches, such as the
lack of modularity and poor readability, have been criticized in the past [10]. However,
the ease of use and its flexibility made it the most used variability-implementation
mechanism in practice [17].

Figure 3 shows one code snippet with the refinement of a given method by different
features in the MobileMedia [13] with Antenna. JavaPP uses the same syntax. All the
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Fig. 3 Java with Antenna code example extracted from MobileMedia [13].

code is in a single file, which is going to be preprocessed to remove the code of deselected
features before the actual compilation, depending on the product configuration. The
snippets shown in Figures 2 and 3 are equivalent in the sense of the final software
product the variable code would produce.

3 Study Settings

In this section, we present the planning, research questions, hypotheses, and the exe-
cution of our two (quasi-)experiments [33] replications.

3.1 Planning

The planning of an experiment concerns the experiment design, the selection of the
participants, the tasks performed, and the supporting material available to the parti-
cipants during the experiment session. Next, we detail each of them.

3.1.1 Design

We carried out the quasi-experiments in the form of two replications, consisting of three
rounds. All rounds were inspired by the pilot of Siegmund et al. [29]. The participants
were computer science graduate students from Federal University of Bahia, Brazil. Fig-
ure 4 shows the design of the replications. In fact, the first replication was executed in
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Fig. 4 Experiment design. Group CC means the group using CC and FH means the group
using FOP.

one round (Round 1) as an exact replication of Siegmund et al.’s pilot [29] – when using
the exact same experiment design with a different sample. The second replication is a
conceptual replication – although investigating the same or related research questions,
one is doing it by using a different experiment design – [27], executed in two rounds
(Round 2 and 3). Round 2 is exactly the same as Round 1; in Round 3, we elaborated
the tasks trying to mimic the level of difficulty of Siegmund’s pilot in a second system,
which was executed one week after Round 2.

In total, 33 students participated in our experiments. We recruited 21 from an
“Empirical Software Engineering” (ESE) course to participate in Round 1. The other
12 were recruited from the members of the “Reuse in Software Engineering”4 (RiSE)
research group to participate in Rounds 2 and 3. Each participant worked at an indi-
vidual workstation and participants were not allowed to communicate with each other
during the experiment session.

In both replications (ESE and RiSE), we split the participants in two groups,
each addressing a different variability representation, which we are going to call here-
inafter as “Group CC” (i.e., the participants using CC) and the “Group FH” (i.e., the
participants using FOP). We attempted to balance the groups by considering their
programming experience (i.e., each group would have similar number of experienced
programmers – in terms of their programming years, working in industry, and courses
taken – in each group, regardless of the addressed variability representation). In the
ESE replication, the grouping is unbalanced by three students in the group FH due
their absence in the experiment session. In the RiSE replication, we used a cross-over
design where the participants of the FH group in Round 2 switched to the CC group,
to perform the tasks of Round 3 and vice-versa. We split the groups in the same way
as we did in ESE replication.

4 www.rise.com.br/

www.rise.com.br/
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3.1.2 Subject Systems

We used two open-source systems as subjects: MobileMedia5 [13] and RiSEEvent6 [8].
We selected them because they are from different domains, and both are available in
two equivalent versions: one in Java CC directives based on the Antenna and JavaPP
support and its respective refactored version in Java with FeatureHouse [5].

MobileMedia is a small mobile phone application that serves the purpose of manage-
ment of media on mobile phones, initially developed by Figueiredo et al. [13] in two
versions: Java ME with conditional compilation and AspectJ. Later, Siegmund et
al. [29] built a refactored version with FOP.

RiSEEvent is a software product line of a scientific event management system imple-
mented with conditional compilation by Silveira Neto et al. [8] and refactored into
a FOP version by the first author of this paper.

Table 1 shows metrics of packages (as in the FOP version there are several package
duplications, we decided to add the number of feature-code containers), classes, and
lines of code for each version.

Table 1 Subject systems characterization.

MobileMedia RiSEEvent
CC FOP CC FOP

Packages 9 35* 8 40*
Classes 52 52 496 559
Lines of Code ∼3000 3823 26457 28771

CC: Conditional Compilation; FOP: Feature-Oriented Program-
ming; *: Number of feature code containers.

3.1.3 Tasks

In their pilot study, Siegmund et al. [29] reported that the tasks were well balanced
and had a feasible difficulty level for one experiment session, for which the participants
took, on average, one hour per variability representation. Therefore, we reused the
tasks in the first and second round of our replications, i.e., we used the same bugs
injected by the authors of the original study. Each round consisted of five bug-finding
tasks. We introduced five similar bugs in the second subject system, relying on the
task design of the original study. The first author introduced the bugs for the second
replication tasks and the second author reviewed to avoid bias.

Tables 2 and 3 describe the tasks defined for each subject system used in the
experiment and Table 4 elaborates on the experimental design, by mapping each task
to the groups defined. In Table 4, the highlighted FH and CC marks indicate the used
variability representation code version of the subject systems. In addition, Figure 5
shows a code snippet from the RiSEEvent subject system from which the Task 1 was

5 Both MobileMedia versions are available at: http://fosd.net/experiments.
6 Both RiSEEvent versions are available at: https://github.com/riselabs-ufba/

RiSEEventSPL-FH.

http://fosd.net/experiments
https://github.com/riselabs-ufba/RiSEEventSPL-FH
https://github.com/riselabs-ufba/RiSEEventSPL-FH
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created. The error was introduced in Line 17 by using the variable statement instead
of idActivity in the delete SQL query. Table 5 provides an example of a correct answer.

Fig. 5 Original RiSEEvent code snippet used in the Task 1.

Table 2 Experiment tasks defined for MobileMedia.

Task ID Description

1 Instead of setting the counter to the actual value, it is set to 0.
2 A false identifier is used (SHOWPHOTO instead of PLAYVIDEO).

3 Instead of showing a list of favorite items when requested by clicking in the “View
Favorites” menu, the application shows nothing.

4 Instead of showing a list of pictures ordered by the number of visualizations, they
appear unordered.

5
A wrong label for deleting a picture is used, such that the check of user rights
provided by the access control feature is never executed, and a user can delete a
picture without according rights.

Table 3 Experiment tasks defined for RiSEEvent.

Task ID Description

6 The code uses the wrong activity ID variable in the delete query.
7 The code calls gerarCarne(...) instead of gerarBoleto(...).
8 The notification was not implemented yet.
9 The Register menu was added a second time instead of adding the Reports menu.

10 The option JFrame.DO_NOTHING_ON_CLOSE was used instead of option
JFrame.EXIT_ON_CLOSE.
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Table 4 Experimental designs revisited.

Subject System Group FH Group CC Round

ESE Replication

MobileMedia Tasks 1–5 (FH) Tasks 1–5 (CC) #1

ESE Replication

MobileMedia Tasks 1–5 (FH) Tasks 1–5 (CC) #2
RiSEEvent Tasks 6–10 (CC) Tasks 6–10 (FH) #3

Table 5 RiSEEvent Task 1 correct answer.

Question Answer

Feature folder ActivityMainTrack
Class rise.splcc.repository.ActivityRepositoryBDR

Line of code 75
Problem A wrong variable was used instead of correct one.

Solution Change SQL query to use variable idActivity instead of
variable statement.

3.1.4 Support Material

No additional support material was provided during the experiment sessions. The parti-
cipants only had access to the task descriptions, the questions to answer, and the source
code of the subject system. All these items were provided through the Prophet7 ex-
perimental workbench [11].

Figure 6 shows the two screens of the Prophet workbench. Figure 6(a) shows
on the left the tasks description window, which guided participants throughout the
experiment by displaying the tasks descriptions, the appropriate place to hold the
participant’s answers, including those regarding the feedback form. In the other side,
Figure 6(b) shows the source code inspector, which the participants used to browse
the source code. In this window, the participant could use the functionalities of “local
search” (À) and “global search” (Á). In addition, the participant could navigate through
the source project tree in the left part of the window (Â) and open multiple source
code files at same time, which the window shows on the right tabbed panel (Ã).

3.2 Preparation and Execution

Next, we present details on the preparation and the execution of the experiments. For
the purpose of preparation, we conducted a number of training sessions. For the purpose
of execution, we gathered data for the characterization of participants, and asked them
to perform a warm-up task, so that they could get familiar with the experiment tasks.

7 Prophet is free and open-source and available at https://github.com/feigensp/
Prophet/

https://github.com/feigensp/Prophet/
https://github.com/feigensp/Prophet/
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3.2.1 Training

We carried out different training sessions to harmonize with the different levels of
knowledge of the sample in each replication, ESE and RiSE. In the first replication,
the participants attended a seminar about variability, followed by a practice session, in-
cluding differences and peculiarities about each of the variability representations, FOP
and CC. In the second replication, given that the participants were already familiar
with variability representations, we developed and provided them with written material
for training prior to the actual experiment session for the purpose of familiarization
with the experiments object of study.

(a) Tasks description window

(b) Source code inspector

Fig. 6 Prophet workbench: the two screens used by the participants to solve the assigned
tasks.
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Table 6 Participants’ experience summary.

ESE RiSE

Gender 11 male and 10 female. 6 male and 6 female.
Age Median is 33. Median is 29.
Degree 13 Master students and 8

Ph.D. students
3 Master students and 9
Ph.D. students.

OO experience
(5-point scale; 1=no and
5-high)

16 have at least mediocre
level (3)

All have at least mediocre
level (3).

Working experience
(at least 1 year) 11 out of 21 11 out of 12

3.2.2 Participants

We used the programming-experience questionnaire developed by Siegmund et al. [30]
in both replications, except for few specific questions regarding the participants’ knowl-
edge of FOP and CC for the RiSE participants. This differing treatment is justified,
because the RiSE group of participants have a solid knowledge about variability, which
includes the addressed variability representations.

The questionnaire serves the purpose of gathering basic information and details on
the programming experience of each participant. In particular, we asked about their
experience with industry-based projects, as well as their background knowledge on
different programming paradigms and languages. Appendix A shows the questionnaire.
Table 6 summarizes the characterization of the participants. Half of them were female
in both replications. The median age was 33 in the ESE replication and 29 in the RiSE
replication. In the ESE, 13 were Master students and 8 Ph.D. students, whereas in
the RiSE, 3 were Master students and 9 Ph.D. students. On a 5-point Likert scale, 16
of the ESE group and all the RiSE group have, at least, a mediocre level (3 out of 5
points) of experience with Object-Oriented programming. Lastly, 52% (11 out of 21)
from the ESE group and 92% (11 out of 12) from the RiSE group have, at least, one
year of experience working in industry.

In line with Siegmund et al. [30], we asked the participants to compare themselves
against their classmates and professional developers with 20 years of experience. Figure
7 shows the answers for both questions in both replications. The comparison with
their classmates are identified by the key “Students”, whereas the comparison with the
developers with the key “Professionals”. Figure 7(a) shows that most participants from
the ESE replication see themselves, at least, as experienced as their classmates and,
at most, as experienced as the professionals. Figure 7(b) shows a similar pattern in
the RiSE replication, except that no one judged himself/herself as less experienced
than their classmates or more experienced than professionals. The RiSE answers are
not split by groups (CC or FH), because they all took place in both of them. The
experience of the participants picture them as two heterogeneous groups with enough
experience for the replications.

3.2.3 Example Task

All participants completed a warm-up task just before the actual experiment session in
each round with two main purposes: (i) familiarization with the experiment environ-
ment (Prophet workbench); (ii) an initial contact with the source code of the subject
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(a) ESE

(b) RiSE

Fig. 7 Participants’ programming experience (self assessment) compared to their classmates
and professional developers with 20 years of experience.

system. The task required the participants (FH group) to identify across how many
features a class (“PhotoViewScreen”) had been refined; or (CC group) to identify across
how many files a feature (“includeFavourites”) had been implemented. Neither in the
warm-up tasks nor in the actual experiment session the participants could execute the
code.

3.3 Research Questions, Hypotheses, and Variables

In this section, we present our research questions, hypotheses, and variables. While the
research questions guide our study, the hypotheses state specifically what we are going
to test against the gathered data. In this sense, we associated each hypothesis with a
measure to be able to test it.

Next, we describe the main research question, the sub-questions, the associated
hypotheses, and how we proceeded to gather data to test them.

The main question of this investigation could be stated as follows:

RQ: How could the variability representation affect bug-finding tasks in a feature-
oriented program?

This RQ was split into three sub-questions, as discussed next.
The main argument in favor of physically separated variability representations,

such as FOP, is their supposed benefits in terms of improved modularity [3]. However,
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there is a lack of evidence in the literature about how feature-oriented software devel-
oped with FOP could facilitate the understanding of problems triggering software bad
functioning. We firstly attempted to investigate the following research question.

RQ1: Does the variability representation affect the understanding of bug-finding
tasks in a feature-oriented program?

Based on such a research question, we state the following null hypothesis:

H10 The variability representation does not affect the problem understand-
ing of bug-finding tasks in a feature-oriented program.

Regarding hypothesis H10, we asked the participants to answer “why the problem
was occurring” and “how to solve the problem” in every task. The tasks did not require
the participants to write any source code, but they had to provide a textual description
for each of these questions. We used a three-point scale: complete understanding (2),
partial understanding (1), and no understanding (0). Complete understanding occurred
when participants answered both questions correctly, partial understanding when either
the problem or the solution was described correctly, and no understanding, when no
question was answered correctly. We call this measure understanding.

In fact, it makes sense to believe that a good understanding of an issue being
addressed is more likely to provide developers with means to improve the functionality
of a software system. Besides, the widespread use of CC in both academia and industry
[17] proves its value when discussing variability implementation. There is evidence
regarding optional features that FOP (FeatureHouse included) adheres more closely
to the Open-Closed principle [12,20].

However, is it more likely that FOP yields more correct answers in comparison with
CC directives? In order to investigate such an issue, we stated the following research
question:

RQ2: Does the variability representation affect the correctness of answers of bug-
finding tasks in a feature-oriented program?

In order to answer RQ2, we stated the following null hypothesis:

H20 The variability representation does not affect the correctness of answers
of bug-finding tasks in a feature-oriented program.

Regarding hypothesis H20, we asked the participants in each task to describe the
“class”, the “line of code”, and, in case of a FOP task, also the “feature folder” where the
error occurs. Again, we coded the answers along a three-point scale: complete correct-
ness (2), partial correctness (1), and no correctness (0). Complete correctness occurred
when the participants correctly answered both questions. In the case a participant only
described the class (and the feature folder in the case of a FOP task) correctly, we
took this as a partial correctness. Finally, no correctness was used when neither of these
questions were correctly answered, or even when only the line of code was answered
correctly. We call this measure correctness.

Time is a scarce resource in software development. Although some developers could
produce the same correct answers with both variability representations, the differences
in the understanding of an issue addressed during a maintenance task could lead teams
to undesired costs. This fact makes the response time a factor worth to investigate.
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Therefore, we attempted to investigate such an issue through the following research
question:

RQ3: Does the variability representation affect the time developers need to carry
out bug-findings tasks in a feature-oriented program?

We suspect – by considering the arguments in favor of the benefits of modularity –
that the response time needed to accomplish tasks is likely to be different, which leads
us to the next null hypothesis:

H30 The variability representation does not affect the time that developers
need to address bug-finding tasks in feature-oriented software.

Regarding hypothesis H30, we set up the PROPHET tool [11] to record the time
spent by the participant. We then used time measured in minutes to ease the reading
and the analysis.

Table 7 summarizes all measures, their descriptions, as well as their association
with the addressed hypotheses.

Table 7 Measures, their descriptions, and the associated hypotheses.

Measure Description Hypotheses

Independent variable
variability
representation

The type of variability representation used by a par-
ticipant in a given task

H10-H30

Dependent variables: Tasks measures
understanding Describes to what extent a participant understood

a given task
H10

correctness Describes to what extent a participant answered a
given task correctly

H20

response time Describes how long it took to finish a given task H30

4 Results

This section discusses and analyzes the results achieved by the participants during the
assigned tasks. The section is organized according to the three hypotheses associated to
the research questions. For each hypothesis, we present raw data obtained from each of
the three rounds of the experiment – ESE replication (Round 1) and RiSE replication
(Rounds 2 and 3).

4.1 Problem Understanding

To complete the task surrounding the investigation of the first issue - problem un-
derstanding of bug-finding tasks -, the participants had to describe why a particular
problem occurred and how this problem could be solved. Figure 8 shows raw data for
the three rounds. Columns T1 to T5 show the results for each task of a given round:
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Fig. 8 Overall participants understanding of “why the problem happened” and “how to solve”
in each round of the experiments. Scale: (0) no understanding; (1) partial understanding; (2)
complete understanding.

Round 1 and 2 – first and second rows – correspond to the tasks 1 to 5 described in the
Table 2; Round 3 – the last row – actually corresponds to the tasks 6 to 10 described
in Table 3. This pattern repeats in Figures 9 and 10, which present the result of the
H20 and H30. The scale ranges from (0) no understanding, (1) partial understanding
to (2) complete understanding. In all three rounds, most participants failed to locate
the problem and propose a solution.

However, in some tasks of the RiSE experiment, half the group managed to reach
a complete understanding. When comparing data from Rounds 1 and 2, in which
groups with different background performed the same tasks, we could state that the
CC group from the RiSE replication had slightly better results, whereas the results are
inconclusive for the FH groups. When comparing Rounds 2 and 3, in which the same
group switched the variability representation between rounds, the results of FH groups
are similar, whereas the results from Round 3 are slightly worse than Round 2 in terms
of understanding.

We tested H10 regarding understanding.8 We used the Shapiro-Wilk Test to check
whether the raw data sample had a non-normal distribution. Since we have one in-
dependent variable (variability representation) with two levels (“FH” and “CC”)
and one ordinal dependent variable (understanding), we used the two-tailed Mann-
Whitney Test to test H10. To test H10, we considered all observations (i.e., from
the three rounds) regarding understanding from each group (“FH” and “CC”) as our
sample. The p-value of the test was 0.9947, that is, we cannot reject the null hypothesis.

8 Data available at: http://rise.com.br/riselabs/vicc/data/vicc3/H01_H02-data.pdf

http://rise.com.br/riselabs/vicc/data/vicc3/H01_H02-data.pdf
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Fig. 9 Overall correctness of the description of what class, line of code, and feature folder in
each round. Scale: (0) no correctness; (1) partial correctness; (2) complete correctness.

H10: Accepted. The evidence yielded identical populations for both
groups and as such it does not support a conclusion.

4.2 Correctness of Answers

To complete the task surrounding the second issue under analysis - correctness of an-
swers of bug-finding tasks -, the participants were supposed to describe the class, line of
code and feature folder where they located the error. Figure 9 shows raw data obtained
from the three replication rounds. The scale range comprised the following values: (0)
no correctness; (1) partial correctness; (2) complete correctness. As expected, with a
flawed understanding of the problem in all three rounds, many participants failed to
locate both the class and the line containing the wrong piece of code. Nevertheless,
on several occasions, participants managed to locate, at least, the class in which the
problem occurred.

When comparing Rounds 1 and 2, we might observe that the participants of both
groups (FH and CC) from the RiSE replication achieved proportionally better results
than those who performed the same tasks in the ESE replication.

We testedH20 regarding correctness. 9 We then used the Shapiro-Wilk Test to test
whether the raw data sample follows a non-normal distribution. Besides, since we have
one independent variable (variability representation) with two levels (“FH” and
“CC”) and one ordinal dependent variable for each hypothesis (correctness), we used
the two-tailed Mann-Whitney Test. To test H20, we also considered all observations

9 Data available at: http://rise.com.br/riselabs/vicc/data/vicc3/H03-data.pdf

http://rise.com.br/riselabs/vicc/data/vicc3/H03-data.pdf
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Fig. 10 Overall response time of the participants in each round.

(i.e., from the three rounds) regarding understanding from each group (“FH” and “CC”)
as our sample. The p-value was 0.7579, we cannot reject the null hypothesis.

H20: Accepted. The evidence yielded identical populations for both
groups and as such it might not support a conclusion.

4.3 Required time to accomplish bug-finding tasks

Figure 10 shows the raw results for the response time of the participants. All tasks
accomplished rather similar time ranges for both variability representations, regardless
of the experience with variability of the group (ESE and RiSE) or the addressed subject
system. The response times range (considering the 1st and the 3rd quartiles) from 20
to 30 minutes in Round 1, and from 20 to 50 minutes in Rounds 2 and 3 for Tasks 1
and 2. The other tasks were performed in a smaller amount of time.

Finally, we tested H30 with regard to the response time10. We used the Shapiro-
Wilk Test as well. As we have one independent variable (variability representation)
with two levels (“FH” and “CC”) and one interval dependent variable for each hypoth-
esis (response time), we used the two-tailed Mann-Whitney Test to test the H30. To
test H30, we also considered all observations (i.e., from the three rounds) regarding
understanding from each group (“FH” and “CC”) as our sample. The p-value was
0.6011, we cannot reject the null hypothesis.

10 Data available at: http://rise.com.br/riselabs/vicc/data/vicc3/H03-data.pdf

http://rise.com.br/riselabs/vicc/data/vicc3/H03-data.pdf
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H30: Accepted. The evidence yielded identical populations for both
groups and it is insufficient to support a conclusion.

5 Discussion

In this section, we discuss the study results from the participants’ programming ex-
perience perspective. Then, we present how the replications’ results correlate to the
participants’ motivation and the tasks difficulty while comparing whether or not our
results corroborates those from Siegmund et al.’s pilot [29]. Finally, we discuss the an-
swers to our research questions in the light of the raw data presented in the previous
sections, the participants’ motivation and the difficulty of the tasks.

5.1 On the Participants’ Programming Experience

This section presents a discussion of how the results correlate to the participants pro-
gramming experience. In addition, we replicated he Siegmund et al. [30] effort to model
programming experience.

5.1.1 Correlation Analysis

Siegmund et al. [30] strived to model programming experience of the participants with
a reduced number of variables. However, they did not manage to reduce the dimen-
sionality of the problem with no doubts remaining. In this sense, we decided to go for a
conservative path and analyzed the correlation of each of the characterization variables
with the number of correct answers in our experiment replications. Table 8 shows the
variables actually used to measure their experience.

Table 9 shows an overview of the correlation between each of the analyzed de-
pendent variables (correctness, understanding, and response time) and the data
collected for each independent variable in the characterization questionnaire (Table 8)
– only gray cells denote significant correlations (p < .05). More specifically, as we had
five values for correctness and understanding (T1, T2, T3, T4, and T5), we added
up the participants scores in each task (0, 1, or 2), which gave us a number between
zero (0) – in case of no correct answers – and ten (10) – in case of 5 complete correct
answers.

Since we correlated ordinal data, we used the Spearman rank correlation [1]. We
can assume the following correlation categories regarding the correlation coefficient (r):
no correlation (0 ≤ |r| < 0.1); weak correlation (0.1 ≤ |r| < 0.5); moderate correlation
(0.5 ≤ |r| < 0.8); and strong correlation (0.8 ≤ |r| ≤ 1). Most of the characterization
variables taken individually have weak or no correlation with our addressed dependent
variables (correctness, understanding, and response time). The only exception is
the moderate correlation between the number of years the participant have been pro-
gramming and the response time of the IFDEF group.

In contrast, Siegmund et al. [30] participants sample was homogeneus. Still, most of
their participants fail to have, at least, half of their tasks answered correctly. Similarly,
Siegmund et al. also found low levels of correlation among the same characterization
variables and their specific dependent variables. This may indicate that none of these
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Table 8 Description of the variables used for measuring the participants’ programming ex-
perience. Extracted from Siegmund’s et al. work [30].

ID Variable Description Scaling

Q1 degree The higher academic degree of the participant. 1:Bachelor;
2:Specialist;
3:Master.

Q3 prog-years Number of many years programming. x ∈ Z
Q4 courses-taken Number of courses taken so far in which the par-

ticipants had to program.
x ∈ Z

Q5 java The participant experience in java. LikertA
Q6 c The participant experience in C. LikertA
Q7 haskell The participant experience in Haskell LikertA
Q8 prolog The participant experience in Prolog. LikertA
Q9 other-l Number of other programming languages the par-

ticipant know at least to a mediocre level.
x ∈ Z

Q10 logical Participant experience in the Logical program-
ming paradigm.

LikertA

Q11 functional Participant experience in the Functional program-
ming paradigm.

LikertA

Q12 imperative Participant experience in the Imperative program-
ming paradigm.

LikertA

Q13 oo Participant experience in the Objected-oriented
programming paradigm.

LikertA

Q14 large-proj Whether the paricipant worked with a large soft-
ware project or not.

0: No;
1: Yes.

Q15 work-years Years working with large projects. x ∈ Z
Q17 proj-size The actual size of the project in lines of code. 0: None;

1: Small;
2: Medium;
3: Large.

Q18 students Programming experience self-assessment against
group-mates.

LikertB

Q19 professionals Programming experience self-assessment against
programmer with 20 years of experience.

LikertB

ID: refers to the question identifier (Appendix A). LikertA: x ∈ {0: Very inexperienced; 1:
Inexperienced; 2: Mediocre; 3: Experienced; 4: Very inexperienced.} LikertB: x ∈ {0: Clearly
worse; 1: Worse; 2: As good as; 3: Better; 4: Clearly better.}

characterization variables alone can be a good indicator of success in code comprehen-
sion, neither the diversity of our participants be seen as the main factor of our failure
to reject the null hypotheses. Therefore, we provide in the next session a factor analysis
as a side contribution of this study.

5.1.2 Factor Analysis

Given the results of the correlation analysis, and in line with Siegmund et al. [30] goals
of selecting questions to conveniently and reliably measure programming experience in
different experimental settings. To cope with such a long run goal, we also used factor
analysis [2] to extract a model of programming experience from the data. The goal is to
reduce a number of observed variables to a small number of underlying latent variables
or factors (i.e., variables that cannot be observed directly). The factors group the
variables that better describe the data under analysis relying in their inter-correlations.
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Table 9 Correlations between each characterization independent variable and each dependent
variable of this study.

Variable correctness understanding response time
FH CC FH CC FH CC

degree -0.185 0.293 -0.143 0.347 0.424 0.185
courses-taken 0.271 -0.218 0.454 -0.282 0.262 -0.101

imperative 0.167 0.208 0.298 0.177 -0.061 0.237
c 0.303 0.376 0.351 0.392 0.029 0.254

functional 0.121 -0.037 -0.106 -0.012 0.079 -0.247
haskell 0.340 0.014 0.436 -0.132 0.188 -0.289

oo 0.189 0.261 0.407 0.305 -0.053 0.123
java -0.011 0.242 0.198 0.306 0.078 0.165

logical -0.084 -0.113 0.056 -0.045 0.037 -0.300
prolog 0.118 0.080 0.335 -0.143 0.032 -0.050

other-l -0.164 0.309 0.291 0.276 0.020 0.299
prog-years -0.016 0.360 0.179 0.329 0.160 0.504
work-years -0.017 0.433 0.276 0.379 0.107 0.372
large-proj 0.434 0.376 0.425 0.335 0.067 0.379
proj-size 0.098 0.425 0.322 0.336 0.149 0.319
students -0.012 0.456 0.205 0.374 -0.231 0.263

professionals -0.123 0.416 0.237 0.271 0.027 0.317

Gray cells denote significant correlations (p < .05).

Table 10 shows the results of our exploratory factor analysis. The numbers in the
table denote correlations or factor loadings of the variables in our questionnaire with
identified factors. By convention, factor loadings that have an absolute value of smaller
than .32 are omitted, because they are too small to be relevant [7].

The first factor of our analysis summarizes the variables oo, java, other-l,
large-proj, proj-size, and students. It means that these variables have a high
correlation amongst each other and can be described by this factor. This seems to
make sense since java and its corresponding paradigm are similar and often taught at
undergraduate courses. Besides, we conjecture that large-proj and proj-size also
loads on this factor, because they explain the projects the graduate students eventually
had to work with.

Additionally, since all participants are graduate students, it is normal they have
to work with a number of different languages (other-l) other than those they
learned at the university. In fact, those participants who have any professional ex-
perience with programming estimate their experience higher compared to their class
mates(students). Except from the variables c and imperative – which were grouped
by the third factor, more on this later –, this factor looks like a merge of the two most
representative factors identified by Siegmund et al. [30].

The second factor summarizes the variables work-years and prog-years, which
seems also reasonable since the number of years professional experience are intrinsi-
cally related to the amount of programming experience years. Actually, the variable
prog-years was introduced in the questionnaire to provide means to measure the pro-
gramming experience of those participants with no professional experience. This factor
seems to corroborate with the fourth factor identified by Siegmund et al. [30].
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The third factor summarizes the imperative and c. In fact, the value of the loadings
of these variables are pretty similar to their loadings in the first factor. Perhaps, it
would be reasonable to disregard this factor in favor of the first one with no or low
representativeness loss.

The fourth factor summarizes the courses-taken, which represents the amount
of courses taken in the university in which the participant had to program. In the
Siegmund et al. [30] model, this variable appeared together with the programming
years – our second factor. Indeed these variables are related, the fact that were grouped
separately here might be explained by the differences in the size of the sample.

Table 10 Factor loadings generated by the factor analysis of each characterization indepen-
dent variable of the characterization questionnaire.

Variable Factor 1 Factor 2 Factor 3 Factor 4

degree
courses-taken 0.662

imperative 0.598 0.682
c 0.601 0.620

functional
haskell 0.378

oo 0.733 0.427
java 0.676 0.379

logical 0.370
prolog 0.414 0.356

other-l 0.664 0.545 0.380
prog-years 0.540 0.750
work-years 0.560 0.781
large-proj 0.990
proj-size 0.885
students 0.623 0.546

professionals 0.440 0.566

Only 4 factor are shown due p= .032 for hypothesis test of sufficiency. Gray cells denote
main factor loadings.

Table 11 shows correlations between the inner product of the factor loadings and
the independent variable observations of that factor and each dependent variable of
the study. We used the Spearman correlation; the significat values (i.e., p < .05) are
shadowed. None of the factors yielded strong correlations, which means either the
factor analysis was unable to generate good predictors for our dependent variables or
the number of observations was insufficient to produce strong correlations, which is
often an issue with factor analysis.

5.2 On the Participants’ Motivation, Task’ Difficulty, and Results

We asked the participants to rate their motivation while performing each task and
their perception of the difficulty of each task after they finished the experiment activ-
ities. We decided to present both motivation and difficulty, because we believe both
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Table 11 Correlations between each factor and each dependent variable of this study.

Variable correctness understanding response time
FH CC FH CC FH CC

Factor 1* 0.072 0.381 0.370 0.355 0.279 0.279
Factor 2* 0.046 0.496 0.254 0.442 0.484 0.484
Factor 3* 0.227 0.294 0.346 0.279 0.265 0.265
Factor 4* 0.271 -0.218 0.454 -0.282 -0.101 -0.101

Gray cells denote significant correlations (p < .05). * This variable is actualy the inner
product of the factor loadings and the independent variable observations of that factor.

are related, since harder tasks might affect the participants’ motivation. We used a
five-point Likert-scale [21] to code their answers. The scale range comprised the fol-
lowing values: (0) Very difficult/unmotivated; (1) Difficult/unmotivated; (2) Normal
difficulty/motivation; (3) Easy/motivated; and (4) Very easy/motivated. Figure 11
shows the participants’ feedback regarding difficulty, and Figure 12 shows the results
for motivation. In addition, we use quotes from the original study [29] to guide our
discussion.

Fig. 11 Overall perception of difficulty of the participants in each round. Scale: (0) Very
difficult; (1) Difficult; (2) Normal difficulty; (3) Easy; and (4) Very easy.

“Regarding the opinion of participants, we found a tendency that the CC
group found the tasks easier to solve, except for Task 2”. [29]

In Round 1, both groups of participants’ responses of the ESE replication had a
similar tendency. Both groups responses rated the tasks difficulty as “normal” or “easy”.
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Fig. 12 Overall feeling of motivation of the participants in each round. Scale: (0) Very un-
motivated; (1) Unmotivated; (2) Normal motivation; (3) Motivated; and (4) Very motivated.

Thus, the FH group answers did not follow the observations of Siegmund et al. [29]. In
Round 2, where the RiSE replication participants performed the same tasks of Round 1,
their responses were closer to the results of Siegmund et al. [29]. For the FH group, the
three first tasks were mostly (very) difficult, whereas only Task 2 was rated as difficult
by the CC group, which shows that the FH group felt that the tasks were harder
than the CC group. In Round 3, in which the participants targeted a different system,
their responses seemed to be homogeneous, regardless of the variability representation,
rating the tasks mostly (very) difficult. This indicates that the RiSE group might
have an equivalent background knowledge to those participating in the original study,
whereas the ESE group show signs of having a deficient background.

“For motivation, there is an observed trend that participants of the CC
group are more motivated to solve a task. Such an observation might be caused
by the fact that two participants of the FH group were unhappy to be in that
group (as they told us). Therefore, the FH version appears more difficult to
participants and they did not like it. This can affect their performance, such
that they work slower”. [29]

With regard to motivation, both groups in all three rounds had equivalent moti-
vation, with the exception of Tasks 3 and 4 in Round 3. In Round 1, most ESE group
participants were feeling unmotivated or normal motivation, whereas in the Rounds 2
and 3, the RiSE participants were feeling mostly normal to motivated, with the excep-
tion of the Task 3 in Round 3 – in which they felt unmotivated. Some of the participants
from both groups mentioned they felt their motivation increase when they started to
get familiar with the code they were working on, and the opposite effect as they stepped
through the tasks with difficulty to answer them. Although the ESE group participants
(Round 1) feeling of easy tasks during the experiment, they felt unmotivated, which
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make us reinforce the claim of deficient background knowledge. The RiSE participants
(Rounds 2 and 3) judged the tasks mostly hard to solve, but remained motivated dur-
ing their tasks. We believe this happened because of their familiarity with the context
of the experiment activities.

Next, we present Spearman correlations among the participants’ motivation, tasks’
difficulty perception and the results of our replications in terms of three dependent vari-
ables (correctness, understanding, and response time). Table 12 shows in the first row
the correlations between participants’ motivation (CP09) and the experiment depen-
dent variables, whereas the correlations between the difficulty (CP01, CP06) perception
and each variables are shown in the second row. The correlation coefficients indicate
significant (p < .05) moderate correlations between the participants’ motivation and
correctness or understanding. This makes sense, since the motivation of the partici-
pants may keep them focused on their activity and helps them extract most of their
abilities to transform in the effort needed to successfully complete the tasks.

Table 12 Correlations between the participant motivation and their feeling of difficulty and
each dependent variable of this study.

Variable correctness understanding response time
FH CC FH CC FH CC

motivation (CP09) 0.589 0.705 0.758 0.676 0.136 0.359
difficulty (CP01, CP06) 0.135 0.322 -0.109 0.320 -0.254 0.177

Gray cells denote significant correlations (p < .05).

5.3 Analysis of findings

The evidence gathered in our empirical evaluation is preliminary due to the exploratory
nature of the study. However, it may offer an opportunity to rethink the way researchers
could carry out future experiments. They highlighted the peculiarities of the experi-
mentation on the influence of differences of variability representations on program
comprehension, in particular those related to bug-finding tasks. For instance, it is hard
to assure equivalent knowledge of both variability representations under evaluation by
training the participants prior to the experiment session. We are aware of the impor-
tance of assure that results are comparable, in particular, because FeatureHouse
is an emerging technology that most developers were about to have their first con-
tact during the experiment activities. Next, we discuss the main findings and their
implications.

– The variability mechanism does not seem to have any effect on the overall compre-
hension of the source code and the difficulty of the maintenance tasks arises from
other factors than how the variability is performed. In addition, the fact that both
partial correctness and understanding had few occurrences in any of the rounds also
reinforces the claim that without a complete understanding, the correct answer can
be compromised. In fact, high quality and proper debugging tools seem to play an
important role for program comprehension of unfamiliar code, especially when it
comes to bug-finding tasks. The Prophet tool is rather limited to global and local
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searches and does not allow the execution or compilation of the code, which can be
one of the reasons of participants failure.

– Results of correctness and understanding are not clear enough, so we could not draw
any conclusions on whether the strong foundations on variability of the RiSE group
played any the difference in achieving better results than the participants of the
ESE group. The raw data about the participants’ perception of the tasks’ difficulty
might explain why they failed to completely understand the code. While parti-
cipants with superficial experience with software variability (ESE Group) mostly
found tasks easy, the participants with strong foundations of variability (RiSE
Group) were not that excited. Our claim is that, although most participants fail to
completely understand, those with the specific background required to the mainte-
nance task are the ones who had the proper commitment to the experiment. This
fact may point to the importance of background knowledge for future replications.
We conjecture that a deep understanding of each of the particular mechanism is key
to find the origin of a problem in unfamiliar code while addressing change requests.

– Despite a decrease of the response time required to finish follow-up tasks, we ob-
served neither increasing nor decreasing trends in understanding and correctness
levels. We did observe the increase of the motivation after the initial tasks for the
RiSE participants, which can explain the decrease of the range of time spent to an-
swer the final tasks. Surprisingly, we found a weak correlation between motivation
and response time. We conjecture that the low motivation of the ESE participants
influenced this result. The differences in the time range between the beginning and
ending tasks may arise from to the time needed for the participants to familiarize
with the source code and it could also be associated to the lack of motivation in
the first tasks.

6 Threats to Validity

In this section, we discuss possible threats to the validity of this empirical study. Pre-
senting detailed information is a way to contribute to further research and replications
of this study [33], which may be built upon the results presented herein. Next, we detail
the main threats according to external, internal, construct, and conclusion validity.

6.1 External validity

We identified some threats that may limit the ability to generalize our results. For ex-
ample, the study was carried out in an in-vitro setting, which means a sample selected
by convenience. The issue here is that conclusions may be impossible to generalize
the findings to professionals, although there is evidence showing students and profes-
sionals perform similarly when they apply a development approach in which they are
inexperienced [22]. In this sense, we recruited students with different experience levels,
as shown by the questionnaire applied prior to the experiments. Although some may
argue that the different background of the two groups (ESE and RiSE) used in the
replications would threat the joint analysis of their data, we could have a significant
and heterogeneous sample.

Moreover, the size of the subject systems we used to perform the tasks of the
experiments could be questioned. We are aware of such a threat, however, regardless
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of the systems’ size, these kinds of tasks (i.e., software maintenance tasks) will always
be formulated in a reduced scope. This enables performing controlled experiments in
a short amount of time with minimized fatigue effect. Moreover, our subject systems
are not trivial, but not too complex. Therefore, we believe this fact put our systems in
a good position, at least to a certain extent, towards generalizing the findings.

6.2 Internal validity

There are possible threats that may happen without the researcher’s knowledge af-
fecting individuals from different perspectives, such as (i) maturation and learning
effects and (ii) the experiment instrumentation. These threats to internal validity were
mitigated by choosing different features for each task, as well as by controlling com-
munication among the participants in all the rounds.

Again, as discussed regarding external validity, the choice of subject systems and
participants might also threaten internal validity, mainly due to: (i) the low number of
students involved in the study; (ii) the high variability of the subjects (Master, Ph.D.,
and different working experience), and (iii) that fact that the experimental objects
differ in size. However, it is difficult to get both the ideal groups of professionals for
participating in the experiment and the the proper size subject systems. Besides, the
emerging nature of the feature-oriented programming still causes an imbalance regard-
ing the background knowledge of the participants using either such technology and the
conditional compilation. With regard to the size of the subject systems, the artifacts
needed for well-designed experiment tasks (e.g., feature model, documentation, and
with equivalent versions written with each technology) are usually unavailable. Thus,
to the best of our knowledge, we used suitable participants and systems samples for
our case.

Confounding constructs may affect our findings. For instance, the motivation and
the difficulty of each task might have affected the participants’ perception of the in-
fluence of the variability representations. The issue here is that we cannot assure that
the tasks were not too hard to be solved by the participants. We believe this threat
was mitigated in our study by the attempt to fine tune the difficulty with pilot studies
and using the same artifacts from previous experiments.

6.3 Construct validity

Construct validity refers to the fact that the construct to measure was not operational-
ized correctly. Perhaps the way we coded the understanding and correctness regarding
the answers of the participants may be a potential threat, because of the used pseudo-
ordinal measure scale. There is a fact that only a few partial understandings/correctness
might be a sign of such threat. As a participant’s understanding cannot be measured
easily by others, we attempted to mitigate the threat by measuring the behavior (prob-
lem identification and solution). In addition, the approach of mixing Ph.D and Master
students can constitute a threat, as the former are theoretically more experienced than
the latter.
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6.4 Conclusion validity

Our discussions were based on a small sample, which limits the power of statistical tests
to reveal a true pattern in the data. For instance, our Finding 1 could be strengthened
with a bigger sample. We mitigated this threat by employing well defined measures,
i.e., problem identification and solution, and response time to conduct our analysis.
Nevertheless, our results could be affected by a Type-II error due to low statistical
power. Another observed threat is the fact that the results of the recruited groups
(ESE and RiSE) might not be comparable, since they have different backgrounds. We
are aware of this and tried to alleviate it by comparing the results both inter and inner
groups. Thus, we argue that we have sufficiently controlled this threat.

7 Related Work

There is little published work [9, 10, 23, 24, 29] addressing the differences yielded by
different variability representations – such as annotations and feature-oriented pro-
gramming – on program comprehension.

Back in 2009, Feigenspan et al. [9] presented a preliminary guide on how to com-
pare program comprehension in FOSD empirically. They highlighted the importance
of maintaining the confounding variables constant and also the importance of reduc-
ing the number of independent variables for a realistic comparison. Later, Siegmund et
al. [29] firstly investigated the influence of CC and FOP on program comprehension by
conducting a pilot study comparing program comprehension of virtually and physically
separated concerns, which we refer to perform our experiments. This study brought
preliminary evidence to the field and encouraged researchers to replicate the pilot, as
well as to extend their findings. In addition, the survey of confounding variables in
controlled experiments from Siegmund et al. [31] and the decision drivers exploratory
study from Santos and Mendonça [25] also inspired our work.

Recently, Santos et al. [23, 24] extended the corpus of evidence with two differ-
ent studies. First, they addressed the influence of the existing differences between two
JavaScript approaches to implement variability in feature location tasks [23]. They
used two open-source systems with equivalent versions implemented with a “standard”
(basically control-flow statements) and our RiPLE-HC (feature-oriented) approaches.
The empirical evaluation yielded evidence of reduced effort in feature location, and
benefits when introducing systematic reuse aspects in JavaScript code. Furthermore,
Santos et al. [24] conducted a focus group aiming at identifying a set of aspects influ-
encing the feature-oriented software comprehension. They identified and enumerated
several benefits (e.g., traceability among feature implementation and flexibility pro-
vided by annotations) and drawbacks (e.g., too much duplicated classes due feature
refinements and reinforced the long term known #ifdef-hell [32]) of both approaches
(CC and FOP).

Another set of related studies has focused on program comprehension from the
perspective of a given particular variability implementation mechanism. They mostly
studied the comprehension of feature-oriented software based on CC [10,16,18,19,26].
Siegmund et al. [10] presented a family of controlled experiments regarding the ef-
fectiveness of the use of background colors to help with the maintenance of software
systems using CC. The main question addressed was whether the use of colors instead



Title Suppressed Due to Excessive Length 29

of and in addition to #ifdef directives could improve program comprehension in con-
figurable systems. Background colors showed potential to improve program comprehen-
sion independent of size and programming language of the project. Schulze et al. [26]
and Malaquias et al. [16] addressed the importance of the discipline of annotations,
but reaching contrasting results with the most recent one claiming the undisciplined
annotations should not be neglected.

Melo et al. [18] carried out a controlled experiment to quantify the influence of the
degree of variability in bug-finding tasks. Their results show the speed of bug finding
decreases linearly with the degree of variability, while effectiveness of finding bugs is
relatively independent of the degree of variability. Moreover, they discovered that the
task of participants to identify the exact set of affected configurations appears to be
harder than finding the bug in the first place. We addressed this kind of task in our
investigation, but using two different ways of realizing variability. While they used
only CC, we also considered FOP. Moreover, Melo et al. [19] showed that the presence
of variability correlates with an increase in the number of gaze transitions between
definitions and usages for fields and methods.

Finally, there are also studies not related to variability mechanisms. For instance,
Maalej et al. [15] conducted an exploratory study on the identification of strategies
which developers use to comprehend code, tools supporting their work, important
knowledge during bug-finding tasks, channels they share such knowledge, and the prob-
lems faced in real-world experiences. They found a gap between theory and practice.
They raised questions about the usefulness of comprehension tools suggested by re-
search, because none of the developers mentioned the use of visualization, metrics, or
concept-location tools in practice. They also identified differences in the understanding
of program comprehension among developers and researchers. While researchers have
the “comprehension” aspect in the core of maintenance activity and try to systematize
the whole process, developers avoid them whenever it is possible, and attempt to focus
only on the expected output.

8 Concluding Remarks and Future Work

We addressed the lack of empirical evidence on the difference of the influence of tra-
ditional (CC) and emerging (FOP) variability representations. To the best of our
knowledge, there was only one pilot study carried out so far addressing this particular
setting. The results of our study allow us to draw the following conclusions:

– Indicators of no statistical difference regarding the (i) required effort to understand
and to (ii) find flawed source code, and (iii) regarding the time required to finish
bug-finding maintenance tasks while using FOP and CC paradigms;

– There is a moderate correlation between the motivation of programmers and their
efficiency to perform bug-finding tasks correctly.

– A supplementary Web site with the experimentation artifacts of the carried exper-
iments.11

We are aware that these findings are far from completely describing the relationship
among variability representations chosen and the different confounding parameters
associated to comprehension tasks in software engineering. As our study was limited

11 http://rise.com.br/riselabs/vicc/
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to bug-fixing, it is also important to address other maintenance activities, like addition
and/or update of software components. Additionally, it would be interesting to observe
professional programmers working with CC and FOP code to observe how they work
with different variability mechanisms.
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A Questionnaire

Table 13 shows the questionnaire used for the characterization of the programming experience.

Table 13 Questionnaire for measuring programming experience of the participants. Extracted
from Siegmund’s et al. work [30]

ID Question

Q1 Higher Academic Degree
Q2 Course of Study
Q3 For how many years are you programming?
Q4 How many courses were you enrolled in which you had to program?
Q5 How experienced are you with Java?
Q6 How experienced are you with C?
Q7 How experienced are you with Haskell?
Q8 How experienced are you with Prolog?
Q9 In how many more programming languages are you experienced at least to a

mediocre level?
Q10 How experienced are you with the Logical programming paradigm?
Q11 How experienced are you with the Functional programming paradigms?
Q12 How experienced are you with the Imperative programming paradigms?
Q13 How experienced are you with the Objected-oriented programming paradigms?
Q14 Have ever worked on one or more large programming projects in a company or

at the university or are you currently working on a large programming project?
Q15 Since when are you working in a company/at the university on larger projects?
Q16 In which domain were/are those projects?
Q17 How many lines of code did these projects usually have?
Q18 How do you estimate your programming experience with other students of this

course?
Q19 How do you estimate your programming experience with programmers that have

20 years of experience?
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