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Abstract
The C preprocessor (CPP) is a simple and language-independent
tool, widely used to implement variable software systems using
conditional compilation (i.e., by including or excluding annotated
code). Although CPP provides powerful means to express variabil-
ity, it has been criticized for allowing arbitrary annotations that
break the underlying structure of the source code. We distinguish
between disciplined annotations, which align with the structure of
the source code, and undisciplined annotations, which do not. Sev-
eral studies suggest that especially the latter type of annotations
makes it hard to (automatically) analyze the code. However, lit-
tle is known about whether the type of annotations has an effect
on program comprehension. We address this issue by means of a
controlled experiment with human subjects. We designed similar
tasks for both, disciplined and undisciplined annotations, to mea-
sure program comprehension. Then, we measured the performance
of the subjects regarding correctness and response time for solv-
ing the tasks. Our results suggest that there are no differences be-
tween disciplined and undisciplined annotations from a program-
comprehension perspective. Nevertheless, we observed that finding
and correcting errors is a time-consuming and tedious task in the
presence of preprocessor annotations.

Categories and Subject Descriptors [Software and its Engineer-
ing]: Preprocessors; [Software and its Engineering]: Software
product lines; [General and reference]: Experimentation

Keywords variability; C preprocessor; controlled experiment;
program comprehension; disciplined annotations

1. Introduction
The preprocessor CPP, developed over 40 years ago, is widely
adopted in the practice of software development to introduce vari-
ability in software systems [6, 26]. Being a simple and language-
independent text-processing tool, CPP provides powerful and ex-
pressive means to implement variable source code [26]. Program-
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mers use preprocessor annotations (e.g., #ifdef directives) to im-
plement optional and alternative code fragments. Since CPP is
language-independent, programmers can use annotations at a fine
grain, for instance, by annotating single tokens, such as an opening
bracket. CPP is often criticized for this capability, as fine-grained
annotations are a major source of errors. For instance, practitioners
report from maintainability and understandability problems with
arbitrary preprocessor usage [3, 34]. Furthermore, preprocessor
usage, especially at a fine grain, hinders tool support for code anal-
ysis or restructuring tasks [7, 8, 14–16]. Hence, the source of all
problems is the lack of discipline of annotations (i.e., their usage
at a fine grain), and how programmers understand code in their
presence.

In earlier work, we analyzed the discipline of annotations and
distinguished disciplined and undisciplined annotations [27]. Dis-
ciplined annotations align with the underlying structure of the
source code by targeting only code fragments that belong to entire
subtrees in the corresponding abstract syntax tree. For example, we
consider an annotation enclosing a whole function definition to be
disciplined. In contrast, undisciplined annotations include arbitrary
annotations of code fragments, for instance, an annotation of a sin-
gle function parameter. One reason for why we consider the latter
annotation undisciplined is that such fine-grained annotations are
difficult to refactor using tool support [8, 15].

Another reason is experience from practice: Some software de-
velopers are aware of problems related to CPP and introduced cod-
ing guidelines for preprocessor usage. For instance, one guideline
for developers of the Linux kernel for using the CPP states:1

Code cluttered with ifdefs is difficult to read and maintain.
Don’t do it. Instead, put your ifdefs in a header, and condi-
tionally define static inline functions, or macros, which are
used in the code.

In fact, this guideline advises developers to use disciplined instead
of undisciplined annotations, such as annotating only entire func-
tions instead of annotating parts of the function definition. This and
similar guidelines express long-term experiences and opinions of
developers. However, while these guidelines rely on experience,
they are not the result of a sound empirical investigation. Hence,
several questions regarding the interaction of programmers with an-
notated code are still open:

1. Do programmers understand code with disciplined annotations
better than code with undisciplined annotations?

2. Are maintenance tasks, such as adding or modifying code, more
difficult or even more error-prone in the presence of undisci-
plined annotations than with disciplined annotations?

1 see /Documentation/SubmittingPatches in the Linux source



3. How does the discipline of annotations influence the detection
and correction of errors?

4. Generally speaking, are there differences in the programmers’
performance or correctness (regarding the tasks) with respect to
disciplined and undisciplined annotations in source code?

To answer these questions, we conducted a controlled ex-
periment with 19 undergraduate students from the University of
Magdeburg. We designed seven different tasks that aim at under-
standing and maintaining annotated source code, including the de-
tection and correction of errors.

In a nutshell, the results of our experiment do not support the
assumption that the discipline of annotations has an observable ef-
fect on comprehension of annotated code. For both types of annota-
tions, the respective groups performed similarly regarding correct-
ness and response time. However, we made the general observation
that detecting and fixing errors in the presence of annotations is a
tedious and time-consuming task with only minor success.

The remainder of the paper is organized as follows: In Section 2,
we introduce preprocessor annotations and how they are used for
expressing variability. In Section 3, we describe our experimental
setting. We present the results of our experiment and interpret them
in Section 4. In Section 5, we discuss threats to validity, followed
by a discussion of related work (Section 6). Finally, we present our
conclusions and suggestions for future work in Section 7.

2. Preprocessor Annotations in Action
The C preprocessor CPP is a simple text-processing tool that pro-
vides metaprogramming facilities, and that is used by programmers
to implement variable source code. Programmers use it to mark op-
tional or alternative code fragments in the programming language
of their choice (host language), and to include and exclude these
code fragments on demand (controlled by macro constants).2 Since
the preprocessor is a language-independent tool and works on the
basis of tokens of the target language, it allows programmers to
annotate variable source code at any level of granularity. For ex-
ample, in the programming language C, annotations may be on
single tokens (e.g., an opening or closing bracket), expressions,
statements, or type definitions. In earlier work, we analyzed CPP’s
annotation capabilities and distinguished between disciplined and
undisciplined annotations [27]:

In C, annotations on one or a sequence of entire func-
tions and type definitions (e.g., struct) are disciplined. Fur-
thermore, annotations on one or a sequence of entire state-
ments and annotations on elements inside type definitions
are disciplined. All other annotations are undisciplined.

Disciplined and undisciplined annotations are in the center of a
larger discussion about expressiveness, replication, and compre-
hension of source code (Figure 1). While the first two aspects have
been discussed already elsewhere [27, 31], we focus on program
comprehension, which has not been investigated yet systematically
(to the best of our knowledge).

We explain the trade-off between the aforementioned properties
by means of a variable stack implementation (with or without syn-
chronization). To this end, we show the respective source code of
a disciplined and an undisciplined version in Figure 2. The imple-
mentation of synchronization using undisciplined annotations re-
quires to add a function parameter (Figure 2a; Line 4), to extend an
existing expression (Figure 2a; Line 9), and to add statements in the
middle of a function body (Figure 2a; Lines 14 and 18). By using
undisciplined annotations, we can omit code replication, but have

2 Although the preprocessor CPP is typically part of C/C++ compiler infras-
tructures, it can be used with any programming language.

expressiveness

comprehension replication

Figure 1. Trade-off between expressiveness, comprehension, and
replication

to use four different annotations. In contrast, the disciplined stack
implementation (Figure 2b) has only two annotations (#ifdef and
#else branches), but contains several replicated code fragments:
the declaration of function push with the object parameter o (Fig-
ure 2b; Lines 3 and 14), the null pointer check and the return state-
ment (Figure 2b; Lines 5 and 14), the assignment to the array (Fig-
ure 2b; Lines 8 and 16), and the function call fireStackChanged
(Figure 2b; Lines 10 and 17).

1 class Stack {
2 void push(Object o
3 #ifdef SYNC
4 , Transaction txn
5 #endif
6 ){
7 if (o==null
8 #ifdef SYNC
9 || txn==null

10 #endif
11 )
12 return;
13 #ifdef SYNC
14 Lock l=txn.lock(o);
15 #endif
16 elementData[size++] = o;
17 #ifdef SYNC
18 l.unlock();
19 #endif
20 fireStackChanged();
21 }
22 }

(a)

1 class Stack {
2 #ifdef SYNC
3 void push(Object o,
4 Transaction txn)
5 {
6 if (o==null || txn==null)
7 return;
8 Lock l = txn.lock(o);
9 elementData[size++] = o;

10 l.unlock();
11 fireStackChanged();
12 }
13 #else
14 void push(Object o) {
15 if (o==null)
16 return;
17 elementData[size++] = o;
18 fireStackChanged();
19 }
20 #endif
21 }

(b)

Figure 2. Undisciplined (a) and disciplined (b) stack implementa-
tion

Generally, undisciplined annotations can always be transformed
into disciplined ones (at the extreme end by replicating a whole
source file), and vice versa. Consider the undisciplined annota-
tion of the subexpression ’ll txn==null’ in our stack implemen-
tation (Figure 2; Line 9).3 To transform this undisciplined annota-
tion, we lift the annotation to the upper if-statement. The result are
two differently annotated if-statements, one with the subexpression
’ll txn==null’ and one without (cf. Figure 2). Both annotations are
disciplined according to our definition. The result are two disci-
plined annotations that form an alternative [27].

In general, by using undisciplined annotations, programmers
are able to reduce the amount of code replication. Although re-
cent studies show that code replication is not intrinsically harm-
ful [17, 21], it can be a source of errors and influence the underly-
ing software systems and its development in a negative way, such

3 The different annotations of the undisciplined stack implementation over-
lap when we transform them into disciplined annotations. Therefore, in
our case, we only have two large annotations (#ifdef – #else – #endif;
Lines 7, 10, and 13) instead of multiple, more fine-grained annotations.
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expansion

if (o==null
8 #ifdef SYNC
9 || txn==null

10 #endif
11 )
12 return;

7 #ifdef SYNC
8 if (o==null || txn==null)
9 return;

10 #else
11 if (o==null)
12 return;
13 #endif

Figure 3. Transformation of an undisciplined annotation into a
disciplined one

as increased maintenance effort or error propagation [2, 20]. By us-
ing undisciplined annotations, differences in code fragments can be
factored out at a fine grain. However, reducing the amount of code
replication comes at the price of introducing undisciplined annota-
tions, which are considered to be more difficult to understand. For
instance, preprocessor annotations obfuscate the source code and
make it difficult to differentiate and locate source code [11, 22].

Beside the influence on program comprehension, an undisci-
plined use of the preprocessor has further implications. For in-
stance, analysis tools (e.g., data-flow analysis) or transformation
tools (e.g., source-code refactoring) require a structural represen-
tation of the code in form of an abstract syntax tree. With undis-
ciplined annotations, such a representation is difficult to create,
because fine-grained annotations, such as an annotated opening
bracket, cannot be represented in terms of the abstract syntax of the
host language. The reason is that single tokens, such as an opening
bracket, may not have counterparts in the abstract syntax tree. As
a consequence, many current IDEs struggle with software projects
that make use of preprocessors. Typically, in such IDEs, the prepro-
cessor annotations are removed, which causes a loss of variability
information. To shed light on the preprocessor discipline, in previ-
ous work we analyzed the usage of disciplined and undisciplined
preprocessor annotations in 40 software projects from different do-
mains and sizes [27]. Except for one small project, we found undis-
ciplined annotations in all projects. In summary, undisciplined an-
notations sum up to 16 % of all annotations.

Although the major part of preprocessor usage is disciplined,
undisciplined annotations are still frequently used, despite their
disadvantages. This raises the question of whether programmers
perform differently using undisciplined or disciplined annotations.
More precisely, are there differences in program comprehension for
common programming tasks, such as maintenance, with respect to
the discipline of annotations? To answer this question, we designed
a controlled experiment. Next, we give a detailed description of the
experiment and the material we used.

3. Experiment
By means of an experiment, we evaluate whether the kind of an-
notation (disciplined vs. undisciplined) has an influence on pro-
gram comprehension. To this end, we let subjects solve program-
ming tasks on several open-source systems and analyzed the cor-
rectness and response time. According to the work of Dunsmore
et al., these tasks can be categorized as maintenance and mental-
simulation tasks, both requiring program comprehension [5]. Next,
we give a detailed description of our experimental setting, whereas
we present and discuss the result in Section 4. Both sections are
structured according to the guidelines of Jedlitschka et al. [19].

3.1 Objectives
The main objective of our experiment is to evaluate whether the
discipline of preprocessor annotations has an influence on program
comprehension. There is an ongoing debate about the discipline
of preprocessor annotation, and the result is yet open. Some peo-

ple argue in favor of disciplined annotations, because they ease
automated analysis and thus tool support for the respective pro-
grams [6, 15]. Other people, in turn, prefer undisciplined annota-
tions, because they provide flexibility, expressiveness, and avoid
bloated code. As a matter of fact, undisciplined annotations are
commonly used by professional developers [27]. Some develop-
ers argue that they have no problem with understanding their own
code that contains undisciplined annotations.4 While this may be
reasonable for small, one-man software systems, it may become a
problem in large systems, in which several developers are involved.

Due to these opposing positions regarding the discipline of
annotations, we do not state a hypothesis in favor for a particular
kind of discipline, but rather we formulate two research questions,
which reflect the essence of the four open questions, which we
posed in Section 1:

RQ.1 Does the discipline of annotations influence the correctness
of program-comprehension and maintenance tasks?

RQ.2 Does the discipline of annotations influence the time needed
to solve program-comprehension tasks?

Based on these research questions, we define two dependent
variables: response time and correctness. To ensure, that these
variables are not influenced or biased by other factors, we also have
to control potential confounding parameters [33]. In Table 3.1 we
show the five parameters we found to be most important to control
for our experiment, together with the control technique we used to
control them and the corresponding measurement.

Table 1. Confounding parameters, how we controlled them and
which measurement we used

Conf. parameter Control technique Measurement

Motivation Analyzed afterwards Questionnaire
Difficulty Analyzed afterwards Questionnaire
Programming expe-
rience

Balancing Questionnaire

Domain knowledge Kept constant —
Tool familiarity Kept constant Proprietary editor

w. typical functions

We controlled the first two parameters, because different levels
of motivation or an unbalanced difficulty between tasks may bias
the results. We analyzed both parameters after completion of the
tasks (participants had to complete a questionnaire), because it is
not possible to evaluate these parameters in advance. Next, we con-
trolled programming experience by forming two balanced groups
based on a questionnaire (cf. Section 3.2). Finally, we had to con-
trol the level of domain knowledge (with respect to subject systems
and participants), and how familiar the participants are with the tool
that they used during the experiment.

3.2 Subjects
We recruited 19 undergraduate students from an operating-system
course of the University of Magdeburg, Germany. As part of the
lecture, the students had to implement a basic operating system, and
thus were familiar with C/C++ and the CPP. However, the partici-
pants were neither aware of the different types (disciplined/undisci-
plined) of annotations nor the discussions about them. As a motiva-
tion, the participants had the chance to win one of several Amazon
gift cards and could omit a mandatory exercise for participating in
the experiment.

4 This statement is an outcome of several discussions with professional C
developers, e.g., Daniel M. German at PASED Summer School 2011.



Prior to the experiment, participants completed a questionnaire
to measure their programming experience, which has been de-
signed and evaluated carefully [10], based on state-of-the-art guide-
lines for empirical research. Within this Web-based questionnaire
we asked the participants to estimate their programming experience
regarding different languages, paradigms, and their participation in
software projects. The participants had to assess their skills on a
five-point Likert scale for each question [28]. In particular, partici-
pants had to respond on different questions by assessing their skills
from 1 (low) to 5 (high). Finally, we computed the experience rank
for each participant as a weighted sum based on the answers of the
questionnaire. For this computation, we decided to give the expe-
rience with the C programming language a higher priority than for
other languages, such as Java or Haskell, which is reflected by a
higher weighting during computation. The reason is that, because
the subject systems are written in C, knowledge of C is essential to
obtain meaningful results.

Based on the results, we formed two homogeneous groups for
our experiment, by applying a matching on the computed experi-
ence rank of the participants [18]. The goal of forming homoge-
neous groups was to have two comparable groups with a similar
experience rank. As a result, we obtained groups with 8 and 11 par-
ticipants, respectively (see Section 3.7 for explanation of the differ-
ent group size). The smaller group had an experience rank of 20.8,
on average (standard deviation: 6.89), and is referred to as undis-
ciplined group in the remainder, because this group worked on the
source code with the undisciplined annotations. Likewise, the other
group had an experience rank of 16.8, on average (standard devia-
tion: 5.26), and is referred to as disciplined group. Note that due to
the different group size, the experience between both group differs.
Nevertheless, it is still similar enough so that we can consider both
groups to be comparable regarding their programming experience.
We show the detailed experience rank for each participant of both
groups in Table 2.

Table 2. Experience rank for disciplined and undisciplined group
(descending order)

Participant Rank discip. group Rank undiscip group

#1 29 40
#2 27 28
#3 20 22
#4 20 19
#5 17 19
#6 16 14
#7 13 12
#8 13 12
#9 13 –

#10 10 –
#11 7 –

Distribution 0 10 20 30 40 0 10 20 30 40

3.3 Material
To be as close as possible to real applications, we used real code
from four open-source systems from different domains. Particu-
larly, we used parts of boa (a web server), dia (a chart/diagram
application), irssi (an IRC client), and xterm (a terminal emulator)
as material. Due to their diversity (e.g., different domains, different
programmers), we argue that these system are sufficiently represen-
tative for real-world software systems. However, since we aimed at
analyzing program comprehension for different tasks and for differ-
ent types of annotations, we had to prepare the code manually (e.g.,

removing files/lines of code). Otherwise, it would be infeasible for
the participants to understand all the systems in detail, and to solve
the respective tasks. Furthermore, by narrowing down the sample
systems, we were able to emphasize the code that is of interest for
our experiment and to mitigate side effects that may influence the
result of our empirical study such as that participants sift through
irrelevant code.

For selecting appropriate files for each task, we relied on our ex-
perience and former studies on preprocessor annotations [11, 27].
Consequently, we selected files that contain not only an average
amount of annotated code (according to [26, 27]), but especially
undisciplined annotations. Subsequently, we created a second ver-
sion of each file by transforming undisciplined annotations to dis-
ciplined annotations using the expansion technique by Liebig et
al. [27]. For instance, in our stack example in Figure 2b, we have
disciplined annotations at the function level, but both annotated
code fragments are replicated. Note that we explicitly avoided
source code with mixed annotations, that is, disciplined and undis-
ciplined annotations in the same place. Although such tangling may
occur in real-world systems, it would render our results meaning-
less to some extent, because we could not measure which kind of
annotation has an influence on our measurements (i.e., response
time and correctness). Finally, we shortened some files, such that
they fit to the time constraints of our experiment. This step of prepa-
ration was mainly initiated by feedback from our pre-tests with
masters and PhD students, which we present in Section 3.4.

Next, we computed two code metrics: discipline of annotation
and code clones (i.e., replicated code) [27, 30, 31], which we sum-
marize in Table 3. We specifically computed the amount of code
clones, because in recent studies we have shown that the discipline
of annotations comes at the cost of replicated code (cf. Figure 1),
which may influence the programmer’s performance in mainte-
nance tasks [31]. Additionally, code clones may affect program
comprehension, because they may hinder the developer in building
a mental model of the underlying code [24]. Regarding the disci-
pline metric, we computed the number of disciplined annotations
compared to all annotations in the system under study. As a result,
we observed for the undisciplined version of the material, that the
number of disciplined annotations differs from 33% to 91% with
respect to all preprocessor annotations in the code (cf. Table 3).

3.4 Pilot Study
To assess whether our material is appropriate for our experiment
(e.g., regarding time or difficulty), we conducted a pilot study, in-
volving undergraduate and graduate students. Three students (1
master, 2 PhD) from the University of Passau and six students
(4 master, 2 PhD) from the University of Magdeburg confirmed
their participation. All of them worked with a similar setting as the
participants in the experiment: They had to complete seven tasks
within 90 minutes (to avoid fatigue effects). In contrast to the ex-
periment, the pilot study took place at different times and differ-
ent places (e.g., in office or at home). In addition to solving the
tasks, we asked the subjects to make immediate comments on each
task with pen & paper or within the form that is used to type in the
solution for the respective task. Finally, we conducted interviews
with each pilot tester to ask for her opinion regarding the material
as well as the tasks. Based on the pilot study, we revised our ma-
terial according to the comments of the pilot tester. In particular,
we rephrased task descriptions that have been ambiguous to make
them more understandable. Furthermore, for certain tasks, the pilot
testers complained that the source code was too long for the given
time. Hence, we shortened the respective files by removing parts
that contain no preprocessor annotations.



Table 3. Summary of the material used for the tasks of the experiment, including annotation discipline and code clone metrics

SLOC Discipline in % Clones in %
Task System Version D UD D UD D UD Task

T1 boa 0.94.13 1 405 1 404 100 90 5.9 5.9 Identifying all (different) preprocessor variables
T2 xterm 2.4.3 1 047 961 100 91 11.7 0.0 Determining the max. depth of #ifdef nesting
T3 vim 7.2 233 135 100 33 77.8 0.0 Determining the number of possible variants
T4 vim 7.2 606 475 100 41 0.0 0.0 Identifying code fragments that belong to a variant

T5 irssi 0.8.13 287 282 100 69 0.0 0.0 Add a new variant by modifying existing code
T6 irssi 0.8.13 457 447 100 86 0.0 0.0 Delete code that belongs to a given variant

T7-d xterm 2.4.3 100 100 79 79 0.0 0.0 Correct an error
T7-u xterm 2.4.3 100 100 79 79 0.0 0.0 Identify, whether an error occurs

D – disciplined group, UD – undisciplined group; All software systems are available on the Web: http://freecode.com.

3.5 Tasks
For our experiment, we created seven tasks, each of them related to
one of two categories [5]: mental simulation or maintenance. Ad-
ditionally, for each task, we provided the relevant material (source
code), as explained in the previous subsection. Moreover, the tasks
had a fixed order.5

The first four tasks T1–T4 correspond to mental simulation,
each of them requires a grasp of how variability is expressed with
preprocessor annotations. With these tasks, we measure how par-
ticipants understand variability introduced by annotations. For in-
stance, we asked the participants in task T1 to identify all the dif-
ferent preprocessor variables in the given piece of code. Another
example is task T3, in which we asked participants for the number
of possible variants of a certain function. Although such tasks may
rarely occur explicitly in practice, programmers often face such
tasks implicitly, for example, when trying to reproduce internals
of source code (in our case, variability).

Tasks T5 and T6 (cf. Table 3) correspond to maintenance: We
let participants modify and delete annotated code, which also re-
quires understanding the respective source code. This may be nec-
essary due to changed user requirements, which is quite common
in software maintenance. For example, in task T6, participants had
to remove all code that is related to a certain preprocessor variable.

Finally, with task T7 (related to mental simulation), we aim at
discovering how developers detect and correct (syntax) errors in the
presence of preprocessor annotations. This task is different, com-
pared to the previous tasks, in two ways. First, the corresponding
source code is identical for both the disciplined and undisciplined
group. Second, the task itself is different for both groups. The rea-
son is that, for disciplined annotations, syntax errors can be de-
tected (by definition) before the preprocessing step of the CPP (e.g.,
by the parser) [23, 27]. Hence, with disciplined annotations, pro-
grammers do not need to detect syntax errors manually. In contrast,
for undisciplined annotations, one can detect syntax errors automat-
ically only after this preprocessing step. Hence, we focused solely
on undisciplined annotations within task T7.

For the disciplined group, we provided the information (within
the task description) that the code contains a syntax error and in
which situation this error occurs (cf. T7-d in Table 3). Based on
this information, the task was to rewrite the code to fix the error. In
contrast, the task for the undisciplined group was to check whether
the source code is syntactically correct for all configurations of
preprocessor variables (i.e., to detect the error). We discuss the

5 The concrete tasks, together with the source code, for both control groups
are available on the Web: http://www.fosd.net/experimentIfdef.

implication of this task design in Section 5. In Figure 4, we show
the respective code snippet that contains the error.6

For all tasks, we created sample solutions in advance to compare
the subjects’ answers to it. This way, we aim at eliminating the
possibility that the assessment of the solutions of the experiment is
biased.

1 #if defined( GLIBC )
2 // additional lines of code
3 #elif defined( MVS )
4 result = pty search(pty);
5 #else
6 #ifdef USE ISPTS FLAG
7 if (result) {
8 #endif
9 result = ((∗pty = open(”/dev/ptmx”, O RDWR)) < 0);

10 #endif
11 #if defined(SVR4) || defined( SCO ) || \
12 defined(USE ISPTS FLAG)
13 if (!result)
14 strcpy(ttydev, ptsname(∗pty));
15 #ifdef USE ISPTS FLAG
16 IsPts = !result;
17 }
18 #endif
19 #endif

Figure 4. Example of undisciplined annotation in xterm (task T7)

3.6 Execution
We conducted the experiment in November 2011 in a computer
lab at the University of Magdeburg, with standard desktop ma-
chines and 19 inch displays. At the beginning of the experiment,
we gave a short introduction to the experiment in the form of a pre-
sentation. Furthermore, we used PROPHET as tool infrastructure,
which has been specifically developed for supporting program-
comprehension experiments [10, 13]. PROPHET provides the ba-
sic functionalities of an Eclipse-like IDE, including as a file ex-
plorer, an editor with syntax highlighting, as well as a project and
file search. Additionally, PROPHET has a dedicated dialog to show
the task description to participants, and it provides a form for typing
the respective answers. Beside this, we enabled source-code editing
of the text editor for tasks T5 to T7.

With the help of PROPHET, we were able to track the activities
of the participants and thus to use the resulting data for the analy-
sis of the experiment. Basically, PROPHET records the answers and

6 The error occurs in the case that the preprocessor variables GLIBC and
USE ISPTS FLAG are defined.



time needed for each task. Furthermore, it logs the participants’ ac-
tivities while solving tasks. In particular, it logs different activities
within the text editor, such as searching, scrolling, or editing. This,
in turn, allows us to reason about peculiarities that we observe dur-
ing the experiment and its analysis.

We conducted the experiment with a time limit of 90 minutes.
If this limit was reached, we asked the participants to quit, but they
were allowed to finish the task they were currently working on.
We presented the tasks to participants in sequential order, one at
a time. For each task, we recommended a time as a guideline for
participants. However, participants were free to spent as much time
as they wanted for an individual task. Finally, we asked participants
about the difficulty and their motivation for each task using a
questionnaire.

3.7 Deviations
During the execution of our experiment, two deviations occurred.
First, two students took the experiment before all other participants
(same day, but different time). Hence, they could have talked to
other participants about the experiment, which may bias our results.
However, they credibly assured that they did not disseminate any
information about the experiment to the other participants. Second,
three students did not complete the questionnaire prior to the ex-
periment. Consequently, we could not assign them to any group in
advance. Hence, these participants completed the questionnaire di-
rectly before the experiment. Subsequently, we randomly assigned
them to a group by a coin toss. Nevertheless, we argue that this
deviation does not influence our results for two reasons. First, the
experience rank is similar for both the disciplined as well as the
undisciplined group (cf. Section 3.2). Second, our analysis did not
reveal any peculiarities regarding the performance of these three
participants.

4. Analysis and Interpretation
In this section, we present the analysis of our experiment and
interpret the results. First, we discuss the results of the statistical
analysis. Then, we relate the results to the research question(s)
and discuss peculiarities that we detected during the analysis. We
discuss task T7 separately, because it diverges in its design from
the other tasks (cf. Section 3.5).

4.1 Analysis of Correctness & Response Time
For the analysis of our data, we differentiate between two aspects,
according to our research questions: Correctness of solutions and
response time for each task. Additionally, we manually analyzed
the log data that we collected during the experiment. We used
SPSS7 and R8 for analysis.

4.1.1 Correctness
For correctness, we used a 3-point scale. A solution could either
be completely correct (2), almost correct (1), or wrong (0). We
decided to use a 3-point scale, because we found that subjects
often solved a task almost correct, such that we can be sure that
comprehension has taken place correctly. To this end, we analyzed
the log data to filter out minor mistakes that do not depend on
the discipline of annotations. For example, in task T1, subjects
should count the number of #ifdef variables and one participant
used the PROPHET search facility only for one (of two) folders.
Hence, she detected only 15 instead of 17 #ifdef annotations (i.e.,
the corresponding preprocessor variable). Nevertheless, we can be
sure that the participant worked seriously on the task, but only made

7 http://www.ibm.com/software/analytics/spss/
8 http://www.r-project.org/

Table 4. Overview of correctness for each task

Task Type of annotation 0 1 2 χ2 p

Task 1 Disciplined 5 4 2 1.679 0.432
Undisciplined 5 3 0

Task 2 Disciplined 1 1 9 1.082 0.598
Undisciplined 2 1 5

Task 3 Disciplined 6 0 5 0.038 0.845
Undisciplined 4 0 4

Task 4 Disciplined 7 2 2 1.360 0.507
Undisciplined 3 2 3

Task 5 Disciplined 4 4 3 1.337 0.512
Undisciplined 2 5 1

Task 6 Disciplined 3 4 4 2.796 0.247
Undisciplined 1 6 1

Task 7 Disciplined 9 0 2 0.130 0.719
Undisciplined 6 0 2

0 – wrong, 1 – almost correct, 2 – completely correct

a mistake in using the tool. Besides this example, there are similar
cases for the other tasks. Additionally, we defined a threshold for
the answers that we found to be almost correct, so that we can
guarantee that an answer is (almost) correct. As a result, we decided
that only if at least 90% of the task has been solved correctly, we
assess the answer with ”almost correct”.

Furthermore, two authors double-checked their evaluation of
the results as follows: Each of the two authors has been assigned
a group. First, they checked all tasks of this groups participants, re-
spectively. Afterwards, they hand out their assessment each other.
Then, they checked the solutions of the participants and the assess-
ment of the other author. In the case that their assessment for a cer-
tain task diverged, this task was discussed together and another au-
thor should have been asked. However, for all tasks of both groups,
both authors agreed on the assessment of each other, respectively.

In Table 4, we give an overview of the correctness of the an-
swers of the subjects. Task T2 seems to be easiest, because it was
solved correctly by most subjects. In contrast, task T7 seems to be
rather difficult, because there are only a few correct answers, which
may be caused by the different design of the task. Overall, the dis-
tribution of correct answers is similar in both groups. We conducted
a χ2 test to evaluate whether significant differences between the
correctness of tasks exist. Although having a small number of par-
ticipants, χ2 is an appropriate test, because researchers have shown
that χ2 is even applicable (and robust) to low expected values [4].
Our test revealed no significant difference between the disciplined
and undisciplined group: the χ2 values are smaller than 2.796 and
the p values are larger than 0.247. Hence, we found no significant
evidence that the kind of annotation has an effect on correctness.

4.1.2 Response Time
In Table 5, we give an overview of the mean response times for each
task and group. To analyze the effect of the kind of annotation on
response time, we conducted a t test for independent samples [1],
because the data have a metric scale and are normally distributed
(as shown by a Kolmogorov-Smirnov test [1]). We did not correct
the response times for wrong answers, which we discuss in Sec-
tion 5. Our data reveal that, for the tasks T1 to T6, the difference
in the response time is negligible (according to a t test; the t val-
ues vary from 1.197 to 1.952; all p values are larger than 0.068).
In contrast, the difference between response times for the last task
T7 is significant (t value: −3.239; p value < 0.05), with the dis-
ciplined group being faster. However, we have to take into account
that the task for both groups was different. Hence, the response time
should not be compared with those from task T1 to T6.
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Figure 5. Difficulty (left) and motivation (right) of the tasks (assessed by participants): D – discipined group, U – undisciplined group

4.2 Motivation and Difficulty
For all tasks, we asked the participants to assess the difficulty of
the tasks and their motivation to solve them on a five-point Likert
scale. The reason for gathering these measures is to eliminate the
possibility that neither motivation nor difficulty (of the tasks) may
bias our results. We show the results in Figure 5. Overall, the results
coincide with those we measured for correctness and response
time: There is no significant difference between the disciplined
and undisciplined group for tasks T1 to T6, and thus there is no
influence of these factors on our results. However, the results of task
T6 vary compared to the other five tasks in that the motivation of
both groups differs considerably, which we cannot explain entirely.

Table 5. Overview of response time for each task

Response time
Task Version Distribution Mean N t value

Task 1 Discip 10.69 11 1.504

Undiscip 8.21 8 –

Task 2 Discip 10.59 11 1.197

Undiscip 9.57 8 –

Task 3 Discip 4 11 1.526

Undiscip 3.07 8 –

Task 4 Discip 12.44 11 1.698

Undiscip 9.98 8 –

Task 5 Discip ● 8.13 11 1.952

Undiscip 6.46 8 –

Task 6 Discip ● 11.96 11 1.745

Undiscip 8.61 8 –

Task 7 Discip 11.64 11 -3.239

Undiscip 22.29 8 –

0 5 10 20 30

N: number of subjects per group; t value: result of t test (p <
0.05)

The differences correspond to the result of the experiment in so
far as the undisciplined group performed slightly better than the
disciplined group (cf. Figure 4), which may explain our observation
to some extent.

Finally, there is an observable difference in motivation and
difficulty for the last task T7, which corresponds to the results of
our analysis, specifically regarding response time.

4.3 Research Questions
The analysis of our experimental data revealed no significant differ-
ences between the disciplined and the undisciplined group, neither
for correctness nor for response time. Next, we interpret our results
with respect to the research questions we formulated in Section 3.1.
Additionally, we put emphasis on error handling, which mainly en-
compasses our results of task T7. Finally, we present findings that
result from a detailed analysis of the log data we recorded during
the experiment.
RQ.1 – Does the discipline of annotations affect the correctness of
program comprehension and maintenance tasks?
Based on the results of our analysis, we conclude that the discipline
of annotations has no significant influence on mental simulation or
maintenance tasks. Nevertheless, we observed some minor tenden-
cies regarding correctness. First, we observed a considerable differ-
ence between the first four tasks, regardless of the respective group.
For instance, the second task has been solved correctly9 by most
participants in both groups (disciplined: ∼ 90%, undisciplined:
75%), as we show in Table 4. In contrast, for the other three tasks
(T1, T3, and T4), the ratio of correct answers is 60% or less for
both groups (cf. Table 4). Additionally, we observed the tendency
that participants of the undisciplined group performed slightly bet-
ter with respect to correctness than participants of the disciplined
group regarding maintenance tasks (∼ 80% compared to ∼ 70%,
on average) (cf. Table 4).

Second, while the disciplined group performed slightly better
for the first four tasks (i.e., mental simulation tasks), the undisci-
plined group achieved better results for tasks T5 and T6 (i.e., main-
tenance tasks). This observation is reflected in the number of wrong
answers (relatively to all participants for each of the two groups,
see Table 4) and may indicate that the compressed representation
of variability by means of undisciplined annotations may be ad-
vantageous for making changes to the source code. However, this

9 either completely or almost correct



is only a conjecture and not supported by our statistical analysis.
More research with a specific focus on certain tasks such as main-
tenance is necessary to evaluate this assumption. Specifically, it is
of interest to evaluate whether this observation holds for large-scale
maintenance tasks, where the comprehensibility of a program may
outweigh the compressed presentation.
RQ.2 – Does the discipline of annotations influence the time needed
to solve mental simulation and maintenance tasks?
Similar to the correctness of the answers, our statistical analysis
reveals that there is no significant difference regarding response
time, either. Nevertheless, the mean time for each task shows that
the disciplined group tends to need more time throughout all tasks,
without being significant. For some tasks, such as T3 or T4, the
increased code size could be responsible, because this leads to more
code that has to be investigated by the participant. However, we
have currently no general explanation for this observation. Overall,
we conclude that the kind of annotation does not seem to affect the
response time of subjects at all.
Detecting/Fixing errors in the presence of #ifdefs
Because T7 differs from all other tasks in both design and focus of
the task the results are difficult to compare to the other tasks. Hence,
we discuss the results of this task separately. Generally, we made
two interesting observations when considering the results of this
task: First, detecting an error in the presence of preprocessor anno-
tations is a difficult and time-consuming task. This observation is
reflected by the high response time of the undisciplined group that
is significantly higher than the time of the disciplined group. Sec-
ond, even with the knowledge that an error exists, it is complicated
to remove this error in the presence of preprocessor annotations.
This is reflected by the high number of wrong answers, even for
the disciplined group (where we provided information that an er-
ror exists). Although these observations confirm the assumption of
other researchers [6], we support this assumption for the first time
by means of our experiment.

Nevertheless, both observations have a limited generalizability.
First, detecting and correcting errors is a complicated and time-
consuming task in general, even without preprocessor annotations.
Hence, our results may be influenced by this fact, and we cannot
entirely conclude to what extent the preprocessor annotations are
the reason for our observations.

4.4 Log Data/Manual Analysis
To get deeper insights into how subjects solved the tasks, we an-
alyzed the behavior of subjects during each task. The reason is
that we wanted to investigate whether certain patterns occur when
solving tasks. As a result, we can reason about wrong answers or
exceeding response time and how both are related to the discipline
of preprocessor annotations. To this end, we analyzed the compre-
hensive log data (recorded by PROPHET) and the edited source files
(for T5 and T6). Next, we present our observations.

Task T1 to T4 (Mental Simulation): For the first four tasks, the
log data reveal that all participants had an idea of how to solve
each task. For instance, all of them used similar and appropriate
search terms. Additionally, we observed a similar scroll behavior,
such as time spent on certain code fragments while investigating
the source code. Nevertheless, in particular cases (and independent
of the respective group), some participants failed to solve the task
at all, by proposing a solution that was entirely wrong, or they
submitted only a partial or even no solution. We hypothesize that
other reasons are responsible for this diverging results, such as time
spent on a certain task. But this observation could also indicate that
identifying relevant code fragments is generally complicated in the
presence of preprocessor annotations and complex tasks. Overall,
our log data support the analysis result that the discipline of anno-

tations does not influence correctness.

Task T5 and T6 (Maintenance): For the two tasks related to main-
tenance, our analysis revealed that four participants had no idea
how to solve the tasks. For T5, three participants of the disciplined
group provided a solution that was not even close to correct. In
fact, they made changes to code that actually had nothing to do
with the problem, as stated in the task description. Interestingly,
two of these participants did not use the code-search facilities of
PROPHET to identify the right place within the code, which could
be a reason for their wrong solution. Furthermore, we observed that
most of the participants who provided a solution that was partially
correct made the same mistakes. That is, while they introduced a
new preprocessor variable in the right place, they neglected to re-
move certain statements or fields from the code that is surrounded
by this newly introduced variable. This, in turn, may lead to errors,
and thus we decided to classify these solutions as only partially cor-
rect. Finally, two participants of the undisciplined group introduced
syntax errors, which we assume were caused by the undisciplined
nature of annotations. More precisely, the participants omitted and
misplaced a bracket, respectively.
For task T6, we identified one participant who failed to remove the
source code related to the preprocessor variable IP V6 (as specified
in the task). Since she used the code search with the same search
terms as the other participants, we hypothesize that she did not un-
derstand the task at all and thus used a wrong search term.
Overall, we could not detect a clear pattern for one of the groups.
However, regarding the minor mistakes for T5, we assume that
preprocessor annotations in general (i.e., independent of the disci-
pline) have a (negative) effect on source code changes.

Task T7 (Detecting/Fixing Errors): Finally, for task T7, we have
to distinguish between the disciplined and undisciplined group,
because they had to solve considerably different tasks. For the
disciplined group, the log data revealed that five (out of eleven)
participants tried to fix the error stated in the task description at a
totally different position in the source code than expected. Hence,
we assume that, although we provided information to localize the
root of the error, half of the participants did not understand the
interrelation between the preprocessor annotations and the syntax
error caused by them.

In conclusion, when considering the detailed behavior of subjects,
we could not find an influence of the kind of annotation on program
comprehension. Nevertheless, we explicitly mention that this does
not necessarily mean that there are no (significant) differences. In
fact, our conclusion is valid for our experiment, but may not be
generalizable regarding further studies. Beyond that, for different
tasks and independent of the discipline, our observations indicate
that the presence of preprocessor annotations in general has a (neg-
ative) influence on program comprehension. Further research on
this topic using screen and video-capture facilities could provide
deeper insights.

5. Threats to Validity
Next, we discuss threats to internal and external validity, which
helps other researchers to interpret our results and to put them
into relation to experiments with similar focus. Internal validity
refers to how well we controlled influences on what we observed,
that is, program comprehension. External validity describes the
generalizability of our results [32].

5.1 Internal Validity
The participants had to work in an unfamiliar environment (i.e.,
PROPHET), specifically designed to support experimental studies.



Still, we argue that this environment is easy enough to use, because
it contains standard features of a modern IDE, such as syntax
highlighting. Moreover, with the help of PROPHET, we can rule
out that other factors, such as outstanding knowledge about tools
or techniques (e.g., the preferred IDE or regular expressions), bias
our results.

Furthermore, there are some limitations regarding the execution
and analysis of our study. Three students did not complete the
questionnaire prior to the experiment, which we used to assign
participants to the groups. Hence, we randomly assigned these
students to the groups. However, both groups are comparable, as the
similar experience ranks show that we computed for each group.

Additionally, we did not filter out wrong answers when analyz-
ing the response time, because this would reduce our already small
sample size further [36]. However, by manual inspection of our log
data, we found no information indicating that a participant did not
answer a task seriously (e.g., response times did not deviate too
much toward zero).

5.2 External Validity
First, all participants of our experiment are undergraduate students
and thus have less programming experience than professional de-
velopers. Hence, our results are only valid for this level of pro-
gramming experience and should only be carefully interpreted with
respect to experienced developers. Nevertheless, previous studies
demonstrate that even students can be treated similar to profes-
sional programmers [35].

Second, participants had to complete the tasks on code snippets
of different systems, whereas in a real-world scenario, program-
mers work on large-scale systems that consist of thousands of lines
of code. In addition, the particular tasks were rather small, so that
they fit the time constraints of the experiments. Both, the amount of
source code and complexity of tasks may limit the generalizability
of our study, because they do not reflect the real world in its entirety.
However, regarding the tasks, we decided to define micro tasks to
measure different aspects of preprocessor annotations and program
comprehension. The effect of the kind of annotation in larger tasks
has to be evaluated empirically, for which our experimental design
can be reused.

Third, we created all disciplined annotations manually, by trans-
forming undisciplined ones. This may render the disciplined code
artificial and thus limit the generalizability of our case study. How-
ever, the disciplined annotations that result from our transformation
coincides with those, typically found in C systems [26]. Hence, we
argue that creating the disciplined annotations does not affect our
case study.

Finally, in our study, we considered only the CPP usage in C
programs, while the CPP is used with other languages such as C++
as well. However, all tasks and code examples have been chosen
without making heavy use of underlying language mechanisms
(i.e., standard imperative mechanisms). Hence, the tasks could be
applied to programs in different target languages in the same way.

6. Related Work
Prior to this paper, several other researchers addressed the usage of
preprocessor annotations in source code.

Spencer and Collyer investigated the usage of preprocessor an-
notations to support the portability of systems [34]. They found
that a moderate usage of #ifdefs is acceptable, whereas an overly
extensive usage leads to severe problems regarding maintenance
and understanding of source code. However, compared to our work,
they solely rely on experiences with the C News system (and how
to avoid unnecessary #ifdefs), whereas we conducted an empirical
experiment. Furthermore, they do not distinguish between disci-
plined and undisciplined annotations.

Feigenspan et al. addressed the problem of comprehensibility of
preprocessor annotations [9, 11, 12]. They conducted experiments
to measure whether background colors are useful to support pro-
gram comprehension in the presence of preprocessor annotations.
Similarly, Le et al. propose a prototype that provides facilities to
manage software variation within a GUI [25]. They present a user
study to evaluate differences between using common CPP direc-
tives and their prototype, confirming that the prototype is more ef-
fective for implementing variability. While both approaches focus
on comprehension of annotated code in general (including possible
alternatives to CPP), we focus on program comprehension of differ-
ent types of annotations (disciplined and undisciplined), which are
often discussed in the literature.

Medeiros et al. analyzed preprocessor-based systems with re-
spect to syntax errors [29]. They conducted experiments on 40 sys-
tems and observed that only few errors occur, which particularly
remained for years in the system. While this coincides with our ob-
servations that syntax errors are hard to detect, our work is different
in that we conducted an experiment to determine the favorable an-
notation discipline, using humans.

Furthermore, in prior work, we analyzed the discipline of an-
notations with respect to code replication [31]. In particular, we in-
vestigated whether the discipline of annotations has an effect on the
number of code clones. Within our analysis, we found evidence that
systems with entirely disciplined annotations contain more code
clones than systems with undisciplined annotations. However, we
neither considered program comprehension nor maintenance issues
of the analyzed system.

7. Conclusion and Future Work
The C preprocessor CPP is widely used to express variability in
source code. Despite its expressiveness and usage even in large-
scale systems, the CPP is criticized for obfuscating source code,
making it difficult to understand. We concentrated on the issue
of how the discipline of preprocessor annotations influences pro-
gram comprehension, by means of a controlled experiment with
human subjects. We created two groups, each of which had to
solve seven tasks related to maintenance and mental simulation on
source code with disciplined and undisciplined annotations, respec-
tively. Then, we measured their performance in terms of correct-
ness and response time. Our results indicate that the discipline of
annotations has no influence on program comprehension and main-
tenance, neither for correctness nor for performance (in terms of
response time). Although we observed some tendencies, they are
not supported by our statistical analysis. However, our experiment
confirms that finding errors in the presence of preprocessor annota-
tions is a tedious and time-consuming task. More research on this
topic is needed, especially with a focus on certain aspects that were
out of scope of this study such as large-scale maintenance tasks or
error detection in the presence or absence of preprocessor annota-
tions. In future work, we aim at addressing these aspects based on
the results of this study as a starting point.

First, we plan an experiment to evaluate whether the current
results hold for large-scale maintenance tasks. In such an exper-
iment, participants have to solve one task concerned with main-
tenance, which is more complex than the tasks in the present ex-
periment. Second, we will use a complete system rather than small
parts of different systems. In a similar way (e.g., similar experimen-
tal setup), an experiment for measuring program comprehension in
the presence of different types of annotations is part of our future
work.
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