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Abstract Conducting technology-oriented experi-
ments (i.e., experiments in which treatments are applied
to objects by a computer-based tool) without proper
tool support is often a time-consuming and highly
error-prone task. Although many techniques have been
proposed to help conducting controlled experiments,
none of them simultaneously addresses (1) the exe-
cutable specification of experiments at a high level of
abstraction; (2) automated treatment execution and
automated data analysis from the experiment speci-
fication; and (3) formal guaranties of the correctness
of results according to an experiment specification
for technology-oriented experiments. To address
these issues, we provide a Domain-Specific Modeling
approach to create a Web-based tool (ExpRunA)
comprising a Domain-Specific Language named To-
ExpDSL, execution and analysis script generators, a
supporting framework, and a running infrastructure. An
experimenter uses ToExpDSL to specify an experiment
using experimentation concepts. From this specification,
applications corresponding to the underlying treatments
are executed, execution results are collected and
analyzed, and, finally, the analysis results are presented
to the experimenter. We establish the consistency of
such results with respect to the experiment specification
by formalizing and proving key correctness properties
of ExpRunA. We empirically evaluated ExpRunA with
respect to automation by replicating three already
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published experiments; we evaluated the level of
abstraction by a qualitative assessment. Our empirical
evaluation shows that ToExpDSL is expressive enough
to specify three technology-oriented experiments and
that ExpRunA can be used to enable sound automation
of execution and analysis from the specification of
technology-oriented experiments at a high level of
abstraction.

Keywords Controlled experiments · Technology-
oriented experiments · Domain-specific modeling ·
Domain-specific language

1 Introduction

Experimentation includes the empirical investigation
of a testable hypothesis where one or more indepen-
dent variables are manipulated to measure their effect
on one or more dependent variables [18]. Independent
variables are all variables in a process that are manip-
ulated and controlled, whereas the dependent variable
is the outcome of an experiment that we want to study
to see the effect of the changes in some input [53, 26].
In software engineering, for instance, experimentation
enables researchers contrasting suppositions, assump-
tions, speculations, and beliefs that abound in soft-
ware construction with facts [26], which is essential for
the rigorous development of the field and ultimately
its relevance. Experiments can be human-oriented or
technology-oriented [53]. In the former, a person applies
treatments to experimental objects, whereas, in the lat-
ter, treatments are applied to experimental objects by
a computer-based tool. A treatment is one particular
value of an independent variable, which is any character-
istic that is intentionally varied during experimentation
to examine its influence on the dependent variable. The
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experimental objects are the objects on which the ex-
periment is run [53, 26].

Technology-oriented experiments are important not
only in software engineering but also in other research
fields, such as bioinformatics, engineering, physics, and
chemistry [14, 45, 38, 24]. Technology-oriented experi-
ments can be used in several ways. First, software can
be used to evaluate methodologies or approaches [36].
Moreover, software can be used in simulation-based
studies [6]. For example, in engineering, systems can be
simulated by using software to avoid the costs of building
real systems [45]. In some studies, (e.g., use and occupa-
tion of the soil), evaluations cannot be performed in the
wild, so they need to rely on simulations [39]. Further-
more, software can also be used together with physical
instruments. For example, chemistry and physics labo-
ratories can have instruments connected to computers
to automate experiments [24, 38]. In this work, we focus
on such technology-oriented experiments, and hereafter
we use the term experiment to refer to this context,
which includes not only in silico simulation based stud-
ies [47] but also experiments that evaluate algorithms
or computer-based tools. For example, Lanna et al. [30]
presented a novel feature-family-based analysis strategy
to compute the reliability of all products of a software
product line. To evaluate their strategy, the authors cre-
ated a tool named ReAna1 and used it to compare the
performance of different reliability analysis strategies
for software product lines.

Conducting an experiment is often a complex and
time-consuming task. Since experimentation involves
many steps, such as goal definition, planning, execution,
analysis, and packaging, all steps must be performed
in a systematic and consistent way to achieve a repli-
cable experiment and valid results [26, 53]. Since the
scale of scientific problems has been increasing, this is
reflected not only in data size but also on the complexity
of the computer-based tools required to investigate such
problems [55, 43]. Thus, tools for experimentation must
run on an infrastructure that provides computing power,
data storage, and network resources. However, deploying
and executing applications in such infrastructure (e.g., a
cloud computing infrastructure) are complex tasks and
require advanced computational skills [28]. Likewise,
data analysis requires knowledge on statistics so that
results can be correctly analyzed and interpreted. There-
fore, conducting controlled experiments is an error-prone
task.

There is a number of approaches supporting exper-
imentation, focusing on distinct phases of the experi-
mentation process, and supporting human-oriented or
technology-oriented experiments (Section 6). Although

1 https://github.com/SPLMC/reana-spl/.

these approaches help in conducting controlled experi-
ments, none of them simultaneously addresses the exe-
cutable specification of experiments at a high level of
abstraction; the automated treatment execution and
automated data analysis from the experiment specifica-
tion; and formal guaranties of the correctness of results
with respect to the specification of technology-oriented
experiments. The lack of proper tool support may lead
not only to extra time or resources consumption but
also to incorrect results.

To address these issues, we propose a Domain-
Specific Modeling (DSM) approach [27] supporting
technology-oriented experiments. The approach is imple-
mented as a Web-based tool and comprises a Domain-
Specific Language (DSL), named ToExpDSL, execution
and analysis script generators, a running infrastructure
to execute the generated scripts, and a supporting frame-
work integrating the previous components as part of a
tool named ExpRunA2. First, one uses ToExpDSL to
specify experiments. Next, the aforementioned genera-
tors generate execution and analysis scripts from this
experiment specification. The running infrastructure
executes the execution script, generating experimental
data, and then executes the analysis script on these
data. Finally, the supporting framework presents the
results. The supporting framework integrates all the
components and interacts with the running infrastruc-
ture to start and monitor execution, and also to analyze
the results. The whole procedure of generating execu-
tion and analysis scripts, executing, and analyzing an
experiment from an experiment specification has been
formally specified, and key correctness properties have
been stated. A formal proof of these properties assures
the correctness of results according to the experiment
specification.

We evaluated ExpRunA with respect to abstraction,
automation, and correctness. To show that ToExpDSL
raises the level of abstraction of experiment specifica-
tions, we evaluated it by an analytical comparison be-
tween Domain-Specific Language (DSL) concepts and
experimentation concepts, and by comparing the level
of abstraction of experiment specifications across dif-
ferent studies. Although the experimenter must learn a
new language, the results suggest that the use of ToEx-
pDSL raises the level of abstraction such that it matches
the experimenters intention and intuition properly. By
comparing ToExpDSL constructs with domain concepts,
we found that 54% are high-level constructs, 15% are
mid-level constructs, and 31% are low-level constructs,
according to their relation with domain concepts. To
demonstrate that ExpRunA can automate experiment
execution and analysis, we replicated three already pub-

2 https://expruna.github.io/.
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lished experiments using it. Our results suggest that To-
ExpDSL is sufficiently expressive to specify technology-
oriented experiments and that ExpRunA can be used to
enable sound automation of execution and analysis from
the specification of technology-oriented experiments. We
assured correctness by proving key formal properties
of the formal specification. In summary, we make the
following contributions:

– We present a Domain-Specific Modeling (DSM) ap-
proach that supports technology-oriented experi-
ments (Section 3), comprising a DSL (Section 3.2),
named ToExpDSL, execution and analysis script gen-
erators (Sections 3.3 and 3.4), a running infrastruc-
ture to execute the generated scripts (Section 3.5),
and a supporting framework integrating the previous
components (Section 3.6).

– We present a Web-based tool (ExpRunA) that im-
plements the Domain-Specific Modeling (DSM) ap-
proach (Section 4), providing a means to specify
executable experiment specifications at a high level
of abstraction, automated execution, data analysis,
and results presentation.

– We empirically evaluate the practical applicability of
ExpRunA to provide automation in the experimenta-
tion process and its level of abstraction (Sections 5.1
and 5.2).

– We present a formal model of the whole procedure
and proofs of correctness (Section 3).

– We present a supplementary Website3 where Ex-
pRunA is available and with the complete specifica-
tion, scripts files and results of our evaluation, as
well instructions for future replications.

2 Motivation

This section presents and motivates the research prob-
lems addressed by ExpRunA. We state each problem
and illustrate it with examples, providing remarks that
highlight its relevance.

Problem 1 An experimenter needs to deal with differ-
ent levels of abstraction while specifying an experiment
and writing execution and analysis scripts. High-level
specifications are usually in natural language, which
may lead to ambiguity, inconsistency, and lack of infor-
mation [15] and are not executable. On the other hand,
executable specifications are usually written in general
purpose languages, at a low level of abstraction.

Example 1 Bak and Duggirala [4] presented a technique
to perform simulation-equivalent reachability and safety

3 https://expruna.github.io/.

verification of linear systems with inputs. To evaluate
their proposal, they created a tool named Hylaa (HYbrid
Linear Automata Analyzer). Their experiment was spec-
ified, executed, and measured using Python scripts, 4

an excerpt of which is presented in Listing 1. Over-
all, the script examines the effects of optimizations for
computing reachability for linear time-invariant systems
with inputs. Optimizations, which correspond to treat-
ments, are defined in Lines 4–12. In fact, each optimiza-
tion is defined by appending distinct parameters to the
tool (Lines 6 and 10). To measure runtime, each opti-
mization is applied to the input file ( io .xml). In addition,
the number of steps in the problem is varied by chang-
ing the step size. Thus, each step size used to run the
tool corresponds to an experimental object. The first
experimental object is defined by step_size variable (Line
17). The following objects are defined in Line 29 inside
a loop (Line 18) until the timeout is reached (Line 27).
Each treatment is applied to an experimental object
in Line 22. This is executed inside a loop (Line 21),
which is repeated the number of times defined in the
variable num_trials (Line 3).

Listing 1: Excerpt of an execution script in Python [4]
1 def measure():
2 timeout_secs = 15
3 num_trials = 10
4 tools.append('hylaa')
5 labels.append('Hylaa')
6 tool_params.append('−settings

settings.print_output=False')
7 input_xml.append('io.xml')
8 tools.append('hylaa')
9 labels.append('Warm')
10 tool_params.append('−settings

settings.print_output=False ' +
11 'settings.opt_decompose_lp=False')
12 input_xml.append('io.xml')
13 for i in xrange(len(tools)):
14 tool = tools[i]
15 label = labels[i]
16 with open('out/result_{}.dat'.format(label), 'w') as f:
17 step_size = 0.2
18 while True:
19 total_secs = 0.0
20 measured_secs = []
21 for _ in xrange(num_trials):
22 res = e.run(print_stdout=True,

run_tool=True)
23 runtime = res['tool_time']
24 measured_secs.append(runtime)
25 total_secs += runtime
26 avg_runtime = total_secs / num_trials
27 if avg_runtime > timeout_secs:
28 break
29 step_size /= 1.3

4 https://bit.ly/2NTCuSe.
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Example 2 Lanna et al. [30] used Python scripts to
perform an experiment comparing the performance of
different reliability analysis strategies for software prod-
uct lines. An excerpt of the experiment execution script5

is presented in Listing 2. The loop in Line 3 iterates
over treatments ( strategy ) and experimental objects (spl).
Each treatment is applied to each object (Line 5). This
execution is repeated the number of times defined in
number_of_runs (Line 13).

Listing 2: Excerpt of an execution script in Python [30]
1 def run_all_analyses(number_of_runs,in_results):
2 all_stats = []
3 for (spl, strategy), command_line in

CONFIGURATIONS.iteritems():
4 try:
5 stats = run_analysis(spl, strategy,

command_line, number_of_runs)
6 all_stats.append(stats)
7 replay.save(AllStats(all_stats), in_results)
8 test_hypotheses(AllStats(all_stats))
9 except:

10 traceback.print_tb(sys.exc_info()[2],
limit=None, file=None)

11 return AllStats(all_stats)
12 def run_analysis(spl, strategy, command_line,

number_of_runs):
13 data = [_run_for_stats(command_line) for i in

xrange(number_of_runs)]
14 return CummulativeStats(spl, strategy, data)

Remark 1 The previous examples suggest that low-level
programming details obfuscate experimentation con-
cepts, which hampers their understanding and future
replications of the experiments. Although variable names
may help, there is no standard way to define experi-
mentation concepts, such as treatments, experimental
objects, and the number of tests to run. For instance,
num_trials in Listing 1 and number_of_runs in Listing 2
were used to represent the same concept. Conversely, a
single term can have distinct meanings. For instance,
run_analysis (Listing 2, Line 5) refers to reliability analy-
sis, which is, in fact, part of the execution phase; analy-
sis may also mean statistical analysis, though. Second,
there may be inconsistencies between the experiment
specification and its execution script. A treatment or
an object could be repeated, resulting in unnecessary
executions, or a parameter could be incorrectly assigned
to a treatment, resulting in wrong results. For example,
parameters assigned to the treatment Warm (Line 10,
Listing 1) could be incorrectly assigned to the treatment
Hylaa (Line 6).

5 https://bit.ly/2CvShEU.

Problem 2 An experimenter needs to manually create
execution and analysis scripts, which is time-consuming
and error-prone.

Example 3 The Gnuplot configuration file presented
in Listing 3 is used to plot experiment results from
data files, which are then used to draw the conclusions
of the experiment. Since this file is manually created,
it may contain wrong correspondences between treat-
ments and execution results. Additionally, there may be
inconsistencies between the execution script presented
in Listing 1 and the Gnuplot file presented in Listing 3,
e.g., each Line from 2 to 6 relates a title to the corre-
sponding execution results. However, a title could be
misassigned to a result file, which would lead to a wrong
interpretation and thus incorrect results.

Listing 3: Excerpt of a Gnuplot configuration file [4]
1 plot \
2 "out/result_Basic.dat" with linespoints title "Basic" ls 1,

\
3 "out/result_Warm.dat" with linespoints title "Warm" ls 2

pi −1, \
4 "out/result_Decomp.dat" with linespoints title "Decomp"

ls 3, \
5 "out/result_Hylaa.dat" with linespoints title "Hylaa" ls 4

pi −1, \
6 "out/result_NoInput.dat" with linespoints title "NoInput"

ls 5, \

Example 4 Regarding statistical analysis, Lanna et al.
[30] manually created a script,6 an excerpt of which is
shown in Listing 4, to check whether two data samples
are significantly different. Accordingly, either a nonpara-
metric Mann–Whitney test or a parametric T test can
be applied. The script first checks if the assumptions
made by the parametric test are met and then apply the
corresponding test. An error in this script, for instance,
using p <= SIGNIFICANCE instead of p >= SIGNIFICANCE
in Line 22 would lead to the use of a parametric test
when it should not be used (due to failing assumption on
data normality), and thus, invalidate the results, which
may go unnoticed.

Listing 4: Excerpt of a Python analysis script [30]
1 def _compare_samples(sample1, sample2):
2 mean1 = mean(sample1)
3 mean2 = mean(sample2)
4 gain = max(mean1, mean2)/min(mean1, mean2)
5 if not _is_normally_distributed(sample1) or not

_is_normally_distributed(sample2):
6 normality = "Not all are normal"
7 are_equal, details =

_non_normal_are_equal(sample1, sample2)

6 https://bit.ly/2Al2uT7.

https://bit.ly/2CvShEU
https://github.com/SPLMC/reana-evaluator/blob/master/dataanalyzer.py
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8 else:
9 normality = "All are normal"

10 are_equal, details = _normal_are_equal(sample1,
sample2)

11 if not are_equal:
12 result = mean1 − mean2
13 else:
14 result = 0
15 aggregated_details = (normality, details,
16 {"mean 1": mean1,
17 "mean 2": mean2,
18 "gain": str(gain) + "x"})
19 return result, aggregated_details
20 def _is_normally_distributed(sample):
21 w, p = normaltest(sample)
22 return p >= SIGNIFICANCE
23 def _non_normal_are_equal(sample1, sample2):
24 u, p = mannwhitneyu(sample1,
25 sample2,
26 use_continuity=False)
27 return p >= SIGNIFICANCE, ("Mann−Whitney", {"U":

u, "p−value": p})
28 def _normal_are_equal(sample1, sample2):
29 equal_vars = _variances_are_equal(sample1, sample2)
30 are_equal, details = _test_normal_equality(sample1,

sample2, equal_vars)
31 return are_equal, details
32 def _variances_are_equal(sample1, sample2):
33 stat, p = bartlett(sample1, sample2)
34 return p >= SIGNIFICANCE
35 def _test_normal_equality(sample1, sample2,

equal_variances):
36 stat, p = ttest_ind(sample1, sample2,

equal_var=equal_variances)
37 method = "T−test" if equal_variances else "Welch"
38 return p >= SIGNIFICANCE, (method, {"statistic": stat,

"p−value": p})

Remark 2 Regarding execution scripts, Listing 1 and
Listing 2 also illustrate Problem 2. Further, there are
unexplored commonalities between scripts of distinct
experiments, such as treatments, objects, and dependent
variables definitions, not to mention the application of
treatments to objects and the repetition of executions.
This results in the development of similar scripts with
duplicated code for distinct experiments, which could
be error-prone and time-consuming.
Problem 3 In the context of technology-oriented ex-
periments, there is a lack of formal evidence of the cor-
rectness of results in relation to the experiment specifi-
cation.
Remark 3 With correct results, we mean that the re-
sults of the overall experimentation process are consis-
tent with the experiment specification. That is, analysis
is evaluating execution results that actually correspond
to the hypotheses defined in the experiment specifica-
tion, using a suitable analysis procedure and the correct
parameters. Generating execution and analysis scripts
can avoid manual errors; however, there could still be
systematic errors in code generators.

Example 5 Execution results could be misassigned to
the underlying treatments of the hypotheses, which
would happen if we misplaced the labels parameter of
Hylaa (Line 5, Listing 1) and Warm (Line 9, Listing 1).
Or analysis could misplace the execution results in the
analysis test, for example, swapping the order of sam-
ples when calling _compare_samples (Line 1, Listing 4).
Analysis would use an unsuitable analysis function if we
wrote (or generated) p <= SIGNIFICANCE instead of p
>= SIGNIFICANCE (Line 30, Listing 4), for instance. Ei-
ther case would lead to incorrect results. Thus, there
is still a lack of formal guaranties of the correctness of
results with respect to the experiment specification.

3 Method

Our objective is to provide a solution simultaneously
addressing (1) the executable specification of experi-
ments at a high level of abstraction; (2) automated
treatment execution and automated data analysis from
the experiment specification; and (3) formal guaranties
of the correctness of results according to an experiment
specification for technology-oriented experiments. To ad-
dress the aforementioned problems, we present a DSM-
based solution, which comprises a DSL (Section 3.2), an
experiment execution script generator (Section 3.3), an
analysis script generator (Section 3.4), a running infras-
tructure to execute the generated scripts (Section 3.5),
and a supporting framework integrating the previous
components (Section 3.6). To assure that the experi-
ment results provided by our model are consistent with
the experiment specification, we also provide formal
definitions and key correctness properties (Sections 3.3
and 3.4).

3.1 Overview

We present a DSM-based solution as depicted in Figure 1.
Initially, we created a DSL (ToExpDSL), execution and
analysis scripts generators, and a supporting framework.
ToExpDSL is then used by other researchers to specify
an experiment.

In ToExpDSL, an experiment comprises a set of re-
search hypotheses, each of which is a statement on the
measured effects of treatments. To determine the effect
of treatments, a research design defines how to apply
them to experimental objects; the effect on dependent
variables is measured by the corresponding instrumenta-
tion. The resulting data points are analyzed to confirm
or refute the hypotheses according to statistical tests
corresponding to the type of statement on the research
hypotheses.
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ToExpDSL allows the researcher to specify an experi-
ment focusing mostly on the domain at hand abstracting
from low-level details, this way, addressing Problem 1.
Validators check the experiment specification in the DSL
for syntactic and type-level consistency. Then, the gen-
erator uses this specification to create an execution
script, which reflects the design of the experiment and
includes all information required to run applications (i.e.,
computer-based tools) related to the treatments defined
in the research hypotheses. The generator also produces
an analysis script referring to all statistical tests required
to test the hypotheses of the experiment. This frees the
researcher from the low-level details of manually creating
execution and analysis scripts, this way, addressing Prob-
lem 2. Currently, the experimental design relies on a
(subset of) Cartesian product to relate treatments and
experimental objects, and the research hypotheses are
limited to the comparison of two treatments at a time;
consequently, the statistical tests performed are limited
to T-test and Mann–Whitney, depending on normality
of the data.

The framework requests the running infrastructure
to execute the experiment execution script producing a
series of data points. The framework monitors execution
and collects partial results. After execution, the frame-
work uses the running infrastructure to automatically
collect and analyze data using the previously generated
analysis script to confirm or refute the hypotheses speci-
fied in the experiment specification. Automated analysis
includes significance testing and generation of measure-
ments and plots from data. This helps researchers in
performing descriptive analysis, hypothesis testing, and
interpreting the results. It is important to note that all
of the results are consistent with the experiment spec-
ification, which is guaranteed by formal specification
and proof of correctness properties, this way, addressing
Problem 3. Finally, an analysis report is presented to
the experimenter, which packages and presents results
and conclusions of the experiment, as well a laboratory
package for future replications.

Although our solution helps in these tasks by pro-
viding an analysis report, the generated scripts, and
the execution results, the experimenter still has to per-
form some manual tasks, such as interpreting the results,
drawing the conclusions, writing replication instructions,
and publishing the laboratory package.

3.2 ToExpDSL

Following an action research method [18], we developed
the DSM solution inspired by the experimental chal-
lenges reported by a colleague in our research group [30].

In this context, we followed an iterative process, includ-
ing the diagnosis of the problems and reflective learning
throughout the development.

ToExpDSL is partially based on ExpDSL [20], and
extends it with new constructs for technology-oriented
experiments; theirs was designed for human-oriented
experiments. We choose ExpDSL because it has been
already empirically evaluated by experiments and case
studies and successfully used in a number of experiments.
For instance, the authors modeled several controlled
experiments with the objective of analyzing ExpDSL’s
completeness and expressiveness [21].

The syntax of ToExpDSL, containing the main con-
structs of the language, is presented in Listing 5. We
represent types as records, and we write e.hypotheses
to access the data stored at field hypotheses of a given
experiment e ∈ E , for example. In addition, we use
overlines to represent lists. For instance, hypotheses are
represented by type H . So, H represents a list of hy-
potheses. We also assume the existence of primitive
types, such as String, PosInt, and Float.

An experiment specification E comprises a list of
research hypotheses H , an experimental design D, a
list of treatments T , a list of experimental objects O,
and a list of dependent variables DV (Line 1). Each
research hypothesis compares the values of a dependent
variable DV corresponding to the execution of each
treatment T (Line 2). The experimental design D com-
prises the number of runs (i.e., the number of times
each treatment is applied to the same object) and a
design function (Line 3). The design function defines
how treatments are applied to experimental objects. For
each treatment, a related command is specified (Line 4).
This command represents the command line used to run
that treatment in the infrastructure. Likewise, for each
experimental object O, an argument is defined (Line 5),
and, for each dependent variable DV , an instrument is
specified (Line 6). The argument is an attribute that
uniquely identifies an object and is used in both exe-
cution and analysis to trace execution results to the
objects that originated them. The instrument defines
how to measure the corresponding dependent variable
in the infrastructure.

For example, in Listing 6, we present the abstract
syntax of an experiment specification (the concrete
syntax is presented in Section 4) comprising a re-
search hypothesis rh1 (Line 2); an experimental de-
sign d, which applies a cartesian product and re-
peats each execution 8 times (Line 3); two treatments,
featureFamily (Line 4) and featureProduct (Line 5);
an experimental object lift (Line 6); and a dependent
variable analysisTime (Line 7). The research hypoth-
esis rh1 (Line 2) compares the dependent variable
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Fig. 1: Proposed DSM-based solution

Listing 5: DSL Syntax
1 E ::= {hypotheses : H , design : D, treatments : T , objects : O, dependentVariables : DV}
2 H ::= {name : String, dependentVariable : DV , treatment1 : T , treatment2 : T}
3 D ::= {runs : PosInt, designFunction : T ×O → (T ,O)}
4 T ::= {name : String, command : String}
5 O ::= {name : String, argument : String}
6 DV ::= {name : String, instrument : String}

analysisTime resulting from applying the treatments
featureFamily and featureProduct.
Definition 1 (Experiment specification well-
formedness) An experiment specification E is
well-formed, denoted by wf (e), if and only if all
treatments and dependent variables referred to in its
hypotheses are defined, and each hypothesis compares
distinct treatments (Equation (1)). In addition, each
hypothesis, treatment, object, and dependent variable
is specified with a unique name; each treatment has a
distinct valid command; each object has a distinct valid
argument; and each dependent variable has a distinct
valid instrument.

3.3 Experiment execution script generation and experi-
ment execution

An execution script ES comprises a list of applica-
tions A (Line 1, Listing 7). Each application is defined

by an instrument, related to a dependent variable, a
command, related to a treatment, and an argument,
related to an object (Line 2). In addition, an execution
EX consists of a dependentVariable, a treatment, and
an object (Line 3), whereas an execution result ER com-
prises the instrument, the command, and the argument
used to run the application, and also the value resulting
from its execution (Line 4).

Function generateExecutionScript (Line 1, Algo-
rithm 1) uses as argument an experiment specification
and generates the execution script ES . The first step
is to apply function applyDesign (Line 5) using the
experimental design, the hypotheses, and the objects
defined in the experiment specification as arguments.
It returns a duplicate-free list of executions EX . We
use a duplicate-free list since a treatment can be re-
ferred to in more than one hypothesis. In this case, to
prevent one treatment from being executed more times
than another, there should be only one execution EX .
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Listing 6: Example of an Experiment Specification
1 e = {[rh1 ], d, [featureFamily, featureProduct], [lift], [analysisTime]}
2 rh1 = {“rh1 ”, analysisTime, featureFamily, featureProduct}
3 d = {8 , cartesianProduct}
4 featureFamily = {“Feature Family”, “FEATURE_FAMILY ”}
5 featureProduct = {“Feature Product”, “FEATURE_PRODUCT”}
6 lift = {“Lift”, “lift”}
7 analysisTime = {“Analysis Time”, “analysisTimeCommand”}

∀e : E · wf(e) ⇐⇒ (∀h ∈ e.hypothesis·
h.dependentV ariable ∈ e.dependentV ariables ∧
h.treatment1 ∈ e.treatments ∧
h.treatment2 ∈ e.treatments ∧
h.treatment1 6= h.treatment2 )

∧ (∀rh1 , rh2 ∈ e.hypotheses · rh1 6= rh2 =⇒
rh1 .name 6= rh2 .name)

∧ (∀tr1 , tr2 ∈ e.treatments · tr1 6= tr2 =⇒
tr1 .name 6= tr2 .name ∧ tr1 .command 6= tr2 .command)

∧ (∀o1 , o2 ∈ e.objects · o1 6= o2 =⇒
o1 .name 6= o2 .name ∧ o1 .argument 6= o2 .argument)

∧ (∀dv1 , dv2 ∈ e.dependentVariables · dv1 6= dv2 =⇒
dv1 .name 6= dv2 .name ∧ dv1 .instrument 6= dv2 .instrument)

(1)

Listing 7: Execution Script and Execution Model
1 ES ::= {applications : A}
2 A ::= {instrument : String, command : String, argument : String}
3 EX ::= {dependentVariable : DV , treatment : T , object : O}
4 ER ::= {instrument : String, command : String, argument : String, value : Float}

From each execution (Lines 7–12), an application is
generated by using generateApplication (Line 8). Then,
each application is repeated the number of times de-
fined in the experimental design (Lines 9–11). Finally,
an execution script is created with all the generated
applications (Lines 13–14).

Function applyDesign (Line 17) applies, for each
hypothesis (Lines 19–30), designFunction to the treat-
ments of that hypothesis and to the experimental ob-
jects (Line 22). This results in a series of treatment and
object pairs related by the design function. From each
pair (Lines 23–29), an execution EX is created (Line 24)
using its treatment (Line 25), its object (Line 26), and
the dependent variable of the corresponding hypothe-
sis (Line 27).

Function generateApplication (Line 33) generates an
application A from an execution EX . First, an appli-
cation A is created (Line 34). Then, the command of
the application is assigned with the corresponding com-
mand from the treatment of the execution (Line 35),

the argument of the application is assigned with the
corresponding argument from the object of the execu-
tion (Line 36), and the instrument of the application is
assigned with the corresponding instrument from the
dependent variable of the execution (Line 37).

For example, in Listing 8, we present the abstract
syntax of an execution script generated from Listing 6,
which contains applications (Lines 2 and 3) required to
evaluate the research hypothesis rh1 (Line 2, Listing 6).
Each application is repeated 8 times, which is the num-
ber of runs defined in design (Line 3, Listing 6). For the
sake of brevity, we omitted that repetitions.

Definition 2 (Execution script well-formedness)
Every execution script is well-formed.

∀es : ES · wf (es)

The generation of the execution script must assure
that, given a well-formed experiment specification (Def-
inition 1), the resulting execution script is also well-
formed (Definition 2):
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Listing 8: Example of an Experiment Execution Script
1 es = [
2 {“analysisTimeCommand”, “FEATURE_FAMILY ”, “lift”},
3 {“analysisTimeCommand”, “FEATURE_PRODUCT”, “lift”}
4 ]

Algorithm 1 Execution Script Generation
1: function generateExecutionScript(experimentSpecification : E) : ES
2: design ← experimentSpecification.design
3: hypotheses ← experimentSpecification.hypotheses
4: objects ← experimentSpecification.objects
5: executions ← applyDesign(design, hypotheses, objects)
6: applications ← new List
7: for all execution ∈ executions do
8: application ← generateApplication(execution)
9: for i ← 1 , design.runs do . Repeats execution design.runs times
10: insert application into applications
11: end for
12: end for
13: executionScript ← new ES
14: executionScript.applications ← applications
15: return executionScript
16: end function

17: function applyDesign(design : D, hypotheses : H , objects : O) : EX
18: executions ← new List
19: for all hypothesis ∈ hypotheses do
20: t1 ← hypothesis.treatment1
21: t2 ← hypothesis.treatment2
22: relTreatmentsAndObjects ← design.designFunction({t1 , t2}, objects)
23: for all pairTreatmentObject ∈ relTreatmentsAndObjects do
24: execution ← new EX
25: execution.treatment ← pairTreatmentObject.treatment
26: execution.object ← pairTreatmentObject.object
27: execution.dependentVariable ← hypothesis.dependentVariable
28: insert execution into executions
29: end for
30: end for
31: return executions
32: end function

33: function generateApplication(execution : EX) : A
34: application ← new A
35: application.command ← execution.treatment.command
36: application.argument ← execution.object.argument
37: application.instrument ← execution.dependentVariable.instrument
38: return application
39: end function

Property 1 (Execution script generation well-
formedness)

The result of generating an execution script from a
well-formed experiment specification is a well-formed
execution script.

∀e : E · wf (e) =⇒ wf (generateExecutionScript(e))

Proof. By definition of generateExecutionScript, since
every execution script ES is well-formed (Definition 2).

To ensure soundness, in addition, Property 2 states
that the generation of the execution script must assure
that this script includes the applications required to
evaluate all the research hypotheses defined in the ex-
periment specification, and that each application is run
the number of times defined in the experimental design.

Property 2 (Execution script generation soundness)
The infrastructure runs the required commands to

execute a well-formed experiment (Equation (2)). Specif-
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ically, for each hypothesis of a well-formed experiment,
its treatments are applied n times to each experimen-
tal object, according to the experimental design and
using the corresponding instrumentation. The number
of repetitions n is specified in the experimental design.

Proof. By definition of generateExecutionScript, as it
calls applyDesign and, for each hypothesis (Line 19, Al-
gorithm 1), applyDesign applies the design of the exper-
iment to the treatments related to the hypothesis and
to the objects defined in the experiment (Line 22), re-
sulting in pairs of related treatments and objects. When
generateExecutionScript calls generateApplication, the
resulting pairs of treatments and objects, together
with the related dependent variable (Line 27), are
mapped to their corresponding command (Line 35),
argument (Line 36), and instrument (Line 37); the re-
sulting application is repeated the number of times
defined in the experimental design (Line 9).

Furthermore, in addition to soundness, it is essential
to optimize resource allocation, since experiment execu-
tion is often costly. In this vein, Property 3 states that
the generated execution script contains only applications
related to the hypotheses defined in the experiment spec-
ification.

Property 3 (Execution resource optimization)
The infrastructure runs only commands required to

evaluate the hypotheses according to the design of the
experiment, nothing else, as can be seen in Equation (3).
Specifically, each application executed by the infras-
tructure maps to an execution of a treatment on an
experimental object related to some dependent variable
and hypothesis of the experiment. The treatment is re-
lated to one hypothesis specified in the experiment, and
the instrument used to measure the dependent variable
is related to the same hypothesis. In addition, the ex-
perimental object is related to the treatment according
to the experimental design.

Proof. By definition of generateExecutionScript, as each
application A is generated (Line 8, Algorithm 1) from
an execution E resulting from applying the design of the
experiment (Line 5) to the treatments of each hypothesis
and to the experimental objects.

After execution script generation, the supporting
framework uses the function execute (Line 1, Algo-
rithm 2) to request the running infrastructure to run
the execution script and, then, collects a series of ex-
ecution results ER. Each application in the execution
script (Lines 3–11) is executed by the running infras-
tructure, and the return value is collected (Line 4). An

execution result ER is created (Line 5), and the instru-
ment (Line 6), the command (Line 7), and the argu-
ment (Line 8) used to run that application are assigned
to the execution result; the value resulting from execu-
tion is assigned to field value (Line 9). Carrying over all
four elements into the execution result is necessary for
filtering purposes during analysis (Section 3.4).

The infrastructure semantics (Definition 3) consists
of the results of executing the execution script in the
running infrastructure.

Definition 3 (Infrastructure semantics)

∀es : ES · wf (es) =⇒ JesK = execute(es)

3.4 Analysis script generation and analysis

An analysis script AS (Line 1, Listing 9) comprises a
sequence of hypotheses tests HT , each of which (Line 2)
is defined by a hypothesisName and a sequence of anal-
ysis tests AT . A hypothesis test is applied to each hy-
pothesis, whereas an analysis test is applied to each
object related by design function to the treatments
of that hypothesis. Each analysis test AT (Line 3) is
defined by an analysis function and two parameters
P. These parameters (Line 4) are records with fields
instrument, command, and argument. They are used to
filter the execution results corresponding to the appli-
cation that generated the result (cf. Algorithm 4, as
explained later). Each hypothesis result HR (Line 5) is
the result of analyzing each hypothesis and is defined by
a hypothesisName and a sequence of testResults. Each
test result TR (Line 6) is the result of the analysis test
applied to the corresponding object. The argument is
used to trace the test results to the corresponding ob-
ject, and the analysisResult is the result of applying the
analysis test. The analysis result AR (Line 7) contains a
String result representing the result of the analysis test.

Function generateAnalysisScript (Line 1, Algo-
rithm 3) generates the analysis script AS based on an
experiment specification E . For each hypothesis (Lines 6–
9) defined in the experiment specification, function
generateHypothesisTest (Line 7) generates a hypothesis
test using the experimental design, the corresponding
hypothesis, and the experimental objects defined in the
experiment specification. Finally, an analysis script is
created (Line 10), and the generated hypotheses tests
are assigned to field hypothesesTests (Line 11).

Function generateHypothesisTest (Line 14) gener-
ates a hypothesis test from the experimental design,
a hypothesis, and a list of objects. It first calls
applyDesign (Line 16), which results in a set of ex-
ecutions. Each execution comprises the dependent
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∀e : E · wf (e) =⇒ ∀h ∈ e.hypotheses·
∀ (t, o) ∈ e.design.designFunction({t1 , t2}, e.objects)·

∃=na ∈ generateExecutionScript(e).applications
| a.instrument = h.dependentVariable.instrument
∧ a.command = t.command
∧ a.argument = o.argument

where
t1 = h.treatment1

t2 = h.treatment2

(2)

∀e : E · wf (e) =⇒ ∀a ∈ generateExecutionScript(e).applications·
∃h ∈ e.hypotheses, t ∈ {t1 , t2}, o ∈ e.objects

| a.instrument = h.dependentVariable.instrument
∧ a.command = t.command
∧ a.argument = o.argument
∧ (t, o) ∈ e.design.designFunction({t1 , t2}, e.objects)

where
t1 = h.treatment1

t2 = h.treatment2

(3)

Algorithm 2 Experiment Execution
1: function execute(executionScript : ES) : ER
2: results ← new List
3: for all application ∈ executionScript.applications do
4: value ← executeApplication(application) . Executes the application in the infrastructure
5: result ← new ER
6: result.instrument ← application.instrument
7: result.command ← application.command
8: result.argument ← application.argument
9: result.value ← value
10: insert result into results
11: end for
12: return results
13: end function

variable defined for the hypothesis, either treatment1
or treatment2 related to the same hypothesis, and
an object, related to the treatment by the design
function. For each execution (Lines 17–25), function
generateAnalysisTest (Line 21) generates an analysis
test using the corresponding object and the hypothesis.
Since the analysis test compares the execution results
of both treatments, when applied to an object, there
must be only one analysis test per object related to a
given hypothesis. For this reason, before generating the
analysis test, we first check if a test has already been
generated for that object (Line 20).

Function generateAnalysisTest (Line 31) generates
an analysis test from a hypothesis and a related
object. First, the analysis test is created (Line 35).
Then, the analysis function is retrieved by calling
suitableFunction (Line 36), which is an oracle embed-

ding the statistician’s knowledge to provide a suitable
analysis function for a given research hypothesis [11, 26].
Since this analysis function is provided uniquely based
on the hypothesis, it is actually a procedure with para-
metric and nonparametric tests, as well tests to check
the assumptions to the parametric tests. During analysis,
when execution results are available, the analysis test
first checks if all assumptions are satisfied, and, if so, the
parametric test is applied. Otherwise, another (nonpara-
metric) test is applied. Next, successive calls to func-
tion generateParameter generate parameter1 (Line 37)
and parameter2 (Line 38) using the dependentVariable,
object, and treatment1 and treatment2 of the hypothesis,
respectively.

Finally, function generateParameter (Line 41) gen-
erates an parameter P from a dependentVariable, a
treatment, and an object. The instrument of the de-
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Listing 9: Analysis Script and Analysis Model
1 AS ::= {hypothesesTests : HT}
2 HT ::= {hypothesisName : String, analysisTests : AT}
3 AT ::= {analysisFunction : ER × ER→ AR, parameter1 : P, parameter2 : P}
4 P ::= {instrument : String, command : String, argument : String}
5 HR ::= {hypothesisName : String, testResults : TR}
6 TR ::= {argument : String, analysisResult : AR}
7 AR ::= {result : String}

pendent variable, the command of the treatment, and
the argument of the object are assigned, respectively, to
the instrument (Line 43), the command (Line 44), and
the argument (Line 45) of the parameter P.

For example, in Listing 10, we present the abstract
syntax of an analysis script generated from Listing 6,
which contains the hypothesis test required to evaluate
the research hypothesis rh1 (Line 2, Listing 6). The anal-
ysis test (Line 2) comprises an analysis function and two
parameters: p1 (Line 4) and p2 (Line 5), which are used
to filter the execution results corresponding to the mea-
surement of the dependent variable analysisTime result-
ing from the application of treatments Feature Family
and Feature Product to the object Lift.

Definition 4 (Analysis script well-formedness)
An analysis script is well-formed if and only if each

distinct hypothesis test refers to a distinct hypothesis;
each analysis test compares distinct treatments but
the same object and dependent variable; and, for each
hypothesis, each analysis test is related to a distinct
object, as defined in Equation (4).

Similar to the generation of execution scripts, the
generation of the analysis script must assure that, given
a well-formed experiment specification (cf. Definition 1),
the resulting analysis script is also well-formed (cf. Defi-
nition 4):

Property 4 (Analysis script generation well-formedness)

The result of generating an analysis script from a
well-formed experiment specification is a well-formed
analysis script.

∀e : E · wf (e) =⇒ wf (generateAnalysisScript(e))

Proof. By definition of generateAnalysisScript, since
each hypothesis test is generated from a distinct
hypothesis (Line 7, Algorithm 3) using a distinct
hypothesisName (Line 27), each analysis test is gen-
erated from a distinct object (Line 21), and the pa-
rameters of the analysis test are generated from the

same dependent variable and object but with a distinct
treatment (Lines 37 and 38), since the experiment is
well-formed.

The supporting framework uses function
analyze (Line 1, Algorithm 4) to request the run-
ning infrastructure to analyze the execution results
using the previously generated analysis script and
returning a series of hypothesis results HR. The
execution results are analyzed by each hypothesisTest
of the analysis script (Lines 3–6) by calling the function
analyzeHypothesis (Line 4). This function (Line 9)
applies all the analysisTests (Lines 11–14) of that
hypothesisTest. Each analysisTest is applied by the
function applyAnalysisTest (Line 12), which returns
a testResult TR. Then, a hypothesisResult is cre-
ated (Line 15), the hypothesisName is assigned to field
hypothesisName (Line 16), and the testResults are
assigned to field testResults (Line 17).

Function applyAnalysisTest (Line 20) performs the
analysis test and returns a testResult. It first filters the
execution results (Lines 21–22) corresponding to each
treatment using the parameters defined in the analysis
test. Then, the analysis function is applied (Line 23) to
the execution results, returning an analysis result. Fi-
nally, a testResult is created, and the argument (Line 25)
and the analysis result are set to it.

Function filterResults (Line 29) filters execution re-
sults based on the instrument, the command, and the
argument defined for the argument. Each subset of the
execution results corresponds to the measurements of a
dependent variable resulting from applying each treat-
ment of a hypothesis to an experimental object.

The overall result of an experiment is a sequence
of hypothesis results. Each hypothesis result represents
the answer to a research hypothesis evaluated for each
object, according to the experimental design.

Definition 5 (Experiment semantics) The seman-
tics of a well-formed experiment consists of the confir-
mation/rejection of its hypotheses (Equation (5)).
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Listing 10: Example of an Experiment Analysis Script
1 as = [
2 {“rh1”, [ {analysisFunction, p1 , p2} ] }
3 ]
4 p1 = {“analysisTimeCommand”, “FEATURE_FAMILY ”, “lift”}
5 p2 = {“analysisTimeCommand”, “FEATURE_PRODUCT”, “lift”}

Algorithm 3 Analysis Script Generation
1: function generateAnalysisScript(experimentSpecification : E) : AS
2: hypothesesTests ← new List
3: design ← experimentSpecification.design
4: hypotheses ← experimentSpecification.hypotheses
5: objects ← experimentSpecification.objects
6: for all hypothesis ∈ hypotheses do
7: hypothesisTests ← generateHypothesisTest(design, hypothesis, objects)
8: insert hypothesisTests into hypothesesTests
9: end for
10: analysisScript ← new AS
11: analysisScript.hypothesesTests ← hypothesesTests
12: return analysisScript
13: end function

14: function generateHypothesisTest(design : D, hypothesis : H , objects : O) : HT
15: analysisTests ← new List
16: executions ← applyDesign(design, {hypothesis}, objects)
17: for all execution ∈ execution do
18: object ← execution.object
19: visitedObjects ← new List
20: if object /∈ visitedObjects then . Creates only one analysis test per object
21: analysisTest ← generateAnalysisTest(hypothesis, object)
22: insert analysisTest into analysisTests
23: insert object into visitedObjects
24: end if
25: end for
26: hypothesisTest ← new HT
27: hypothesisTest.hypothesisName ← hypothesis.name
28: hypothesisTest.analysisTests ← analysisTests
29: return hypothesisTest
30: end function

31: function generateAnalysisTest(hypothesis : H , object : O) : AT
32: dv ← hypothesis.dependentVariable
33: t1 ← hypothesis.treatment1
34: t2 ← hypothesis.treatment2
35: analysisTest ← new AT
36: analysisTest.analysisFunction ← suitableFunction(hypothesis)
37: analysisTest.parameter1 ← generateParameter(dv, t1 , object)
38: analysisTest.parameter2 ← generateParameter(dv, t2 , object)
39: return analysisTest
40: end function

41: function generateParameter(dependentVariable : DV , treatment : T , object : O) : P
42: parameter ← new P
43: parameter .instrument ← dependentVariable.instrument
44: parameter .command ← treatment.command
45: parameter .argument ← object.argument
46: return parameter
47: end function
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∀as : AS · wf (as) ⇐⇒ (∀ht1 , ht2 ∈ as.hypothesesTests·
ht1 6= ht2 =⇒ ht1 .hypothesisName 6= ht2 .hypothesisName)

∧ (∀ht ∈ as.hypothesesTests · (∀at ∈ ht·
at.parameter1 .instrument = at.parameter2 .instrument
∧ at.parameter1 .argument = at.parameter2 .argument
∧ at.parameter1 .command 6= at.parameter2 .command)

∧ (∀at1 , at2 ∈ ht · at1 6= at2 =⇒
at1 .parameter1 .argument 6= at2 .parameter1 .argument))

(4)

Algorithm 4 Analysis
1: function analyze(executionResults : ER, analysisScript : AS) : HR
2: hypothesesResults ← new List
3: for all hypothesisTest ∈ analysisScript.hypothesesTests do
4: hypothesisResults ← analyzeHypothesis(executionResults, hypothesisTest)
5: insert hypothesisResults into hypothesesResults
6: end for
7: return hypothesesResults
8: end function

9: function analyzeHypothesis(executionResults : ER, hypothesisTest : HT) : HR
10: testResults ← new List
11: for all analysisTest ∈ hypothesisTest.analysisTests do
12: testResult ← applyAnalysisTest(executionResults, analysisTest)
13: insert testResult into testResults
14: end for
15: hypothesisResults ← new HR
16: hypothesisResults.hypothesisName ← hypothesisTest.hypothesisName
17: hypothesisResults.testResults ← testResults
18: return hypothesisResults
19: end function

20: function applyAnalysisTest(executionResults : ER, analysisTest : AT) : TR
21: results1 ← filterResults(executionResults, analysisTest.parameter1 )
22: results2 ← filterResults(executionResults, analysisTest.parameter2 )
23: analysisResult ← analysisTest.analysisFunction(results1 , results2 )
24: testResult ← new TR
25: testResult.argument ← analysisTest.parameter1 .argument
26: testResult.analysisResult ← analysisResult
27: return testResult
28: end function

29: function filterResults(results : ER, parameter : P) : ER
30: filteredResults ← new List
31: for all result ∈ results do
32: if result.instrument = parameter .instrument ∧ result.command = parameter .command ∧ result.argument =

parameter .argument then
33: insert result into filteredResults
34: end if
35: end for
36: return filteredResults
37: end function

∀e : E · wf (e) =⇒ JeK = analyze(executionResults, analysisScript)
where

executionResults = execute(executionScript)
executionScript = generateExecutionScript(e)
analysisScript = generateAnalysisScript(e)

(5)
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Finally, the overall process, which includes execution
script generation, execution, analysis script generation,
and analysis, must assure that the experiment seman-
tics (Definition 5) is consistent with the experiment
specification, addressing Problem 3.

Property 5 (Experiment soundness)
The analysis is performed by using a suitable analysis

function for each hypothesis and using correct param-
eters in the correct order (Equation (6)). In addition,
execution data are produced by executing a sound execu-
tion script generated from the experiment specification.

HR↔ H is the bijection between hypotheses results
HR and hypotheses H induced by the forward com-
position of the inverse of functions analyzeHypothesis
and generateHypothesisTest. Given a hypothesis result
hr : HR, h : H is its corresponding hypothesis.

Likewise, TR ↔ hObjects is the bijection between
test results TR and the objects resulting from applying
the design function to the treatments of a given hy-
pothesis and experimentation objects. The bijection is
induced by the forward composition of the inverse of the
functions applyAnalysisTest and generateAnalysisTest.
We also use a helper function objects : (T ,O)→ O.

Proof. Let e ∈ E , as ∈ AS , at ∈ AT . By
definition of applyAnalysisTest, since it applies
at.analysisFunction (Line 23, Algorithm 4) to two sub-
sets of the execution results, filtered by filterResults
using parameters at.parameter1 (Line 21, Algo-
rithm 4) and at.parameter2 (Line 22, Algorithm 4);
at.analysisFunction is a suitable function to analyze
the hypothesis (Line 36, Algorithm 3). The parameters
used to filter each subset of the results are generated
from the same dependent variable and object, but each
one using a different treatment of the same hypothe-
sis (Lines 37 and 38, Algorithm 3).

We note that the value of the proofs of Properties 1–5
is that they provide formal evidence of the correctness of
the corresponding properties, which altogether address
Problem 3 in Section 2. In other words, such proofs
guarantee that analysis results actually trace to the
stated experimental hypotheses, which could otherwise
be overlooked in manual or even automated approaches
as Remark 3 and Example 5 in Section 2 point out.
Additionally, we note that the definitions and the algo-
rithms in Section 3 provide a precise specification from
which a solution, namely ExpRunA, to Problems 1 and
2 in Section 2 is implemented.

3.5 Running infrastructure

The main functions of the running infrastructure are
to execute and to analyze the experiment. It receives
commands from the supporting framework to run the
execution script, reports the execution status, and sends
execution results back to the supporting framework.
Likewise, the running infrastructure receives commands
to run the analysis script and sends analysis results back
to the supporting framework.

The running infrastructure must be able to run
applications specified in an execution script; check
and report execution status; and collect execution re-
sults. For example, to run the execution script pre-
sented in Listing 8, the running infrastructure must
be able to run the computational tools correspond-
ing to each application (FEATURE_FAMILY and
FEATURE_PRODUCT ), report execution status, and
present the results measured by the corresponding instru-
mentation (analysisTimeCommand). In addition, the
running infrastructure must apply each analysis test of
an analysis script (Listing 10) and present the corre-
sponding results. We present the running infrastructure
in detail in Section 4.

3.6 Supporting framework

The supporting framework integrates the DSM compo-
nents and provides the interface between the generated
code and the running infrastructure. It also monitors
execution, collects results, and presents the analysis
results to the experimenter.

The sequence diagram in Figure 2 shows how
the supporting framework interacts with the other
elements of our DSM solution. By calling function
generateExecutionScript (Line 1, Algorithm 1), the sup-
porting framework requests the generator to generate
the execution script from the experiment specification;
likewise, by calling generateAnalysisScript (Line 1, Al-
gorithm 3), the supporting framework requests the gen-
eration of the analysis script. By calling function execute
(Line 1, Algorithm 2), the framework requests the run-
ning infrastructure to execute the corresponding execu-
tion script. While execution is running, the framework
monitors and gathers partial results from the running
infrastructure. After finishing execution, by calling the
function analyze (Line 1, Algorithm 4), the support-
ing framework requests the running infrastructure to
analyze the execution results using the previously gener-
ated analysis script. Finally, the supporting framework
collects the analysis results and present them to the
experimenter.
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∀e : E · wf (e) =⇒ ∀hr ∈ JeK · ∀tr ∈ hr ·
tr = suitableFunction(h)(parameter1 data, parameter2 data)

where
parameter1 data = filterResults(executionResults, parameter1 )
parameter2 data = filterResults(executionResults, parameter2 )
executionResults = execute(generateExecutionScript(e))
parameter1 = (h.dependentVariable.instrument, h.treatment1 .command,
o.argument)
parameter2 = (h.dependentVariable.instrument, h.treatment2 .command,
o.argument)
h = (HR↔ H)hr
hObjects = e.design.designFunction({h.treatment1 , h.treatment2},
e.objects).objects
o = (TR↔ hObjects)tr

(6)

Fig. 2: Supporting framework interactions

4 ExpRunA

In this section, we present ExpRunA,7 a Web-based tool
that implements the DSM approach (Section 3), pro-
viding a means to specify executable specifications at
a high level of abstraction, automated execution, data
analysis, and results presentation. We present its func-
tional view (Section 4.1), its architecture (Section 4.2),
and its implementation (Section 4.3).

4.1 Functional view

To conduct an experiment using ExpRunA, an exper-
imenter first must create an experiment specification
using ToExpDSL. To ease this task, we created a specific
editor with syntax highlighting, content assist, syntax
validation, static semantics validation, template propos-
als, and text hover (Figure 3). When an experiment

7 https://expruna.github.io/.

Fig. 3: DSL editor

is specified using the editor, its specification is type
checked according to the grammar rules and static se-
mantics validation rules. Non-conformity is reported as
an error or as a warning by the editor.

Listing 11 shows a specification using our DSL, which
was adapted from the original experiment conducted
by Lanna et al. [30]. In this specification, the research hy-
pothesis RH1 (Line 4) compares the dependent variable
analysisTime for the treatments featureFamily and feature-
Product. The dependent variable analysisTime (Line 10)
has a corresponding instrumentation (Line 13). The
instrumentation consists of a command and a value ex-
pression. The command is used to run the instrumenta-
tion tool, whereas the value expression is used to build
a regular expression and to extract the corresponding
value from the output. The treatments (Lines 18–21) are
related to the factor strategy (Line 16). Each treatment
defines a parameter argument and uses the execution
reanaEvaluator (Lines 19 and 20). Each object defines
a parameter spl (Lines 24 and 27). The execution re-
anaEvaluator (Lines 32–34) defines a command using
the placeholders ${treatment.parameter.argument} and
${object.parameter.spl} (Line 33), which are replaced by
the corresponding values defined for each treatment and
object during the execution script generation.

After specifying the experiment, the experimenter
can generate execution and analysis scripts by running
the command Generate. The command Generate and
Run (Figure 4) generates and runs the scripts. The exe-

https://expruna.github.io/
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Listing 11: Example of an experiment specification
1 Experiment reanaSpl {
2 description "Reliability Analysis of Software Product Lines"
3 Research Hypotheses {
4 RH1 {analysisTime featureFamily = featureProduct description "Analysis time for Feature Family is equal to analysis time for

Feature Product"}
5 }
6 Experimental Design {
7 runs 8
8 }
9 Dependent Variables {

10 analysisTime { description "Analysis time" scaleType Absolute unit "ms" instrument analysisTimeCommand }
11 }
12 Instruments{
13 analysisTimeCommand {command "/usr/bin/time −v" valueExpression "Total analysis time:" }
14 }
15 Factors {
16 strategy { description "Analysis Strategy" scaleType Nominal}
17 }
18 Treatments {
19 featureFamily description "Feature Family" factor strategy parameters{argument "FEATURE_FAMILY"} execution

reanaEvaluator,
20 featureProduct description "Feature Product" factor strategy parameters{argument "FEATURE_PRODUCT"} execution

reanaEvaluator
21 }
22 Objects { description "SPL" scaleType Nominal {
23 lift {
24 description "Lift" parameters {spl "lift"}
25 },
26 intercloud {
27 description "Intercloud" parameters {spl "intercloud"}
28 }
29 }
30 }
31 Executions {
32 reanaEvaluator {
33 command "java −Xss100m −Xmx8g −jar reana−spl.jar −−all−configurations −−suppress−report −−stats −−param−path

= param −−analysis−strategy = ${treatment.parameter.argument} −−feature−model =
${object.parameter.spl}/models/0.txt −−uml−models = ${object.parameter.spl}/models/0_model.xml"

34 }
35 }
36 }

cution script is executed by the running infrastructure,
and, during execution, the execution status is presented
to the experimenter (Figure 5). Execution results are col-
lected, and then analyzed by the analysis script. Finally,
the experimenter can access not only a report contain-
ing plots, statistical tests, and the overall results of the
experiment, but also the raw data and the generated
scripts. The experimenter can also re-run the analysis
using the command Run Analysis or perform additional
analysis using the raw data and the scripts. The boxplot
presented in Figure 6 corresponds to the analysis of RH1,
which compares the analysis time of the treatments fea-
tureFamily and featureProduct (Line 4, Listing 11), for
the experiment object Lift (Lines 23–24, Listing 11).

Fig. 4: Generate and run command

4.2 Architecture

ExpRunA’s architecture is modular and extensible due
to Eclipse’s8 extension mechanism. The core compo-

8 https://www.eclipse.org/.

https://www.eclipse.org/
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Fig. 5: Execution status
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Fig. 6: Excerpt of an analysis report

nent comprises the grammar, the validators, and in-
terfaces to define generators, commands, and access
to a database (Figure 7). The execution script genera-
tor (DohkoGenerator) and the analysis script generator
(RScriptGenerator) are implementations of IGenerator.
Additional generators can be defined by implementing
this interface. The commands that can be run from
the supporting framework are defined by implementing
interface ICommand. The component RunDohko imple-
ments the command to run the execution script, and
the RunAnalysis implements the command to run the
analysis script. The ExecutionStatus component interacts
with the running infrastructure to monitor the execution
status. The component MongoDBApi implements the
access to database.

The running infrastructure must be able to run
the execution script and the analysis script. In our ex-
ploratory studies, we identified Dohko [31] as a candidate
solution to be used in ExpRunA, because it not only ful-
fills all the requirements presented in Section 3.5 but also
provides self-configuration, self-healing, and scalability
in inter-cloud environments. This frees the researcher
from the often error-prone and time-consuming task of

Fig. 7: Tool components

manually performing the configuration and initialization
of the computing infrastructure with sufficient resources
to run the experiments in a timely manner. Further-
more, Slurm [54] is a flexible and fault-tolerant cluster
resource management system. It provides a simple, ro-
bust, and scalable parallel job execution environment
for clusters. Both Dohko and Slurm could be used as
infrastructure solution in our approach. We decided for
Dohko since it can manage resources not only on clus-
ters but also in inter-cloud environments. To run the
analysis, we created an environment with R9 for data
analysis and LATEX10 for presentation of results. We ac-
tually run R Sweave scripts, which embed R code chunks
in LATEX documents. This is in line with the ideas of a
Reproducible Research, as proposed by Madeyski and
Kitchenham [33].

Each main component, that is, the supporting frame-
work, execution environment, analysis environment, and
database, is run in its own Docker container, which
enables customization, distributed execution, environ-
ment isolation, and portability. Given the modularity of
ExpRunA, each component can be easily replaced by a
custom image. For example, the users can easily adapt
their current infrastructure by creating a new Docker
image based on the Dohko image we provide and in-
stalling their specific packages and dependencies on it.
In highly resource-consuming experiments, distributed
execution enables leveraging resources from multiple
machines, achieving a greater performance than using
a single machine. In addition, environment isolation
prevents the other components from affecting execution
results, specially when it comes to performance mea-
surements, such as runtime and memory consumption.
Finally, portability enables ExpRunA to be run in dis-
tinct environments, consequently, easing execution and
replication of experiments.

9 https://www.r-project.org.
10 https://www.latex-project.org.

https://www.r-project.org/
https://www.latex-project.org
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4.3 Implementation

Using Xtext,11 we created ToExpDSL partially based
on ExpDSL by Freire et al. [20]. ExpDSL comprises four
views: process view, metric view, experimental plan view,
and questionnaire view. The metric view and experimen-
tal view are the same for human-oriented and technology-
oriented experiments; thus, they can be reused in our
setting. Nevertheless, since the process view and the
questionnaire view are bound to human-oriented exper-
iments, they cannot be reused in our setting. So, we
created ToExpDSL with new constructs for technology-
oriented experiments, which supports the specification
of execution parameters related to the treatments, as
well infrastructure requirements, such as the number
of CPUs and memory size. In addition, since both the
grammar and the generated artifacts are significantly
distinct from ExpDSL, we also developed our own code
generators and supporting framework.

The concrete syntax of the grammar was specified
in Xtext, which is a tool set for the definition of tex-
tual languages. In fact, there are distinct tools that
support the definition of DSLs, either textual or graphi-
cal. For instance, Web Generic Modeling Environment
(WebGME)[34] is a Web-based infrastructure to sup-
port graphical Domain-Specific Modeling Languages
(DSML). However, we chose Xtext due to its integration
with Eclipse and to our familiarity with it. ToExpDSL’s
full grammar is presented on our supplementary Website.
The parser of the ToExpDSL receives the specification
of an experiment and returns a corresponding object.
Then, the validators and code generators access this
object and all its elements to, respectively, validate and
generate the code.

The validators and code generators have been imple-
mented in Xtend.12 The validators complement those
provided by the grammar rules to check the well-
formedness (Definition 1) of the experiment specification.
Additionally, the validators report warnings whenever
a dependent variable, a factor, a treatment, or an exe-
cution is never used. Our validation rules are listed on
our supplementary Website.

After validating the specification, the code genera-
tors access the experiment model and, leveraging string
templates, generate code. We implemented two code gen-
erators: an executions script generator and an analysis
script generator.

Since we are using Dohko as infrastructure, the
execution script is actually a Dohko Application De-
scriptor. Listing 12 shows an excerpt of the generated
execution script corresponding to the experiment spec-
11 https://eclipse.org/Xtext/.
12 http://www.eclipse.org/xtend/.

ification in Listing 11. According to Algorithm 1, the
execution script generator applies the treatments to
the objects according to the design function, which
expresses how treatments relate to objects. Currently,
ExpRunA supports only design functions expressed as
any subset of a Cartesian product of treatments and
objects. For instance, the experimenter could restrict
the application of the treatment featureProduct only
to the object Lift. Since no restriction was applied to
the design in our example (Lines 6–8, Listing 11), a
Cartesian product is used to relate the treatments to
the objects. Accordingly, each block of applications in
the execution script corresponds to the application of
a treatment to an object (Lines 5–7, 8–10, 11–13, and
14–16, Listing 12). The command line of each appli-
cation is generated by combining the instrumentation
command and the execution command. Furthermore,
the placeholders related to treatments and objects are
replaced by the corresponding values. For instance, by
applying the treatment featureFamily to the object lift,
the resulting command Line (Line 7) uses the instru-
mentation command (Line 13, Listing 11) related to
the dependent variable analysisTime, the command line
defined for reanaEvaluator (Line 33, Listing 11), the pa-
rameter argument defined for the treatment featureFam-
ily (Line 19, Listing 11), and the parameter spl defined
for the object lift (Line 24, Listing 11). Finally, the
resulting application is repeated the number of times
defined by runs (Line 7, Listing 11). For the sake of
brevity, we omitted these repetitions in Listing 12.

Listing 12: Excerpt of a generated execution script cor-
responding to the experiment specification in Listing 11

1 −−−
2 name: "reanaSpl"
3 description: "Reliability Analysis of Software Product Lines"
4 blocks:
5 − applications:
6 − name: "featureFamily_lift_0"
7 command−line: "/usr/bin/time −v java −Xss100m

−Xmx8g −jar reana−spl.jar
−−all−configurations −−suppress−report
−−stats −−param−path = param
−−analysis−strategy = FEATURE_FAMILY
−−feature−model = lift/models/0.txt
−−uml−models = lift/models/0_model.xml"

8 − applications:
9 − name: "featureFamily_intercloud_0"
10 command−line: "/usr/bin/time −v java −Xss100m

−Xmx8g −jar reana−spl.jar
−−all−configurations −−suppress−report
−−stats −−param−path = param
−−analysis−strategy = FEATURE_FAMILY
−−feature−model = intercloud/models/0.txt
−−uml−models =
intercloud/models/0_model.xml"

11 − applications:

https://eclipse.org/Xtext/
http://www.eclipse.org/xtend/
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12 − name: "featureProduct_lift_0"
13 command−line: "/usr/bin/time −v java −Xss100m

−Xmx8g −jar reana−spl.jar
−−all−configurations −−suppress−report
−−stats −−param−path = param
−−analysis−strategy = FEATURE_PRODUCT
−−feature−model = lift/models/0.txt
−−uml−models = lift/models/0_model.xml"

14 − applications:
15 − name: "featureProduct_intercloud_0"
16 command−line: "/usr/bin/time −v java −Xss100m

−Xmx8g −jar reana−spl.jar
−−all−configurations −−suppress−report
−−stats −−param−path = param
−−analysis−strategy = FEATURE_PRODUCT
−−feature−model = intercloud/models/0.txt
−−uml−models =
intercloud/models/0_model.xml"

The corresponding generated analysis script is an
R Sweave script (Listing 13). The analysis script starts
with ordinary LATEX code (Lines 1–5). For each hypothe-
sis (Line 4), and for each object related to the treatments
of that hypothesis by the design function (Line 5), the
analysis is performed with R code (Lines 6–24). First,
a boxplot is generated (Lines 7–15) from the execution
results corresponding to the dependent variable and
treatments related to the hypothesis, and the experi-
mental object at hand (Lines 7 and 9). Using the same
subset of the execution results, the analysis test first
checks whether the assumptions to apply a parametric
test are satisfied (Line 17). If so, it applies a parametric
test (Line 18) and presents the results (Line 19). Other-
wise, it applies a nonparametric test (Line 21) and then
presents the results (Line 22).

Listing 13: Excerpt of a generated analysis script
1 \begin{document}
2 \title{Reliability Analysis of Software Product Lines}
3 \section{Research Hypotheses}
4 \subsection{RH1: Analysis time for Feature Family is equal to

analysis time for Feature Product}
5 \subsubsection{RH1.1: Object Lift}
6 <<RH1_lift, include=TRUE, echo=FALSE,

warning=FALSE, message=FALSE >> =
7 DF = subset(json_data, (treatment == 'featureFamily' |

treatment == 'featureProduct') & object == 'lift')
8 DF$treatmentDescription =

ordered(DF$treatmentDescription, levels =
levels(DF$treatmentDescription)[
order(as.numeric(by(DF$analysisTime,
DF$treatmentDescription, mean)))])

9 boxplot_RH1_lift = ggplot(DF, aes(x
=treatmentDescription , y = analysisTime)) +

10 geom_boxplot(fill = "#4271AE", colour =
"#1F3552",alpha = 0.7,outlier.colour =
"#1F3552", outlier.shape = 20)+

11 theme_bw() +
12 scale_x_discrete(name = "Analysis Strategy")+
13 ggtitle("Analysis time by Analysis Strategy for Lift") +
14 ylab("Analysis time (ms)")

15 boxplot_RH1_lift
16
17 if(shap_featureFamily_lift$p.value > alpha &

shap_featureProduct_lift$p.value > alpha){
18 tTest = t.test(subset(json_data, treatment ==

'featureFamily' & object == 'lift')$analysisTime,
subset(json_data, treatment == 'featureProduct' &
object == 'lift')$analysisTime, var.equal =
fTest$p.value > alpha, paired = FALSE)

19 print(tTest)
20 }else{
21 wTest = wilcox.test(analysisTime¬treatment,

data=subset(json_data, (treatment ==
'featureFamily' | treatment == 'featureProduct') &
object == 'lift'))

22 print(wTest)
23 }
24 @
25 \end{document}

If it is necessary to change the definition of any ele-
ment of ToExpDSL, or to add elements to the grammar
(e.g., to specify additional design types), it is possible
to change the grammar defined in file AutoExp.xtext. It
is also possible to create a new grammar definition that
extends ToExpDSL. Xtext’s extension mechanism allows
us to add or override grammar definitions. It is impor-
tant to note, for changes in the grammar to be effective,
the code generators, and occasionally the validators,
must be changed accordingly. For example, suppose we
want to compare k treatments in a fully randomized
design [11]. We would have to change the ResearchHy-
pothesisFormula element in AutoExp.xtext to support the
definition of more than two treatments. Then, we would
have to change the DohkoGenerator class to include all
the applications in the execution script corresponding to
the treatments defined for each hypothesis. Likewise, we
would have to change the RScriptGenerator class to in-
clude suitable analysis tests to compare k treatments in
a fully randomized design, such as Analysis of Variance
(ANOVA) [11]. Finally, we also would have to change
the validator to check, for instance, if there are repeated
treatments in the hypothesis definition.

Additional rules in the validators can be created by
adding methods to the class AutoExpValidator and anno-
tating them with @Check. The validation method must
define the element of the DSL that will be checked as a
parameter. Inside the validation method, it is possible
to verify the element and throw a warning or an error,
in case there is a non-compliance.

Using DSLFORGE [29], an initial version of Ex-
pRunA was automatically generated from ToExpDSL’s
grammar and code generators. The generated applica-
tion is based on Eclipse Remote Application Platform
(RAP) and includes the Web editor and commands to
create and delete models, and also to generate code from
the model. We extended and customized this initial ver-
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sion of ExpRunA with additional commands to enable
execution, monitoring, data analysis, and presentation
of results.

5 Evaluation

We formally proved that our model complies with
key correctness properties to assure that execution
and analysis results are correct according to the ex-
periment specification (Sections 3.3 and 3.4). In this
section, we empirically assess our solution with respect
to automation, level of abstraction, and correctness.
Correspondingly, in Section 5.1, we investigate the ex-
pressiveness of our tool to specify technology-oriented
experiments (RQ 1) and whether it can automate exe-
cution and analysis from the specification of technology-
oriented experiments (RQ 2 and RQ 3). We then evalu-
ate the level of abstraction (Section 5.2) by comparing
specifications of previously published experiments and
specifications using our DSL (RQ 4), and by compar-
ing DSL’s grammar constructs with experimentation
concepts (RQ 5). Finally, in Section 5.3, we analyze
and interpret the assessment results, discussing threats
to validity, limitations of the contribution, and future
work.

5.1 Execution and analysis automation

The main goal of this section is to assess the ability
of ExpRunA to provide automation in the experimen-
tation process and is guided by the following research
questions:

RQ 1. Can ExpRunA be used to specify technology-
oriented experiments?

RQ 2. Does ExpRunA facilitate sound automation of ex-
periment execution from the specification of technology-
oriented experiments?

RQ 3. Does ExpRunA facilitate sound automation of
experiment analysis from the specification of technology-
oriented experiments?

5.1.1 Evaluation method

To address RQs 1 to 3, we first randomly selected three
previously published experiments13 meeting the crite-
ria described in Section 5.1.2. For each experiment, we
performed two replications: one using ExpRunA and
13 The set of experiments we found is presented on our supple-
mentary Website.

another using the scripts provided by the original au-
thors. With ExpRunA, we specified each experiment
using ToExpDSL, which assesses whether ToExpDSL is
sufficiently expressive to specify technology-oriented ex-
periments (RQ 1). Since the main goal of the evaluation
is to assess the feasibility of ExpRunA, not usability, we
used ToExpDSL ourselves (as future work, we plan an
independent usability evaluation). Then, we used Ex-
pRunA starting from specification, to generate and exe-
cute execution and analysis scripts. We also replicated
the experiments using the original scripts and, then,
compared the results with the results obtained with Ex-
pRunA. This way, we assure that not only ExpRunA can
generate execution and analysis scripts, but also that
these scripts can produce sound results. With sound
results, we mean execution results that lead to the same
conclusions as the original results.

To evaluate ExpRunA, we conducted external repli-
cations, with no interaction with original experimenters.
We used the published papers and the laboratory pack-
ages provided by the authors. The replications were as
similar as possible to the original experiments, except
for the machines. For practical reasons, we used the
same machine type for all experiments, without taking
into account the original machine resources. This may
affect the absolute execution time but should not affect
the overall conclusions of the experiments. In some cases,
we also made some minor changes in the original scripts
to ease execution and data collection. For instance, we
saved execution results in a file instead of showing them
in the console. These changes did not affect how the
experiment is executed and analyzed, though.

All the experiments were run on Google Cloud Plat-
form on a virtual machine type n1-standard-4 running
Ubuntu 16.10. The machine has 4 CPUs and 15 GB
RAM. To keep the execution environment as similar
as possible, both replications were run inside the same
Docker container and running in the same virtual ma-
chine. The complete specification, scripts files and re-
sults, as well instructions for future replications can be
obtained from our supplementary Website.

5.1.2 Experiments selection

We selected three experiments meeting the following
criteria:

– The experiment is reported in a paper published in
a venue explicitly requiring reproducibility as part
of the evaluation process or highlighting this fact in
accepted papers. The venues considered were Inter-
national Conference on Computer Aided Verification
(CAV) and Joint Meeting on Foundations of Software
Engineering (FSE).
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– The experiment is technology-oriented, that is, a
software, instead of a person, applies treatments to
objects.

– Replication is completely documented.
– Every software, script, and artifact required to repli-

cate the experiment is publicly available.
– Each hypothesis of the experiment compares two

treatments of the same factor at a time, or the exper-
iment can be decomposed in pairwise comparisons.

Based on these criteria, we selected the following
experiments:
Experiment 1. Bak and Duggirala [4] presented a
technique to perform simulation-equivalent reachability
and safety verification of linear systems with inputs.
To evaluate their proposal, they created a tool named
Hylaa (HYbrid Linear Automata Analyzer).14 In their
evaluation, the authors examined the effects of optimiza-
tions for computing reachability for linear time-invariant
systems with inputs. They compared a basic algorithm
(Basic), warm-start optimization (Warm), Minkowski
sum decomposition (Decomp), and Hylaa (uses both
Minkowski sum decomposition and warm-start). Mea-
surements for the no-input system (NoInput) were in-
cluded for reference and could be considered a lower
bound for the simulation-based methods if the time to
handle the inputs could be completely eliminated. In
order to measure runtime, the number of steps in the
problem was varied by changing the step size and keep-
ing the time bound fixed at 2π. Then, runtime for each
optimization was measured, recording 10 measurements
in each case. The performance of the basic algorithm
(Basic) is improved by warm-start optimization (Warm),
but not as much as when the Minkowski sum decompo-
sition optimization is used (Decomp). Combining both
optimizations works even better (Hylaa). The reachabil-
ity time for the system without inputs (NoInput) makes
a lower bound.
Experiment 2. Brennan et al. [12] presented a con-
straint caching framework to expedite potentially ex-
pensive satisfiability and model-counting queries. Their
techniques were implemented in a tool named Cashew,15

which was built as an extension of the Green caching
framework [49]. Cashew was also integrated with Sym-
bolic PathFinder (SPF) [37] and the ABC [3] model-
counting constraint solver. The authors investigated
the effects of their normalization procedure on model-
counting datasets of string constraints. The Kaluza
dataset [42], a well-known benchmark of string con-
straints, was used in their evaluation. This dataset con-
tains 1,342 big constraints (SMC-Big) and 17,554 small
14 https://bit.ly/2NTCuSe.
15 https://github.com/vlab-cs-ucsb/cashew/.

constraints (SMC-Small). Another version of this dataset
(without duplicates), with 359 constraints in SMC-Big
and 9,745 constraints in SMC-Small, was also used. The
results of model-counting all constraints in each set
(SMC-Big and SMC-Small, original and without dupli-
cates) are presented in Table 1. Table 1 shows that, on
the SMC-Big set without duplicates, Cashew achieved
a speedup of over 10x, and, on the SMC-Small set with-
out duplicates, of 2.19x. For the original datasets, the
speedup was 89.70x on SMC-Big, and 2.60x on SMC-
Small. The authors remarked that the speedup on SMC-
Big original dataset is due to the presence of duplicates,
which makes even caching with no normalization very
effective. They also investigated the effect of disabling
each transformation in the normalization procedure. Ta-
ble 2 shows the number of orbits that are achieved by
different subsets of the transformations. The number
of orbits represents the number of distinct constraints
resulting from applying the normalization procedure.
The removeVar and removeConj transformations are pre-
processing steps that remove redundant variables and
conjuncts, respectively. The other transformations are
re-ordering (σI ), renaming the variables (σV), and per-
muting the alphabet constants (σΣ). The results indicate
that all transformations yield some benefit, and that σV
is the most beneficial transformation.

Experiment 3. The third experiment is the second
part of the experimental evaluation presented in Bren-
nan et al. [12]. In this experiment, the authors investi-
gated the effects of their normalization procedure on side-
channel analysis. They used Symbolic PathFinder [37]
with Cashew to symbolically execute four Java pro-
grams that operate on strings: Password1, Password2,
Obscure, and CRIME. Password1 contains a method
that checks whether a user-given string matches a se-
cret password. Password2 is a variant of the previous
one that requires a certain number of characters to be
compared before returning, even if a mismatch has al-
ready been found. Obscure is a Java translation of the
obscure.c program used in Luu et al. [32], which is a
password change authorizer. CRIME is a Java version
of a well-known attack, Compression Ratio Info-leak
Made Easy [5, 40]. For each of the four programs, they
ran 1,000 symbolic-execution-based side-channel analy-
ses, using as the secret each of the 1,000 passwords in
the RockYou1K dataset [52]. Table 5 shows execution
time, hits and misses for three execution modes. The
first mode uses neither normalization nor caching. In
the second mode, only caching without normalization is
performed. In the third mode, Cashew’s normalization
is enabled. The results show that Cashew achieved an
average speedup of nearly 3x, while caching without

http://stanleybak.com/papers/bak2017cav_repeatability.zip
https://github.com/vlab-cs-ucsb/cashew/
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normalization achieved only 1.06x. The hit/miss ratios
improve dramatically when switching to Cashew.

5.1.3 Results

We present the results of replicating Experiments 1
to 3. The results of replicating the Experiment 1 with
ExpRunA (Figure 8b) are consistent with the replication
using original scripts (Figure 8a) and with the results
presented in the original paper (Figure 3 [4]): Basic is
the worst performing variant, followed by Warm and
Decomp; Hylaa is better than Decomp; and NoInput is a
lower bound. The relative differences between the results
with ExpRunA and with original scripts are presented
in Figure 9. The differences are comparatively high for
runtime values below 1 s, reaching more than 70% for
NoInput. However, the differences decrease quickly to
nearly 20% for 1 s, to 10% for two seconds, and to 5%
for 3 s. Above 3 s, the differences keep below 5%.
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Fig. 8: Results of replicating Experiment 1
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Fig. 9: Relative differences between replications with
ExpRunA and with original scripts for Experiment 1

The second replicated experiment is Experiment 2.
Due to the high number of duplicates present in origi-
nal dataset and to avoid an excessive time-consuming
experiment, we used only the Kaluza dataset without
duplicate in our replications. The results are presented
in Tables 3 and 4. Using the original scripts, Cashew
achieved a speedup of 20.62x on the SMC-Big, and 2.43x
on SMC-Small; using ExpRunA, 26.06x on SMC-Big and
24.45x on SMC-Small. When it comes to the effect of
each transformation in the normalization procedure, the
results of each replication are exactly the same. These
results are consistent with the results presented in the
paper (Tables 1 and 2). The only difference is the num-
ber of orbits on SMC-Small with no transformation,
which is 9710 for both replications, whereas the number
presented in the paper is 9754. Originally, the authors
computed the hash of each constraint file and removed
duplicates. They assumed that the number of unique
constraint files would be the same as the number of
orbits when no transformations were enabled; however,
this assumption was incorrect due to the different vari-
able declarations in files with the exact same constraint.
The relative differences between the average runtime
results with ExpRunA and with original scripts are pre-
sented in Figure 10. The difference is around 30% for
SMC-Big without caching and below 5% for the other
cases.

The last replicated experiment was Experiment 3.
The results are presented in Tables 6 and 7. Cashew
achieved an average speedup of 2.8x (original) and
2.43x (ExpRunA), while caching without normalization
achieved 1.07x (original) and 1.08x (ExpRunA). The
number of hits and misses for all programs is exactly
the same for both replications. These results are con-
sistent with the results presented in the original pa-
per (Table 5). However, there is a difference in results
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Table 1: Results of Model counting SMC-Big and SMC-Small [12]

Wihtout caching With caching Speedup

Big (no dups)
Average 8.94 s 0.82 s 10.90x
Maximum 121.92 s 40.13 s 3.03x
Total time 3,208.65 s 293.21 s 10.94x

Small (no dups)
Average 0.12 s 0.05 s 2.40x
Maximum 1.09 s 1.12 s 0.97x
Total time 1,211.09 s 552.56 s 2.19x

Big (original)
Average 23.32 s 0.26 s 89.70x
Maximum 121.92 s 40.13 s 3.03x
Total time 31,297.90 s 358.17 s 87.38x

Small (original)
Average 0.13 s 0.05 s 2.60x
Maximum 1.09 s 1.12 s 0.97x
Total time 2,221.91 s 971.50 s 2.29x

Table 2: Effect of transformations on orbit refinement [12]

Transformations enabled #Orbits (SMC-Big) #Orbits (SMC-Small)
None 359 9754
All transformations 34 360
All except σI 72 376
All except σV 344 9645
All except σΣ 35 841
All except removeVar 34 361
All except removeConj 40 386

Table 3: Results of Model counting SMC-Big and SMC-Small (replication)

Original scripts ExpRunA
Without
caching

With
caching Speedup Without

caching
With

caching Speedup

Big
Avg 12.94 s 0.63 s 20.62x 16.79 s 0.64 s 26.06x
Max 178.64 s 17.35 s 10.30x 273.96 s 17.55 s 15.61x
Total 4,645.99 s 217.78 s 21.33x 6,028.07 s 223.57 s 26.96x

Small
Avg 0.21 s 0.09 s 2.43x 0.22 s 0.09 s 2.45x
Max 1.42 s 1.57 s 0.90x 1.45 s 1.55 s 0.93x
Total 2,070.63 s 853.79 s 2.43x 2168.72 s 885.42 s 2.45x

Table 4: Effect of transformations on orbit refinement (replication)

Original scripts ExpRunA

Transformations enabled #Orbits
(SMC-Big)

#Orbits
(SMC-Small)

#Orbits
(SMC-Big)

#Orbits
(SMC-Small)

None 359 9710 359 9710
All transformations 34 360 34 360
All except σI 72 376 72 376
All except σV 344 9645 344 9645
All except σΣ 35 841 35 841
All except removeVar 34 361 34 361
All except removeConj 40 386 40 386
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ExpRunA and with original scripts for Experiment 3

for Obscure regarding the number of hits and misses.
This discrepancy is likely due to changes in the version
of ABC [3] constraint solver. Nevertheless, a further
investigation should be carried out to confirm or refute
this hypothesis. The relative differences between the
total runtime results with ExpRunA and with original
scripts are presented in Figure 11. The differences are
below 5%, for all cases.

5.2 Level of abstraction

Besides execution and analysis automation, we evalu-
ated ExpRunA with respect to the level of abstraction
of experiment specifications from the perspective of ex-
perimenters. The assessment of the level of abstraction
is guided by the following research questions:

RQ 4. Can ToExpDSL raise the level of abstraction of
technology-oriented experiment specifications?

RQ 5. What is the level of abstraction of ToExpDSL’s
language constructs?

5.2.1 Evaluation method

To address RQ 4, we compared the level of abstraction of
the original specifications with specifications using To-
ExpDSL for the experiments used in Section 5.1. The
level of abstraction is evaluated based on the following
criteria:

– Level of detail: abstract specifications say what a
program does without necessarily saying how it is

done; abstraction is a process of generalization, elim-
inating detail, removing inessential information [51].

– Number of potential implementations: ab-
stract specifications have more potential implementa-
tions, whereas moving to a lower level means restrict-
ing the number of potential implementations [51].

– Complexity: abstract specifications are less com-
plex than low-level specifications [27].

– Domain concepts: abstract specifications use con-
cepts related to their domain of application [27].

To address RQ 5, we first selected well-established
guides in Software Engineering experimentation and
then compared their key concepts with ToExpDSL’s con-
structs/elements. Then, we classified the ToExpDSL’s
constructs in three groups, according to their relation
with domain concepts:

– High-level construct: a construct that is directly
related to a domain concept found in the literature.

– Mid-level construct: a construct that is not di-
rectly related to a domain concept but supports or
details high-level constructs.

– Low-level construct: a construct that neither is
directly related to a domain concept nor supports or
details high-level constructs.

5.2.2 Results

We present the results of comparing the level of abstrac-
tion of the original specifications with specifications
written in our ToExpDSL, which we used in Section 5.1
and also the results of comparing the ToExpDSL’s con-
structs/elements with key experimentation concepts.

Experiment specifications

For execution, the authors of Experiment 1 created
an execution script (Listing 1) and a Gnuplot config-
uration file (Listing 3). Instead, we created a corre-
sponding specification using ToExpDSL (Listing 14).
We defined the treatments (Lines 11–14) and associ-
ated the parameter params to each treatment. Likewise,
we defined the objects (Lines 15–19) and associated
the parameters num_steps and step_size to them. Sec-
tion Executions (Lines 20–27) defines the commands to
be executed. We defined the main command (Line 22),
i.e., the command which is measured, and a preprocess-
ing command (Line 24). The preprocessing command
is executed before the main command as a prepara-
tory step and is not measured. The parameters associ-
ated with the treatments and objects are used both in
the main command (object .parameter.num_steps) and in
the preprocessing command (object .parameter.num_steps,
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Table 5: Results of SPF-based quantitative analyses of string programs [12]

Program Caching Total time Speedup #Hits #Misses H/M

Password1
None 297 s – – – –
No norm 258 s 1.15x 17,547 56,173 0,31
Cashew 106 s 2.80x 62,797 10,923 5.75

Password2
None 3,364 s - - – –
No norm 3,379 s 0.99x 30,448 824,832 0.04
Cashew 1,243 s 2.71x 659,804 195,476 3.38

Obscure
None 2,158 s – – – –
No norm 1,965 s 1.10x 2,000 59,000 0.03
Cashew 609 s 3.54x 44,893 16,107 2,79

CRIME
None 3,005 s – – – –
No norm 2,941 s 1.02x 31,884 84,127 0.38
Cashew 1,067 s 2.82x 78,289 37,722 2.08

Table 6: Results of SPF-based quantitative analyses of string programs (original scripts)

Program Caching Total time Speedup #Hits #Misses H/M

Password1
None 463.61 s – – – –
No norm 395.78 s 1.17x 17,547 56,173 0,31
Cashew 208.51 s 2.22x 62,797 10,923 5.75

Password2
None 4,689.48 s – – – –
No norm 4,737.73 s 0.99x 30,448 824,832 0.04
Cashew 1,899.93 s 2.47x 659,804 195,476 3.38

Obscure
None 3,172.23 s – – – –
No norm 2,888.71 s 1.10x 1,999 58,999 0.03
Cashew 1,482.03 s 2.14x 32,443 28,555 2,79

CRIME
None 4,362.45 s – – – –
No norm 4,218.28 s 1.03x 31,884 84,127 0.38
Cashew 1,626.53 s 2.68x 78,289 37,722 2.08

Table 7: Results of SPF-based quantitative analyses of string programs (ExpRunA)

Program Caching Total time Speedup #Hits #Misses H/M

Password1
None 470.68 s – – – –
No norm 401.66 s 1.17x 17,547 56,173 0,31
Cashew 203.87 s 2.31x 62,797 10,923 5.75

Password2
None 4,803.33 s – – – –
No norm 4,779.28 s 1.01x 30,448 824,832 0.04
Cashew 1,898.29 s 2.53x 659,804 195,476 3.38

Obscure
None 3,151.55 s – – – –
No norm 2,844.71 s 1.11x 1,999 58,999 0.03
Cashew 1,462.96 s 2.15x 32,443 28,555 2,79

CRIME
None 4,311.08 s – – – –
No norm 4,176.90 s 1.03x 31,884 84,127 0.38
Cashew 1,5856.8 s 2.72x 78,289 37,722 2.08

object .parameter. step_size, and treatment.parameter.params)
to apply the corresponding treatment to the object.

Listing 15 presents an excerpt of the specification of
Experiment 2. We defined the treatments (Lines 6–9)
and associated the parameter conf to each treatment.
We also defined the objects (Lines 10–14) and associated
the parameter prefix to them. We used both treatments
and objects parameters in the command definition (Line
17).

Listing 16 presents an excerpt of the specification
of Experiment 3. In this case, we used the treatment
name (treatment.name) and the object name (object .name)
to define the command (Line 21).

The complete execution scripts and experiment spec-
ifications of Experiments 1 to 3 are presented on our
supplementary Website (http://expruna.github.io).

Based on the comparison criteria defined in Sec-
tion 5.2.1, we compared the level of abstraction of the
original specifications with specifications written in To-

http://expruna.github.io/
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Listing 14: Excerpt of the specification of Experiment 1
1 Experiment hylaaOptimization {
2 Research Hypotheses {
3 RH1 {time Hylaa = Warm description "Runtime time for Hylaa is equal to runtime time for Warm" }
4 }
5 Experimental Design {
6 runs 10
7 }
8 Dependent Variables {
9 time { description "Runtime" scaleType Absolute unit "seconds" instrument timeInstrument }

10 }
11 Treatments {
12 Hylaa description "Hylaa" factor optimization parameters {params ""} execution hylaaTool,
13 Warm description "Warm" factor optimization parameters {params "settings.opt_decompose_lp=False"} execution hylaaTool
14 }
15 Objects {description "Number of steps" {
16 steps31 {description "31 steps" value "31" parameters {num_steps "31", step_size "0.200000000"}},
17 steps106948 {description "106948 steps" value "106948" parameters {num_steps "106948", step_size "0.000058720"}}
18 }
19 }
20 Executions {
21 hylaaTool {
22 command "/usr/bin/python −u hybridpy/tool_hylaa.pyc ${treatment.name}/${object.parameter.num_steps}.py −"
23 preprocessing {
24 hyst{command "java −jar /opt/hyst−1.5/src/Hyst.jar −i /opt/optimizations/io.xml −o

/opt/models/${treatment.name}/${object.parameter.num_steps}.py −tool hylaa '−settings
settings.print_output=False ${treatment.parameter.params} −step ${object.parameter.step_size}'"}

25 }
26 }
27 }

Listing 15: Excerpt of the specification of Experiment 2
1 Experiment cashew {
2 description "Constraint Normalization and Parameterized Caching for Quantitative Program Analysis"
3 Research Hypotheses {
4 RH1 {averageTime cashew = noCache description "Average time for Cashew is equals than Average time for No Cache"}
5 }
6 Treatments {
7 cashew description "All transformations" parameters{conf "kaluza.cashew.conf"} execution cashewExecutor},
8 noCache description "No cache" factor transformations parameters{conf "kaluza.nocache.conf"} execution cashewExecutor
9 }

10 Objects {description "Constraints" {
11 small {description "SMC−Small" parameters {prefix "small"}},
12 big {description "SMC−Big" parameters {prefix "big"}}
13 }
14 }
15 Executions {
16 cashewExecutor {
17 command "run−orbits.sh ${treatment.parameter.conf} ${object.parameter.prefix}"
18 }
19 }
20 }
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Listing 16: Excerpt of the specification of Experiment 3
1 Experiment cashew {
2 description "Constraint Normalization and Parameterized Caching for Quantitative Program Analysis"
3 Research Hypotheses {
4 RH1 {sumTime cashew = nocache description "Total time for Cashew is equals than Total time for No Cache"},
5 RH2 {sumTime cashew = trivialcaching description "Total time for Cashew is equals than Total time for No Normalization"}}
6 }
7 Treatments {
8 nocache description "No cache" parameters{conf "kaluza.nocache.conf"} execution cashewExecutor,
9 trivialcaching description "No Normalization" parameters{conf "kaluza.cashew−except−order.conf"} execution cashewExecutor,

10 cashew description "Cashew" parameters{conf "kaluza.cashew.conf"} execution cashewExecutor
11 }
12 Objects { description "Constraints"{
13 password {description "Password1"},
14 password2 {description "Password2"},
15 obscure {description "Obscure"},
16 crime {description "CRIME"}
17 }
18 }
19 Executions {
20 cashewExecutor {
21 command "/root/phab/jpf−security/src/examples/cashew/get−results−security.sh ${treatment.name} ${object.name}"
22 }
23 }

ExpDSL, which we used in Section 5.1, thus obtaining
the following results:

– Level of detail: Since ToExpDSL is declarative, it
only says what the experiment does without saying
how to do it. The details of how to execute and
analyze an experiment are specified in the code gen-
erators. Using Python, an experimenter must write
how to execute and analyze the experiment with all
implementation details. For instance, using ToEx-
pDSL, an experimenter needs only to specify the
experimental design (Listing 14, Lines 5–7), treat-
ments (Lines 11–14), and objects (Lines 15–19). The
details of how to apply the treatments to the objects
are implemented in the code generators, according
to the experimental design. On the other hand, us-
ing Python (Listing 1), one must write not only the
treatments and objects definitions but also the de-
tails of applying the treatments to the objects. For
example, two loops (Lines 13 and 18) are used to
apply treatments to objects.

– Number of potential implementations: ToEx-
pDSL is implemented by the specific code generators,
which are able to generate any text. So, code genera-
tors can generate source-code in any other language,
including another DSL. To provide a distinct imple-
mentation of the execution script in Python, one
would have to use distinct implementations of the
Python compiler, which, indeed, limits the potential
implementations.

– Complexity: Since ToExpDSL is declarative, it
does not contain control flow statements. All the
complexity is left to the code generators, which,
once created, do not need to be directly used by
experimenters. To create corresponding execution
scripts in Python, or any other imperative language,
the experimenter must deal with the complexity of
control flow statements, variable declarations, un-
suitable state, and so on. For instance, in Listing 1,
to repeat the execution a number of times, first,
the variable num_trials is declared (Line 3). Then,
a loop control is used to repeat the execution the
number of times defined in num_trials (Lines 21–25).
Using ToExpDSL, the experimenter simply defines
the number of runs (Listing 14, Line 6).

– Domain concepts: ToExpDSL was created to be
used for technology-oriented experimenters. So, nat-
urally, it uses domain concepts, such as Research
Hypothesis (Listing 14, Line 2), Dependent Vari-
ables (Line 8), Treatments (Line 11), Objects (Line
15), etc. Unlike ToExpDSL, the original scripts were
created using Python, which is a general purpose
language and does not contain any concept related
to experiments such as those mentioned previously
in this bullet item. Instead, as mentioned in the
previous bullet item, such general purpose language
has low-level constructs such as control flow state-
ments and variable declarations, which obfuscate
understanding at the domain level.
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DSL Constructs

We also present a comparison between ToExpDSL’s con-
structs and domain concepts. In this comparison, we
considered all types defined in ToExpDSL’s grammar.
Based on the criteria defined in Section 5.2.1, we classi-
fied the grammar constructs in three groups: high-level
constructs (Table 8), mid-level constructs (Table 9), and
low-level constructs (Table 10).

As a result of the evaluation of the level of abstrac-
tion of ToExpDSL’s language constructs (RQ 5), we
found that, out of 46 types defined in the grammar,
25 are high-level constructs (54.35%), 7 are mid-level
constructs (15.22%), and 14 are low-level constructs
(30.43%).

5.3 Analysis and interpretation

In this section, we analyze and interpret the results from
the previous subsections in terms of the corresponding
research questions. We also discuss threats to validity,
limitations of the contribution, and future work.

The results from Section 5.1.3 provide evidence
that ExpRunA can be used to specify different
technology-oriented experiments (RQ 1). First, the ex-
periment specifications resulting from the replications
suggest that ExpRunA supports the researcher in speci-
fying an experiment by providing a specific editor with
syntax highlighting, content assist, syntax validation,
static semantics validation, template proposals, and text
hover.

Second, when it comes to the execution results,
they suggest that not only ExpRunA facilitates automa-
tion of execution and analysis from the specification of
technology-oriented experiments but also that the gen-
erated execution and analysis scripts are sound (RQs 2
and 3). Indeed, by design, from experiment specifica-
tions, ExpRunA aims at providing a push-button solu-
tion that automatically generates execution and analysis
scripts, runs the execution script, analyzes the results,
and presents the analysis results to the researcher from
an experiment specification at a high-level of abstraction.
In particular, the running infrastructure (Dohko) runs
the execution script, reports the execution status, and
provides execution results; the analysis infrastructure
(R Sweave environment) analyzes the execution results
and generates an analysis report.

Although there are some differences regarding ex-
ecution time between the replications with ExpRunA
and with original scripts, the qualitative results are
consistent and lead to the same conclusions. These re-
sults suggest that the overhead of ExpRunA is more
significant for lower runtime values (below one second),

although the results for Experiment 2 diverge from this
hypothesis.

Regarding abstraction level (Section 5.2.2), we con-
clude that ExpRunA raises the level of abstraction re-
quired to execute and analyze a technology-oriented ex-
periment (RQ 4), since the use of ToExpDSL empowers
researchers to specify experiments using experimenta-
tion concepts (e.g., experimental design, treatment, ex-
perimental object, dependent variable). A model-driven
approach is then used to generate execution and anal-
ysis scripts from the experiment specification. Since
code generators generate execution and analysis scripts,
this frees the researcher from dealing with the low-level
details of creating such scripts.

Moreover, regarding RQ 5, despite the existence
of some low-level constructs, the high-level and mid-
level constructs add up to around 70%. In addition, the
low-level constructs are not too complex since they are
declarative statements instead of control flow statements.
All the low-level constructs are related to the infrastruc-
ture, which suggests that these constructs should not
be part of ToExpDSL. Instead, they should be defined
somewhere in the supporting framework. Furthermore,
this also suggests that there is another role in the exper-
imentation process, a system administrator, which deals
with low-level details to configure the required infras-
tructure to run the experiment. In fact, special attention
must be payed to the Requirements construct. Although
this construct reflects infrastructure requirements, such
as CPU, memory, and costs, in some experiments, these
specifications are important for the context of the ex-
periment. Thus, there should be a way to specify these
requirements using the Context construct, and have the
code generators map then to the infrastructure require-
ments. By doing so, the number of high-level constructs
would increase to 78.13%, the number of mid-level to
21.88%, and there would not be low-level constructs
anymore.

5.3.1 Threats to validity

The evaluation of automation (Section 5.1) is a quantita-
tive evaluation based on replications. On the other hand,
the evaluation of the level of abstraction (Section 5.2)
is an analytical comparison. For both evaluations, we
present the threats to validity:

Conclusion validity To perform the replications
with ExpRunA and with original scripts, we used proce-
dures and scripts as similar as possible to those of the
original papers. This includes the number of runs, which
affects the sample size, and the procedure to collect
execution results. For this reason, we could not perform
statistical significance tests to check the differences in re-
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Table 8: Comparison between ToExpDSL’s constructs and Domain Concepts (high-level constructs)

ToExpDSL Construct Domain Concept
Jedlitschka et al. [25] Wohlin et al. [53] Juristo and Moreno [26]

Abstract Abstract Abstract N/A
Analysis Analysis Data Analysis Analysis
Author Authorship Authorship N/A
Context Parameter Context Parameter
DependentVariable Dependent variable Dependent variable Response variable
DesignType Design Type Design Type Design Type
Execution Execution Execution Execution
Experiment Experiment Experiment Experiment
ExperimentalDesign Experiment Design Experiment design Experimental design
ExperimentalObject Experimental Material Object Experimental object
Factor Independent variable Factor Factor
Goal Goal Goal Goal
Instrument Instrument Instrument N/A
Keyword Keyword N/A N/A
Range Range Range N/A
ResearchHypothesis Hypothesis Hypothesis Hypothesis
ResearchQuestion Research question Research question N/A
ScaleType Scale type Scale type Scale type
SimpleAbstract Abstract Abstract N/A
SimpleGoal Goal Goal Goal
StructuredAbstract Structured Abstract Structured Abstract N/A
StructuredGoal Goal Goal Goal
Threat Threat to validity Threat to validity Validity threat
ThreatType Threats classification Threats classification Threats classification
Treatment Treatment Treatment Level

Table 9: DSL mid-level constructs

ToExpDSL Construct Purpose
File Related to a Treatment or to an Experimental Object
Model Container for all elements of the grammar
ObjectGroup Groups related Experimental Objects
OperatorType Represents which comparison between Treatments

will be done
Parameter Related to a Treatment or to an Experimental Object

ResearchHypothesisFormula
Comprises a Dependent Variable, two Treatments,
and an Operator Type

Restriction
Used to limit the relation between
Treatments and Experimental Objects

Table 10: DSL low-level constructs

ToExpDSL Construct Purpose
AccessKey Cloud Access Key
Infrastructure Infrastructure specifications
InstanceType Virtual Machine Instance Type
Cloud Cloud specifications
CloudProvider Cloud Provider specification
OnFinishType Action performed in the virtual machine after finishing execution
PlatformType Virtual Machine Platform Type
Preconditions Names of packages required to run the experiment
Region Cloud Region
Requirements Infrastructure requirements, such as CPU, memory, cost, etc
StatusType Region Status
User Username and User Keys
UserKey User key to access the Cloud
Zone Cloud Zone
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sults between the executions with and without our tool.
In Experiment 1, each treatment was applied to each
object ten times; however, the original script records
only the mean, the minimum, and the maximum value of
each sample, which is not sufficient information to per-
form a significance test. This would require all the single
measurements, or, at least, the mean and the variance of
the sample [11, 26]. In Experiments 2 and 3, since each
object is, in fact, a whole dataset, each treatment was
applied only one time to each object, which results in
an insufficient sample size to perform a significance test.
Therefore, we drew our conclusions based on the inter-
pretation of the plots containing execution results, and
considering the qualitative results of each replication.
To mitigate the threat of using a bad instrumentation,
in the replications, we used the same instrumentation
as used in the original experiments.

Internal validity The measurement of perfor-
mance, specially runtime, is sensibly affected by the
execution environment. Other processes running on the
same machine and consuming resources, such as CPU,
memory, and disk access, may cause variations in run-
time. This could affect the comparison of the results of
replications with ToExpDSL and with original scripts.
To reduce this threat, we ran each replication in a ded-
icated virtual machine on Google Cloud. The virtual
machine was recreated before each replication using the
same configuration to keep the execution environments
as similar as possible.

Construct validity To assure that the metrics cho-
sen for the evaluation are suitable measures of the issue
under investigation, they were derived from the goals
and research questions and based on the literature. RQs 1
to 3 assess the ability of ExpRunA to provide automa-
tion in the experimentation process. Since it is a feasi-
bility evaluation, we evaluated if we can use ToExpDSL
and ExpRunA to run previously published experiments.
To assure that ExpRunA produces sound results, we
also compared their results with results produced by
original scripts. To assess RQ 4 and RQ 5, we based
our comparison on criteria derived from the literature
concepts.

External validity To empirically evaluate our so-
lution, we replicated distinct experiments from the auto-
matic verification domain. To find technology-oriented
experiments completely documented and with all the
artifacts available (Section 5.1.2), we directed our search
to publication venues explicitly requiring reproducibility
as part of the evaluation process or highlighting this
fact in accepted papers. In future works, we intend to
replicate experiments from additional domains and also
compare the level of abstraction of these experiment

specifications with experiment specifications using our
tool.

Reliability We conducted the evaluation ourselves,
which way introduce bias. In relation to automation,
since it is a feasibility evaluation, and not a subjective
evaluation, such as usability, the bias does not affect the
results. When it comes to the evaluation of abstraction,
to mitigate the threat of researchers bias, we defined
objective evaluation criteria based on references from
the literature.

5.3.2 Limitations and future work

Although ToExpDSL is sufficiently expressive to spec-
ify technology-oriented experiments, and ExpRunA can
be used to enable automation of execution and analy-
sis of technology-oriented experiments, there are some
limitations.

Experiment design The experiment design relies
on a (subset of) Cartesian product to relate treatments
and experiment objects. There should be a means to
specify additional designs relating more than two treat-
ments at a time, or even applying only one treatment to
several objects. In future work, we plan to support ad-
ditional design types relating more than two treatments
at a time, or applying only one treatment to several
objects in scalability evaluations since, currently, we
support only two-treatment comparisons. For example,
Lanna et al. [30], besides the comparison among analysis
strategies, they evaluated their scalability.

Experiment objects ExpRunA is able to apply a
treatment to an object multiple times as defined by the
experimenter. However, the object must be exactly the
same. In some experiments [10, 17], the treatment is
applied to a group of related objects, and all the mea-
surements are analyzed as if they were repetitions of
the same object. In future work, we plan to support the
definition of groups of related objects so that, for each
group, the results can be analyzed as if they were repe-
titions of the same object. Additionally, ExpRunA does
not currently support hierarchically defined objects with
parameterization at any level of depth of the hierarchy,
which can be provided, for instance, by the cyber com-
munication network simulation tool OMNeT++ [48].
We also envision this enhancement as future work.

Output checking Using ExpRunA, the applications
corresponding to the treatments are executed and the
dependent variables are measured. However, there is
no way to compare the output of the tool with some
reference value. This would be necessary, for instance,
to replicate the experiment presented in Beyer et al. [10].
In future work, we plan to provide means to specify an
output reference to check the actual output of execution,
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which would assure that the tool related to the treatment
is performing the work it is supposed to do rather than
performing some arbitrary processing.

Dynamic task definition Although some design
studies demand dynamic task definition, ExpRunA cur-
rently does not support this feature. Instead, it can be
extended to support the concepts of block (Listing 12,
Section 4.3), block dependency, and command currently
supported by the underlying infrastructure (Section 4.2)
but not exposed at the ToExpDSL level yet, to enable
users to check whether a given condition is met at run-
time. Nevertheless, users have to explicitly define all the
tasks statically following a declarative strategy, which
still offers a valuable aid in different domains such as
fluid simulations and bioinformatics. In future work, we
plan to evolve our tool to handle on-the-fly tasks.

Analysis Since the research hypotheses relate only
two treatments, the statistical tests performed are T
test and Mann–Whitney, depending on normality of the
data. We plan to provide additional statistical tests and
allow the experimenter to choose the tests to be applied
and plots to be generated. Supporting additional designs
also means providing additional tests corresponding to
these designs. In addition, the experimenter should have
more control over the statistical tests being applied and
the plots being generated. In future work, we plan to
abstract the type of analysis into the DSL level.

Evaluation Our evaluation results suggest that the
differences in runtime with ExpRunA and with origi-
nal scripts vary for distinct time ranges. However, this
should be thoroughly investigated with additional ex-
periments. In future work, we plan to replicate the same
experiments again but changing the original scripts so
that we can collect enough data to perform significance
tests to compare the results with and without the tool.
In addition, we evaluated neither the cost of learning To-
ExpDSL nor its usability, which we plan to do in future
work. This would provide more information regarding
the costs of the adoption of our solution to experimenters
who want to use it to conduct their experiments.

Manual tasks Although ExpRunA facilitates the
automation of execution and analysis of experiments,
the experimenters still have to interpret the results,
draw the conclusions, write replication instructions, and
publish the lab package. In addition to these manual
tasks, a system administrator has to properly config-
ure the running infrastructure to run the experiment,
for instance, installing specific tools, packages, and de-
pendencies on it. Then, the system administrator can
publish a Docker image with these configurations so
that other researchers can replicate the experiment or
conduct further analyses. Further details and examples
are presented on our supplementary Website. In future

work, we plan to relate some ToExpDSL’s constructs to
the role of system administrator and others to the role
of experimenter to achieve a better separation of roles.

Execution Optimization. ExpRunA relies on an
extensional specification provided by the experimenter.
This means that, when the number of combinations of
treatments and objects increases, the experimenter is re-
sponsible for explicitly specifying the relevant subset of
the Cartesian product to avoid unnecessary executions.
To cope with this potential state explosion, a future
improvement could be to use a constraint language to
help deriving these subsets automatically. While a con-
straint language would not reduce the semantic problem
complexity, it would allow an intentional specification
thus reducing the burden on the user. Another option
would be relying on algorithms to explore the parameter
spaces and to generate the tasks to execute on-the-fly
automatically, as supported by OpenTURNS [8] and
OpenMETA [44].

Distributed execution We evaluated our solution
considering a local and a non-distributed execution sce-
nario. In the case of a large combination of executions,
the executions will be scheduled sequentially, which can
lead to a large amount execution time. As a future
enhancement, we plan to use Dohko to execute the ap-
plications in a distributed way on the cloud, which is,
in fact, already supported by Dohko.

Despite the limitations discussed previously, we ar-
gue that the scope of experiments currently addressed
is practically relevant, so explicitly acknowledging and
discussing these limitations provides a natural and use-
ful path for further development. Indeed, during our
research, we found several experiments that fit to the
scope but could not be used in our evaluation due to
reproducibility issues, such as missing documentation
or artifacts [16, 41], artifact compilation problems [13],
or the need of a large amount of resources to run the
experiment [1].

6 Related work

To address the problems related to conducting exper-
iments, many techniques have been proposed. To the
best of our knowledge, none of them simultaneously
addresses the executable specification of experiments
at a high level of abstraction; automated treatment
execution and automated data analysis from the experi-
ment specification; and formal guaranties of the correct-
ness of results with respect to the experiment specifica-
tion for technology-oriented experiments. The existing
techniques have a different and broad perspective and
support distinct phases of the experimentation process
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either for technology-oriented or for human-oriented
experiments.

Technology-oriented experiments Beyer et al.
[9] formulated a set of requirements for reliable bench-
marking and accurate resource measurements. They
also provided BenchExec, a free implementation of a
benchmarking framework that fulfills all presented re-
quirements. The authors first defined some restrictions
of the tool to be run: the tool is CPU-bound, i.e., when
compared to CPU usage, input and output operations
from and to disks are negligible, and input and output
bandwidth does not need to be limited nor measured;
the tool does not perform network communication dur-
ing the execution; the tool does not spread across several
machines during execution, but is limited to a single
machine; and the tool does not require user interaction.
Based on these restrictions, the author listed five spe-
cific requirements for reliable benchmarking: measure
and limit resources accurately, kill processes reliably,
assign cores deliberately, respect non-uniform memory
access, and avoid swapping. Then, the authors described
BenchExec, a cgroups-based benchmarking framework
that fulfills all these requirements. BenchExec is split
in two parts, one responsible for benchmarking a sin-
gle run of a given tool, named runexec, and the other
responsible for benchmarking a whole set of runs. The
tool runexec can be easily used from within other bench-
marking frameworks. In fact, we integrated runexec with
Dohko [31] so that our execution environment meets the
requirements presented by the authors.

Hauck et al. [22] presented Goal-oriented INfras-
tructure Performance EXperiments (Ginpex) approach,
which introduces goal-oriented and model-based speci-
fication and generation of executable performance ex-
periments for automatically detecting and quantifying
performance-relevant infrastructure properties. Ginpex
provides a meta-model for experiment specification and
comes with predefined experiment templates that pro-
vide automated experiment execution on the target plat-
form and also automate the evaluation of the experi-
ment results. It can be used by performance analysts
to automatically derive performance-relevant infrastruc-
ture properties for performance predictions. Like our
approach, Ginpex provides automated execution and
data analysis. However, the main focus of Ginpex is
to derive performance-relevant infrastructure properties
based on goal-oriented measurements, whereas our work
focuses on technology-oriented experiment description
guided by research hypotheses, automated execution,
and data analysis. Ginpex’s evaluation consisted of de-
signing experiments for detecting time slice length of
operating system schedulers, and for quantifying per-
formance penalty of virtualized computing resources

through Xen hypervisor [7]. Ginpex could be used, for
instance, to evaluate the overhead of ExpRunA and the
performance characteristics of the running infrastruc-
ture.

Wang et al. [50] presented Weevil, a framework pro-
viding techniques for software engineers to automate the
experimentation activity in highly distributed systems.
A highly distributed system usually consists of a net-
work of components, executing independent and possibly
heterogeneous tasks, that collectively realize a coherent
service. Their approach is founded on a suite of models
that characterize the distributed system under exper-
imentation, the testbeds upon which the experiments
are to be carried out, and the client behaviors that drive
the experiments. Similar to our approach, Weevil uses a
model-based approach to provide automated execution
from an experiment configuration. However, it does not
provide automated data analysis from the experiment
specification. In addition, its main focus is on highly
distributed systems.

Human-oriented experiments Freire et al. [20]
proposed a model-driven approach to specify and moni-
tor controlled experiments in software engineering, fo-
cusing on human-oriented experiments. Their approach
comprises a DSL, named ExpDSL; model-driven trans-
formations that allow workflow models generation; and
a workflow execution environment. First, a researcher
uses ExpDSL to specify the experiment. Then, model-
driven transformations are applied to the experiment
specification to generate customized workflows for each
experiment participant. Finally, the workflow is exe-
cuted in a Web-based workflow engine, which guides the
participants by providing instructions for their tasks. In
addition, the researchers running the experiment can
monitor the activities performed by the participants.
Their approach is similar to ours in the sense that they
use a DSM approach comprising a DSL, code generators,
a supporting framework, and a running infrastructure.
However, there are significant differences. First, unlike
our approach, their work supports human-oriented ex-
periments. For this reason, we partially based our DSL
in ExpDSL but we extended it with new constructs
for technology-oriented experiments. Second, their ap-
proach does not provide data analysis. Finally, since
we enable automation of execution and data analysis
of technology-oriented experiments, our code genera-
tors, supporting framework, and running infrastructure
are completely different. Although their approach can
be used for scoping, planning, and execution, it is not
suitable for technology-oriented experiments.

Travassos et al. [46] presented an experimental Soft-
ware Engineering Environment (eSEE) to support large-
scale experimentation and scientific knowledge manage-
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ment in Software Engineering. It is represented by a
computerized infrastructure to support large-scale exper-
imentation in Software Engineering. eSEE provides a set
of facilities to allow geographically distributed software
engineers and researchers to accomplish and manage
experimentation processes as well as scientific knowledge
concerned with different study types through the web.
The eSEE’s conceptual model has been organized in
three abstraction levels: meta, configured, and execu-
tion. Meta-level contains common knowledge regarding
experimental software engineering and its studies, includ-
ing Software Engineering knowledge. Configured-level
is the knowledge for each type of experimental study.
Finally, execution-level is the knowledge for a specific
study, which is the only level supported by ExpRunA.
Further, their proposal includes definition, planning, ex-
ecution, and packaging of primary and secondary stud-
ies. However, unlike ExpRunA, eSEE does not support
automated execution and data analysis from the experi-
ment specification for technology-oriented experiments.
A possible future synergy development between eSEE
and ExpRunA would be to integrate eSEE’s knowledge
base into our tool and endow the latter with meta-
analyses capability thus further raising the evidence of
the conducted experiments.

Arisholm et al. [2] developed a Web-based experi-
ment support environment called Simula Experiment
Support Environment (SESE) to support large-scale
human-oriented experiments. The objective is to scale
up the experiments and particularly run experiments
with professionals in industry using professional devel-
opment tools to make the experiments more realistic.
SESE supports the logistics of a large-scale experiment
and allows an experimenter to define experiments, in-
cluding all the detailed questionnaires, task descriptions
and necessary code, assign subjects to a given experi-
ment session, run and monitor each experiment session
and collect the results from each subject for analyses.
However, SESE is bound to human-oriented experiments
and does not include data analysis.

Hochstein et al. [23] described the Experiment Man-
ager Framework, an environment that simplifies the
process of collecting, managing, and sanitizing data
from classroom experiments, while minimizing disrup-
tion to natural subject behavior. The framework is an
integrated set of tools to support software engineering
experiments in High Performance Computing (HPC)
classroom environments. The objectives are to simplify
the process of conducting software engineering exper-
iments that involve development effort and workflow,
and to ensure consistency in data collection across ex-
periments in classroom environments. The framework
also supports data analysis. Some of these analyses are

focused on a single subject, while others aggregate data
over several classes. However, the framework does not
support technology-oriented experiments.

Feigenspan et al. [19] presented a tool called
PROPHET to support program-comprehension exper-
iments. Their aim is to provide a tool infrastructure
that can be used and extended by other researchers
to design and conduct program-comprehension experi-
ments. PROPHET is highly customizable, and its plug-
in structure allows researchers to implement new fea-
tures without changing the existing source code of
PROPHET. However, it does not provide analysis,
and program-comprehension experiments are inherently
human-oriented experiments.

Scientific workflows Scientific workflows are used
to model a flow of activities and data ready to be exe-
cuted by a workflow engine. Scientific workflows are an
alternative to represent pipelines or script-based appli-
cations. In scientific workflows, these activities are often
programs or services that represent solid algorithms
and computational methods [35]. The purpose of our
approach is not to replace scripts or scientific workflows;
instead, it is to generate scripts from high-level exper-
iment specifications. The sequence of activities to be
executed by the scripts is derived from experimenta-
tion concepts, such as research hypotheses, treatments,
objects, dependent variables, and experimental design.
Likewise, we could use our approach to generate a work-
flow model from the experiment specification by creating
specific code generators and replacing the running in-
frastructure by a workflow engine.

Data analysis and presentation Madeyski and
Kitchenham [33] discussed the concept of Reproducible
Research and its use to address some problems found in
empirical software engineering research, particularly is-
sues related to validity and reproduction of data analysis.
The authors raised awareness of the problems caused by
unreproducible research in software engineering, which
is caused by a lack of raw data, sufficient summary
statistics, or undefined analysis procedures. Reproducible
Research refers to the extent to which the report of a
specific scientific study can be compiled from the re-
ported text, data, and analysis procedures. Reproducible
Research is proposed as one of the methods to address
problems with empirical research in software engineer-
ing. The authors suggested the use of a set of free and
open-source tools to use in practice to produce repro-
ducible research, including R, LATEX, and Sweave. To
avoid the issues discussed by the authors, we followed
their recommendations and used R, LATEX, and Sweave
in data analysis and results presentation. In addition,
the generated analysis scripts, as well the raw data and
the results, become available to the experimenter.
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As mentioned previously, although the aforemen-
tioned techniques help in conducting controlled experi-
ments, they have a different and broad perspective and
can be seen as complementary works.

7 Conclusion

We presented a domain-specific approach for specifying,
executing, and analyzing technology-oriented experi-
ments. The solution comprises a DSL (ToExpDSL), exe-
cution and analysis script generators, and a supporting
framework integrating the previous components as part
of a tool named ExpRunA. All these components are
integrated in a Web-based tool (ExpRunA), providing
a means to specify executable specifications at a high
level of abstraction, automated execution, data analysis,
and results presentation.

We empirically evaluated the practical applicability
of ExpRunA to facilitate automation in the experimen-
tation process and to raise the level of abstraction of
specifying and reasoning about experiments. Our results
suggest that ToExpDSL is sufficiently expressive to spec-
ify technology-oriented experiments and that ExpRunA
can be used to enable sound automation of execution and
analysis from the specification of technology-oriented
experiments. In addition, our empirical assessment sug-
gests that the use of ToExpDSL raises the level of ab-
straction of experiment specifications when compared
to general purpose languages. However, even the low-
level constructs are less complex than general purpose
language statements since they contain only declarative
statements instead of control flow ones.

We also devised a formal model of the approach
and some key correctness properties. These correctness
properties were formally proved, which assures that the
results are consistent with the experiment specification.

Although the evaluation conducted in Section 5 con-
sists of a replication of three experiments, the description
of the approach itself, which is done earlier in Section 3,
is not limited to these specific problems. Indeed, ToEx-
pDSL embeds various concepts of technology-oriented
experiments, and ExpRunA supports its execution with-
out being tied to those three experiments. As acknowl-
edged in Section 5.3, under heading External Validity,
the evaluation is currently limited to these three cases,
though, and we plan to extend it in the future. In fact,
in most of the related work, the authors used up to three
experiments to evaluate their proposal. We also point
out that the correctness properties proved characterize
a formal assessment, which is not limited to the three
cases presented. Overall, the empirical and the formal
assessment suggest that ToExpDSL and ExpRunA are a

step toward improved efficiency of the experimentation
process and correctness of its results.

Our DSM solution has a number limitations, which
we plan to address in future work. Specifically, we plan
to support additional design types, since we currently
support only comparisons between two treatments. We
also plan to provide additional statistical tests and sup-
port the definition of groups of related objects so that,
for each group, the results can be analyzed as if they
were repetitions of the same object. Moreover, we want
to provide means to specify an output reference to check
the actual output of execution. Furthermore, we want to
conduct further experiments to investigate the overhead
of the tool in relation to runtime. Finally, we want to
evaluate additional aspects of ToExpDSL, such as usabil-
ity and the cost of learning the language by independent
users.
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