
A Target Platform Description Language
for Parallel Code Generation

Christian Schmitt, Frank Hannig, Jürgen Teich
Hardware/Software Co-Design,

Department of Computer Science,
Friedrich-Alexander University Erlangen-Nürnberg

Abstract—Today, facilities used for scientific computing are
highly parallel and becoming more and more heterogeneous.
This trend can be easily seen in the TOP500 list, where an
increasing number of systems is equipped with accelerators, such
as graphics processor units (GPUs) or many-cores. To achieve
the best performance on such machines, special tweaking of the
code is necessary, which takes time and expert knowledge of the
hardware and corresponding optimization techniques. Domain-
specific languages (DSLs) are a remedy to this dilemma by
separating the algorithm specification from its implementation,
leaving room for optimizations to be applied automatically by
the DSL compiler. Thus, the compiler needs to have a profound
knowledge of the target platform, e.g., available accelerators and
how to program them, details of the network topology to optimize
communication patterns, as well as CPU specifications for cache
optimizations and vectorization. In this paper, we introduce our
approach to modeling hardware and software information to
provide platform details that our code generator requires to
optimize and emit code for the solution of partial differential
equations (PDEs) using the geometric multigrid method.

I. INTRODUCTION AND MOTIVATION

Contemporary high-performance computing platforms are
highly heterogeneous. While more than 90 % of the supercom-
puting systems ranked in the TOP500 list (November 2017)
run on an x86-based central processing unit (CPU) architecture,
there are major exceptions such as the TaihuLight, Sequoia,
and K Computer, which use Sunway processors, PowerPCs,
and SPARCs, respectively. Each of these technologies has its
trade-offs and requires different programming and optimization
techniques, which usually vary between vendors and hardware
generations.

Beyond this issue, there are more details to consider, such as
the network architecture and hardware, versions of operating
system or compiler, and specific communication libraries, such
as vendor-specific implementations of MPI. Thus, writing
programs and optimizing them for a given setting is tedious
work that often requires a few months even for an expert
who knows all the programming techniques and trade-offs
of each platform. If done right, the program will perform
comparably on similar hardware. However, in case of any
new hardware or platform configuration, the program has
to be modified to take advantage of the new features. In
many cases, tuning has to be done over and over again—
usually by specialized, interdisciplinary teams. Here, domain-
specific languages (DSLs) have an advantage. They allow the
separation of the description of the algorithm from that of its

implementation. Thus, when new hardware must be supported,
only one program has to be modified: the DSL compiler.
That done, it takes just a recompilation of the unaltered DSL
programs to make use of the new features.

In Project ExaStencils1 [7], it is our goal to improve the level
of automatism for code generation in the domain of scientific
computing. In previous works, we introduced ExaSlang [18,
19], a DSL for the solution of partial differential equations
(PDEs) using geometric multigrid methods, and our approach
to emit C++ code from there.

Consequently, to apply the optimal set of transformations
to an ExaSlang program, our code generator needs to have a
profound knowledge of the target platform. Examples include
the selection of a discretization scheme that will perform
well on the target platform. For instance, selecting a higher
numerical order when discretizing a PDE—depending on the
problem—yield a better convergence, but will require more
neighboring values to compure a new value. This may exceed
certain hardware parameters such as available cache sizes, so
that after careful pondering the best solution might be to go
with a lower numerical order, but a finer mesh to achieve the
best combination of convergence rates and performance on the
target platform. Of course, platform knowledge is also crucial
for applying low-level optimizations, e.g., the availability of
single instruction, multiple data (SIMD) extensions is essential
for vectorization, or network topology on distributed-memory
parallel systems for selecting the best mesh partitioning and
communication scheme.

In this paper, we will present ExaSlang’s target platform
description language, which we call ExaSlang Platform De-
scription (EPD). We will describe its concepts, how it enables
us to model the hardware supported by the ExaStencils code
generator, and its run-time application programming interface
(API) features to query details on the specified platform.

II. THEORETICAL BACKGROUND AND BASICS

In this section, information on domains touched by this
paper, namely domain-specific languages and our language
ExaSlang, are given.

A. Domain-Specific Languages

Modeling complex real-world scenarios in a machine-
readable form is more natural for domain experts when they

1http://www.exastencils.org

This is the author’s version of the work. The definitive work was published in Workshop Proceedings of the 31st GI/ITG
International Conference on Architecture of Computing Systems (ARCS), Braunschweig, Germany, April 09, 2018.



can use concepts, objects, and terms of their domain. These
abstractions can be provided in a number of different ways.
One of the most popular approaches is by implementing a
domain-specific language (DSL) [11]. Such a language can be
created by extending and/or restricting an existing programming
language. Quite often, this host language is a general-purpose
language. The derived language is called an embedded, or
internal, DSL. Alternatively, it is also possible to create a new
language, a so-called external DSL, from first principles [2].

The implementation of the DSL compiler or interpreter
depends on the type of DSL. Usually, for an internal DSL, the
host language compiler is modified whereas, for an external
DSL, a new compiler or interpreter must be implemented. Con-
sequently, an external DSL requires a higher implementation
effort, but also provides greater freedom in the choice of syntax
and semantics.

B. ExaSlang

ExaSlang is a DSL that aims at the solution of PDEs using
the multigrid method [4, 22] as the fundamental approach. It
tries to provide suitable abstractions for various groups of users,
corresponding to the different steps needed to solve a PDE:
specification, discretization, selection of appropriate multigrid
components, and finally implementation of the solver. Thus,
ExaSlang is not a monolithic language, but a hierarchy of four
different language layers [18, 19].

At the highest layer, a continuous equation with a correspond-
ing computational domain and boundary conditions can be
specified. ExaSlang 2 is one refinement step more concrete. It
enables users to specify (or, if generated automatically, modify)
discretized versions of the equations at layer 1. ExaSlang 3
exposes the underlying multigrid algorithm by allowing its
components to be specified. Finally, ExaSlang 4 is the most
concrete layer of the ExaSlang hierarchy. It enables the full
specification of a multigrid algorithm and exposes aspects of
the parallelization and communication for modification by the
user.

We implemented ExaSlang as an external DSL, as only this
approach allowed us to tailor each level towards the designated
user groups optimally. Opting for an external DSL obviously
has the drawback of higher efforts not only on the language
implementation side but also on the users’ side, who have to
learn a entirely new language.

In Figure 1, an excerpt of an ExaSlang 4 application to solve
Poisson’s Equation is depicted. We already see a number of
ExaSlang features, for instance repition loops (line 2) and field
loops (line 3). A crucial feature are fields, which represent
discretized mathematical variables, or from the computer’s point
of view, arrays that store the numerical values. A language
feature stemming from ExaSlang’s designated base algorithm,
the multigrid method, are level specifications. Multigrid meth-
ods represent the data on different grid sizes, and continously
step through this level hierarchy. Level specifications allow the
specialization of program parts for certain multigrid levels, e.g.,
variable declaration and accesses or function definitions and
corresponding calls. In the example code, only references to

the current level’s grid are made using @current. There exist
specialized keywords to access the grids of neighboring levels
(@finer and @coarser), but it also possible to reference the
bottom-most and topmost grid in the hierarchy, use lists of
level specifications, and so on. Another feature are slots (lines 4
and 6) that add a ring-buffer like interface to fields, superseding
the need to declare identical fields when alternating accesses
are needed, as is the case for Jacobi iterations. In our example,
the currently active slot is shifted using the keyword advance.
Accesses to the current or the next slot is specified with the
corresponding keywords activeSlot and nextSlot. In the
rest of this paper, we will use this code snippet to illustrate the
benefits of EPD for our code generation process. For a more
detailed description, we refer to [18].

III. RELATED WORK

A lot of previous work has been put into the research of
the modeling of computing platforms. However, for many
reasons, they do not fulfill our requirements: First of all, most
languages provide a level of abstraction that is not suitable for
our purposes: We require the description of a system from a
mainly architectural point of view, as we need to check if certain
technology is available to make use of it. For example, we need
to know which set of vectorization instructions is available,
but do not need to know details of each instruction. Secondly,
many languages serve other purposes, e.g., for the description
of systems for synthesizing virtual models. Thus, they have
stricter constraints and often require technical details that are
hard to find out about existing systems. As a consequence, most
languages also do not provide a flexible and powerful interface
to query the system specification in a manner comparable to
databases.

VHDL [14] and Verilog [21] are popular hardware descrip-
tion languages that instantly come into minds when talking
about languages for the description of hardware, as they
are used for the specification of hardware implementations
in field-programmable gate arrays (FPGAs) or as integrated
circuits. They work on the register-transfer level (RTL) level
and are processed by synthesis programs for simulation or
implementation of a concrete piece of hardware. As such, their
level of abstraction is immensely too detailed for our needs.
Note our nomenclature: In this paper, we chose to use the term
platform description to describe the components (hard- and
software wise) of a system, not their internal structure.

In the context of the co-design of processors and corre-
sponding tools, a vast body of work in the area of architecture
description languages (ADLs) exists and serves as a basis for
architecture design (i.e., hardware description) as well as the
generation of retargetable compilers and simulators [12]. Our
approach is at a much higher level of abstraction (e.g., single
instructions of a processor are not modeled) and deals with
the modeling of up to an entire cluster, including memory
hierarchy and communication topology. For an exhaustive list
of languages for the structural or behavioral description of
computing platforms, we refer to Architectural Languages
Today [8].



1 Function Smoother() : Unit {
2 repeat 5 times {
3 loop over Solution@current {
4 Solution[nextSlot]@current = Solution[activeSlot]@current + (0.8 / diag(

Laplace@current) * (RHS@finest - Laplace@current * Solution[activeSlot]@current))
5 }
6 advance Solution@current
7 }
8 }

Fig. 1. Specification of a Jacobi smoother/solver for Poisson’s Equation in ExaSlang 4

In the following, we want to present two approaches that
come close to the work presented in this paper:

PDL [17] has been designed for the description of larger
electronic systems, such as complete embedded systems,
which typically consist of a number of different (ready-made)
components. It uses eXtensible Markup Language (XML) for
their underlying structure. As such, it enforces a hierarchical
view of the system, which is adequate for most of today’s
computing systems. It divides the systems into processing units,
memory regions, and interconnects. For the processing units,
it features a master-worker connotation, aiming at offloading
computational tasks. Available software is modeled as key-
value pairs. A major concern of PDL is weak modularity,
impairing reusability severely. Furthermore, it does not feature
a run-time interface to query platform details.

This led to the creation of XPDL [6], an improved version of
PDL that tries to resemble the described hardware already in
its structure to overcome limitations stemming from PDL’s
rigid master-slave concept. Furthermore, this also enables
improvements such as the possibility to annotate energy
consumption to hardware components. It increases reusability
of individual components due to modularization. However,
no implementation is currently freely available. XPDL has
stronger constraints concerning the omission of parts of the
hardware, as it was designed for the design of systems for the
purpose of simulation and synthesizing them. In ExaStencils,
we require a less rigid system, as we need to describe already
existing hardware, and quite often, some information is either
not necessary for our purposes or specifications are hard or
even impossible to find.

Of course, many other DSL compilers also face the issue
of requiring platform information. In the following, we will
present a small selection of approaches related to ExaStencils
and ExaSlang:

From a Fortran-based description of stencils on regular
grids, PATUS [1] generates vectorized C implementations that
are shared-memory parallelized using pthreads. Its compiler
uses a list of SIMD extensions that contains mappings from
vectorizable arithmetic operations to technical details, such as
function names and expected vector sizes. As PATUS optimizes
on a kernel basis, it does need to have information about
network details or accelerators.

SPIRAL [15] is a DSL to describe linear transforms
and other mathematical functions, with a focus on signal

processing kernels. Generated codes do not use distributed-
memory parallelization. Therefore, the description of clusters
and networks is not needed. However, SPIRAL does support
code generation for GPUs using OpenCL.

SDSLc [16] is able to apply a large range of optimizations on
stencil computations specified in a custom syntax and embedded
in C, C++, and MATLAB. It can generate code for CPUs,
GPUs, and emit accelerator descriptions for FPGAs. SDSLc
does not apply distributed-memory parallelization. Hence, the
description of such systems is not needed.

Physis [10] is a stencil DSL that targets CPU-GPU clusters
using MPI. Rather than composing a good solution from the
given hardware description before generating the code, as
ExaStencils does, it employs an auto-tuning approach to find
the best combination of parameters for the provided hardware.

IV. EXASLANG PLATFORM DESCRIPTION

In the ExaSlang Platform Description(EPD), hardware com-
ponents are represented by a number of specialized XML
tags (see Section IV-C), with rules defining how these tags
may be combined. Since EPD is a structural, not a behavioral
description of platforms, and it is not sensible to describe
hardware that our code generator does not support, it is
sufficient to resort to a fixed set of components. Wherever
appropriate, properties are modeled by enumerating them in
key-value pairs to ease parsing and evaluation of the supplied
information. One example for these tradeoffs are CPUs: For
every platform supported by ExaStencils, a C++ compiler has
to be available; thus, we do not need to know about the
target’s instruction set or its endianness. However, we need to
know about available SIMD extensions to generate appropriate
vectorized code. For ExaStencils, a simple enumeration is
sufficient, i.e., we do not need to know about the construction
of vector units or registers.

EPD has a hierarchical structure, resembling common
hardware architectures. To ease the specification of systems
by enabling the reuse of specified components, EPD supports
the division into templates and their instantiations. The first
are usually used to describe individual components of the
overall architecture, optionally with certain parameters that
need to be supplied during instantiation. We introduced this
division to increase modularity, and thus, reusability of platform
component descriptions. In the following subsections, we will
present both parts of EPD and their interplay to describe target
platforms for ExaStencils.



A. Templates

In every EPD description, a number of templates should be
employed. They can be seen as templates, or classes, which
are combined to form a concrete description of a system. In
our XML notation, template are introduced by specifying the
attribute name. To improve template reuse, they may carry
placeholders where corresponding values need to be specified
when instantiating in a concrete model. A typical use case is
the specification of memory sizes or clock rates: For one CPU
family, key performance figures such as cycles per instruction
(CPI) are all the same. What differs between different concrete
CPU models are the number of cores and their clock rates, and
cache sizes. These values may be set when instantiating the
template. Naturally, templates may reference other templates.

B. Concrete Models

Concrete models are the starting point when parsing and
evaluating a platform description. When templates are seen as
classes, concrete models resemble their instantiations. Thus,
the definition of a concrete model should (but does not have to)
reference a number of templates. An instantiation is invoked
using the XML attributed type, followed by the corresponding
value in the template’s name attribute. By defining appropriate
param tags, values for the placeholders are set. Additionally, for
numeric values, units may be given. These will be automatically
converted to the correct unit and magnitude, e.g., a certain
amount of GibiBytes will be converted to kilobytes if the
component’s parameter has been specified to use that base unit.
Naturally, this is feasible only for compatible units.

C. Description of Platform Components

A number of XML tags are allowed to describe the different
aspects of a system, be it a hardware component or available
software.

The group element is a special element as it does not
directly correspond to a concrete hardware component. It is
used every time the hardware component described by its child
node is available multiple times. Naturally, in a cluster, this
is the case for racks, which in turn are made from several
nodes. For a group element, the quantity attribute needs to
be specified. Optionally, energy consumption for the whole
group may be specified, e.g., when the data is not available
for a single element. As a bonus, this speeds up evaluation
since energy consumption of sub-elements does not need to
be computed.
For the description of platform components, specific elements
are available:

• system: This is the root element for every concrete model
described in EPD.

• cluster marks the system as being distributed-memory
parallel.

• interconnect is a very important element that connects
the various hardware elements using point-to-point speci-
fications. It features the specification of bandwidth and
latency for the creation and evaluation of performance
models.

• node is used to specify that the description of a single
node in a cluster follows. Hence, it can only be used in a
platform description that contains a cluster element.

• cpu is used to declare a CPU, and needs to consist of at
least one core tag.

• core is used to describe the cores of a CPU. Usually,
all cores in a CPU are homogeneous. However, there
are also heterogeneous CPUs such the ARM big.LITTLE
architectures, hence we introduced this element.

• memory is used to describe available memories, e.g.,
random access memory (RAM).

• cache describes the size, associativity, and bandwidth of
a single cache. To describe a cache hierarchy between
CPU and RAM, multiple cache elements need to be
connected by interconnect elements.

• workingunit is used to describe any additional hardware
that is available and can be used for computations.
Depending on its programming_model, currently CUDA,
OpenCL, or OpenMP, a number of other parameters have
to be specified. For CUDA, one example is the GPU’s
compute capability.

For most of these tags, energy consumption may be specified
by using the power attribute.

However, to efficiently generate efficient code, not only
the target platform’s hardware is of interest: The software is
equally important. Thus, we introduced the software tag to
allow the specification of available third-party libraries and
other software. Apparently, the most basic piece of software
information is the system’s operating system. Furthermore,
available target compilers are of particular importance, as
certain workarounds may be necessary not to trigger bugs or
achieve the optimal performance. The situation is comparable
for libraries. Sometimes, competing libraries that would achieve
the same goal are available, but for some reasons, it might be
desirable to select one instance over the other. One use-case
are MPI implementations, e.g., on TSUBAME 3.0 it is possible
to choose between OpenMPI and Intel MPI.

D. Examples

In Figure 2, an excerpt from the definition of an IBM
Bluegene/Q cluster is presented. Already from this small
excerpt, we can derive a number of facts important for our
code generation process: The group tag in combination with
the quantity attribute, embedded in a cluster tag, tells us
that we are generating code for a distributed-memory parallel
system, thus our parallelization will need to use MPI2. As a
consequence, the application’s field data will be partitioned
across the MPI ranks and statements such as the loop over
in line 3 of Figure 1 will be split into corresponding loops
over the local partitions and communication statements.

Note that each node in the EPD description consists of one
CPU, which has been defined by instantiating the corresponding

2While other parallelization approaches such as GPI [3] or HPX [5] might
be also possible, our code generator only supports MPI at the moment. As
we strive to increase automation in code generation, we see the selection of
the technology as a compiler decision, not a user decision.



1 <system id="JUQUEEN">
2 <cluster>
3 <group prefix="rack" quantity="28">
4 <group quantity="1" power="70" power_unit="KiloWatt">
5 <node>
6 <socket>
7 <cpu type="IBM_PowerPC_A2" />
8 <memory type="DDR3_Mem" />
9 </socket>
10 ...
11 <software>
12 <hostOS type="linux" />
13 <compiler type="ibmxl" version_major="15" version_minor="0" />
14 <compiler type="gcc" version_major="4" version_minor="8" />
15 </software>
16 ...

Fig. 2. Excerpt from the example definition of the JUQUEEN cluster

template. This definition is depicted in Figure 3. Inside this
template, the L1 and L2 caches refer to other templates.
Concrete cache sizes are given as a parameter. Different units
supplied within the param tag will be converted automatically
where feasible: Here, KiloByte (line 6) and MebiByte (line 9)
will be adjusted to the base unit defined in the CPU’s template.
Another example of parameters is the specification of the
interface from the CPU’s cache hierarchy to the memory. In
line 13 of Figure 3, a parameter l2_tail has been defined and
is used in line 14. By prefixing the name with the $ operator,
this value has been defined to refer to a parameter of the same
name one level above (in this case the cpu tag).

From the group declaration inside the cpu block (line 6
of Figure 3), we know that the target machine also offers
shared-memory parallelism. In combination with the compilers
specified as available, namely the IBM XL compiler suite as
well as the GNU GCC compilers (Figure 2, lines 13 and 13),
we know that generation of OpenMP-parallel code is also
possible. However, the decision which parallelization strategy
to apply, i.e., pure MPI parallelization or hybrid MPI-OpenMP,
is left to the compiler. In case of transformation Figure 1,
the grid partitioning may be adapted to a single partition per
node instead of one per CPU, and appropriate pragmas may
be added to the loop over the grid elements.

However, information about available compilers will also
be used to implement workarounds in the generated code.
Examples can be found for nearly any of the supported
compilers: For IBM’s compiler suite, use of initializer lists will
be disabled, whereas CLANG provides support for OpenMP
only starting with version 3.6. The Microsoft Visual Studio
Compiler uses a different keyword to specify alignment of
variables, and GCC requires specification of std::move at
certain occasions. Additionally, compiler flags for optimization
levels, specification of target CPU architecture, use of OpenMP,
etc vary between compiler vendors.

Finally, in line 12, the system’s operating system was defined
to be Linux. In combination with knowledge of available
compilers, our code generator will generate Makefiles instead

of, i.e., Visual Studio project files.

V. RUN-TIME QUERY INTERFACE

An accurate description of the target platform is worthless
for our code generator when the desired information cannot
be extracted. Thus, we designed and implemented a flexible
and powerful query interface. For a number of reasons, it
has been implemented in Scala [13]: First and foremost, our
ExaStencils code generator is written in Scala [20]. Obviously,
this makes interfacing much more comfortable than using
a library that needs to be natively compiled. Currently, our
code generator is used on all three major operating systems:
Linux, Windows, and macOS. Thus, bringing improvements
in EPD’s query interface to the ExaStencils code generator
would come with the overhead of compiling and linking it
statically for all these platforms. Another reason is the object-
functional nature of Scala: By a clever combination of features
such as higher-order functions (basically, functions work on
other functions), we can define syntax and semantics that are
essentially a Scala-embedded DSL. This is supported by the
use of the excellent scalaz3 library, an extension to the Scala
standard library bringing many features from Haskell [9].

A. Types

For the representation of components, we use a mixture
of dynamic and static data structures: Specialized types are
used for elemental components (see Section IV-C). However,
all their attributes, and child nodes, are saved in an abstract
and dynamic way. Compared to purely static data types, i.e.,
carrying all possible attributes as class members, we do not
need to modify any code when introducing new attributes.
This approach has the disadvantage of reduced type safety,
however, we can introduce constraints to the model, e.g., require
certain dependencies or cardinalities of child nodes, and apply
a verification step to ensure formal model correctness.

Usually, the result of queries are integral Scala types, e.g.,
integers for cardinalities, or Boolean values for availability

3https://github.com/scalaz/scalaz



1 <cpu name="IBM_PowerPC_A2">
2 <group quantity="18" id="a2_cores">
3 <core frequency="1.6" frequency_unit="GHz" power="60" power_unit="Watt" />
4 </group>
5 <cache level="1" type="cache_with_linesize">
6 <param name="size" value="16" unit="KiloByte" />
7 </cache>
8 <cache level="2" type="cache_with_linesize">
9 <param name="size" value="32" unit="MebiByte" />
10 </cache>
11 <interconnect head="a2_cores" tail="l1" />
12 <interconnect head="l1" tail="l2" />
13 <param name="l2_tail" value="?" />
14 <interconnect head="l2" tail="$l2_tail">
15 <param name="FPU_flops" value="12.8" unit="GigaFlops" />
16 ...
17 </cpu>

Fig. 3. Excerpt from the definition of an IBM BlueGene/Q CPU, as used in the JUQUEEN supercomputer

1 // list of all working units
2 val workers = predefinedQuery(epdTree,

GetWorkingUnits)
3

4 // total energy consumption
5 val power = predefinedQuery(epdTree,

PowerInWatts)

Fig. 4. Call to predefined queries to get the total energy consumption of a
(sub-) system and references to all working units

checks. However, it is also possible to receive a list of results,
e.g., the list of vector extensions provided by a CPU. When
querying for a value accompanied by a unit, such as energy
consumption, the designated magnitude and unit may be
specified for automatic conversion.

B. Queries

For a number of common tasks, such as the determination of
energy consumption of (components of) a system, or checking
the availability of certain elements, predefined queries may
be used, as depicted in Figure 4. In this example, first all
worker units, i.e., CPUs and accelerators, are extracted from
the platform description. Secondly, total energy consumption
for the platform is computed. The function PowerInWatts

has been defined to use Watt as the base unit, so all values
given in other magnitudes will be converted automatically.

However, the standard interfacing method to gather infor-
mation about the platform is via custom queries, that is,
queries specified in a DSL-like syntax collecting the necessary
information. Often, it is important to find a certain element
in the platform description tree. By using the find operation,
the first matching EPD object, or, more precisely, the entire
matching subtree, is returned and can be used for further queries.
Otherwise, the Scala object None is returned. Of course, it
also possible to return a list of all matching objects by using
findAll. These lookup operators take predicates, according to
which objects are evaluated. To ease specification, comparison

1 val q = lowLevelQuery(epdTree,
2 (y : EPDValue , x : List[String]) => y

match
3 {
4 case wu : WorkingUnit => wu.safeGetValue

("id").head :: x
5 case _ => x
6 }
7 )

Fig. 5. Call to a user-defined query for all working units’ id in a system

operators for scalar values and ranges are provided. EPD objects
support many other operations, such as group operations to
find the minimum, maximum, average or median values of
certain attributes. As the returned result usually is an EPD
subtree, our interface also offers a variety of tree manipulation
operations: Trees can be folded or unfolded, which means that
quantities are either expressed using the numeric value and a
single object, or are duplicated the corresponding times. While
the former is sufficient to compute the sum of values, e.g., the
total memory available, the latter allows to further refine the
selection and, for example, select only two cluster nodes.

In Figure 5, a custom query to get a list of all working
units that have been defined in a system is depicted. As can be
seen, we make heavy use of Scala’s pattern matching features.
Pattern matching is a compelling feature that provides a wealth
of options: For instance, data structures may be matched by
their type. In the example, whenever a data structure of type
WorkingUnit is encountered when traversing the system tree,
it is assigned to the variable wu. Then, the code on the right-
hand side of the => operator is executed. In this case, the
working unit’s id (if available) is prepended to the list of all
available ids.

Using a combination of predefined and custom queries, we
can gather the information needed to generate code tailored
especially towards the system given in EPD. This can be simply
achieved by specifying an EPD object as the data source in the



1 val workers =
2 predefinedQuery(epdTree, GetWorkingUnits)
3 val workers50 =
4 workers.filter(w => w.power > Watts(50))
5 workers50.foreach(System.out.println(_))

Fig. 6. Combination of predefined and custom query to output all working
units consuming more than 50 watts

predefinedQuery or lowLevelQuery function, instead of
the root epdTree. A simple example outputting all workers’
names is depicted in Figure 6. Here, a predefined query is used
to find all working units. Then, the returned list is filtered to
only include units consuming more than 50 watts. Note that
for proper comparison, the Watt() function has to be used
to supply a unit to the numeric value. Finally, all remaining
working units are printed to the user.

VI. FUTURE WORK

All of our current requirements can be modeled using EPD.
Future developments of the language might bring support for
the modeling of energy consumption not as a single fixed
value, but as functions that depend on the actual operations
involved, i.e., arithmetic and logic operations, and memory
transfers, and hardware-dependent parameters. For the latter,
the main problem is the gathering of reliable data. Let us take
CPU power dissipation as an example. One part of the total
energy consumption is power loss because of transistor leakage
currents, i.e., loss of energy from charged capacitors. Among
others, this is influenced by the capacitors’ temperatures, which
in turn are influenced by countless other factors.

Writing a detailed hardware description is cumbersome,
even with appropriate templates for some components already
available. Thus, we envision an automatic tool that runs on the
target platform and is able to extract most of the information
automatically. Of course, it is almost impossible to get all
relevant data, e.g., in a cluster, when the program is run on
a single node only. However, it would form a good starting
point where a user or system operator just needs to fill in the
missing pieces, such as the total node number. To continue
that idea, a wizard-like program could try to gather as much
information as possible step by step, asking the user to fill in
crucial data that could not be collected automatically.

VII. CONCLUSIONS

In this paper, we have introduced our motivation for a
detailed description of target platforms targeted by ExaStencils.
After carefully checking previous works, we decided to
design and implement our own description language and
an accompanying run-time query interface. Description of
platforms using EPD is split into abstract descriptions of
components, and their instantiation to a concrete model. To
provide an easy to understand and use, yet powerful interface
to query the platform description, we created an interface
building upon Scala’s object-functional properties. Thus, we
can describe all platforms of interest to Project ExaStencils, and
gather information required to apply appropriate optimizations.

VIII. ACKNOWLEDGMENTS

This work is supported by the German Research Foundation
(DFG), as part of the Priority Programme 1648 “Software for
Exascale Computing” in project ExaStencils under contract
number TE 163/17. We thank Sven Wille for his contributions
to the EPD implementation.

REFERENCES

[1] M. Christen, O. Schenk, and H. Burkhart. “PATUS:
A Code Generation and Autotuning Framework for
Parallel Iterative Stencil Computations on Modern Mi-
croarchitectures.” In: Proc. 25th IEEE Int’l Parallel &
Distributed Processing Symposium (IPDPS). IEEE. May
2011, pp. 676–687.

[2] M. Fowler. Domain Specific Languages. 1st. Addison-
Wesley Professional, 2010.

[3] D. Grünewald and C. Simmendinger. “The GASPI API
specification and its implementation GPI 2.0.” In: Proc.
7th Int’l Conference on PGAS Programming Models.
Vol. 243. Edinburgh, UK, 2013, pp. 243–248.

[4] W. Hackbusch. Multi-Grid Methods and Applications.
Springer-Verlag, 1985.

[5] H. Kaiser, T. Heller, B. Adelstein-Lelbach, A. Serio, and
D. Fey. “HPX: A Task Based Programming Model in a
Global Address Space.” In: Proc. 8th Int’l Conference on
Partitioned Global Address Space Programming Models.
PGAS ’14. Eugene, OR, USA: ACM, 2014, 6:1–6:11.

[6] C. Kessler, L. Li, A. Atalar, and A. Dobre. “An
Extensible Platform Description Language Supporting
Retargetable Toolchains and Adaptive Execution.” In:
Proc. 44th Int’l Conference on Parallel Processing Work-
shops (ICPPW). Beijing, China: IEEE, 2015, pp. 51–60.

[7] C. Lengauer, S. Apel, M. Bolten, A. Größlinger, F.
Hannig, H. Köstler, U. Rüde, J. Teich, A. Grebhahn,
S. Kronawitter, S. Kuckuk, H. Rittich, and C. Schmitt.
“ExaStencils: Advanced Stencil-Code Engineering.” In:
Euro-Par 2014: Parallel Processing Workshops. (Porto,
Portugal). Vol. 8806. Lecture Notes in Computer Science.
Springer, Aug. 25–29, 2014, pp. 553–564.

[8] I. Malavolta, P. Lago, H. Muccini, P. Pelliccione, and
A. Tang. Architectural Languages Today. Nov. 2017.
URL: http://www.di.univaq.it/malavolta/al/.

[9] S. Marlow, ed. Haskell 2010 Language Report. July
2010.

[10] N. Maruyama, T. Nomura, K. Sato, and S. Matsuoka.
“Physis: An Implicitly Parallel Programming Model for
Stencil Computations on Large-scale GPU-Accelerated
Supercomputers.” In: Proc. 2011 Int’l Conference for
High Performance Computing, Networking, Storage and
Analysis (SC). IEEE. Nov. 2011, 11:1–11:12.

[11] M. Mernik, J. Heering, and A. M. Sloane. “When and
How to Develop Domain-specific Languages.” In: ACM
Computing Surveys 37.4 (Dec. 2005), pp. 316–344.

[12] P. Mishra and N. Dutt. Processor Description Languages.
San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc., 2008.



[13] M. Odersky, L. Spoon, and B. Venners. Programming
in Scala. 2nd ed. artima, 2011.

[14] D. Perry. VHDL. Computer Engineering Series. Mcgraw-
Hill Book Comp., 1991.

[15] M. Püschel, J. M. F. Moura, J. R. Johnson, D. A.
Padua, M. M. Veloso, B. Singer, J. Xiong, F. Franchetti,
A. Gacic, Y. Voronenko, K. Chen, R. W. Johnson,
and N. Rizzolo. “SPIRAL: Code Generation for DSP
Transforms.” In: Proc. IEEE 93.2 (2005), pp. 232–275.

[16] P. Rawat, M. Kong, T. Henretty, J. Holewinski, K.
Stock, L.-N. Pouchet, J. Ramanujam, A. Rountev, and
P. Sadayappan. “SDSLc: A Multi-target Domain-specific
Compiler for Stencil Computations.” In: Proc. 5th Int’l
Workshop on Domain-Specific Languages and High-
Level Frameworks for High Performance Computing
(WOLFHPC). ACM, Nov. 2015, 6:1–6:10.

[17] M. Sandrieser, S. Benkner, and S. Pllana. “Using
Explicit Platform Descriptions to Support Programming
of Heterogeneous Many-core Systems.” In: Parallel
Comput. 38.1-2 (Jan. 2012), pp. 52–65.

[18] C. Schmitt, S. Kuckuk, F. Hannig, H. Köstler, and
J. Teich. “ExaSlang: A Domain-Specific Language

for Highly Scalable Multigrid Solvers.” In: Proc. Int.
Workshop on Domain-Specific Languages and High-
Level Frameworks for High Performance Computing
(WOLFHPC). IEEE Computer Society, 2014, pp. 42–51.

[19] C. Schmitt, S. Kuckuk, F. Hannig, J. Teich, H. Köstler, U.
Rüde, and C. Lengauer. “Systems of Partial Differential
Equations in ExaSlang.” In: Software for Exascale
Computing – SPPEXA 2013–2015. Ed. by H.-J. Bungartz,
P. Neumann, and W. E. Nagel. Vol. 113. Lecture Notes
in Computational Science and Engineering (LNCSE).
Springer, pp. 47–67.

[20] C. Schmitt, S. Kuckuk, H. Köstler, F. Hannig, and J.
Teich. “An Evaluation of Domain-Specific Language
Technologies for Code Generation.” In: Proc. 14th Int’l
Conf. on Computational Science and its Applications
(ICCSA). IEEE Computer Society, July 2014, pp. 18–26.

[21] D. Thomas and P. Moorby. The Verilog Hardware
Description Language. Springer Science & Business
Media, 2008.

[22] U. Trottenberg, C. W. Oosterlee, and A. Schüller.
Multigrid. Academic Press, 2001.


