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Leveraging Structure in Software Merge:
An Empirical Study
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Abstract—Large-scale software development today relies heavily on version control systems facilitating distributed development of
software projects. For the purpose of merging diverging versions of the code base, version control systems employ line-based merge
algorithms, which are applicable to all text files. Structured merge algorithms have been proposed as an alternative to unstructured,
line-based merging, with the goal of reducing the number of merge conflicts that have to be manually resolved by the developer. By
leveraging the structure inherent in source code (i.e., by representing source code files in terms of abstract syntax trees instead of
sequences of text lines), these algorithms are able to merge revisions in various situations (e.g., reordering of methods) that would
cause conflicts when merged using an unstructured approach. However, merging abstract syntax trees is inherently more complex than
merging sequences of text lines, which makes structured merge algorithms computationally more expensive than an unstructured
merge. To reduce the runtime cost of structured merge algorithms, semistructured merge as well as combinations of different merge
strategies were proposed. As such, we observe a range of increasingly structured merge algorithms, which feature different
characteristics in terms of conflict resolution and runtime. The progressively increasing use of structure to avoid merge conflicts or to
automate conflict resolution raises a number of questions: How is the correctness of the code resulting from a merge affected when
employing structured merge algorithms? Which algorithm strikes the best balance between runtime, conflict resolution potential, and
correctness of the merge result? For the first time, we evaluate a whole range of merge algorithms (from unstructured over
semistructured to structured as well as combinations) by replaying merge commits in a controlled setting. We employ the test suite of
the projects in question as an oracle for the correctness of the resulting code, triangulated by a thorough manual analysis. Using 7727
merge commits from 10 open-source projects, we find that combined strategies appear to be the best of both worlds: They resolve as
many conflicts as structured merge at a significantly lower runtime per merge commit. Notably, structured merge strategies do cause
more test failures, however, the increase is small.

Index Terms—JDIME, version control systems, software merge, structured merge, semistructured merge
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1 INTRODUCTION

V ERSION control systems are commonplace in modern
software development. With tools such as GIT and

SVN, developers are able to keep track of changes made to
source code artifacts and independently develop separate
(or overlapping) aspects of a software project. Branching
is used by platforms such as GITHUB to implement so-
phisticated workflows resulting in coordinated merges of
independent development streams, thereby driving the de-
velopment of the project as a whole.

To automate the merge of software revisions (e.g., the
tips of two branches), version control systems offer a num-
ber of merge algorithms. The state of the art in practice is the
use of unstructured algorithms, which consider source code
artifacts to be merely sequences of text lines. Unstructured
merge is popular due to its simplicity and its applicability to
all kinds of text files, irrespective of the kind of content. An-
other strength is the superior scalability of these algorithms.
For the most part, the performance of unstructured merge,
in terms of the number and kind of conflicts produced when
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merging revisions, is satisfactory in practice [1]. On the
downside, when conflicts arise, sometimes they are trivial
to developers who are familiar with the semantics of the
language. For example, unstructured merge is not able to
recognize reordering of methods, a refactoring that makes
no semantic difference in languages like JAVA. This shows
the downside of the generality of unstructured merge: The
rigid structure of source code, which could be used to
resolve merge conflicts, is ignored.

Researchers have developed various structured merge
algorithms, which leverage the structure of the source code
being merged with the goal of reducing the number of
conflicts. The improved conflict resolution capability how-
ever comes at a cost. On the one hand, to implement a
structured merge algorithm, one has to be able to parse the
programming language in which the code is written, fixing
the kind of source code artifacts the algorithm can be ap-
plied to. On the other hand, structured merge, particularly
tree matching, is computationally far more complex than
merging sequences of text lines. This leads to a significantly
higher runtime in practice. While unstructured merge typi-
cally takes, at most, a few seconds to run, a structured merge
of a complex AST easily takes several minutes to complete.
To mitigate the runtime cost of a structured merge while
retaining the conflict resolution potential, previous work
introduced combined, adaptive strategies, which apply less
sophisticated merge algorithms first before moving on to
a structured merge in the case of conflicts. For example,
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Leßenich et al. introduced structured merge with autotuning,
which applies unstructured merge and, in the case of con-
flict, escalates to a fully structured merge [2].

Previous work has provided data about runtime and
conflict characteristics of merge strategies in isolation, how-
ever, the full spectrum of possibilities was never studied in a
controlled, integrated environment. Without comprehensive
data derived from real-world merge scenarios, the adoption
of structured merge algorithms outside of academia remains
limited. Our assumption is that, while the number of con-
flicts produced by structured merge is lower, there is the
possibility of incorrectly resolving conflicts that should not
have been merged. Therefore, we examine the correctness of
the merged code by employing the test suite of the projects
as an oracle to answer a previously open question:

Does the intelligent, structure-aware resolution of merge
conflicts performed by structured merge algorithms
come at a cost to the correctness of the produced code?
That is to say, does structured merge resolve too many
merge conflicts?

We pose corresponding research questions concerning the
influence of “structuredness” on the correctness of conflict
free code as well as the number and characteristics (i.e., size)
of conflicts and the runtime of the algorithms.

In this paper, we work with JDIME,1 a structured merge
tool for JAVA, which contains implementations of unstruc-
tured merge, structured merge based on merging abstract
syntax trees, and semistructured merge, in which code
above the level of method declarations is merged struc-
turally and method bodies are merged in an unstructured
way. JDIME also provides implementations of combined
strategies. For our study, we implemented a measurement
framework that identifies merge commits and replays them
using JDIME as a merge driver within the GIT version con-
trol system. We can thereby guarantee that, for every merge
commit, the merge algorithm (via JDIME) is presented with
the same set of files for a fair comparison.

We perform an empirical study using 7727 merge com-
mits from 10 open-source JAVA projects gathered from
GITHUB to both replicate results concerning runtime and
conflicts for unstructured, semistructured and structured
merge algorithms and extend the body of knowledge by
adding results for combined strategies. We found that sim-
ple strategies follow a predictable pattern in terms of run-
time: As in previous studies, runtime increases with the
complexity of the merge algorithm, most significantly for
fully structured merge [2]. The same applies to conflicts:
Structured merge can resolve the most conflicts, semistruc-
tured merge falls between unstructured and structured al-
gorithms. The results for combined strategies show that
their runtime is mostly determined by their least complex
strategy (recall that most merge scenarios can be resolved
by unstructured merge). Their conflict resolution potential
however is quite surprising: In some cases, combined strate-
gies outperform fully structured merge, which is due to re-
solving cases that can not be handled by unstructured merge
as well as those that structured merge produces conflicts
for (but unstructured does not). The runtime overhead of

1. https://github.com/se-sic/jdime/

combined strategies per merge scenario is far less severe
than is the case for structured merge, whereas combined
strategies are able to resolve, at least, as many conflicts as
structured merge.

As a notable result, the influence of the use of structured
merge algorithms on the correctness of the code (as deter-
mined by a test suite and a thorough manual analysis) is
minimal. Increasing the complexity of the merge algorithm
will increase the number of build and test failures, but the
increase is small enough to be acceptable in practice.

In summary, we make the following contributions:

• We integrate unstructured, semistructured and struc-
tured merge algorithms as well as combined strate-
gies into one controlled framework.

• We perform an empirical study on 7727 merge com-
mits from 10 open-source projects gathering data
about runtime, conflict characteristics, and correct-
ness of the merge result for all strategies.

• Our study confirms previous results about conflict
resolution and runtime performance of various struc-
tured merge approaches.

• Our results show that, while the lower number of
conflicts produced by more complex merge strategies
comes at a runtime cost, that can be mitigated using
combined strategies.

• Most notably, we found that employing structured
merge algorithms to automatically resolve conflicts
does not result in a large increase in test failures indi-
cating incorrect code. That is to say, combined strate-
gies are an attractive compromise between runtime
and conflict resolution potential, while their increase
in test failures remains small enough to make them
viable in practice. They retain the low runtime of
unstructured merge for most scenarios while resolv-
ing, at least, as many conflicts as structured merge in
cases where unstructured merge fails.

This article synthesizes and expands on a number of previ-
ous papers: Semistructured merge has been proposed by
Apel et al. [3]. For this article, we re-implemented the
semistructured merge algorithm for JAVA on top of JDIME.
Structured merge and, in particular, its combination with
unstructured merge has been introduced and implemented
by Apel et al. for JDIME [4]. We expand on this work by
implementing more combined strategies. Apel et al. [3],
Leßenich et al. [2], and Cavalcanti et al. [5] compared dif-
ferent subsets of merge strategies. We improve upon these
previous studies by comparing all basic strategies as well as
all combined strategies in a controlled setting. In addition to
merge conflicts and merge time, we analyze for all strategies
the correctness of the merged code, which provides insights
into the tension between reducing the number of conflicts
and still producing correct code. To determine correctness,
we rely on the test suite of our subject systems and addi-
tionally perform a thorough manual analysis.

We provide raw data and instructions necessary for
replication via our supplementary Website.2

2. https://se-sic.github.io/sism-supp/

https://github.com/se-sic/jdime/
https://se-sic.github.io/sism-supp/
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2 BACKGROUND

In this section, we provide an overview of the merge strate-
gies used in our study. To illustrate unstructured, semistruc-
tured, and structured merge, we introduce a running exam-
ple used throughout the section. We provide an overview
of each approach, a description of the relevant algorithms,
and then we use the running example to describe how the
algorithm behaves in practice.

2.1 Running Example

We use Figure 1 as a running example throughout the paper
to illustrate and contrast the different merging strategies.
The running example consists of the Java class Counter,
which, in the BASE revision, contains a field for storing the
value of the counter and a method get for retrieving it.

Now suppose two programmers independently extend
this class. To support this kind of development, version
control systems provide the concept of branches in which
independent sets of changes can be applied to a base version
of the source code. In Figure 1, two branches are split off
from the BASE revision resulting in the revisions LEFT and
RIGHT.

Both branches add the visibility modifier private to field
num, but they use different styles. The LEFT revision adds
the modifier on a separate line, whereas RIGHT follows the
usual convention and adds the modifier on the same line
as the field. Furthermore, a method called inc is added
in both revisions, which is supposed to increase the value
of the counter by one while printing a corresponding log
message. The complication here is that the implementations
and placement of the method differ between LEFT and
RIGHT. Method inc is implemented properly in the LEFT
revision, where the developer chose to place it above the
get method. The RIGHT revision, however, contains a faulty
implementation of inc, in which the counter is actually
increased by two instead of one and the formatting of the
log message is non-standard (there are spaces before the
argument of println). In revision RIGHT, the new method
was placed below get.

At some point, the two branches are merged with the
aim of generating a consolidated version of class Counter.
This merge between the three revisions LEFT and RIGHT
based on their common ancestor BASE is known as a three-
way merge [1]. In practice, most merges are performed using
unstructured algorithms (see Section 2.2) as implemented
in version control systems such as GIT. Algorithms that
exploit source code structure to automatically resolve merge
conflicts are introduced in Sections 2.3 and 2.4.

2.2 Unstructured Merge

2.2.1 Overview
The approach that is most widely used in software merge
tools is unstructured merge. It appears in widely used UNIX
tools such as DIFF and MERGE and is used in the most popu-
lar version control systems, chiefly GIT and SVN. While the
implementation is complex, the idea is straight-forward: The
algorithm considers software artifacts simply as a sequence
of text lines. An algorithm inspired by the Longest Common
Subsequence problem [6] is used to identify changed blocks

in the lines that make up the versions to be merged. The
algorithm walks through the changed blocks and applies a
set of merge rules to either accept changes into the merge
output or flag conflicts where the correct change to accept
can not be decided.

As such, the algorithm is applicable to any file that can
be interpreted as a sequence of text lines. This property and
the very high runtime efficiency are the major selling points
for unstructured merge. There is, however, a downside. The
granularity of the algorithm is at the level of text lines; the
fact that it is source code that is being merged is not taken
into account. This leads to weaknesses in conflict resolution
since the structure of the source code is not considered. In
their survey on software merging, Mens et al. conjecture
that up to 90 % of merge scenarios may be resolved using
unstructured merge, while the remaining 10 % require more
complex solutions such as structured merge [1].

2.2.2 Example
Figure 1 (bottom left) shows the result of an unstructured
three-way-merge between the revisions LEFT, BASE, and
RIGHT. The unstructured merge algorithm notices a conflict-
ing change to Line 2 of BASE between the LEFT and RIGHT
revision. As the algorithm is unable to recognize that both
versions are semantically equivalent, it reports a conflict
starting on Line 2 and closing on Line 7 of the unstructured
merge result. The second issue with the merge result is
not marked by a conflict, arguably making it more severe:
Unstructured merge includes both versions of method inc,
so the code would not compile.

2.2.3 Algorithm
The output of unstructured merge shown in Figure 1 was
produced by the merge algorithm included in the GIT
version control system.

The actual implementation of the merge algorithm in
GIT is out of scope of this paper as it involves a range of
specialized optimizations. However, the algorithm is based
on DIFF3, which is simpler and captures still the essence
of unstructured merge [7]. Unstructured merge in DIFF3
consists of two steps: First, three versions (sequences of
text lines in the case of source code files), one of which is
considered the base version, are passed to the algorithm.
The DIFF algorithm is called twice to identify the longest
common subsequences between the changed versions and the
base version. These matchings between versions and their
base are then overlaid to form a sequence of chunks, either
stable (all versions agree) or unstable (at least one of the
versions differs from the base). Finally, the changes made in
each chunk are examined and, if possible, merged. Chunks
in which only one version applies changes to the base
are merged. However, if two versions make inconsistent
changes to the base, the algorithm reports a conflict.

2.3 Structured Merge
2.3.1 Overview
Structured merge leverages the rigid structure of source
code with the goal of resolving merge conflicts. Westfechtel
and Buffenbarger were pioneers of this field; they proposed
the use of structural information about the code, derived
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BASE

1 class Counter {
2 int num = 0;
3 int get() { return num; }
4 }

LEFT

1 class Counter {
2 private
3 int num = 0;
4 void inc() {
5 System.out.println(”Increasing by 1”);
6 num = num + 1;
7 }
8 int get() { return num; }
9 }

RIGHT

1 class Counter {
2 private int num = 0;
3 int get() { return num; }
4 void inc() {
5 System.out.println( ”Increasing by 1”);
6 num = num + 2;
7 }
8 }

MERGE

SEMISTRUCTURED MERGE

1 class Counter {
2 private int num = 0;
3 void inc() {
4 <<<<<<< Left
5 System.out.println(”Increasing by 1”);
6 num = num + 1;
7 =======
8 System.out.println( ”Increasing by 1”);
9 num = num + 2;

10 >>>>>>> Right
11 }
12 int get() {
13 return num;
14 }
15 }

UNSTRUCTURED MERGE

1 class Counter {
2 <<<<<<< Left
3 private
4 int num = 0;
5 =======
6 private int num = 0;
7 >>>>>>> Right
8 void inc() {
9 System.out.println(”Increasing by 1”);

10 num = num + 1;
11 }
12 int get() { return num; }
13 void inc() {
14 System.out.println( ”Increasing by 1”);
15 num = num + 2;
16 }
17 }

STRUCTURED MERGE

1 class Counter {
2 private int num = 0;
3 void inc() {
4 System.out.println(”Increasing by 1”);
5 num = num +
6 <<<<<<< Left
7 1
8 =======
9 2

10 >>>>>>> Right
11 ;
12 }
13

14 int get() {
15 return num;
16 }
17 }

Fig. 1: The merge scenario used as a running example throughout the paper. The code of revision BASE is inconsistently
modified in revisions LEFT and RIGHT. Performing an unstructured, semistructured and structured three-way merge of
these revisions results in code containing different kinds of conflicts.

from its syntax rules, in the merge algorithm [8], [9]. Specif-
ically, source code is represented as an abstract syntax tree
(AST) instead of a sequence of lines. Merging ASTs consists
of two steps: First, the nodes of the trees are matched to
establish equality relationships between pairs of nodes from
two different revisions. In three-way merge, the matching
algorithm would match the revisions LEFT and RIGHT with
the BASE revision as well as the LEFT and RIGHT revisions
with each other. Second, the revisions LEFT and RIGHT are
merged to form the AST representing the merge result. To
construct the merged AST, the algorithm walks the two
ASTs to be merged in lockstep and applies three-way merge
rules [1] to decide whether to include nodes, delete them, or
flag conflicts.

As this process exploits a variety of properties of the
language being merged (e.g., that it is safe to permute
methods, Figure 1), a range of situations that are unde-
cidable for an unstructured algorithm become trivial to
resolve [3]. Another example in which knowledge about

language structure is useful and could be exploited by a
structured merge tool is the merging of loops: A for loop
in Java consists of a head and the associated body, with
the head being made up of three distinct parts. These parts
are usually located on the same line but are represented
by distinct subtrees in an AST. Figure 2 shows a merge
scenario in which the LEFT revision increments the iteration
variable of the loop using an alternative style, which affects
the third part of the loop head. The RIGHT revision modifies
the bounds of the loop which entails changing the second
part of the loop head. Unstructured merge produces one
conflict consisting of the line which contains the loop head.
Structured merge is able to avoid the conflict due to the
structure of the AST representing the loop. The changes
occurred in separate subtrees of the AST. Note that, while
it is safe in our example, accepting both changes to the head
of the loop may cause the parts of the body that depend on
the iteration variable to work incorrectly, thereby causing a
test failure (in the best case) instead of a merge conflict.
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BASE

class Looper {
void loop() {

for (int i = 0; i < 10; i++) {
System.out.println(i);

}
}

}

LEFT

class Looper {
void loop() {

for (int i = 0; i < 10; i += 1) {
System.out.println(i);

}
}

}

RIGHT

class Looper {
void loop() {

for (int i = 0; i < 20; i++) {
System.out.println(i);

}
}

}

MERGE

UNSTRUCTURED MERGE

class Looper {
void loop() {

<<<<<<< Left
for (int i = 0; i < 10; i += 1) {

=======
for (int i = 0; i < 20; i++) {

>>>>>>> Right
System.out.println(i);

}
}

}

STRUCTURED MERGE

class Looper {
void loop() {

for (int i = 0; i < 20; i += 1) {
System.out.println(i);

}
}

}

Fig. 2: Unstructured vs. structured merge of a simple for
loop. In the LEFT version, the iteration variable is incre-
mented using an alternative style while the RIGHT version
increases the bounds of the iteration. Unstructured merge
produces a conflict as the changes happen in the same
line. Structured merge is able to avoid the conflict since the
changes are represented by distinct subtrees of the AST.

A further benefit of structured merge is that formatting
is not present in an AST and as such has no influence on the
merge process.3

The increased ability to resolve conflicts comes at a cost.
Structured merge relies on being able to transform source
code into a structured representation. In practice, this means
that one has to implement (or use) an appropriate parser for
every language to be supported. For widely used languages
such as Java, these parsers already exist and require only
minor modification to be usable in a merge tool. Any parser
being considered for structured merge will, at least, have to
support programmatic construction of ASTs and be exten-
sible enough to add the concept of a conflict into the AST
structure and the pretty-printing algorithm.

A more severe problem of structured merge is the run-
time complexity of the underlying matching and merging
algorithms, which work on trees making them inherently
more complex than their counterparts in unstructured merg-
ing, which consider only collections of lines. For example,
to maximize precision, the matching step of the algorithm

3. Unstructured merge tools such as GIT can often be configured to
ignore whitespace changes, etc. These options are rarely enabled by
default, though. In principle, unstructured merge does not distinguish
between the kinds of text it merges.

would need to handle both shifted subtrees as well as
renamed nodes in the ASTs [10]. This corresponds to solv-
ing the Tree Amalgamation Problem and the Maximum
Common Embedded Subtree Problem, both of which are
known to be NP hard [11], [12]. Although structured al-
gorithms can be adjusted to reduce their complexity (e.g.,
by decreasing the granularity of the data structures) even
these compromises result in polynomial or even exponential
algorithms. This necessitates that matchings are constrained.
For example, in JDIME, only nodes at the same level in the
respective ASTs can match.

2.3.2 Example
The exemplary result presented in Figure 1 demonstrates
several of the properties of structured merge discussed so
far. Where unstructured merge produced a conflict due to
inconsistent formatting of the “private int num = 0;” state-
ment, a structured merge does not produce this conflict.
The subtrees representing the field declaration were fully
matched and thus included as merged code in the result.
This involves normalizing the code formatting to whatever
the AST library in use produces when converting an AST
into code, which may not be desirable in all circumstances.4

Furthermore, there is only one method inc in the merged
code as opposed to the two methods produced by un-
structured merge. Likewise, the AST matching algorithm
was able to match most of the AST representing method
get in the LEFT version of the code with the one in the
RIGHT version. Note that the System.out.println() statements
in both versions were matched due to formatting being
irrelevant as mentioned above. As the order of method dec-
larations is irrelevant in Java, the algorithm chose to include
the inc method above the get method. Structured merge
thereby produces valid Java (except for the conflict) whereas
unstructured merge duplicates the method inc leading to
broken code even if all conflicts are resolved.

The code resulting from structured merge is not free of
conflicts, though. The implementation of method inc in the
RIGHT revision actually increases the counter by 2 instead
of 1 (which the LEFT version does). This leads to the only
conflict produced by structured merge. Note, however, that
the conflict is more fine-grained than conflicts produced
by unstructured merging. It only includes the part of the
statement that actually differs between the revisions, the
number being added to num. Conflicts in the unstructured
case will always consist of whole lines as that is the “unit”
being worked with.

2.3.3 Algorithm
Structured merge consists of two steps: calculating match-
ings between the input ASTs and constructing a merged
AST based on the matchings. The complexity of the ap-
proach lies in the first step. For maximum precision, the
aforementioned NP-hard problems (Tree Amalgamation
and Maximum Common Embedded Subtree) would have
to be solved. To reduce the computational complexity, a
restricted matching algorithm is used. Instead of searching

4. A sophisticated structured merge tool might augment the AST
to include formatting information, which could be used when pretty-
printing but ignored when matching ASTs.
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Algorithm 1 AST Matching (level-wise, early return)

1: function Match(Node 𝐿, Node 𝑅)
2: if 𝐿 ≠ 𝑅 then
3: return 0 ⊲ Nodes do not match, early return
4: end if
5: cs𝐿 ← children of 𝐿
6: cs𝑅 ← children of 𝑅
7: if IsOrdered(𝑐𝑠𝐿) ∨ IsOrdered(cs𝑅) then
8: return OrderedMatching(𝐿, 𝑅) ⊲ Considering order
9: else

10: return UnorderedMatching(𝐿, 𝑅) ⊲ Ignoring order
11: end if
12: end function

for matchings anywhere in the opposing AST, the algorithm
proceeds top-down and only considers pairs of nodes that
lie at the same level. This corresponds to the Maximum
Common Subtree Problem [12].

Algorithm 1 shows the top-down matching algorithm
as implemented in JDIME. First, the nodes 𝐿 and 𝑅 are
checked for equality, which is defined in terms of their type
and, depending on the kind of AST node, other attributes,
such as the name of a declared method or the value of an
integer literal. Crucially, the children of AST nodes are not
considered when equality of nodes is determined. If the
nodes are not equal, the algorithm stops and reports that
they do not match.

If the two nodes are equal, their children are matched
using one of two standard methods: the Longest Com-
mon Subsequence Algorithm for ordered children and the
Hungarian method for unordered matches [6], [13]. Both
methods will recursively call the matching function shown
in Algorithm 1.

After calculating the matches, an appropriate merge
algorithm for the children of the nodes 𝐿 and 𝑅 is selected
depending on whether both lists of children are consid-
ered ordered or unordered. This determination is based on
JAVA’S syntax rules (e.g., children representing statements
in a method are ordered, whereas children representing
method declarations in a class are not). For the ordered case,
Algorithm 2 is applied. The algorithm for the unordered
case follows a similar, less complex, pattern, since we can
just process the children of 𝐿 first, and then the children
of 𝑅. JDIME performs additional steps in the unordered
merge algorithm to retain the original ordering as much as
possible.

Function OrderedMerge accepts the nodes 𝐿 and 𝑅 and
the node 𝑡𝑎𝑟𝑔𝑒𝑡, whose list of children is to be constructed
by merging the children of 𝐿 and 𝑅. The algorithm is
initialized by selecting the first child of 𝐿 and 𝑅 respectively
using function Next, which returns the next element from
the given list. The main loop of the algorithm proceeds
merging elements from the lists of children until the end
of one of them is reached. Merging proceeds as follows:
First, OrderedMerge calculates a number of indicators based
on the matchings that were previously calculated. The
algorithm implemented in JDIME uses 5 such indicators.
Table 1 enumerates the relevant indicator configurations. All
omitted cases are considered invalid and would result in an
error. These indicators are then used to select appropriate
merge operations.

Algorithm 2 OrderedMerge

1: function OrderedMerge(Node 𝐿, Node 𝑅, Node 𝑡)
2: cs𝐿 ← children of 𝐿
3: cs𝑅 ← children of 𝑅
4: 𝑐𝐿 , done𝐿 ← Next(cs𝐿)
5: 𝑐𝑅 , done𝑅 ← Next(cs𝑅)
6: while ¬done𝐿 ∧ ¬done𝑅 do ⊲ Run until one list is consumed
7: ind← Indicators(𝑐𝐿 , 𝑐𝑅) ⊲ Calculate indicators
8: ops← ChooseOperations(ind) ⊲ Operations from Table 1
9: move𝐿 , move𝑅 ← ApplyAll(ops, 𝑐𝐿 , 𝑐𝑅 , 𝑡)

10: if move𝐿 then ⊲ Move on to the next left child
11: 𝑐𝐿 , done𝐿 ← Next(cs𝐿)
12: end if
13: if move𝑅 then ⊲ Move on to the next right child
14: 𝑐𝑅 , done𝑅 ← Next(cs𝑅)
15: end if
16: end while
17: while ¬done𝐿 do ⊲ Process any remaining left children
18: ind← Indicators(𝑐𝐿)
19: op← ChooseOperation(ind)
20: Apply(op, 𝑐𝐿 , 𝑡)
21: 𝑐𝐿 , done𝐿 ← Next(cs𝐿)
22: end while
23: while ¬done𝑅 do ⊲ Process any remaining right children
24: 𝑖𝑛𝑑 ← Indicators(𝑐𝑅)
25: 𝑜𝑝 ← ChooseOperation(𝑖𝑛𝑑)
26: Apply(𝑜𝑝, 𝑐𝑅 , 𝑡)
27: 𝑐𝑅 , done𝑅 ← Next(cs𝑅)
28: end while
29: end function

The rows in Table 1 denote changes that occurred in the
versions being merged. For example, the first row indicates
that 𝑐𝐿 and 𝑐𝑅 match and are also present in the base AST
(i.e., that part of the AST was not changed). The third row
refers to the situation that, while 𝑐𝑅 was present in the base
AST, it is missing from the left AST, which is interpreted as
the left revision deleting 𝑐𝑅. However, if there are changes
detected anywhere in the subtree under 𝑐𝑅, we report a
conflict (between that change and the deletion) instead.

The selection of merge operations is performed in
ChooseOperations, which produces one or more instances
of the operations Merge(𝑛, 𝑚), Addition(𝑛, 𝑚), Deletion(𝑛, 𝑚),
and Conflict(𝑛, 𝑚). Operations represent actions to be taken
to construct the merged AST. Operation Addition(𝑐𝐿 , 𝑡),
for example, adds 𝑐𝐿 (the whole subtree) as a child to 𝑡,
thereby “consuming” 𝑐𝐿 . Whether 𝑐𝐿 or 𝑐𝑅 was consumed
is returned from function ApplyAll to OrderedMerge. This
information is used to decide whether the next child from
the children of the left or right node (or both) should be
selected for the next iteration.

After one of the children lists is consumed, the remaining
nodes on the other side of the merge are merged. This
proceeds generally in the same way the main loop is im-
plemented. The algorithm finishes once both child lists are
consumed. The target nodes children represent the merge
result of the children lists of 𝐿 and 𝑅.

2.4 Semistructured Merge

2.4.1 Overview
Semistructured merge targets the middle ground between
unstructured and structured merge algorithms. It is aimed
at resolving as many of the conflicts that structured merging
would resolve as possible while speeding up the merge
procedure by using unstructured merging for parts of the
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TABLE 1: The indicator lookup table for OrderedMerge. Both 𝑐𝐿 and 𝑐𝑅 represent the children of 𝐿 and 𝑅 being merged
in Algorithm 2; 𝑙, 𝑟 and 𝑏 are placeholders for any (other) node from the left, base, and right AST. The column 𝑐𝐿 ↔ 𝑐𝑅
indicates whether a bidirectional matching between the nodes 𝑐𝐿 and 𝑐𝑅 was found. The remaining indicators 𝑐𝐿 → 𝑟,
𝑐𝐿 → 𝑏, 𝑐𝑅 → 𝑙, and 𝑐𝑅 → 𝑏 denote a match from 𝑐𝐿 or 𝑐𝑅 to any node in an opposing tree. A checkmark (3) indicates that a
match is present, empty otherwise. The remaining columns show the actions to be taken if the corresponding configuration
of indicators is encountered. All action operate on the children of the newly created node 𝑡 (see Algorithm 2).

𝑐𝐿 ↔ 𝑐𝑅 𝑐𝐿 → 𝑟 𝑐𝐿 → 𝑏 𝑐𝑅 → 𝑙 𝑐𝑅 → 𝑏 Result If left subtree
changed.

If right subtree
changed.

If both subtrees
changed.

3 3 3 3 3 Merge(𝑐𝐿 , 𝑐𝑅)
3 3 3 Merge(𝑐𝐿 , 𝑐𝑅)

3 3 3 Deletion(𝑐𝑅 , 𝑡) Conflict(𝑐𝑅 , 𝑛𝑜𝑛𝑒)
3 3 Addition(𝑐𝑅 , 𝑡)
3 3 Deletion(𝑐𝑅 , 𝑡) Conflict(𝑐𝑅 , 𝑛𝑜𝑛𝑒)
3 Addition(𝑐𝑅 , 𝑡)

3 3 3 Deletion(𝑐𝐿 , 𝑡) Conflict(𝑐𝐿 , 𝑛𝑜𝑛𝑒)
3 3 Deletion(𝑐𝐿 , 𝑡) Conflict(𝑐𝐿 , 𝑛𝑜𝑛𝑒)
3 3 Deletion(𝑐𝑅 , 𝑡) , Deletion(𝑐𝐿 , 𝑡) Conflict(𝑐𝐿 , 𝑛𝑜𝑛𝑒) Conflict(𝑛𝑜𝑛𝑒, 𝑐𝑅) Conflict(𝑐𝐿 , 𝑐𝑅)
3 Addition(𝑐𝑅 , 𝑡) , Deletion(𝑐𝐿 , 𝑡) Conflict(𝑐𝐿 , 𝑛𝑜𝑛𝑒)

3 3 Addition(𝑐𝐿 , 𝑡)
3 Addition(𝑐𝐿 , 𝑡)

3 Addition(𝑐𝐿 , 𝑡) , Deletion(𝑐𝑅 , 𝑡) Conflict(𝑛𝑜𝑛𝑒, 𝑐𝑅)
Conflict(𝑐𝐿 , 𝑐𝑅)

source code. The key idea is that the parser producing
the AST is interrupted when a certain level (e.g., method
declarations) is reached. The parser is extended with a
new kind AST node that represents the remaining source
code (e.g., the method bodies) as blocks of text. Figure 3
shows an example of a semistructured AST. Semistructured
merge could be configured to stop at any level (e.g., class
bodies, method bodies, bodies of loops or conditional ex-
pressions). In JDIME, semistructured merge uses structured
merge for everything above and including the level of
method declarations and unstructured merge for the bodies
of methods and constructors, which has been successful in
practical settings [3]. This leads to a significant speedup
compared to fully structured merge, while retaining the
ability to recognize and correctly match reordered methods
and fields. In other words, the usual structured algorithms
are used to merge the ASTs, but when leaves representing
text blocks (e.g., method bodies) are matched or merged, the
algorithm delegates to an unstructured strategy. The AST
resulting from the merge will then contain text block nodes
representing the results of unstructured merging between
blocks of text. These sections of code will be included in the
code resulting from the transformation of the surrounding
AST.

2.4.2 Example
The example of semistructured merge shown in Figure 1
was produced by considering method bodies as text and
everything above as AST. As such, a semistructured merge
algorithm also avoids the conflict introduced by inconsistent
formatting of the visibility modifier of field num. The field
declaration takes place above the level of method bodies
and was therefore merged structurally.

Method declarations themselves (meaning the AST
nodes representing the method signature) are also merged
structurally. This enables semistructured merge to avoid
duplicating method inc as is the case in unstructured merge.
The method body, however, is merged using unstructured
merge, which produces one large conflict over the whole

class SSExample {
int field;
void method() {
int x = 21;
int y = 21;
System.out.println(x + y);

}
}

ClassDecl ID=”SSExample”

FieldDecl

Modifiers

PrimitiveTypeAccess ID=”int”

FieldDeclarator ID=”field”

MethodDecl ID=”method”

Modifiers

PrimitiveTypeAccess ID=”void”

Parameters

SemistructuredNode

int x = 21;
int y = 21;
System.out.println(x + y);

Fig. 3: The semistructured AST for class SSExample (left).
Everything above the method body (class and field decla-
rations as well as the method signature) are represented in
a structured manner. A node SemistructuredNode holds the
method body by representing its code as text.

body of method inc. The conflict between Line 7 of the
LEFT revision and Line 8 of the RIGHT is unavoidable. It
is also present (though smaller) in the code produced by
structured merge (the literals “1” and “2” conflict). The
conflict between Lines 6 and 7, on the other hand, is specific
to unstructured merge. The lines only differ in that the
RIGHT revision adds two spaces in before the argument to
System.out.println. Unstructured merge does not recognize
that this difference is syntactically irrelevant. The idea of
semistructured merge is to retain as much of the conflict
resolution potential of structured merge while reducing its
runtime cost significantly.
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2.5 Combining Strategies

1 I J N

Unstructured

Merge

Semistructured

Merge

Structured

Merge

· · · · · · · · ·
✓ ✗ ✗ ✓

✓ ✗

✓

Fig. 4: Merging multiple files (from 1 to 𝑁) using a combined
strategy. In the first round using unstructured merge, files 𝐼

and 𝐽 are merged with conflicts. Semistructured merge is
able to merge file 𝐼 without conflicts but file 𝐽 still conflicts.
Finally, structured merge is able to resolve all remaining
conflicts.

To alleviate a major disadvantage of structured
merging—its often impractical runtime—prior work has
proposed to combine strategies sequentially [2]. The idea
is straightforward: a merge tool employs merge strategies
of lower complexity first and only moves on to more
complex algorithms if the faster strategies resulted in con-
flicts. For example: JDIME provides the ability to combine
arbitrary merge strategies into a metastrategy. One might
set up the strategy unstructured→semistructured→structured,
which will employ unstructured merging first, in the case
of conflicts move on to semistructured merging, and only
then escalate to the expensive structured strategy. Previ-
ous work by Leßenich et al. has employed the combined
strategy unstructured→structured and found that it meets
expectations by striking a good balance between runtime
and conflict resolution [2].

JDIME provides three basic merge strategies, namely
unstructured (US), semistructured (SS), and structured (S),
which we study in individually. In addition, we analyze
all combinations of these strategies in which the expected
runtime increases and no strategy appears twice. This
leaves us with four strategies, US→SS, SS→S, US→S, and
US→SS→S.

Figure 4 shows a merge scenario in which 𝑁 files are
merged. At first, the merge for all files is performed us-
ing the unstructured strategy. This provides the best run-
time and will succeed without producing conflicts in most
cases [2]. Let’s say that the merge succeeds for all but the
files having the index 𝐼 and 𝐽. In the second “round” of the
merge, the files 𝐼 and 𝐽 are passed to the semistructured
strategy, which merges parts of the source code structurally,
while still using an unstructured approach for method bod-
ies. This succeeds for file 𝐼, while still producing conflicts
for 𝐽. In the last round of the merge, the file 𝐽 is successfully
merged using the fully structured approach. If any file were
to still contain conflicts after the structured strategy was
tried, these conflicts would remain for the user to resolve.

3 EMPIRICAL STUDY

To compare unstructured, semistructured and structured
merging as well as combinations thereof, we conducted an
empirical study on 7727 merge commits from 10 projects. All
data, case studies, scripts, and further plots are available on
our supplementary Website.5 Next, we describe the research
questions, setup, subjects, and results of our study.

3.1 Research Questions

While using more complex merge algorithms will naturally
result in higher runtime, the extent and proportion of the
increase is unclear. We measure the runtime of all simple
strategies (unstructured, semistructured and structured) by
re-merging real-world merge scenarios from the version
history of our subject systems (see Section 3.4). Addition-
ally, the use of combined strategies promises to decrease
the runtime, while resolving as many conflicts as possible
by using simpler strategies first before escalating to more
complex strategies in the case of conflicts.

RQ1 What is the runtime cost of using progressively more
complex merge strategies?

Apart from the runtime of a given strategy, its effectiveness
in terms of conflict resolution is an important measure. We
expect the number of conflicts to decrease as the complexity
of the merge strategy increases.

RQ2 How does using progressively more complex merge
strategies affect the number of conflicts resulting
from the merge?

To learn about the characteristics of the conflicts produced
by the various merge strategies, we additionally measure
the size of the conflicts in terms of lines of code.

RQ3 How does using progressively more complex merge
strategies affect the size of the conflicts resulting from
the merge?

Previous work has studied merge strategies in terms of the
number and size of the conflicts they produce. This study
examines the subject in a more granular way. When a merge
strategy produces code that does not contain conflicts, we
check it for both build- and test failures. The former is
recorded when conflict-free code does not compile. In ad-
dition to these failures occurring in the build phase, this
study considers failures in the testing phase, that is, code
which does compile but results in incorrect behavior of the
program. We use the test suite of the subject project under
consideration as an oracle to detect incorrect behavior, and
we evaluate whether reducing the number of conflicts re-
sults in more failures in either the build phase or incorrect
behavior indicated by failing tests in the testing phase.

RQ4 How does using progressively more complex merge
strategies affect the number of build and test failures?

To triangulate the findings about failures in the build and
testing phase and increase confidence in the validity of
this approach, we perform a manual analysis on conflict
resolutions that resulted in the test suite passing without
failures.

5. https://se-sic.github.io/sism-supp/

https://se-sic.github.io/sism-supp/
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3.2 Experiment Design
Based on our research questions, we consider the depen-
dent and independent variables shown in Table 2 in our
experiment design. To measure our dependent variables, we
use established tools such as JDIME. Furthermore, we have
implemented a measurement framework, MERGEPROFILER,
which we will discuss in Section 3.3.

3.2.1 Independent Variables
We keep all configuration options of the involved tools
constant except for the merge scenario and the merge strat-
egy used to perform the merge. These two independent
variables are managed by our measurement framework,
which orchestrates our measurements for all merge commits
and strategies under test.

3.2.2 Dependent Variables
To answer RQ1 we measure the dependent variable Run-
time. We use JDIME for executing the merges and enable
its statistics mode to collect runtime and other metrics.
Runtime measurements are performed 5 times on the same
hardware. We calculate both the mean and median runtime
of the 5 runs and, for every strategy, the mean of means
and median of medians over all merge commits. Since the
standard deviations of these measures are large, the median
is used predominantly to remove extreme values.

For research questions RQ2 and RQ3, we instruct JDIME
to measure the number of conflicts as well as their size in
terms of lines of code. When a merge scenario consists of
more than one file, we sum up these metrics over all files
with conflicts. To hone in on the commits that are actually
of interest for answering RQ2 and RQ3, we only consider
commits, for which at least one of our merge strategies
produced conflicts, for answering these research questions.

RQ4 is answered by attempting to build the code result-
ing from a merge and, if successful, running the test suite of
the project.

3.3 Measurement Setup
In our study, we use two key tools. First, we use JDIME to
perform the merges between files. JDIME contains imple-
mentations of all merge strategies under test and is addi-
tionally able to combine merge strategies by applying them
in succession until one does not produce conflicts. JDIME is
able to collect a range of statistics, which we use to measure
our dependent variables. We use MERGEPROFILER to vary
the independent variables, prepare merge scenarios, invoke
JDIME, and subsequently collect the resulting statistics. Fur-
thermore, MERGEPROFILER is responsible for executing the
test suite of the project being evaluated and recording the
states of all tests in it. MERGEPROFILER uses the build tool
of the project for executing builds and running the test suite.
Whenever possible, we call the build tool programmatically
using the appropriate libraries and use the provided APIs
for determining whether the build was successful and, if
it was, the state of the test suite. To perform merges, we
injected JDIME into GIT as a merge driver.6

6. https://git-scm.com/docs/gitattributes# defining a custom
merge driver

TABLE 2: Experiment variables of the study.

Variable Description

Independent variables

Merge commit A commit with two ancestors from the
history of one of the subject systems.

Merge strategy The merge strategy used to remerge the
merge scenario.

Dependent variables

Runtime The runtime of the merge strategy.

Dependent variables: Conflicts

Number of conflicts The number of conflicts reported by the
merge tool (JDIME).

Number of files con-
taining conflicts

The number of files containing conflicts
after remerging.

Size of the conflicts The accumulated size of the conflicts in a
merge scenario in terms of lines of code.

Dependent variable: Build

Build status Whether the code can be successfully built
by its build tool.

Dependent variables: Test suite

State of tests The state of every individual test in the test
suite, i.e. its name and whether it passed,
failed or ended in some other state.

State of test suite The aggregated state of the test suite (e.g.,
“Test Suite Passed”) when all tests passed.

Taking one “measurement” consequently means choos-
ing a merge commit from the history of a project and a
merge strategy from the ones available in JDIME, using the
strategy to merge the ancestors of the merge commit, and
examining the resulting code. We call this “re-merging” a
merge commit.

Our study was executed using a cluster of machines.
Each job had exclusive access to one node of our cluster and
consisted of analyzing one merge commit. The machines
used for runtime measurements were equipped with two
Intel Xeon E5-2650v2 CPUs, 128 GiB RAM, and SATA SSD
storage. For our analysis, we restricted the JVM Heap to
30 GB of RAM.

To check whether the code produced by re-merging a
merge commit contains any merge conflicts or results in any
failures when building or testing the project, we collect a
number of metrics for every merge. We group these metrics
into three categories:

3.3.1 Build and Test Metrics
Ideally, given the code base resulting from re-merging a
merge commit from a subject system, we would, if there
are no conflicts and the build is successful, run the test suite
via the build tool that was used in the project and collect
the names of the tests that were run and their respective
outcomes. Taking into account imperfect merge algorithms,
build setups, and the like, scenarios that do not result in this
information are possible.

Figure 5 shows an example Sankey7 plot summarizing
the outcomes of all merge commit re-merges using unstruc-
tured merge. The example plot shows that, for 17 of 82

7. https://en.wikipedia.org/wiki/Sankey diagram

https://git-scm.com/docs/gitattributes#_defining_a_custom_merge_driver
https://git-scm.com/docs/gitattributes#_defining_a_custom_merge_driver
https://en.wikipedia.org/wiki/Sankey_diagram
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Fig. 5: An example Sankey plot for the project COMMONS-
MATH.

merge commits, something other than a successful run of
the test suite happened. We group these remaining merge
commits into a number of categories which are visualized
as sequential, interlocking arrows in the Sankey plot.

A frequent outcome of our study was that all tests
passed after a merge commit was re-merged using one of
the strategies. We do not show these merge commits in the
Sankey plot as it would make the other possible outcomes
hard to discern visually. These omitted commits are tagged
as “Test Suite Passed” commits.

All attempts at running the test suite which failed due
to an error are tagged as “Error”. An error may occur at
any stage of the evaluation process though we minimized
the number of commits for which this was an issue. Sources
of errors include internal errors in our tooling (very rare),
broken build scripts, missing dependencies, timeouts while
running the test suite (most frequent, we applied a one hour
time limit), and out-of-memory errors during the testing
phase (we restricted our analysis jobs to 30 GB of RAM).
In the example in Figure 5, 1 commit falls in this category.

Next, the plot shows the number of commits that are
tagged as “Conflicts” after the merge strategy produced
conflicts re-merging it. We do not proceed further for these
commits and assume that the code can not be built. Instead,
we collect the metrics described in Section 3.3.2. In Figure 5,
10 fall in this category.

If no conflicts were detected, we attempt to build the
project by performing appropriate actions using the build
system of the project and examining the resulting output.
When we determine that the build failed, the merge commit
is tagged as “Build Failure”. No further metrics are collected.
This was the case for 4 of 17 commits in Figure 5.

Finally, the test suite is executed using the build system
of the project, and the names and states of all the tests that
ran are recorded. If any of the tests fail, we tag the merge
commit as “Test Failure”. In Figure 5, 2 of 17 commits had
failing tests.

There are some corner cases that may occur such as there
being no tests or all tests being skipped, but they only occur
in a minimal number of cases, which do not influence our
results. Note that we filter out some scenarios in which
we expect failures, e.g., we ignore a build failure after re-
merging if both parent commits also resulted in a build
failure. The same goes for a test failure if the test failed
in both parent commits. We assume that the failure is to be
expected in these cases and not due to the merge strategy
that was applied.

3.3.2 Conflict Metrics

When remerging a merge commit using JDIME, we collect a
number of metrics about any conflicts produced during the
merge. MERGEPROFILER configures GIT in such a way that
it only merges using JDIME when Java source code files are
merged. JDIME, being a structured merge tool, is language
specific. As such, only conflicts in these files are considered.

We record how many files contain conflicts and the
number of conflicts (i.e., the number of conflict markers)
per merge commit and additionally, for every conflict, we
record its size in terms of lines of code. The number of lines
in conflict consist of the lines on the left side of the conflict
in addition to the lines on the right side. Lines consisting of
only white spaces and those which are commented out are
not counted.

Note that we perform filtering of conflicts consisting
only of whitespace or comments because these elements are
not present in an AST. Including these conflicts would put
unstructured merging at a disadvantage, as these conflicts
do not arise in structured merge.

3.3.3 Runtime Metrics

Whenever a merge is performed, JDIME collects runtime
statistics appropriate for the strategy in use. The JDIME
code is instrumented such that only the merge procedure
is measured as opposed to the whole JDIME invocation.

In the case of unstructured merge, this means measuring
the runtime of the JNA8 call to the native LIBGIT2 library
that performs the merge. For the structured strategy, the
execution time of the AST parsing, matching and merging
implemented in JDIME is measured.

As the semistructured strategy performs both calls to the
unstructured merger (for method bodies) and uses the AST
merge algorithm present in JDIME, its runtime is measured
by combining measurements of both code paths. All com-
bined strategies will return the sum of the measurements
performed by their constituting basic strategies.

3.3.4 Manual Analysis

In addition to relying only on automatically obtained quan-
titative data on the number of failures in any of the phases,
we performed a manual analysis on relevant merge com-
mits. Specifically, we selected those merge commits for
which the re-merge using one of our merge strategies, 𝑇0,
produced conflicts, whereas other strategies, 𝑇1...𝑛, did not
produce conflicts and, instead, resulted in a passing test
suite. These commits have the potential to exhibit the worst-
case scenario: An incorrect conflict resolution that was,
potentially, due to the affected code not being tested, missed
by the test suite. While all other conflict resolutions also
have the potential to be incorrect, they resulted in a test
suite failure, meaning that the test suite is a proper oracle
for correctness.

For every file 𝐹, for which 𝑇0 produced conflicts, we
archived the resolved versions of that file produced by
the strategies 𝑇1...𝑛. We then manually analyzed all files 𝐹

containing conflicts and their resolution for that dataset.

8. https://github.com/java-native-access/jna/

https://github.com/java-native-access/jna/
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First, we classified the conflicts in 𝐹 following the
methodology of Cavalcanti et al. [14]: We assign the conflict-
ing files to one of two categories: True positives — conflicts
where the changes actually interfere, and false positives —
conflicts where the changes do not interfere. Ideally, the con-
flicts of the latter category should be resolved automatically
by a merge strategy.

For this first step, we extracted the versions of 𝐹 from
the ancestors of the merge commit, and, if present, from
the corresponding merge base. We made our determination
on whether the conflict was a true or false positive using
traditional three-way visual diff tools. This analysis of 92
files was performed by two of the authors. Where their
determinations disagreed, a consensus was reached by dis-
cussing the specific conflict in question.

After classifying the conflicts in this manner, we looked
at the conflict resolutions produced by 𝑇1...𝑛. To cut down
the number of cases that needed to be analyzed, we grouped
conflict resolutions into resolution groups, the members of
which are semantically (i.e., behavior wise) equal. Since se-
mantic equality can not be easily determined automatically,
we employ syntactic equality instead. Clearly, when two
conflict resolutions contain the same code, they behave the
same.

The grouping was performed using JDIME’S matching
algorithms. When the ASTs of two resolved versions of 𝐹

matched completely, we assigned them to the same reso-
lution group, as semantic equality follows from syntactic
equality. Likewise, we compared one representative of every
resolution group with the version of 𝐹 that was committed
in the original merge commit and recorded whether there
were syntactic differences.

As a last step, for every resolution group, we manually
determined whether the conflict resolution was correct, or
whether the test suite missed a semantically invalid res-
olution. We made this determination for every resolution
group, however we paid special attention to those groups
that were not syntactically equivalent to the merge commit.
In these cases we additionally determined what the syntac-
tic difference was and whether it could indicate an incorrect
conflict resolution. Our supplementary website contains a
step-by-step example of this process.

Figure 6 shows our process for selecting the conflict
resolutions for manual analysis. The basic set of our search
were 56 relevant commits as defined above. From these
commits, we extracted 92 files for which a merge strategy
𝑇0 produced conflicts. For every file containing conflicts, we
found the resolved version of that file produced by some
other merge strategy 𝑇1...𝑛. This left us with 441 conflict
resolutions to analyze. We grouped these resolved versions
of 𝐹 by syntactic equality, and analyzed the 105 resolution
groups.

3.4 Subject Systems
Table 3 shows the 10 subject projects that we chose for our
study. All projects are available open source on GITHUB
and use the GIT version control system. This enables us
to examine the entire history of the project and extract
all merge scenarios. Furthermore, the projects all use the
MAVEN build system, which is used by MERGEPROFILER to
execute builds and run tests.

Fig. 6: The process for selecting conflict resolutions for
manual analysis.

TABLE 3: Overview of our subject projects in terms of their
number of lines of code, contributors, (merge) commits, and
tests.

Project K LOC Contributors Commits Merge
Commits Tests

COMMONS-MATH 174 44 7 428 109 5 526
DROPWIZARD 51 364 6 788 1 021 12
FASTJSON 170 158 3 783 453 4 646
GHPRB-PLUGIN 8 127 1 661 338 77
GITHUB-API 15 156 1 381 194 144
JAVAPARSER 158 154 6 219 1 664 1 479
JEDIS 32 174 3 214 366 420
OKHTTP 37 235 4 708 1 829 2 244
ONTOP 144 32 11 176 1 453 46
OPENMRS-CORE 120 368 9 085 1 152 4 022

We selected our subject systems by querying the GITHUB
search API for Java projects ranked by their popularity (as
determined by the number of watchers). Additionally, we
considered projects that are known to the authors from
previous studies.9 From this set of projects, we selected
those that use MAVEN by examining them for the presence
of a pom.xml file in the root folder of the repository. This left
us with a set of projects small enough for manual analysis,
during which we excluded projects that had too few (less
than 100) merge commits or did not have a useful test suite.
To determine the latter, we examined a sample of merge
commits from the history of the project and executed the
test suite manually. We looked at whether unit tests where
consistently used throughout the history of the project and
excluded those projects where testing was only a recent
addition. Furthermore, we manually examined the test suite
and judged whether significant portions of the project were
covered. We also recorded the runtime of the test suite and,
to keep the runtime of the whole analysis feasible, excluded
projects which took longer than one hour to test.

The remaining 10 projects range from 109 merge com-
mits to 1829 and cover a variety of application domains:

9. https://twiki.cin.ufpe.br/twiki/bin/view/SPG/SampleSystems?
sortcol=3;table=1;up=0#sorted table

https://twiki.cin.ufpe.br/twiki/bin/view/SPG/SampleSystems?sortcol=3;table=1;up=0#sorted_table
https://twiki.cin.ufpe.br/twiki/bin/view/SPG/SampleSystems?sortcol=3;table=1;up=0#sorted_table
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• COMMONS-MATH is a library extending the Java
java.math package by additional mathematical and sta-
tistical functions. It is developed by the Apache Software
Foundation.

• DROPWIZARD is a framework for building RESTful Web
services. The project was created by Coda Hale (Yammer)
and maintained by the Dropwizard team.

• FASTJSON is a library for serialization and deserialization
of Java objects to and from JSON. Fastjson is developed
by the Fastjson Develop Team at Alibaba.

• GHPRB-PLUGIN is the GITHUB pull request builder plu-
gin for the build automation server JENKINS. It provides
access to GitHub pull requests (through the GITHUB
API) on Jenkins. The plugin is developed by the com-
munity behind the Jenkins project.

• GITHUB-API is a library for accessing the GITHUB API
in an object-oriented way such that it is more familiar
to Java programmers. It maps most functions of the
REST API to JAVA objects and is developed by an active
development community.

• JAVAPARSER is a library enabling its users to parse JAVA
code to an AST, operate on the AST (e.g., perform
refactorings) and generate Java code from a given AST.
The project is maintained by Danny van Bruggen and
developed on GITHUB.

• JEDIS is the JAVA client for the database server REDIS.
The library provides access to REDIS servers using pat-
terns familiar to Java programmers. It is maintained by
Jonathan Leibiusky on GITHUB.

• OKHTTP is frequently used in Android Apps as an HTTP
and HTTP2 client library. Its aim is to provide efficient
and stable communication with a Web server. The library
is maintained by Square, Inc.

• ONTOP is a framework providing an interface between
the graph-based query language for RDF data SPARQL
and relational databases. It was developed by the
“Knowledge Representation meets Databases” research
group at the Free University of Bozen.

• OPENMRS-CORE is part of the OPENMRS medical records
system. The library provides the base API and the code
of the web application. The code is developed by the
non-profit OpenMRS, Inc.

Table 3 provides several metrics about the subject projects,
which we used in determining whether they are suitable
for the study. The line count was taken from the latest
merge commit in the history of the project (see Appendix A)
and determined using SLOCCOUNT10 and represents the
number of lines of JAVA code. Similar to the line count,
the number of tests was determined by our tooling using
the latest merge commit of the repository for which the
test suite could be executed. Both the number of commits
and the number of merge commits can be determined using
GIT. Note that 852 merge commits listed in the table were
not usable for our study (e.g., did not compile, did not
have tests) and were filtered out, leaving us with a total
of 7727 merge commits. The number of contributors was
determined by querying the GITHUB API.

10. https://dwheeler.com/sloccount/

3.5 Results

3.5.1 RQ1 (Runtime)
To evaluate the runtime cost of using more sophisticated
merge algorithms, we collected runtime statistics reported
by JDIME for the unstructured (US), semistructured (SS),
and structured (S) merge strategies, for all merge scenarios
(i.e., triples of files being merged) occurring in our subject
systems. In addition, we profiled the combined strategies
SS→S, US→SS, US→S, and US→SS→S in the same way.

TABLE 4: The results of our runtime analysis. Mean and
median runtimes, as well as the corresponding standard
deviations, are given in milliseconds.

Strategy Mean Median SD Mean SD Median

US 93 22 336 342
US→SS 5 145 171 22 293 22 303
US→S 8 557 174 35 230 35 234
US→SS→S 8 981 169 41 016 40 961
SS 17 825 2 657 60 987 60 892
SS→S 22 955 4 513 70 709 70 547
S 26 665 5 589 73 981 73 791

Table 4 gives the mean and median runtime over all
merge commits. Additionally, we show the standard devia-
tion of the mean and median runtime.

Intuitively, the expectation is that more complex merge
strategies should come with a correspondingly higher run-
time. Our findings confirm this expectation. We found that
the unstructured strategy was fastest with a median runtime
of 22 ms and a standard deviation of 342 ms. The median
runtime sharply increases to 2657 ms (standard deviation
of 60 892 ms) when using the semistructured strategy and a
further 111 % to 5589 ms (standard deviation of 73 791 ms)
when employing fully structured merging. Ranking the
strategies by their median runtime therefore places unstruc-
tured merging first, semistructured second, and structured
merging third. Given the standard deviations, the mean
runtime of the strategies is much higher than the median.
However, using the mean for ranking gives the same result
as using the median.

Furthermore, we found that the runtime of a combined
strategy is mostly dependent on the first strategy in the se-
quence of applications. The combined strategies having US
as their first component all display a similar median runtime
at around 170 ms, however their standard deviations differ
substantially, US→SS having 22 303 ms, US→S 35 234 ms,
and US→SS→S 40 961 ms. Amongst them, the US→SS→S
strategy was the fastest, followed by US→SS and US→S.
This finding confirms that, using a faster strategy first
to “filter out” merge scenarios that are trivially merged
without conflicts, works as intended. The last combined
strategy, SS→S, was found to have a median runtime of
4513 ms putting it between its components SS (2657 ms)
and S (5589 ms). Our supplementary Website contains a
breakdown of the component runtimes for the combined
strategies.

Figure 7 shows the results of statistical tests performed
on the runtimes of our strategies. First, we performed a
Wilcoxon signed-rank test paired on commits [15]. For this

https://dwheeler.com/sloccount/
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signed-rank test rounded to
four significant digits.
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Fig. 7: The results of our statistical tests performed on the
runtimes of our strategies.

test, the null hypothesis is that the runtimes of two strategies
do not differ, and the alternative hypothesis is that the
strategy of the row has a lower runtime than the strategy
of the column. Due to the repeated statistical tests, we apply
a Bonferroni correction to our original significance level of
0.05, which results in an adjusted level of 0.002 38 [16]. All
individual tests gave a p-value below this level, confirming
that the observed increases in the runtime are statistically
significant. Furthermore, we calculated the effect sizes using
Cohen’s d and found that, while there are combinations of
strategies for which the effect size is small (< 0.2), overall,
effect sizes are at least medium to high. In general, effect
sizes increase with the difference in mean and median
runtime between the strategy of the row and the strategy
of the column [17].

Note that, since we ran every merge commit 5 times, one
could use the mean or median of these runs for the above
calculations. Figure 7 shows the values for the mean, the
results for the median are virtually identical.

Combining the rankings, we find that US is the fastest,
followed by the combined strategies having US as their
first component, then followed by SS, SS→S, and finally S
(fully structured merging).

3.5.2 RQ2 (Number of Conflicts)

Table 5 shows the results obtained from re-merging the
merge commits found in our subject systems using the
strategies under test. For RQ2, the results regarding merge
conflicts are relevant; they show the number of merge
commits for which re-merging with the respective strategy
produced merge conflicts. As commits may be discarded
before being checked for merge conflicts (e.g., if there is
an error when attempting to re-merge them), the table also
contains a column holding the percentage of all possible
commits that were found to contain conflicts.

The first row (“Commit”) of the table shows the state of
the code as it was committed to the repository. The second
row of the table shows the results of applying unstruc-
tured merge using JDIME. We found 467 (6.55 %) commits
that produced merge conflicts. As expected, the number
of conflicting merges drops when applying semistructured
(6.02 %) and structured (5.32 %) merging. Looking at the
combined strategies, we can see that their performance in

terms of merge conflicts is determined by the most complex
strategy in the sequence. US→S, US→SS→S and SS→S per-
form, at least, as well as the purely structured strategy, while
US→SS shows a similar performance as the semistructured
strategy. Comparing US and US→SS→S, we observe the
largest decrease in the number of merge commits producing
conflicts: 29.98 %.

Figure 8 shows the conflict statistics on a per-commit
basis. For every merge commit and strategy, we provide
the number of conflicts (top left) and the number of files
containing conflicts (top right). To calculate the given p-
values, we performed a Wilcoxon signed-rank test paired
on commits of adjacent strategies with the null hypothesis
being that there is no difference between strategies and the
alternative hypothesis being that the left strategy is greater
than the right. To compensate for the repeated statistical
tests, we apply a Bonferroni correction to our original sig-
nificance level of 0.05, which results in an adjusted level of
0.0083. The p-values given in Figure 8 are bold if they are
significant considering our adjusted significance level.

Strategies that do not produce a conflict for a given com-
mit were recorded with a 0. Commits for which no strategy
resulted in a conflict were not included. The strategies are
given in descending order of their total number of conflicts.

Except for the reductions from US→SS to S and from
US→S to US→SS→S, all observed reductions are statisti-
cally significant. In terms of the number of files containing
conflicts, the picture is even clearer. Here, only the p-value
for US→SS to S is above our adjusted significance level.
Before applying a Bonferroni correction, this reduction was
also statistically significant.

The median values for all strategies are rather similar,
so we calculated the effect sizes using Cohen’s d. We find
that, for both conflicts per commit and conflicting files per
commit, all d-values for the adjacent pairs of strategies in
Figure 8 are low (less than 0.08). Highlighting one pair of
strategies not adjacent in Figure 8, for the conflicting files
of US and US→SS→S, we observe small effect sizes of
>0.2. Practically, this means that, for the majority of merge
scenarios, the choice of the merge strategy has only a small
influence on the number of conflicts, but it is the outliers
that matter in practice. We provide all Cohen’s d values in
Appendix B.

Figure 8 does not show outliers11, and for good reason:
While all strategies show a similar median value for both
conflicts per commit and conflicting files per commit, there
is a large number of outliers that deviate far from the
median value. Figure 9 only shows the outliers which were
omitted from Figure 8. Note the difference in the scale of
the y-axis. Notably, employing more structure yields fewer
merge commits with large numbers of conflicts left over for
the developer to resolve, which makes indeed a difference
in practice.

Our results clearly show that using more complex merge
strategies leads to a statistically significant decrease (up to
30 %) in the number of conflicting merge commits.

11. For outlier detection, we use the PYTHON library PINGOUIN,
specifically the method madmedianrule, which is based on the MAD-
median rule [18].
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TABLE 5: The results for all merge strategies. We record the number of merge commits found to fall into the categories
described in Section 3.3.1 and the percentage of the potential number of commits that could have fallen into that category.

Error % of Merge
Conflict % of Build

Failure % of Test
Failure % of Passed

Commit 50 0.65 7 727 0 0.00 7 677 186 2.42 7 677 40 0.53 7 491 7 451
JDIME US 595 7.70 7 727 467 6.55 7 132 119 1.79 6 665 31 0.47 6 546 6 515
JDIME SS 603 7.80 7 727 429 6.02 7 124 125 1.87 6 695 33 0.50 6 570 6 537
JDIME US→SS 606 7.84 7 727 394 5.53 7 121 132 1.96 6 727 41 0.62 6 595 6 554
JDIME S 600 7.76 7 727 379 5.32 7 127 130 1.93 6 748 35 0.53 6 618 6 583
JDIME SS→S 605 7.83 7 727 362 5.08 7 122 134 1.98 6 760 36 0.54 6 626 6 590
JDIME US→S 603 7.80 7 727 333 4.67 7 124 140 2.06 6 791 39 0.59 6 651 6 612
JDIME US→SS→S 608 7.87 7 727 327 4.59 7 119 142 2.09 6 792 47 0.71 6 650 6 603

3.5.3 RQ3 (Size of Conflicts)

In addition to the number of conflicts and conflicting files
per commit, we determined the size of the reported conflicts
in terms of lines of code. Figure 8 shows that the number
of conflicting lines per commit follows the same pattern
as the number of conflicts per commit. With leveraging
progressively more structure, the number of conflicting lines
per commit decreases significantly. In fact, whereas the re-
duction in conflicts per commit was not significant between
US→SS to S and US→S to US→SS→S, the reduction in the
number of lines of code is.

For the bottom right plot, where the samples are con-
flicts instead of merge commits, we performed the Mann-
Whitney rank test as conflicts cannot be paired. We find that
the potential to produce very large conflicts is higher, the
more structure the merge algorithm exploits. Fully struc-
tured merge produces the largest conflicts, however, it also
reports the fewest.

The effect sizes for the conflicting lines per commit (con-
sidering adjacent pairs of strategies from Figure 8) follow
a similar pattern as those observed for the conflicts per
commit and conflicting files per commit. Except for US to
SS (0.16) and US→SS to S (0.1) they are below 0.08. For the
conflicting lines per conflict, d-values are small, but with
some notable exceptions: US to SS with 𝑑 = 0.41 and US→SS
to S with 𝑑 = 0.23.

Figure 9 shows the outliers that were omitted from
Figure 8. Of particular interest is comparing US with SS
and S. The latter two strategies show more extreme outliers
for conflicting lines per commit and, in particular, for con-
flicting lines per conflict.

Section 3.6 discusses an example showing that this is
likely due to the heuristics employed in tree matching
algorithms of structured merge. Namely, when classes are
renamed, a node very close to the root of the AST changes
and, since level-wise matching is employed by JDIME, the
renamed class is not matched with the other revision (or
BASE). As such, when there are also changes to the body of
the class, JDIME reports a large conflict over the whole class.
Still, this potential to produce conflicts consisting of many
lines is, overall, outweighed by the reduction in the number
of conflicts, with structured merge producing significantly
less conflicting lines per commit than SS and US.

Examining the size of the conflicts, we find that the
reduction in the number of conflicts reported by struc-
tured merge outweighs its potential to produce very large
conflicts.

3.5.4 RQ4 (Number of Build and Test Failures)
The central question of this study was how the number of
build- and test failures is affected when using increasingly
complex merge strategies. In addition to the raw data in
Table 5, Figure 10 provides Sankey plots visualizing the
number of commits that were found to fall into one of the
categories introduced in Section 3.3.1 (“Error”, “Conflicts”,
“Build Failure”, “Test Failure”, and “Test Suite Passed”). The
results for RQ2 show that the percentage of conflicting sce-
narios decreases with the complexity of the merge strategy.
At the same time, our results show only a slight increase in
the percentage of build failures across the strategies. That
is, the complexity of the merge strategy does not lead to
a major increase in failures in the build phase. Amongst
the simple strategies, the unstructured JDIME mode has
the lowest percentage of build failures with 1.79 % whereas
the structured mode has the highest percentage (1.93 %),
a difference of only 0.14 percentage points. The combined
strategies are similarly close, with US→SS lowest at 1.96 %
and US→SS→S highest (2.09 %).

We also observe a slight increase in test failures when
using more complex strategies. While unstructured merge
produces test failures in 0.47 % of the merges, the semistruc-
tured strategy gives 0.5 % and the structured strategy 0.53 %.
Using combined strategies again gives a slight increase in
test failures over the simple strategies. Counterintuitively,
the US→SS→S strategy produces the highest number of test
failures (0.71 %). The other combined strategies are not far
behind with between 0.62 % and 0.54 %.

Overall, we observe a small increase in test failures
(12.76 % US to S) and a minor increase in build failures
(7.82 % US to S) amongst the strategies when the com-
plexity of the strategy increases.

3.5.5 Manual Analysis
For our manual analysis, we selected merge commits from
our subjects systems for which one strategy produced con-
flicts, while other strategies resolved these conflicts with the
test suite passing subsequently. We found 92 instances in
which a file, being part of the re-merge of one such merge
commit, contained conflicts after one of our merge strategies
was applied. Of these conflicting files, we found 91 false
positives and 1 true positive.

Amongst the false positives, one pattern is particu-
larly common: The unstructured merge strategies (which
includes merging method bodies for semistructured merge)
frequently report conflicts between changes to adjacent lines
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Fig. 8: Conflicts statistics on a per-commit basis, omitting outliers. The top-left plot shows the number of conflicts (one file
might contain multiple conflicts), the top right shows the number of files containing conflicts, the bottom left shows the
sum of the number of lines in the left and right sides of all conflicts aggregated per merge commit, and the bottom right
shows the number of lines in individual conflicts without aggregation.

Fig. 9: Conflict statistics on a per-commit basis for outliers only. This plot shows statistics on the outliers that Figure 8
omitted.

in the source code. For example, LEFT changes a line con-
taining the signature of a method, while RIGHT changes an
annotation directly above that line. In these cases, strategies
exploiting structure in their merge algorithm resolve the
conflict, since the changes were made to different parts of
the AST and do not interfere.

Structured strategies produce false positives as well.
Here, the conflicts are mainly caused by incorrect match-
ing of ASTs. For example, when a method is renamed in
LEFT while RIGHT changes that methods body, JDIME will
produce a deletion–change conflict, since the renaming is
detected as a deletion of the original method (which was
changed by RIGHT) and an addition of a new method.
Similarly, when both versions add a method, each to the
same class, these methods may erroneously be matched and,
if they are not exactly equal, will produce a conflict where
they differ. These invalid matchings do not occur in fully
unstructured merge or when the changes are on the method
level in semistructured merge.

We did find 1 true positive as well, namely commit
5374055512 of FASTJSON. In this case, both versions being
merged add the same file, which does not exist in the merge
base, with different content. As there is no base version of
the file, unstructured merge produces conflicts where the
versions differ. Since these changes are in white spaces and
comments only, structured approaches do not produce these
conflicts. We classified this as a true positive since, without
a base, there is no safe comparison. However, the resolu-
tion produced by the structured approaches is syntactically
equivalent to the merge commit.

For the conflicts classified as either true or false positives,
we examined the files in which conflicts were resolved
by a strategy and determined whether the resolution was
correct or not. Recall that we grouped these resolved files
by syntactic equality as determined by JDIME. Overall,
we examined 105 such groups. Of these groups, 51 were
syntactically equal to the resolved version of the conflicting

12. https://github.com/alibaba/fastjson/commit/
53740555a27a599b42d6e8efc3b893066faa66c9

https://github.com/alibaba/fastjson/commit/53740555a27a599b42d6e8efc3b893066faa66c9
https://github.com/alibaba/fastjson/commit/53740555a27a599b42d6e8efc3b893066faa66c9
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Fig. 10: Sankey plots showing the number of merge commits
found to fall into the categories described in Section 3.3.1
depending on the merge strategy used to remerge them.
The merge commits of all subject systems were aggregated
for this plot. Note that we do not show commits for which
the test suite passed to make the plots legible. The number
of excluded commits is different for every strategy and the
plots are scaled to be of similar size.

file that was committed as part of the re-merged merge
commit. We found all of these resolutions to be correct.

Furthermore, 45 were not syntactically equivalent to
the merge commit’s version of the file. However, upon
manual inspection, we found the syntactic differences to be
irrelevant to the functionality of the program in all these
cases. The most common pattern here was that, when the
code included if statements without braces, semistructured
merge would keep these statements (as it produces an
unstructured merge for method bodies), while structured
merge, after pretty-printing the AST, added braces to the
if statement. As such, the resolved file produced by the

structured merge is, at AST level, different from the merge
commit. Functionally, however, they are the same.

In 9 cases, we found that the conflict resolution was
not correct. These cases occurred in two merge commits,
88ef35c413 of ONTOP and 9aa175e514 of JAVAPARSER.
In each case, we observed the same, rather complicated
pattern: The file was moved or renamed and the package
statement or name of the class in the file was adjusted ac-
cordingly. At the same time, the class was changed and these
changes only occurred at the method level. In each case, the
move was detected by GIT, and the appropriate files from
every revision were merged, but the changes made to them,
caused conflicts when applying an unstructured merge.

Fully structured merge failed due to the change in the
package statement. This change means that the AST of
the renamed class does not match with the base revision,
whereas the AST of the other revision (where the class
was not renamed) does. This is interpreted as a renamed
class being added, while the class with the original name is
deleted. However, since the deleted class was also changed
compared to the base version, this causes a deletion–change
conflict. Remarkably, semistructured merge does not exhibit
this behavior and instead produces no conflicts but uses
the code of the version in which the class was renamed.
Upon further examination, we found that this behavior is
due to a limitation in semistructured merge. Recall that, to
implement semistructured merge, it replaces method bodies
by text block nodes in the AST. The structured merge
algorithm is then applied to the ASTs. To make it merge the
text block nodes, these match by definition, regardless of
content, while taking into account their position in the AST,
of course. The merge is then performed by the unstructured
algorithm and may produce conflicts. However, in the spe-
cific case above, this means that the AST of the class with the
original name is fully matched with the base revision. The
changes in the method bodies are not visible to the matcher.
This means that there is no deletion–change conflict, since
the deleted class is not changed as far as the structured
merge algorithm is concerned. As such, the renamed version
of the class is accepted as the result of the merge, discarding
the changes made in the other version’s method bodies.

While we determined that the resulting code was still
correct, as was indicated by the test suite, we marked these
cases as incorrect conflict resolutions. Discarding changes
made by one version is clearly a problem in semistructured
merge. As the combination of changes required for trig-
gering these incorrect conflict resolutions occurs only infre-
quently, this problem is irrelevant for the overall results. All
occurrences, where incorrectly resolved conflicts could have
been missed by the test suite, were covered by our manual
analysis. A full breakdown of the conflict resolutions that
were examined can be found on our supplementary Website.

3.6 Discussion

In our study we replayed a large number of merges and
measured the performance of both simple merge strategies,

13. https://github.com/ontop/ontop/commit/
88ef35c421b2cabe882243f498833731981b9f82

14. https://github.com/javaparser/javaparser/commit/
9aa175e5b6af1a2d8ae601514556ffd88893d94e

https://github.com/ontop/ontop/commit/88ef35c421b2cabe882243f498833731981b9f82
https://github.com/ontop/ontop/commit/88ef35c421b2cabe882243f498833731981b9f82
https://github.com/javaparser/javaparser/commit/9aa175e5b6af1a2d8ae601514556ffd88893d94e
https://github.com/javaparser/javaparser/commit/9aa175e5b6af1a2d8ae601514556ffd88893d94e
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including simple strategies (i.e., unstructured, semistruc-
tured and structured) and combined strategies made up of
simple ones. The goal was to compare the strategies for the
first time in a controlled setting. Specifically, we considered
the runtime of the strategies, the number of conflicts they
produced, and we use the test suite to assess the correctness
of the code they produced.

We were able to confirm previous results about the run-
time performance and the number of conflicts produced by
the merge strategies [2], [3]. Simple strategies were studied
before, and our controlled setting showed the same sharp
increase in runtime as one moves from unstructured over
semistructured to a fully structured approach. Combined
strategies have been developed with the assumption in
mind that most files in a merge scenario can usually be
merged without conflicts by an unstructured algorithm.
The expectation is that this should lead to a significantly
lower runtime (e.g., US→S as compared to S). While there
is a small overhead to combining strategies, our data con-
firm that this assumption holds, at least, for the projects
we studied. Going beyond previous work, we developed
and evaluated a number of novel combinations (US→SS,
SS→S, . . . ).

We build upon a series of studies that analyzed merge
conflicts using a subset of our merge strategies. First, Cav-
alcanti et al. [19], which replicated the study of Apel et
al. [3], analyzed the difference between unstructured and
semistructured merge using a different sample than the
original study. The authors found a far superior reduc-
tion when using semistructured merge in the number of
reported conflicts when compared to unstructured merge.
Furthermore, Cavalcanti et al. [14], guided by the observed
differences in the behavior of these two strategies, compares
unstructured and semistructured merge not only in terms of
the number of reported conflicts, but also in terms conflicts
incorrectly reported by one strategy but not by the other
(false positives), and conflicts correctly reported by one
strategy but missed by the other (false negatives). They
found evidence that semistructured merge, again, reduces
the number of conflicts, but also reduces false positives.
However, no evidence was found that semistructured re-
duces false negatives.

In summary, previous work found that more complex al-
gorithms produce less conflicts. Our data reflect that as well
and additionally shows that combining strategies perform
as intended.

While the observed reductions in conflict metrics are sta-
tistically significant, the effect sizes are small. This could be
interpreted as that, in practice, the choice of merge strategy
does not matter. After all, the median values of our conflict
metrics are very similar across all strategies. But, looking at
the extremes, for instance, for conflicts per commit (see Fig-
ure 9), suggests a different interpretation: While the merge
strategies perform similarly for the majority of conflicting
merge commits, more structured approaches are able to
reduce the number of extreme outliers which are, after all,
real merge scenarios with a high number of conflicts (and
not statistical noise that needs to be canceled out).

Combined strategies, especially US→SS→S and US→S,
are actually performing better than simply employing struc-
tured merging. At first, this appeared counterintuitive to us

since this would imply unstructured merge being able to
successfully merge a set of files for which structured (or
semistructured) merge would produce conflicts. However,
Cavalcanti et al. discuss the difference between semistruc-
tured and structure merge in their 2019 paper showing that
the cases for which SS fails are not a subset of the cases for
which US produces conflicts [5].

We randomly selected and manually examined several
merge commits in which US produced less conflicts than
S. In these cases, fully structured merge will perform
worse than combined strategies that include unstructured
merge.15 We found situations in which structured merge,
due to the unavoidable heuristics employed in the algorithm
(e.g., level-wise matching), produced unnecessary conflicts.
For example, in our subject system DROPWIZARD, com-
mit d86d7a7e,16 the package structure of the project was
substantially reworked. Most files involved in the merge
can be successfully merged using both unstructured as
well as structured merge. However, unstructured merge re-
ports conflicts for class DropwizardServiceRuleTest whereas
structured merge flags conflicts in both DropwizardSer-
viceRule and DropwizardServiceRuleTest.

Looking at the classes, we found that unstructured
merge actually reports two conflicts in DropwizardSer-
viceRuleTest. The first conflict involves the package state-
ment (which was only changed in one version) and the
following import statements, which were changed incon-
sistently in both versions. The second conflict is also due
to inconsistent changes to large parts of the class body in
both versions. In the second file, the versions, considering
the BASE version, make no inconsistent changes and can
therefore be merged without conflicts using unstructured
merge.

Structured merge flags conflicts (over the whole
file) for both DropwizardServiceRule and DropwizardSer-
viceRuleTest. To explain this behavior, the AST structure
used in JDIME has to be considered. In the AST, the package
statement is actually not a node, it is an attribute of node
ClassDecl, which is the root node of a class declaration.
As such, when the package statement is changed, the
ClassDecl nodes of the ASTs obtained from the LEFT and
RIGHT versions do not match. Normally, this conflict would
be resolved using the matchings with the BASE version.
However, since one (actually both) of the subtrees of the
ClassDecl nodes were also changed compared to the BASE
version, JDIME can not accept one of the ClassDecl nodes
(along with their whole subtree) as the change and therefore
the ClassDecl nodes are in conflict. Thus, the unstructured
merge algorithm wins out in one of the classes while it still
produces conflicts, likely due to clustering granularity of
change blocks, in the other.

We performed a more systematic manual analysis of
merge conflict resolutions in Sections 3.3.4 and 3.5.5. Look-
ing at these conflicts and their resolutions, we find simi-
lar patterns as were described above. Unstructured merge
will often produce (false positive) conflicts due to adja-
cent changes, which are clustered by GIT. While structured

15. Analogously, when semistructured merge resolves conflicts that
structured merge does not, SS→S can outperform S.

16. https://github.com/dropwizard/dropwizard/commit/
d86d7a7e67d871dc6035c916601cfaca49ad056f

https://github.com/dropwizard/dropwizard/commit/d86d7a7e67d871dc6035c916601cfaca49ad056f
https://github.com/dropwizard/dropwizard/commit/d86d7a7e67d871dc6035c916601cfaca49ad056f


IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 18

merge is able to resolve these conflicts, it struggles in differ-
ent areas where unstructured merge does not.

Specifically, when classes are renamed and changed at
the same time, this will lead to large conflicts across entire
class definitions. Using more sophisticated matching tech-
niques in structured merge, such as a lookahead [10], would
help resolving the conflicts that structured merge reports.

Summarizing our observations, combined strategies are
looking very enticing. While unstructured merge remains
the fastest strategy, the combined strategies are not far off.
Their runtime should still be acceptable for integrating them
into the coding workflow especially when one considers
that they produce significantly fewer conflicts than unstruc-
tured merge. Especially US→SS→S is a promising strategy.
For most projects, this strategy shows an acceptable increase
over unstructured merging (22 ms median runtime for US,
169 ms for US→SS→S) compared to the substantial increase
incurred by employing fully structured merging (5589 ms
median runtime). Additionally, it performs, at least, as well
as the structured strategy in terms of conflicts; for some
projects it even produces fewer conflicts than the structured
strategy.17

It is important to note that all strategies, except for US,
show a large standard deviation in their median runtime,
suggesting that runtime spikes are an issue for structured
merge. Recall that, even when changes are small, the run-
time of structured merge increases with the complexity
of the AST (i.e., large classes incur a substantial runtime
penalty). Combined strategies that include US as one of their
components appear to be able to mitigate this unfavorable
behavior.

A major contribution of this work is the additional data
obtained by running the test suite of the subject projects af-
ter replaying a merge commit. Using a merge strategy, that is
able to resolve merge conflicts automatically that otherwise
would require manual intervention, is not of much use if the
merged code does not work correctly. In general, we found
that using more complex strategies leads to more build
and test failures. Crucially, combined strategies further in-
crease this number, i.e. US→SS→S appears to cause more
test failures than simple structured merging. Apparently
the ways in which the strategies produce conflict-free but
incorrect code get worse in combined strategies, leading
to the observed increase in build and test failures. Still,
with the increase in test failures being quite small, from
0.53 % for the structured strategy to 0.71 % for the combined
strategy US→SS→S, we still believe that it is a viable option.
Assuming the reasons for incorrect code being produced by
US, SS, and S are different, this also presents three separate
avenues of improvement for the combined strategy.

While the number of build and test failures increases, so
does the number of cases in which the merged code passes
the test suite. Essentially, some resolved conflicts reappear
as build or test failures, indicating that the conflict resolution
may not have been correct. Others do not cause build or
test failures, instead contributing to the number of commits
for which the test suite passed. We see this as an indicator
for the correctness of the merge result. Note that we also

17. Our supplementary website contains a table showing the total
number of merge commits for which a combined strategy outperforms
structured merge.

performed a manual analysis on merge conflict resolutions
to increase confidence in their correctness. For a description
of that analysis please refer to Section 3.3.4 and Section 3.5.5
for the results.

Finally, what does this mean for developers? Using any-
thing other than unstructured merge in day-to-day software
development is unusual, to say the least. So, why should
developers adopt novel strategies which might have an
increased runtime and pose the risk of introducing super-
fluous conflicts or test failures? We believe that a combined
strategy of unstructured and structured approaches is fea-
sible in practice. In terms of runtime, it remains an open
question what exactly constitutes an acceptable runtime,
however, the runtime overhead of a combined strategy
in which the unstructured component does not produce
conflicts is small, and the runtime of unstructured merge
is clearly acceptable for developers. When a structured
strategy is employed, the runtime increases significantly.
However, this is only necessary in a few cases and has the
benefit of resolving additional conflicts. The conflicts that
are produced by more complex strategies have the potential
of being larger, which, intuitively, might be undesirable
behavior. However, in this case, a merge tool might fall back
to the conflicts produced by unstructured merge if that is
preferable to the developer. Thus, we envision structured
merge to be a part of a merge tool that is responsive to
the users preferences, as well as takes into account the
conflicts produced by its constituent strategies and the state
of the project’s test suite. This is the ultimate consequence
of the original aim of structured merge: Using as much
information as is available to resolve conflicts.

3.7 Threats to Validity

3.7.1 Internal Validity
Our analysis uses the test suites present in our subject
systems as an indicator for the correctness of the code. While
we did take care to select subject systems with appropriate
test suites, it remains a threat to internal validity that the test
suite may be insufficient to detect some semantically invalid
merge conflict resolutions. Since it is unclear how to auto-
matically determine whether a merge conflict resolution was
sufficiently tested (test coverage alone is not sufficient), we
chose to perform a manual analysis of conflict resolutions.
Bearing in mind the results presented in Section 3.5.5, we
are confident that this threat is sufficiently mitigated.

Another threat to internal validity is that our results
may have been influenced by hidden variables other than
the combination of merge strategy and the scenario to be
merged. To mitigate the effects of confounding variables
when measuring the runtime of our merge strategies, we
ensured that the computations were always performed on
the same hardware with exclusive access. Additionally, we
performed runtime measurements 5 times to reduce the
influence of various factors affecting runtime that are in-
herent in modern hardware and software such as the Java
Virtual Machine. We then calculated both the mean and
median of our measurements and additionally examined
the standard deviation for both measures. When calculating
the number and size of conflicts, we employ a well-tested
parsing algorithm implemented in JDIME and as such can
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largely rule out confounding variables. Similarly, the state
of the test suite is determined by the build tool. We merely
parse its output or, depending on the build tool, interact
with it using its API. To rule out flaky tests (e.g., tests whose
outcome is based on some random factor), we ran each test
suite multiple times and filtered out the tests that did not
always give the same result.

A potential threat to internal validity arises from the fact
that that three of our subject systems make up a significant
portion of merge scenarios. These three projects however
already cover a good range of domains (AST parser, HTTP
query library, relational DB query library). The threat is also
mitigated by the fact that we consider all merge commits to
be in one big pool for our analysis.

Overall, the comparatively large number and diverse
origin of the merge scenarios we looked at should serve
to rule out variables, including differences in software de-
velopment approach, programming style and experience, as
well as the differences between application domains.

3.7.2 External Validity
Care has to be taken when generalizing the results of this
work beyond our corpus. Due to the language-specific na-
ture of structured merge algorithms, all our subject systems
are written in Java. Semistructured and structured merging
may produce more (or less) merge, build, or test failures
when implemented for another language. As such, our find-
ings may not be applicable to any language, but they should
apply to languages having a similar syntactic structure for
which our merge algorithms could be ported (e.g., C++, C#,
PYTHON).

Furthermore, we could only access the history of open-
source projects from GITHUB. Collaboration practices may
differ on other platforms and for closed-source develop-
ment. In general, the level of sophistication in software
development techniques may influence the kinds of merge
scenarios to which the merge algorithms are applied. We
selected subject systems of various sizes and levels of ac-
tivity from a range of domains, but how they compare to
professionally developed closed-source projects remains an
open question for the community as a whole.

4 RELATED WORK

Merging software artifacts is a central task in software
development. As a consequence, merge conflicts arise as a
common side effect of concurrent development, impairing
productivity and compromising quality. Thus, a number of
researchers propose development tools and strategies to bet-
ter support these collaborative development environments.

The state-of-practice is adopting unstructured, line-
based tools to merge source code artifacts. Structured merge
tools have been proposed as an alternative to unstruc-
tured merging with the goal of reducing the number of
reported merge conflicts. These tools achieve that by lever-
aging the structure inherent in source code. Westfechtel [8]
and Buffenbarger [9] have pioneered in proposing struc-
tured merge algorithms which incorporate context-free and
context-sensitive structures.

In this study, we employ JDIME, a structured merge tool
proposed by Apel et al. [4]. This tool is also capable of tuning

the merging process on-line by switching between unstruc-
tured and structured merge, depending on the presence of
conflicts.

JDIME was used by Leßenich et al. [2] to study “auto-
tuning”, which is a precursor of the combined strategies
studied in this paper. The auto-tuning approach applies
unstructured merge first, and, in case of conflicts, falls
back to structured merge. This is, in concept, equivalent to
our strategy US→S. However, the concrete implementation
in JDIME has evolved since this prior work. While our
study considers more merge strategies and far more merge
scenarios from different subject systems, our results are in
line with Leßenich et al. [2]: More structured approaches
produce less conflicts, mostly at a finer granularity, with
some outliers (e.g., when classes are renamed and changed
in two versions) being much larger than in unstructured
merge. In terms of runtime vs. conflict resolution perfor-
mance, our combined approaches are just as promising as
the original auto-tuning approach. Our study introduces
the US→SS→S strategy, which improves over auto-tuning
by more gradually ramping up the use of structure in the
merge algorithm. Additionally, we employ the test suite of
our subject systems, and a thorough manual analysis, as an
oracle for correctness of merge conflict resolutions.

Leßenich et al. [10] attempt to improve JDIME by em-
ploying a syntax specific look-ahead to detect renamings of
declarations and shifted code. They demonstrate that their
solution can significantly improve matching precision in
28 % while maintaining performance.

Zhu et al. [20] built, on top of JDIME, another structured
merge tool (so-called AUTOMERGE) that matches nodes
based on an adjustable quality function. Their goal is to find
a set of matching nodes that maximizes the quality func-
tion, preventing the matching of logically unrelated nodes,
and, as consequence, unnecessary conflicts. They found that
AUTOMERGE was able to reduce the number of reported
conflicts by 63 % when compared to original JDime, being
only 17 % slower. Besides, they found that about 99 % of
the results yielded by AUTOMERGE exactly correspond to
original developers’ result, compared to 93 % from JDIME.

A major limitation of these structured tools, in relation
to the state-of-practice unstructured merge, is the runtime
complexity of the underlying matching and merging algo-
rithms since it works by merging trees instead of lines of
text. So, a semistructured strategy has been proposed by
Apel et al. [3] aiming to be the middle ground between
unstructured and structured merge algorithms. By working
on simplified trees, semistructured merge attempts to re-
solve as many of the conflicts that structured merging would
resolve as possible while speeding up the merge procedure
by using unstructured merging for parts of the source code
(e.g., to merge body of method declarations). In their work,
Apel et al. presented a semistructured merge algorithm that
is, in concept, similar to semistructured merge in JDIME.
The implementation in JDIME is tightly integrated into the
regular structured merge algorithm, restricting it to merging
JAVA code only. This tight integration leads to consistent
behavior across the merge strategies that JDIME supports.
While there is no overlap in subject systems between this pa-
per and Apel et al. [3], in terms of semistructured merge, our
finding align well: Overall, semistructured merge reduces
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the number of conflicts compared to unstructured merge,
however, it struggles in the presence of renaming changes.

Prior work [3], [19] provide evidence that semistructured
merge, similarly to structured merge, is able to reduce
the number of reported conflicts in relation to traditional
unstructured merge. Cavalcanti et al. [14] go further and
provide evidence that the number of unnecessary con-
flicts (false positives) is significantly reduced when using
semistructured merge. However, they do not find evidence
that semistructured merge misses fewer actual conflicts
(false negatives). Similar findings, but in a lesser extent,
is observed by Trindade et al. [21] when investigating
semistructured merge in JAVASCRIPT systems.

All these previous studies, however, evaluate merge
strategies in isolation. In this work we synthesize and
expand these studies by exploiting the full spectrum of
possibilities: we combine and evaluate all the combinations
of unstructured, semistructured, and structured merge in a
controlled, integrated environment. We find that combined
strategies perform at least as well in terms of conflicts as
simple strategies.

Semantic strategies have been impractical for a long
time. Horwitz et al. [22] were the first to propose an al-
gorithm for merging program versions without semantic
conflicts for a very simple assignment-based programming
language. This original work was later extended to handle
procedure calls [23] and to identify semantics-preserving
transformations [24]. Berzins [25] proposed a general ap-
proach by providing a language-independent definition of
semantic merging with the use of a generalization of the
use of traditional denotation semantics. In recent effort to-
wards semantic merge feasibility, Sousa et al. [26] proposed
SAFEMERGE, a semantic tool that checks whether a merged
program does not introduce new unwanted behavior. They
achieve that by combining lightweight dependence analysis
for shared program fragments and precise relational reason-
ing for the modifications. They found that the proposed ap-
proach can identify behavioral issues in problematic merges
that are generated by unstructured tools.

Researchers have also investigated the frequency and
impact of merge conflicts, and their associated causes. They
all conclude that conflicts are frequent. For example, Kasi
and Sarma [27] and Brun et al. [28] reproduce merge sce-
narios from different GitHub projects with the purpose of
measuring the frequency of merge scenarios that resulted in
conflicts. These studies show average conflicting scenarios
rates for merge conflicts of 14 %, and 17 % respectively.
Zimmerman [29] conducted a similar analysis reproducing
merges from CVS (a centralized version control system)
projects instead. Perry et al. [30] made an observational
case study to analyze the effect of concurrent changes
on a large-scale industrial software system. They reported
that, although 90 % of the files could be merged without
problems, the degree of parallel changes is high – merge
conflicts involved between 2 to up to 16 parallel changes.
Our work complements these studies bringing evidence of
conflict frequency with the use of different merge strategies,
and also the combination of merge strategies. We find that
the number of conflicts drops as the complexity of the merge
strategy increases. Surprisingly, combined strategies are able
to resolve more conflicts than simple strategies.

There are also studies that analyze different technical
and organizational aspects that might have an impact on
the occurrence of conflicts, and characteristic of conflicts.
Cataldo and Herbsleb [31] presented an empirical analysis
of a large-scale project where they examined the impact
that software architecture characteristics, and organizational
factors have on the number of conflicts. They concluded
that architecture related factors such as the nature and
the quantity of component dependencies, as well as or-
ganizational factors such as the geographic dispersion of
development teams, can lead to a higher rate of issues when
merging. Menezes et al. [32] analyze merge scenarios from
open source Java projects to investigate the nature of merge
conflicts in terms of what conflicts look like, what kinds
of conflicts occur, how developers fix them, how conflicts
relate to each other, and more. Based on their results, they
argue that it is difficult to envision a single generic merge
strategy that can automatically resolve all possible conflicts,
because the diversity in conflicts is simply too large. Our
work synthesizes and expands on a number of previous
papers on merge strategies, so it might help practitioners in
deciding which merge strategy, or combination of strategies,
to adopt. Accioly et al. [33] derive a catalog of conflict
patterns expressed in terms of the structure of code changes
that lead to merge conflicts. Their results show that most
conflicts occur because developers independently edit the
same or consecutive lines of the same method. However, the
probability of creating a merge conflict is approximately the
same when editing methods, class fields, and modifier lists.
They noticed that the most part of conflicting merge scenar-
ios, and merge conflicts, involve more than two developers.
Also, that copying and pasting pieces of code, or even entire
files, across different repositories is a common practice and
cause of conflicts. Similarly, Yuzuki et al. [34] investigate
how conflicts on method declarations are resolved on open
source Java projects. They found that the most part of them
is resolved by adopting one of the versions, then discarding
the other. All these findings about conflicts characteristics
might be adapted by a merge tool as strategies for resolving
conflicts.

Finally, assessing how often merging results in build
or test issues, which can be seen as a consequence of
a fault merging process, partially motivated a couple of
studies [27], [28], [35]. Kasi and Sarma [27], for instance,
report merges that result in build issues occurring in ranges
between 2 % to 15 %, while Brun et al. [28] describe both
build and test issues ranging around 33 %. Comparing
merge strategies, however, is not the focus of these studies,
they are actually based on traditional unstructured merge.
Cavalcanti et al. [5] investigate the frequency of build
and test issues with semistructured and structured merge
strategies, and they found that structured merge causes
more build and test failures than semistructured merge. We
complement these prior work by investigating build or test
issues with unstructured, semistructured, structure merge
and the combination of these strategies. Our results show
that, while there is an increase in build- and test failures, the
increase is not substantial.
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5 CONCLUSION

Resolving merge conflicts manually remains a major pain-
point for software developers [29], [36]. While unstructured
merging (which considers source code as a sequence of
lines) is applicable to all source code artifacts, structured
merging (which considers the syntactic structure of the
code) may resolve additional conflicts automatically by
exploiting language-specific information. We consider both
semistructured and fully structured, AST-based approaches
to software merging. Additionally, strategies which repre-
sent an adaptive combination of simple strategies are tested
(e.g., unstructured merging followed by structured merging
if there are conflicts).

Conventional wisdom is that the more structure and
language-specific details a merge algorithm considers, the
fewer conflicts it produces at a considerable runtime cost.
We showed that this assumption holds in practice by apply-
ing the merge strategies to 10 open-source projects having in
total 7727 merge commits. We observed merge conflicts for
6.69 % of the merge commits for the unstructured strategy
while the structured strategy produced conflicts in 5.32 %.
The semistructured strategy’s result was in between with
6.02 %. Combined strategies performed even better than
simple strategies, the best being the combination of all three
simple strategies (in increasing order of complexity) with
4.59 % of merge commits being re-merged with conflicts.
As such, combined strategies proved to be a very useful
addition to the set of available strategies. They appear to
combine the best of both worlds, reducing runtime while
being able to resolve, at least, as many conflicts as a fully
structured merge.

A major contribution of this study is that, in addition to
the number of conflicts and execution time, the correctness
of the merge result, as determined by the test suite of the
project and a thorough manual analysis, was also consid-
ered. The key issue was whether, in an effort to resolve as
many conflicts as possible automatically, structured merge
algorithms produce code that is conflict free but no longer
works as intended. In our study, we found that, while the
number of build and test failures does increase when em-
ploying the semistructured and structured merge strategies,
the increase is small enough for these algorithms to be viable
in practice.

REFERENCES

[1] T. Mens, “A State-of-the-art Survey on Software Merging,” IEEE
Transactions on Software Engineering (TSE), vol. 28, no. 5, pp. 449–
462, 2002.

[2] O. Leßenich, S. Apel, and C. Lengauer, “Balancing Precision and
Performance in Structured Merge,” Automated Software Engineer-
ing, vol. 22, no. 3, pp. 367–397, 2015.

[3] S. Apel, J. Liebig, B. Brandl, C. Lengauer, and C. Kästner,
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APPENDIX A
SUBJECT SYSTEMS—LATEST MERGE COMMITS

For reproducibility, Table 6 records the SHA1 hash of the
latest merge commit present in our subject systems at the
time our analysis was performed.

TABLE 6: The latest merge commits in our subject systems.

Subject System Latest Merge Commit (Git SHA1 Hash)

COMMONS-MATH 830f1d1443b21bb17f76fba84eb1170d97ba369a
DROPWIZARD 6e0d660bd157093201ea45d7714164b92f76463d
FASTJSON b1b0a758d11df96939b2ba3caa3d07e11d0db74e
GHPRB-PLUGIN f4eb4bc1ee3fd53284d3889c69558c9f36d5379d
GITHUB-API 72d4b9bf620ea6c5c9ad81d8003293abf0170d89
JAVAPARSER 213e03233d756e544779328c377fc81052b1511c
JEDIS fac7ddd9b25c3f5fb42bb0e488139bbe86c85623
OKHTTP ee137b56b342a6cb0d9ef5fd381f79a8f2f06494
ONTOP 46f19f29c81868300c27b5772cfffc9386fefc72
OPENMRS-CORE e535b79e231acb292ec445318844d17b2f275779

APPENDIX B
COHEN’S D MATRIX
For RQ2 and RQ3, we calculated the effect sizes correspond-
ing to the presented p-values. Additionally, Figure 11 shows
the d-values for combinations of strategies not shown in
Figure 8.
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Fig. 11: The matrix of Cohen’s d values (rounded to two
significant digits) corresponding to the results presented in
Sections 3.5.2 and 3.5.3.
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