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Abstract. Ubiquitous computing is a challenge for the design of middle-
ware. The reasons are resource constraints, mobility, heterogeneity, etc.,
just to name a few. We argue that such middleware has to be tailored
to the application scenario as well as to the target platform. Such tailor-
made middleware has to be built from minimal fine-grained components,
and the system structure must be highly configurable, as we will explain.
We propose to use the well-known mixin layer approach to build the flex-
ible lightweight middleware envisioned. We show that the thoughtful use
of mixin layers is promising in this specific domain and allows to deal
with issues such as device heterogeneity and resource constraints. To do
so, we present the design and implementation of a middleware and three
configurations derived from it. Our evaluation criteria are the number of
supported features and the memory footprint. The middleware configu-
rations derived perform well in these respects.

1 Introduction

Ubiquitous computing [26] is becoming reality. Everyone is connected every-
where and at any time, to consume and provide information. Computers become
more and more transparent [25]. Middleware plays a key role to let this vision
become true. It supports the application programmer who builds distributed
applications and services, e.g., for electronic health care or intelligent build-
ings (more examples in [26, 25]). Such middleware must deal with the various
characteristics of ubiquitous computing scenarios, e.g., resource-constrained de-
vices, heterogeneity, mobility, bandwidth fluctuations, connection interruptions.
Conventional middleware is not sufficient in these respects. It targets at static
distributed systems with fixed hosts where resources are not tightly constrained.

This article attempts to validate the following hypothesis: the combination
of software engineering and distributed computing principles will support the
development of advanced ubiquitous applications, middleware services etc. well.
To do so, we focus on the resource constraints of partly mobile ubiquitous de-
vices, e.g. cell phones, wearable microchips, smart cards, autonomous robots,
sensors, actuators, etc., and their heterogeneity in terms of hardware (e.g. pro-
cessor, memory, communication media) and software (e.g. operating system, net-
work protocol). We present a flexible middleware which one can easily port to



different hardware and software. It provides a device-independent interface to
applications. As the design and implementation method, we propose the mixin
layer approach. Mixin layers are known as one method for the implementation
of product-line architectures (PLA) [22, 1]. Middleware for ubiquitous computing
should benefit from the PLA concept as well, in terms of configurability, reusabil-
ity and extensibility. By deploying the mixin concept, we want to verify if this is
indeed the case. More generally, we wonder if implementation of general middle-
ware concepts in mixin layers is feasible. The answer is not obvious because some
concepts are known as crosscutting concerns, or are formulated in an abstract,
’high-level’ manner. Further, are mixin layers a good implementation method for
middleware that one can easily port to other devices? To address these issues,
we have designed and implemented a middleware PLA1 presented here. We then
describe three middleware configurations which are tailored2 to fit three specific
ubiquitous application scenarios. We do so to show that our approach can lead
to flexible lightweight middleware for ubiquitous computing. The derivation of
these configurations consists of only a few steps. This is not straightforward –
only the thoughtful use of mixins and the careful deployment to the middleware
domain results in such ease. If one designs the layers carefully such that there are
only few fine-grained device-specific layers, portability is much easier. Further,
we investigate the relationship between the memory footprints of the configura-
tions and the number of features integrated: We observe that few features result
in a small footprint. As a result, configurability of middleware does not neces-
sarily collide with small footprint. This is an important finding because other
approaches cannot provide such a degree of configurability in combination with
small footprint, as Section 6 will explain. Finally, we say why these results can
be generalized to other middleware.

This article is structured as follows: Section 2 introduces an ubiquitous com-
puting application scenario and points to problems regarding middleware and
applications. Section 3 reviews the software engineering methods deployed here.
Section 4 presents our middleware, built according to the mixin layer approach.
We then discuss implementation results and experiences concerning the configu-
ration. Section 6 reviews related work. Finally, we conclude.

2 A Ubiquitous Computing Application Scenario

This section sketches an application scenario for ubiquitous computing. Based
on this, we list challenges at the middleware and the application level. We point
to the weaknesses of conventional middleware approaches.

2.1 Application Scenario

With ubiquitous computing, computers become an even more integral part of
everyday life. They act behind the scenes, transparently for humans. The scenario
1 In the remaining article, ’middleware’ and ’middleware PLA’ are synonyms.
2 We refer to tailoring as configuration process with special focus on memory footprint.

To do so, unneeded functionality is removed consequently.



presented, in parts borrowed from [25], includes conventional aspects as well
as more visionary ones. Starting point is a room with many common mobile
and ubiquitous devices, e.g., PDA and Smartphones. They are general-purpose
devices which include various communication media, e.g., WLAN, Bluetooth,
IR, etc. If a person enters the room, the PDA can contact the embedded devices
available. For instance, the PDA can communicate with the light switch to raise
or dim the light. To facilitate this, the dimmer offers an appropriate service
interface. A primitive dimmer only provides a basic service to dim or light up. A
more complex dimmer can provide additional information about the minimum
and maximum dim level or provide a timeout mechanism to adjust the light
automatically. A ’more ubiquitous’ scenario is that the light dimmer adjusts
itself by communicating with the PDA behind the scenes. A person enters the
room, and the light adjusts itself, using personal information from the PDA.
Other devices in the room act more autonomously, e.g., a climate-control unit
which adjusts the air condition to the current climate, to the current time of day
and the current season as well as to the presence of a person. Further, think of
a digital paper scrap which people use to take notes. Notes are then stored on
a central notes server. A more common device is a home-entertainment system,
including a music box, a dvd recorder and a TV set. It apparently provides a lot
of controllable functionality and interacts with itself and the PDA extensively.
For instance, it provides information on the TV program. This information can
control the programming of the dvd recorder. In a more ubiquitous setting, the
dvd recorder reacts to program changes or records telecasts which match a profile
autonomously. The next step is that the dvd recorder in cooperation with the
TV set learns the customs of persons and generates personal profiles itself.

2.2 Problems Occurring

In the scenario introduced, certain problems occur, which we describe next.
Common middleware cannot deal with these problems, as we will explain.

Ubiquitous computing middleware must run on the various devices. Fre-
quently, devices are embedded systems. They are developed for a special purpose,
e.g., to control the light, and have a low resource consumption. Cost-effective
thinking requires this, in particular if the number of these devices is huge. Next to
these embedded special-purpose devices, general-purpose devices (PDA, Desktop
PC, Server) are part of ubiquitous-computing scenarios. These devices are not
resource-constrained and provide much more functionality. In our scenario, the
PDA communicates with other devices, displays information (e.g., air-condition
level) and processes it (e.g., television-program based programming of the dvd
recorder). The spectrum of resources consumed is extremely broad, as well as
the one of functionality provided.

Another challenge is to overcome the heterogeneity of devices. They use dif-
ferent hardware and software. The middleware must bridge them and must pro-
vide a well-defined device-independent interface to the application programmer.
Hence, the middleware consists of device-specific and device-independent parts.



Naturally, the device-independent part must be as large as possible (in relative
terms) to maximize reusability.

Our middleware is supposed to hide these specifics, in order to support the
development of ubiquitous applications. Conventional middleware approaches,
e.g., CORBA, DCOM, Java-RMI, are not suitable for our scenario. They are too
heavyweight and cannot be customized to application requirements. It would be
quite impossible to port them to other devices or platforms and to get them
to work in resource-constrained environments. The monolithic system structure
prevents the reuse of logical device-independent functionality. However, research
effort has tried to improve standard CORBA to fit ubiquitous computing. It
has been shown that refactorization of CORBA implementations yields higher
configurability [27]. However, our expectation in the long run is that customi-
zability of carefully designed middleware product-lines is even higher. This is
why we think that the issue merits attention. Finally, dynamic adaptation [20,
12] does not solve the problem in our specific context either, as Section 6 will
explain.

All this motivates the design of a ubiquitous-computing middleware with the
following features:

– minimal memory footprint and lightweight implementation, to save resources,
– run on heterogenous hardware and software,
– provide uniform device-independent application interface,
– customizability, reusability, and extensibility.

3 Relevant Software Engineering Issues

This section presents our solution to the problems discussed in Section 2. It uses
the mixin layer approach. This is because this approach is known to facilitate
configurable and reusable software, e.g., product-line architectures [22]. To ease
understanding, we provide some background information on this software en-
gineering method. The so-called collaboration-based design is a feasible design
method to serve as a basis for mixin layer implementations. We briefly review
it here as well. Finally, we outline the expected benefits of these approaches for
ubiquitous computing, before looking at our realization in the next section.

3.1 Collaboration-Based Design

Parnas [19] introduced collaboration-based design first. The idea is to build
software incrementally, using minimal building blocks and starting from a mini-
mal base. Exchanging, adding and removing such building blocks, also called
layers, yields reusability, extensibility, and customizability. Batory et al. have
mapped this concept to the object-oriented world [1, 22]. They observe that a
new software feature often extends or modifies numerous existing classes. Based
on this observation, they perceive features as collaborations of class/object frag-
ments, also referred to as roles. Figure 1 collaborations. Classes are arranged
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Fig. 1. Stack of collaborations

vertically (c1 – c3). Collaborations are
arranged horizontally and span several
classes (f1 – f3). Several features of a
software system result in a stack of col-
laborations. In our context, examples
of features are ’remote procedure calls’
or ’remote object invocation’. Collabo-
rations with the same interfaces are
easily exchangeable. They are an in-
stance of large-scale components [1]. A collaboration of objects implements a
feature and is part of a layered stack.3

3.2 Mixin Layers

The mixin layer approach allows to implement collaboration-based designs. The
mixin layer approach is based on the GenVoca component model [1] to support
large-scale components, easy exchangeability, and syntactic consistency checking.
These characteristics allow for the development of configurable and reusable
software. Different languages can be used to implement mixin layers: C++ [23],
AHEAD Tool Suite [2], Java Layers [7], Sather [17]. In the code snippets that
follow we use the C++ notation.

Mixins are types whose super-types are specified parametrically [5]. Mixins
facilitate the same sub-type specialization to be applied to different (super-)-
types. In other words, they allow the specialization of multiple classes with a
single reusable class. For example, think of the three unrelated classes Buffer,
Message, Printer. Suppose that one wants to add a locking feature that restricts
access to these objects. With conventional object oriented approaches, one must
add a different sub-type to each class, e.g., LockableBuffer, LockableMessage,
LockablePrinter. Each of these types adds the methods lock() and unlock().
With mixins in turn, a single mixin Lockable extends all of those super-classes
(see Figure 2). Methods lock() and unlock() are defined only once. Instan-
tiation of mixins generates new class hierarchies. For instance, the instantiation
Lockable<Buffer> lb; generates the class hierarchy depicted in Figure 3.

1 template <class BaseType >
2 class Lockable : public BaseType {
3 bool m_locked;
4 void lock () { m_locked = true;}
5 void unlock () { m_locked = false ;} }

Fig. 2. A simple mixin class for synchro-
nization support.

Lockable

Buffer

m_locked : bool

unlock() : void
lock() : void

Fig. 3. A lockable buffer

Mixin layers are mixins containing nested types which can be mixins them-
selves [22]. Mixin layers are used to coordinate changes and extensions to classes
3 We use the terms feature or layer as synonym for collaboration.



that collaborate. The mixin layer approach allows to add a new feature/layer
in form of a set of sub-classes to a software system using one implementa-
tion unit. A single mixin layer is able to implement a feature that crosscuts
multiple classes. Mixin layers are equivalent to collaborations, whereas nested
mixins are equivalent to object roles. Consider the following example: A pro-
gram library provides a buffer to store data elements and an iterator to tra-
verse the data elements. A possible refinement is to store and manage arrays of
data elements. Applying this new feature requires modifications of both buffer
and iterator. Figure 4 depicts the two mixin-based feature implementations
BufferLayer (Lines 1–4) and ArrayBufferLayer (Lines 5–8). The BufferLayer
simply consists of a Buffer class and an Iterator class. ArrayBufferLayer is
a mixin layer, which expects a template parameter (BaseType). Line 10 con-
tains the instantiation of ArrayBufferLayer using BufferLayer as super-type.
This instantiation connects both layers and their corresponding nested types
(Buffer, Iterator) using inheritance (Lines 5–7). It refines the basic buffer
abstraction with the array feature. This feature crosscuts the classes Buffer
and Iterator. The ’Array’ feature is encapsulated in a single implementa-
tion unit. This eases the composition of mixin layers and therefore the con-
figuration of the target software. To see this, think of ten further buffer fea-
tures, e.g. locking, synchronization, complex data types. Composing the buffer
implementation using these mixin layers requires only one instruction, e.g.,
Lockable<Sync<...<ArrayBufferLayer<BufferLayer>>...>>buf;. This exam-
ple illustrates the ease of configuration of mixin layer-based implementations.
(more examples in [1, 22, 2])

1 class BufferLayer {
2 class Buffer {}; // store simple data types
3 class Iterator {}; // traverses element−wise
4 };
5 template <class BaseType > class ArrayBufferLayer : public BaseType {
6 class Buffer : BaseType :: Buffer {/∗ stores arrays of elements ∗/}
7 class Iterator : BaseType :: Iterator {/∗ i t erates array−wise ∗/}
8 }
9 ...

10 ArrayBuffer <Buffer > abuf;

Fig. 4. A base and a mixin layer: the buffer abstraction and array management feature

3.3 Benefits for Ubiquitous Computing

Mixin layers offer several benefits for the development of middleware for ubiqui-
tous computing. As mentioned before, this article focuses on resource constraints
and heterogeneity.

Resource constraints. Mixin layers offer modularity and flexibility and thus
seem to be ideal candidates for the design and implementation of tailored soft-
ware for ubiquitous computing. To accomplish this, the system components (the



mixin layers) must be fine-grained. Middleware must be customized to the spe-
cific hardware and to the requirements of the application, e.g., performance.

Heterogeneity. Another issue is the heterogeneity of the devices involved.
The objective of our middleware (as well as of other middleware) is to bridge
this heterogeneity and to provide components which can work with different
hardware, operating systems and network protocols. How can mixin layers help in
this respect? An interesting feature of mixin layers in the middleware domain, for
heterogeneous environments, is decomposition of middleware functionality into
device-specific and device-independent components. The goal is to minimize the
number of device-specific components. This leads to middleware which is easier
to port to new platforms. Summing up, the thoughtful use of mixin layers seems
to be promising to deal with heterogeneity in ubiquitous computing.

In summary, mixin layers might help to address the following issues in ubi-
quitous computing where common middleware solutions are not sufficient:

– resource constraints (step-wise refinements, minimal exchangeable layers)
– heterogeneity (composition of device-specific and device-independent layers)
– lack of customizability (mixin layer as large-scale components, separation of

crosscutting concerns)

Admittedly, the mixin layer approach also has some disadvantages: It is not
always practical to implement a feature as a single mixin layer. The implementa-
tion units of such features are often spread over several other feature implemen-
tations. Mixin layers only allow to refine related classes, namely those included
in the stack of basic layers. Related approaches like aspect-oriented programming
(AOP) [13] and multi-dimensional separation of concerns (MDSC) [18] can refine
unrelated classes as well, using one implementation unit. AOP and MDSC sup-
port refinements on statement and expression level as well as a regular-expression
based mechanism to specify code positions where refinements are applied (join
points). On the other hand, they lack a component model, e.g., imported and
exported interfaces or symmetric components. Hence, it is difficult to build con-
figurable product-lines. The mixin approach in turn is sufficient for building the
base functionality of our middleware, as we will explain in Section 4. In gene-
ral the approaches mentioned are equivalent with regard to modularization of
crosscutting concerns and customizability [2]. In the long run, we think that
only a combination of these will lead to success, if more complex functionality is
added, e.g., fault-tolerance or security. Each feature will be implemented using
the appropriate method. However, these issues are beyond the scope of this pa-
per. This paper in turn investigates the benefits and limits of mixin layers to
build middleware product-lines.

4 Middleware Design

This section presents the design and implementation of a flexible lightweight
middleware for ubiquitous computing, based on collaborations and mixin layers.
To assess the benefits of these methods, the implementation of the following



functionality should suffice: The middleware provides standard remote object in-
vocation (ROI). Well-known subconcepts of ROI, e.g., marshaling, are part of
the implementation, but are not discussed here. Moreover, we leave ubiquitous-
computing specific features, e.g., server-initiated computation. Their implemen-
tation would not provide significant further insight (we argue). Our concern
is the deployment of collaborations and mixin layers for ubiquitous middle-
ware. Arguably, implementation of middleware functionality in mixin layers is
not obvious. In addition, a solution must cope with devices that are resource-
constrained and with heterogeneous environments. Our design described next,
i.e., the specific arrangement of collaborations or the specific choice of the roles,
is only one possible solution (but nevertheless appropriate, as we will show).

The result of collaboration-based design and of the mixin layer approach is
a set of components. They can be composed to various middleware platforms.
Subsequently, we refer to these platforms as configurations. When designing our
middleware, we have found it natural to distinguish between components with
client-side functionality and those with server-side functionality. The feature of
managing and registering remote objects is server-side, but only the client sends
requests to the server, to give some examples. Moreover, we identified some
features used by client and server. This motivates the following terminology:
general layers, client layers and server layers.

Several figures depict the collaboration/layer stack and the roles included.
The rounded boxes represent roles (the dashed boxes mark derived roles) and
the grey boxes in the background represent the collaborations. We organized
the stack of layers in bottom-up order. We use UML-like arrows to represent
relations between object roles (inheritance, composition, etc.). Explaining all
roles in detail is beyond the scope of this article and is actually not necessary
for understanding. We focus on the overall structure, and we say how to design
collaborations and to implement mixin layers for ubiquitous middleware.

4.1 General Middleware Layers

Connection

Connection

Connection

Message
Abstraction

Message
Connection

Direction
Separation

Parameterized
MessageMarshalable

TypedConnectionParamConnectionMessage

ConnectionConnection
MarshalableConnectionMessage

MarshalableBaseMessageBase

InMessage OutMessage Marshalable
TypedConnection

Marshalable
TypedConnectionSynchronisation InMessage OutMessage Synchronization

Fig. 5. The stack of general middleware layers

The general layers provide basic functionality for both client side and server
side. Figure 5 depicts the stack of general layers. The abstraction of basic mes-
sages form the bottom layer of the stack. These messages are transferred between



client and server. A marshaling mechanism serializes messages; connections are
based on sockets. Messages may have parameters that are typed. The parame-
ters are used in higher layers as function arguments or to identify operations and
instances on clients and servers. Our approach allows to decide at compile-time
which data types are supported. Avoiding types that are not needed reduces the
memory consumption. Other variation points, again well known, are the connec-
tion type (UDP or TCP), the direction of communication (unidirectional or bidi-
rectional) and the synchronization strategy (synchronous or asynchronous). The
variation points as well as the different data types supported are implemented
as different layer variants to enhance configurability. For instance, two different
layers exist for the synchronization feature (synchronous and asynchronous). At
configuration time, the programmer has to choose one.

4.2 Client-Side Layers

OneWay OutMessageInMessage

TwoWay InMessage OutMessage

Marshalable
TypedConnection

Marshalable
TypedConnection

Marshalable
TypedConnection

Marshalable
TypedConnection

Marshalable
TypedConnection

Connection

Connection
Unidirectional
Messages

Bidirectional
Messages

Remote
Function Calls

Remote Class−
Function Calls

Remote Object
Invocation

Connection

Connection

TwoWay OneWay
ClassCall ClassCall Synchronisation InClassMsg OutClassMsg

Synchronisation

TwoWay OneWay
FunctionCall FunctionCall Synchronisation OutFunctionMsgInFunctionMsg

SynchronisationOneWay

TwoWay OneWay
ObjectCall ObjectCall Synchronisation InObjectMsg OutObjectMsg Connection

Fig. 6. The stack of client-side layers

Based on the general layers, the client layers facilitate uni- and bidirectional
messaging (see Figure 6). We use these messaging functions to implement remote
function and class-function calls and remote object invocation. We use parame-
terized messages to deliver the identifications of functions, classes, objects and
their arguments. Response messages deliver results. Next to function calls, we
provide operations for creating and deleting objects.

4.3 Server-Side Layers

Figure 7 shows the server-side layers, but does not show all roles, due to space
limitations. The server layers are shown as light grey boxes, the client layers
as dark grey boxes. Client and server layers that correspond to each other are
often required in combination, e.g., remote function calls and remote functions.
This interleaving does not mean that a server implementation always requires
the client layers and vice versa. If a configuration does not need certain client
layers, one has to remove them during the configuration process (cf. Section 5).
Consider the light dimmer from Section 2. It only needs to obtain incoming
function calls, but does not need to issue remote function calls.
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Fig. 7. The stack of server-side layers

The basic server layers listen for client requests and accept connections. We
have implemented a single-threaded and a multi-threaded variant. Our middle-
ware deserializes incoming messages. Depending on the connection type chosen,
the incoming messages are transferred using byte streams or datagrams. Based
on these mechanisms, the server side provides a remote function server, a re-
mote class-function server, and a remote object server. The programmer can
use several functions for registering and managing remote functions, classes and
objects. A client can specify the desired function or object as well as the desired
operation (create, delete, invocate) using parameterized messages.

4.4 Implementation

In order to verify our hypotheses, we have implemented the middleware design
presented so far in full (in C++). To do so, we have used the template mecha-
nism, nested classes and parameter-based inheritance, as described in Section 3.
To save implementation work, we use the gSoap communication library [10].
While designing and implementing the system, we have kept in mind that the
communication library should be easily exchangeable, e.g., with a lightweight
binary protocol. We have used the low-level functions only to (un-)marshal and
to send or receive SOAP [4] messages. We have not used remote-function-call
mechanisms or other high-level functions. gSoap is the only device-dependent
part of our middleware. Because space is limited, we cannot discuss all issues at
code level. Instead we refer to Figure 8. It depicts the interface of one mixin layer,
the roi layer in C++. The layer has four nested classes (Lines 2–3) which repre-
sent the corresponding roles (cf. Figure 6). Each nested class inherits from the
corresponding classes of the base layer, represented by BaseLayer. Beyond the



1 template <class BaseLayer > class ROILayer : public BaseLayer {
2 class OutObjectMessage : BaseLayer :: OutClassMessage {};
3 class InObjectMessage : BaseLayer :: InClassMessage {};
4 class OneWayCall : BaseLayer :: OneWayCall {};
5 class TwoWayCall : BaseLayer :: TwoWayCall {}; };

Fig. 8. The Remote Object Invocation Mixin Layer

short example the implementation examples from Section 3 and the discussion
of design issues there should shed light on our implementation.

5 Results

This section discusses experiences from the implementation, together with three
configurations: a sensor-actuator-system, a web service/client and a roi client/-
service. They are useful for the scenario described in Section 2.

5.1 Configuration

Instantiation (combination) of the mixin layers configures new middleware plat-
forms (see Section 3). A GenVoca grammar describes the possible configurations
[1] (not shown here for lack of space). Using this grammar, we have calculated
the number of configurations possible by adding the numbers of all combinations
of layers of our middleware permitted: 192 ∗ (2n − 1) different server configura-
tions, where n is the number of data types supported, and 96 ∗ (2n − 1) client
configurations. As a result, the degree of configurability is high. This is required
for tailoring the middleware to work in ubiquitous computing scenarios.

To convey the ease of the configuration procedure and the flexibility of the
implementation, we now describe the three configurations we have derived.

Sensor-Actuator Middleware. A sensor-actuator middleware is useful for ubi-
quitous devices like the our light dimmer, which only needs a small subset of
the functionality. For communication between sensors and actuators, we chose
asynchronous unidirectional remote procedure calls. In our scenario, a light sen-
sor only needs the client features. We add the server-side features only to the
actuators (a light dimmer), which receive messages. Figure 9(a) depicts the fea-
tures chosen. In our example application, we have used the sensor to send a
measurement to the actuator. Both devices display status information.

Remote-Object-Invocation Middleware. Our configuration of a remote-object-
invocation (roi) middleware consists of nearly all layers implemented. It is used
for ubiquitous devices which provide a rich set of functionality and provide many
services. In our scenario, the home entertainment system runs a fully functional
object server. Next to remote object invocations, remote function calls and re-
mote class-function calls are also available. We have chosen synchronous com-
munication. Figure 9(b) depicts the layers of the client and of the server. To
complete the proof-of-concept implementation, we have implemented a simple
service on top of the roi-middleware.



Web-Service Middleware. The web-service (ws) middleware supports the imp-
lementation of web services. This configuration is useful to access ubiquitous
devices from the internet using SOAP [4]. Similarly, ubiquitous information sys-
tems like a digital newspaper can collect information from the Web and dis-
play it. The web-service middleware provides the following functionality: SOAP-
conformant remote function calls as well as synchronous and asynchronous com-
munication. When using gSoap, creating SOAP messages that conform to the
standard is easy. Our web-service middleware is useful to implement all types of
web-services and corresponding clients. Our example server can receive SOAP
messages and can reply to every common SOAP client with the same interface.
The analogous is true for our client as well. It can connect to any compatible
web service. Figure 9(c) depicts the layers of the client and the server.

(a) sensor-actuator (b) roi (c) web service

Fig. 9. Three different middleware configurations

5.2 Discussion

Section 5.1 has shown that a broad range of configurations is possible. More-
over, Sections 3 and 5.1 have discussed the easy composition of layers to create
a configuration. Some configurations may differ only in a few features. But the
three examples show the broadness of the application scenarios supported. Let
us now have a closer look at the resulting configurations. Figure 10 shows the
memory footprint and the number of features supported, with a distinction bet-
ween client-side and server-side. The memory footprint is the size of the binary
code. We have obtained it using the linux size command. We have left aside the
code of the underlying communication protocol library. The ws client is bigger
than the roi client because it has to process and transfer additional web-service-
specific information like namespaces, etc. The binary code size of clients ranges
from 4423 to 6631 bytes and the one of the servers from 9310 to 32738 bytes.
The server-side results show that the memory footprint of a minimal system



configuration (the actuator) is only 28% of the one of the maximal system con-
figuration (the roi server). At the client side, the minimal configuration is about
65%. The binary code size of the web service lies between them. This is because
it has more features than the sensor-actuator middleware and much less features
than the roi service. As a result, configuring middleware that does not waste
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Fig. 10. Memory footprint and number of features of three configurations

resources is easy, using the mixin layer approach. As our implementation has
shown, decomposition of middleware functionality into fine-grained components
is possible (cf. Figure 9). With less features, the code size and the amount of data
and consequently the binary code size decreases significantly (see Figure 10). So
it is in the hand of the application programmer to tailor the middleware and
fit it to the application requirements and target platform. Configurability and
tailoring make it possible to build middleware for embedded ubiquitous devices.

To deal with hardware and software heterogeneity, we differentiate between
device-specific and device-independent layers. Only the layers which communi-
cate directly with the hardware or the underlying software (operating system,
protocol stack) are device-specific.

The reader should note that a performance analysis is not meaningful in
the current context, for various reasons: (1) We have used a SOAP-based com-
munication library. The overhead for parsing and generating the XML/SOAP
messages would falsify performance numbers. (2) A direct comparesion to other
middleware solutions, e.g. [11, 24, 16], is not meaningful, because the set of fea-
tures implemented (communication protocol, marshaling strategy, data types
supported, etc.) is different. – The design of mixin layers that results in configu-
rations both with small footprint and good performance is an interesting issue,
but is beyond the scope of this article (obviously, the problem is more difficult).

Finally, our results generalize to other middleware as well, not only in the
ubiquitous computing domain. For example, one can build middleware for mo-
bile computing using more large-scale components, to reduce the maintenance
overhead. Reflective architectures like [20] or [12] could be implemented using
mixin layers and could work together with current base level components. How-
ever, reconciliation of the objectives performance, small memory footprint, as
well as configurability, reusability and extensibility is an open issue.



6 Related Work

Conventional middleware technology (e.g. CORBA, SOAP, Java-RMI) hides the
internal communication. It is designed primarily for fixed hosts with adequate re-
sources and a static network structure. It does not run in non-conventional appli-
cation scenarios, e.g., embedded systems and ubiquitous computing. Middleware
technologies have emerged to meet the requirements of these scenarios, e.g., real-
time constraints, reliability, as well as environment-specific issues, e.g., resource
constraints, bandwidth fluctuation, connection interrupts, dynamic changes of
network topology. However, some research has enhanced CORBA-based middle-
ware to become flexible, customizable and lightweight: OpenCorba [15], OpenORB
[3] and dynamicTAO [14] extend CORBA by a reflective architecture. These sys-
tems reify important characteristics of the behavior and of the structure of the
middleware, such as scheduling strategy and resource management. The app-
lication can access and modify this information using a meta-interface. This
allows to customize the middleware at runtime. A similar reflective CORBA-
independent approach is CARISMA [6]. Its focus is on context-awareness and
on policy conflict resolution. We for our part have focused on customizability at
compile-time. By doing so, we do not need a reflective architecture which would
consume a significant amount of resources (we argue). Furthermore, reflection is
simply not needed in all ubiquitous devices and services. (Think of the primi-
tive light dimmer.) On the other hand, mixin-based middleware may serve as a
basis for a runtime-adaptable implementation, which combines the advantages
of mixin layers and reflection.

UIC [20] and ReMMoC [12] are two examples of middleware with a focus on
device heterogeneity. Both assume that different devices use different middleware
technologies, e.g., SOAP, CORBA, Java RMI, and provide mechanisms to deal
with this heterogeneity. UIC is based on dynamicTAO. It implements a reflec-
tive architecture and a minimal core of functionality. If the reflective architecture
detects the presence of a remote device, it loads the adequate middleware compo-
nent. ReMMoC uses a similar approach. While this is a significant contribution
for conventional application scenarios, it seems to us that the runtime overhead
of reflection may not always be acceptable in ubiquitous devices. Further on,
reflection may not be required in some ubiquitous application scenarios.

TAO [21] is another prominent approach to achieve customizability, based
on design patterns. We believe that modern component models have a stronger
focus on modularization and configurability than design patterns. Moreover, the
mixin layer approach supports the development of PLA well [2]. It is the high
degree of configurability and tailoring that makes PLA a suitable candidate for
the development of ubiquitous computing middleware.

Zhang and Jacobsen have shown how to improve customizability and flexi-
bility of middleware by refactorization [27]. They utilized AOP to remodular-
ize orthogonal, entangled middleware features, e.g., the dynamic programming
model or portable interceptors. Colyer and Clement argue that AOP can help to
cope with the rising complexity of middleware [8]. They have refactored several
middleware crosscutting concerns successfully. They have argued that AOP can



scale to size of commercial middleware projects. Our approach towards building
a product-line does not focus on refactoring. Rather a carefully planned and
designed middleware product-line makes refactoring unnecessary.

[24, 11, 16, 9] focus on middleware for embedded and real-time systems. Their
work addresses performance and resource consumption issues. Tailoring and cus-
tomization of middleware using modern software engineering methods are not
discussed. But such methods are key to overcome device heterogeneity, resource
constraints and lack of customization functionality.

7 Conclusion and Further Research

Software engineering methods advance the design and implementation of middle-
ware for ubiquitous computing. We have proposed the use of collaboration-based
design and mixin layers to build lightweight flexible middleware for this domain,
to provide a device-independent interface to applications. We have implemented
a set of fine-grained basic components. We have generated three middleware
configurations, tailored to specific application requirements. The configuration
phase consists of a few steps only. A GenVoca grammar describes the combi-
nations permitted. As a result, tailoring of the middleware has been successful
in terms of memory footprint. Reusability and configurability of a mixin-based
implementation helps to deal with device heterogeneity.

As future work, we want to integrate new features like security, persistence
or fault-tolerance. Here, other software engineering methods like aspect-oriented
programming, multi-dimensional separation of concerns or feature-oriented do-
main modeling look promising. Another issue is the performance of mixin-based
middleware, in combination with reusability, customization and extensibility.
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