
Research Challenges in the Tension Between
Features and Services

Sven Apel
Department of Informatics and

Mathematics
University of Passauapel�uni-passau.de Christian Kästner

School of Computer Science
University of Magdeburgkaestne�ovgu.de Christian Lengauer

Department of Informatics and
Mathematics

University of Passaulengauer�uni-passau.de
ABSTRACTWe present a feature-based approah, known from softwareprodut lines, to the development of servie-oriented arhi-tetures. We disuss �ve bene�ts of suh an approah: im-provements in modularity, variability, uniformity, spei�a-bility, and typeability. Subsequently, we review preliminaryexperienes and results, and propose an agenda for furtherresearh in this diretion.Categories and Subjet Desriptors: D.2.11 [Software℄:Software Engineering�Software Arhitetures; D.1.2 [Soft-ware℄: Programming Tehniques�Automati ProgrammingGeneral Terms: Design, Languages, TheoryKeywords: Feature-Oriented Programming, Feature-Orien-ted Program Synthesis, Servie-Oriented Arhiteture
1. INTRODUCTIONServie-oriented arhiteture (SOA) is an emerging �eld ofsoftware arhiteture. With SOA, software is deomposedinto servies. A servie provides a well-de�ned piee of fun-tionality while hiding implementation details behind an in-terfae. A servie infrastruture allows programmers to in-tegrate servies that are distributed and written in di�erentprogramming languages.SOA is an arhitetural style dediated not only to large-sale distributed systems but also to struture appliationswithin the sope of a loal environment. Reent researhhas explored problems regarding modularity, variability, andompatibility of servies and related onepts [35,31,29,18,15℄. While there are �rst enouraging results, a multitudeof hallenges remains.Starting from a feature-based approah, we develop a se-nario that integrates the notions of servies and feature-based produt lines. A feature re�ets a stakeholders' re-quirement, provides a on�guration option, and is an in-rement in funtionality. Programs of a produt line aredistinguished by their features [21℄; the implementations of
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SDSOA’08,May 11, 2008, Leipzig, Germany.
Copyright 2008 ACM 978-1-60558-029-6/08/05 ...$5.00.

ommon features are reused in di�erent programs.There is a lot of similarity between feature-based approa-hes and servie-based approahes to software system on-strution; exploring their synergy is bene�ial. Both aimat struturing omplex software systems into manageablepiees. Our laim is that using features and servies in on-ert an solve present modularity, variability, and ompati-bility problems that neither of them an solve in isolation.Typially, features rossut the hierarhial servie arhi-teture, whih results in a suboptimal system struture thatrenders the development, maintenane, and evolution di�-ult [4℄. Feature-oriented programming (FOP) is apable ofmodularizing features whose ode would otherwise be sat-tered aross multiple servies [30℄. Feature-oriented programsynthesis (FOPS) omposes tailored servies from featuresbased on a user spei�ation [10,8℄. Finally, the formal foun-dation of feature orientation [24,2,6℄ provides a straightfor-ward way to set up a formal spei�ation and type systemfor servies based on features, not just on interfaes.While our approah bears the potential of supporting SOAresearh and development, as we will argue, it poses severalresearh hallenges. We develop our idea of feature-basedSOA, point to the potential bene�ts, and propose an agendafor further researh in this diretion. We begin with a sim-ple example SOA senario and disuss subsequently impli-ations for the general ase.
2. AN EXAMPLE SCENARIOWe begin with a simple warehouse senario to illustrate ourideas. We fous here on a spei� kind of servies, namelyon white-box servies that are developed by a single vendor.However, this does not mean that the servies may not bedistributed, only that the implementation of all servies isaessible. In Setion 7, we extend this senario to blak-box servies that are implemented and provided by di�erentvendors and that are plugged together in an ad-ho manner.The warehouse onsists of seven servies that provide thebasi funtionality for proessing a ustomer's order:

• aquiring of ustomer requests,
• heking the availability of ordered goods,
• rating the redit worthiness of ustomers,
• ordering the goods from an inventory,
• shipping the goods to the ustomer,
• billing,
• heking the payment of ustomers.Figure 1 depits the servie arhiteture of the warehousesenario. As is ommon in SOA, eah servie provides a

apel@uni-passau.de
ckaestne@ovgu.de
lengauer@uni-passau.de

well-de�ned, language-independent interfae and may be im-plemented in a language of hoie.
Figure 1: Servie arhiteture of the warehouse.

3. PROBLEM STATEMENTAlthough the warehouse senario is rather small, it is usefulto illustrate the problems of suboptimal modularity, vari-ability, and ompatibility in SOA. In the basi senario ofFigure 1, the servies are well modularized and ommuni-ate via interfaes. There are no variability or ompatibilityissues. But, when exploring the example with a bit moredetail, several problems emerge.Suppose the servies of our example are used in di�erentvariants of an online warehouse:Disounting is a variant that o�ers ustomers a speial dis-ount on some goods for quantities larger than a pre-de�ned threshold. The ustomer either pays less or re-eives more goods than ordered. This onerns the im-plementations of Aquisition, Credit Ranking, Billing,and Payment Cheking.Status Monitoring is a variant that gives ustomers theability to trae the status of the order transation aswell as the logial and physial position of the orderedgoods. E-mail noti�ation or a Web-based portal arepossible monitoring failities. This onerns the imple-mentations of all servies of the warehouse senario.Overseas Orders is a variant that onsiders the spei�sof foreign urreny, tolls, logistis, laws, et. for ship-ping goods to overseas ountries. This onerns theimplementations of Credit Ranking, Shipping, Billing,and Payment Cheking of goods.A �rst observation is that the di�erenes between two vari-ants onern multiple (though not all) servies of the arhi-teture. For example, to implement the disounting variant,in whih ustomers are billed less, we would have to hangethe servies Aquisition, Credit Ranking, Billing, and Pay-ment Cheking. Typially, deriving a variant from a serviearhiteture hanges a servie's implementation and inter-fae only marginally. The ore of an individual servie andthe overall arhiteture remains untouhed. For example,the disounting variant extends the Aquisition servie's in-terfae (and implementation) to allow ustomers to querythe disount rate. There might even be hanges a featurerequires that onern only the implementation, but that arenot manifest in the interfae. For example, the disount vari-ant does not a�et the Billing servie's interfae, but onlyalters the prie alulation in the servie's implementation.A straightforward desire is to bene�t from the ommonal-

ity of all variants of a servie arhiteture in terms of reusingassets (suh as ode) and fatoring out the variabilities in amodular fashion. Moreover, a servie that is used in di�erentvariations of a senario should be easy to adapt. Otherwise,ode repliation and an inrease in the e�ort of develop-ment along with a derease in the produtivity (due to thedi�ulties to derive variants) an be expeted [17, 16℄. Im-plementing servies that provide a superset of the funtion-alities of all their variants is not a desirable option. Eventu-ally, this will result in bloated and unmaintainable ode andmake the SOA goal of struturing software appropriatelyunattainable.Furthermore, managing the di�erent variants of a SOAsenario is problemati. For example, when we lookup andintegrate a servie, how do we know to whih variants of thesenario it belongs? Whih variants of a servie are om-patible with another servie, whih may ome in di�erentvariants, too? FOP and FOPS, two tehniques known fromthe �eld of software produt lines, have the potential solvingthese problems.Note that servies might be reused in ompletely di�erentappliation senarios, not only in variants of a single se-nario. However, we fous on variants of a single senario.This is reasonable insofar as the servies and the arhite-ture is only slightly di�erent in eah variant, whih is simi-lar to feature-based software produt lines [21, 17, 10℄. Thissimilarity is the motivation for our approah that integratesfeatures and servies.
4. FEATURES AND SERVICESThe di�erent variants of our senario an be desribed byand distinguished in terms of features. A feature re�ets astakeholders' requirement and provides a on�guration op-tion. Of ourse, in order to provide a feature, the implemen-tation of (some) servies has to be extended, i.e., a featureis an inrement in servie funtionality.Two variants of a senario di�er in their sets of supportedfeatures. In our examples, the variants di�er only in onefeature, i.e., the disounting variant is similar to the basewarehouse senario exept that it additionally provides theDisounting feature.Figure 2 depits the warehouse servie arhiteture in-luding the Disounting feature. The servies that area�eted by the Disounting feature are highlighted by ar-rows. The Aquisition servie now additionally provides in-formation about the disount (hange of interfae and im-plementation), and in Credit Ranking, Billing, and PaymentCheking the prie alulation is eah adapted to grant thedisount (hange of implementation).Figure 2 illustrates the following fats of the relationshipbetween features and servies:

• A servie provides a basi funtionality (i.e., a basefeature) and a (possibly empty) set of features thatextend the base funtionality.
• A feature may a�et the implementations and the in-terfaes of multiple servies.The introdution of the notion of a feature to SOA allowsus to apply tehniques and methods from FOP and FOPS.The idea of FOP is to enapsulate the ode of a feature o-hesively into a feature module [4℄. Feature omposition joinsa servie's base ode and the ode of its features. Figure 3depits the warehouse servie arhiteture with a separate

Figure 2: E�ets of the disounting feature on theservies of the basi warehouse senario.

Figure 3: Separating the disounting feature fromthe basi warehouse arhiteture.feature module for Disounting. Fat (red) boxes representfeature modules and arrows represent extensions to servies.Feature modularization and omposition requires a pro-gramming language to have a ertain expressibility. Severalmainstream languages have been extended to support fea-tures, e.g., Java, C++, and XML [10,3,1℄. For example, anextension a feature makes to a servie's Java implementa-tion is shown in Figure 4. The lass Bill of the basi ware-house servie Billing is re�ned by the feature Disounting,denoted by `refines'. It overrides the method getPrieand adds the method qualifiesForDisount in order toderease the alulated prie of quali�ed orders by 20%.Interestingly, there are FOP extensions of XML [5,1℄ thatallow programmers to extend a servie's interfae that iswritten in WSDL, as illustrated in Figure 5. When om-posing the base warehouse implementation with the Dis-ounting feature, the interfae of the servie Aquisitionis superimposed with an extension of the same name. Dis-ounting adds a new operation disountResponse allow-ing a ustomer to query the disount rate.FOPS performs feature omposition based on a delar-ative spei�ation [10℄. Features are represented by fun-tions that extend a program, in our ase, a servie arhite-ture inluding the individual servie implementations andinterfaes. For example, the feature-oriented model of ourwarehouse senario (WH) inluding the three features Dis-

1 lass Bill { ...2 double getPrie (Order o) { ... }3 }4 refines lass Bill { ...5 double getPrie (Order o) {6 i f (qualifiesForDisount(o))7 return original (o) * 0.8;8 else9 return original (o);10 }11 }12 boolean qualifiesForDisount(Order o) { ... }13 }Figure 4: A Java lass (top) and a re�nement (bot-tom).1 <definitions name="Aquisition">2 ...3 <message name="prieRequest">4 <part name="orderNumber" type="xsd:int">5 </message >6 ...7 </definitions >8 <definitions name="Aquisition">9 ...10 <message name="disountResponse">11 <part name="disountPerentage" type="xsd:float">12 </message >13 ...14 </definitions >Figure 5: A WSDL interfae de�nition (top) and are�nement (bottom).ounting (Dis), Status monitoring (Stat), andOver-sea orders (Over) of Setion 3 is modeled by the set:WH = {Base,Dis,Stat,Over} (1)Base represents the basi servie arhiteture that inludesour seven servies (Equation 2, names abbreviated). Ser-vies, in turn, inlude a set of ode artifats, not depitedhere.Base = {Acqu, Avail,Cred, Ord, Ship, Bill, Pay} (2)Dis onsists of the extensions the disounting feature makesto the warehouse arhiteture:Dis = {Acqu, Cred,Bill, Pay} (3)This illustrates that theDisounting feature a�ets mul-tiple servies of the warehouse senario, i.e., the implemen-tation of the feature is sattered aross multiple servie im-plementations. The extensions of Dis are mathed (super-imposed) with the servies of Base by name. Feature om-position sales from omposing spei� methods or lasses,aross omposing individual servies, to omposing a wholeservie arhiteture.As features are modeled by funtions that modify pro-grams, feature omposition ('•') is modeled by funtion om-position. The omposition of the basi warehouse arhite-ture with the disounting feature is written:WH1 = Dis •Base (4)

Using suh feature expressions, several variants of thewarehouse senario an be desribed, inluding those, inwhih di�erent features are ombined:WH0 = BaseWH1 = Dis • BaseWH2 = Over • Dis • BaseWH3 = Over • Stat • Dis • BaseWH4 = . . .

(5)The atual omposition of software artifats based on afeature expression is performed automatially by variousgenerator tools, most notably the AHEAD Tool Suite [10℄.
5. EXPECTED BENEFITSThere are �ve bene�ts of a feature-based approah to SOA.
ModularityThe deomposition of a servie arhiteture and its ser-vies into features failitates a better separation of onerns.Code of a feature is enapsulated in a feature module, eventhough it a�ets multiple servies (f. Figure 3). The baseimplementation of a servie is not polluted by feature ode,whih improves ode omprehension and maintenane. FOPhas been shown to improve modularity in several ase stud-ies for software produt lines [11, 14, 9, 33, 23, 4℄ and mightimprove modularity also in servie arhitetures and relatedapproahes, where modularity has been observed to be sub-optimal [35, 31, 29, 18, 15℄.
VariabilityThe separation of base servie ode and feature ode al-lows a programmer to generate di�erent servie variants.Feature omposition merges the orresponding ode frag-ments of servies and features based on a user spei�ation(f. Equation 5).
UniformityServies may be represented in di�erent languages. Thisinludes the implementation (e.g., in Java or C++) and theinterfae spei�ation (e.g., in WSDL). Feature ompositionis language-independent and appliable to any kind of soft-ware artifat inluded in a servie [5℄. For example, Fea-tureC++ [3℄ and Jak [10℄ are languages for omposing fea-tures written in C++ and Java, respetively. Xak enablesthe omposition of features written in XML [1℄, whih alsoinludes the servie's interfae written in WSDL.
SpecifiabilityProgrammers, software arhitets, and users have to dis-tinguish between di�erent variants of an arhiteture andits servies. Otherwise, the omposition of (syntatially orsemantially) inompatible servies may lead to errors, in-onsistent system states, and undesirable program behavior.A purely name-based and/or interfae-based spei�ation isnot su�ient: two servies might have equal names and/orinterfaes but provide di�erent features (see Typeability). Aombination of a name-based, interfae-based, and feature-based spei�ation solves this problem. Features representommon abstrations of a domain and help stakeholders tounderstand a servie's semantis during implementation, in-tegration, and orhestration.

TypeabilityWithout a feature-based spei�ation, servies are typedvia their names and interfaes. But, as mentioned, not everyfeature might be manifest in a servie's interfae. To thisend, two variants of a servie might be of the same typealthough they provide di�erent feature sets. Another serviemight expet a spei� behavior that annot be expressedby an interfae. Consequently, the set of features a servieprovides has to be taken into aount during typing. A typesystem based on interfaes and features solves ompatibilityand inonsisteny problems. Suh a type system is partiallynominal and partially strutural [26, 2℄.
6. RESEARCH CHALLENGESWe envision several researh hallenges that arise from thebene�ts of the symbiosis of features and servies.
ModularityThe phenomenon of rossutting in servie, omponent,and agent systems hallenges modularity and has been ob-served before. Several approahes, most notably aspet-oriented programming [22℄, have been proposed to solve themodularity problem [35, 31, 29, 18, 15℄. FOP is losely re-lated to these approahes [4℄. A feature-oriented approahis promising insofar as the theory of features, that is basedon algebra [24, 6℄ and ategory theory [34℄, enables the au-tomation of feature and servie omposition, while provid-ing means for simple and preise spei�ation and typing(f. Setion 5). A hallenge is to prove the pratiality andsalability of rossutting mehanisms, suh as feature mod-ules, in non-trivial SOA ase studies. To the best of ourknowledge no suh studies have been published.
VariabilityAn automated management of variants beomes inreas-ingly important as the number of variants grows. In SOA,this is espeially hallenging as there is typially a multi-tude of servies that ome in many di�erent variants. Anapproah based on features pro�ts from the experienes andtools of the �eld of software produt lines [21, 17, 10, 12℄.As with modularity, reasonable ase studies have to be on-duted. Conversely, SOA may beome a real-world senariofor researhers and developers that aim at features and prod-ut lines.
UniformityAs disussed before, servies may be implemented in dif-ferent languages. The whole idea of Web servies is based onservie virtualization [25℄. A language-independent ommu-niation infrastruture (protool, interfae desription, ser-vie lookup, et.) integrates servies that have been imple-mented and deployed by di�erent vendors. Thus, SOA isan exellent use ase for evaluating the generiity of featureomposition. Whether this generiity is adequate and salesto heterogeneous, large-sale servie arhitetures remainsto be explored.
SpecifiabilityVariants of a servie arhiteture an be spei�ed via fea-tures. A prerequisite is that there must be an agreementon the meaning of features in a domain. In the �eld ofsoftware produt lines, feature models and ontologies have

been shown to be useful [27,17℄. Assuming a orret featuremodel, servie variant spei�ation an be based entirely onfeatures [21, 17, 12, 7℄, e.g., as illustrated with Equation 5.Of ourse, an approah that integrates feature-based andinterfae-based spei�ation is desirable. The hallenge isto establish methods for stakeholders to agree on a featuremodel and to avoid misunderstandings and preoneptionswhen using feature-based spei�ations. The use of formalspei�ation languages is disussed in Setion 7.
TypeabilityIn a type system for SOA, eah servie has a type. Thetype is de�ned by the servie's interfae and by the set offeatures it provides. To this end, two servies are of thesame type if they provide the same interfae and the sameset of features omposed in the same order. That is, thetype system is partially strutural (e.g., based on the fea-ture struture) and partially nominal (e.g., based on featurenames). This notion of servie type allows us to de�ne asubtyping relation ('≤'). A servie A is a subtype of a ser-vie B if A's interfae is a subtype of B's interfae and Aprovides a superset of the features of B omposed in thesame order. The relation ≤ an be de�ned as follows, where
Fn..Fi denotes a sequene of features and ⊇ denotes thesupersequene relation:

(∀A : F • A ≤ A)
(∀A,B : A ≤ B =⇒ F • A ≤ F • B)

(∀A : Fn • . . . • F1 • A ≤ Gm • . . . • G1 • A)i� Fn..F1 ⊇ Gm..G1

(6)A hallenge is the integration of a feature-based type sys-tem [32,2℄ into a formal model of servies [13, 28℄.
7. BLACK-BOX SERVICESSo far, in our disussion we assumed that all servie im-plementations of an arhiteture are aessible. This makesit possible to implement rossutting features by means offeature modules that extend the basi servies' implementa-tions. This assumption is not unrealisti sine SOA is oftenused in-house as an arhitetural style for the developmentof well-strutured software systems. However, an advantageof SOA is that servies may be blak boxes implementedand deployed by di�erent vendors. Software is generated byintegrating o�-the-shelf servies loated at di�erent plaes.Considering this blak-box senario, the bene�ts of a fea-ture-based approah are redued and enhaned at the sametime. A feature annot be ondensed into a single featuremodule anymore. The reason is that servie implementa-tions are blak boxes and, typially, the vendors do notshare ode; only interfae desriptions are available. Thisalso hinders servie omposition based on feature omposi-tion. Nevertheless, in the sope of a single servie provider(i.e., a ompany that uses SOA to implement large-sale ap-pliations) feature omposition works as explained; it failsonly for servies that share the same features but that areimplemented by di�erent vendors.While the bene�ts of feature modularization and ompo-sition are limited to loal vendors, the bene�ts of a feature-based spei�ation and type system inrease at the sametime. The more vendors ontribute servies to an arhite-ture, the more a preise, formal agreement on the syntax andsemantis of servies is neessary. First, there needs to be

a ommon feature model that is well-de�ned for a domain.Based on this model, vendors an provide a feature-basedspei�ation for their servies. Beside the name and the re-lationship to other features (what is required and provided),a spei�ation of a feature de�nes the semantis expressed informal spei�ation language, e.g., Alloy [19℄ or TROLL [20℄.The key is that the features an be implemented di�erently,but they have to satisfy ertain onstraints. This issue hasbeen explored extensively in the �eld of program spei�a-tion. A feature model has to inlude, for eah feature, alanguage-independent spei�ation.If there is a ommon feature model, the feature-based typesystem plays to its strength. Servie integrations an beheked based on their interfaes (interfae-based subtyp-ing), their features (feature-based subtyping), and the on-straints of the domain (e.g., feature F implies feature G).
8. CONCLUSIONIn summary, we see several potential synergies between fea-tures and servies. A transfer of ideas and experienes woulddo the �eld of SOA and FOP(S) good. We have outlinedseveral bene�ts a symbiosis an bring with it but also sev-eral hallenges, espeially regarding the uniform treatmentof servies and the formal spei�ation and typing of servieompositions. The extended blak-box senario imposes fur-ther severe hallenges but promises signi�ant bene�ts of afeature-based approah to SOA.
AcknowledgmentsWe thank Don Batory and Salvador Trujillo for their helpfulomments on earlier drafts of this paper.
9. REFERENCES[1℄ F. Anfurrutia, O. Díaz, and S. Trujillo. On Re�ningXML Artifats. In Pro. Int'l. Conf. Web Engineering,volume 4607 of LNCS, pages 473�478.Springer-Verlag, 2007.[2℄ S. Apel and D. Huthins. An Overview of the gDeepCalulus. Tehnial Report MIP-0712, Dept. Inform.and Math., University of Passau, 2007.[3℄ S. Apel, T. Leih, M. Rosenmüller, and G. Saake.FeatureC++: On the Symbiosis of Feature-Orientedand Aspet-Oriented Programming. In Pro. Int'l.Conf. Generative Programming and ComponentEngineering, volume 3676 of LNCS, pages 125�140.Springer-Verlag, 2005.[4℄ S. Apel, T. Leih, and G. Saake. Aspetual FeatureModules. IEEE Trans. Softw. Eng., 34(2), 2008.published online �rst.[5℄ S. Apel and C. Lengauer. Superimposition: ALanguage-Independent Approah to SoftwareComposition. In Pro. Int'l. Symp. SoftwareComposition, volume 4954 of LNCS, pages 20�35.Springer-Verlag, 2008.[6℄ S. Apel, C. Lengauer, D. Batory, B. Möller, andC. Kästner. An Algebra for Feature-Oriented SoftwareDevelopment. Tehnial Report MIP-0706, Dept.Inform. and Math., University of Passau, 2007.[7℄ D. Batory. Feature Models, Grammars, andPropositional Formulas. In Pro. Int'l. Software

Produt Line Conf., volume 3714 of LNCS, pages7�20. Springer-Verlag, 2005.[8℄ D. Batory. From Implementation to Theory inProdut Synthesis. In Pro. Int'l. Symp. Priniples ofProgramming Languages, pages 135�136. ACM Press,2007.[9℄ D. Batory, C. Johnson, B. MaDonald, and D. v.Heeder. Ahieving Extensibility ThroughProdut-Lines and Domain-Spei� Languages: ACase Study. ACM Trans. Softw. Eng. Methodol.,11(2):191�214, 2002.[10℄ D. Batory, J. Sarvela, and A. Raushmayer. SalingStep-Wise Re�nement. IEEE Trans. Softw. Eng.,30(6):355�371, 2004.[11℄ D. Batory and J. Thomas. P2: A Lightweight DBMSGenerator. J. Intelligent Information Systems,9(2):107�123, 1997.[12℄ D. Beuhe, H. Papajewski, andW. Shröder-Preikshat. Variability Management withFeature Models. Si. Comp. Prog., 53(3):333�352,2004.[13℄ M. Broy, I. Krüger, and M. Meisinger. A FormalModel of Servies. ACM Trans. Softw. Eng.Methodol., 16(1):Artile no. 5, 2007.[14℄ R. Cardone and C. Lin. Comparing Frameworks andLayered Re�nement. In Pro. Int'l. Conf. SoftwareEngineering, pages 285�294. IEEE CS Press, 2001.[15℄ A. Char�, B. Shmeling, and M. Mezini. TransationalBPEL Proesses with AO4BPEL Aspets. In Pro.Europ. Conf. Web Servies, pages 149�158. IEEE CSPress, 2007.[16℄ P. Clements and L. Northrop. Software Produt Lines:Praties and Patterns. Addison-Wesley, 2002.[17℄ K. Czarneki and U. Eiseneker. GenerativeProgramming: Methods, Tools, and Appliations.Addison-Wesley, 2000.[18℄ A. Garia, U. Kulesza, and C. Luena. AspetizingMulti-Agent Systems: From Arhiteture toImplementation. In Software Engineering forMulti-Agent Systems III, volume 3390 of LNCS, pages121�143. Springer-Verlag, 2005.[19℄ D. Jakson. Alloy: A Lightweight Objet ModellingNotation. ACM Trans. Softw. Eng. Methodol.,11(2):256�290, 2002.[20℄ R. Junglaus, G. Saake, T. Hartmann, andC. Sernadas. TROLL: A Language forObjet-Oriented Spei�ation of Information Systems.ACM Trans. Inf. Syst., 14(2):175�211, 1996.[21℄ K. Kang, S. Cohen, J. Hess, W. Novak, andA. Peterson. Feature-Oriented Domain Analysis(FODA) Feasibility Study. Tehnial ReportCMU/SEI-90-TR-21, Software Engineering Institute,Carnegie Mellon University, 1990.[22℄ G. Kizales, J. Lamping, A. Mendhekar, C. Maeda,C. Lopes, J.-M. Loingtier, and J. Irwin.Aspet-Oriented Programming. In Pro. Europ. Conf.Objet-Oriented Programming, volume 1241 of LNCS,pages 220�242. Springer-Verlag, 1997.[23℄ J. Liu, D. Batory, and C. Lengauer. Feature-OrientedRefatoring of Legay Appliations. In Pro. Int'l.Conf. Software Engineering, pages 112�121. ACM

Press, 2006.[24℄ R. Lopez-Herrejon, D. Batory, and C. Lengauer. ADisiplined Approah to Aspet Composition. In Pro.Int'l. Symp. Partial Evaluation and Semantis-BasedProgram Manipulation, pages 68�77. ACM Press,2006.[25℄ A. Nash. Servie Virtualization: Key to ManagingChange in SOA. Bitpipe.om, 2006. White paper.[26℄ K. Ostermann. Nominal and Strutural Subtyping inComponent-Based Programming. J. ObjetTehnology, 7(1):121�145, 2008.[27℄ X. Peng, W. Zhao, Y. Xue, and Y. Wu.Ontology-Based Feature Modeling andAppliation-Oriented Tailoring. In Pro. Int'l. Conf.Software Reuse, volume 4039 of LNCS, pages 87�100.Springer-Verlag, 2006.[28℄ M. Pereplethikov, C. Ryan, K. Frampton, andH. Shmidt. A Formal Model of Servie-OrientedDesign Struture. In Pro. Austral. SoftwareEngineering Conf., pages 71�80. IEEE CS Press, 2007.[29℄ A. Popovii, G. Alonso, and T. Gross. SpontaneousContainer Servies. In Pro. Europ. Conf.Objet-Oriented Programming, volume 2743 of LNCS,pages 29�54. Springer-Verlag, 2003.[30℄ C. Prehofer. Feature-Oriented Programming: A FreshLook at Objets. In Pro. Europ. Conf.Objet-Oriented Programming, volume 1241 of LNCS,pages 419�443. Springer-Verlag, 1997.[31℄ D. Suvée, W. Vanderperren, and V. Jonkers. JAsCo:An Aspet-Oriented Approah Tailored forComponent-Based Software Development. In Pro.Int'l. Conf. Aspet-Oriented Software Development,pages 21�29. ACM Press, 2003.[32℄ S. Thaker, D. Batory, D. Kithin, and W. Cook. SafeComposition of Produt Lines. In Pro. Int'l. Conf.Generative Programming and Component Engineering,pages 95�104. ACM Press, 2007.[33℄ S. Trujillo, D. Batory, and O. Díaz. FeatureRefatoring a Multi-Representation Program into aProdut Line. In Pro. Int'l. Conf. GenerativeProgramming and Component Engineering, pages191�200. ACM Press, 2006.[34℄ S. Trujillo, D. Batory, and O. Díaz. Feature OrientedModel Driven Development: A Case Study forPortlets. In Pro. Int'l. Conf. Software Engineering,pages 44�53. IEEE CS Press, 2007.[35℄ N. Ubayashi and T. Tamai. Separation of Conerns inMobile Agent Appliations. In Pro. Int'l. Conf.Metalevel Arhitetures and Separation of CrossuttingConerns, volume 2192 of LNCS, pages 89�109.Springer-Verlag, 2001.

