
An Algebraic Foundation for
Automatic Feature-Based Program Synthesis

Sven Apela, Christian Lengauera, Bernhard Möllerb, Christian Kästnerc

aDepartment of Informatics and Mathematics, University of Passau,
{apel,lengauer}@uni-passau.de

bInstitute of Computer Science, University of Augsburg,
moeller@informatik.uni-augsburg.de

cSchool of Computer Science, University of Magdeburg,
kaestner@iti.cs.uni-magdeburg.de

Abstract

Feature-Oriented Software Development provides a multitude of formalisms, methods,
languages, and tools for building variable, customizable, and extensible software. Along
different lines of research, different notions of a feature have been developed. Although these
notions have similar goals, no common basis for evaluation, comparison, and integration
exists. We present a feature algebra that captures the key ideas of feature orientation and
that provides a common ground for current and future research in this field, on which also
alternative options can be explored. Furthermore, our algebraic framework is meant to
serve as a basis for the development of the technology of automatic feature-based program
synthesis and architectural metaprogramming.

Key words: Feature-oriented software development, automatic feature-based program
synthesis, architectural metaprogramming, feature structure tree, feature composition,
superimposition, quantification, weaving, feature algebra, quark model

1 Introduction

Feature-Oriented Software Development (FOSD) is a paradigm that provides for-
malisms, methods, languages, and tools for building variable, customizable, and
extensible software. The main abstraction mechanism of FOSD is the feature. A
feature reflects a stakeholder’s requirement and is typically an increment in func-
tionality; features are used to distinguish between different variants of a program
or software system [42]. Feature composition is the process of composing code
associated with features in a consistent way [6].
Research along different lines has been undertaken to realize the vision of FOSD [12,
17, 29, 40, 42, 61, 71]. While there are the common notions of a feature and feature

Preprint submitted to Elsevier 4 March 2013

composition, present approaches use different techniques, representations, and
formalisms. For example, AspectJ 1 and AHEAD 2 can both be used to implement
features, but they provide different language constructs: AspectJ offers pointcuts,
advice, and inter-type declarations, whereas AHEAD furnishes collaborations and
refinements [12]. A promising way of integrating separate lines of research is to
provide an encompassing formal framework that captures many of the common
ideas such as introductions, refinements, or quantification and that hides (what we
feel are) distracting differences.
We propose such a framework for FOSD: a feature algebra. First, the feature algebra
abstracts from the details of different programming languages and environments
used in FOSD. Second, alternative design decisions in the algebra reflect variants and
alternatives in concrete programming language mechanisms; for example, certain
kinds of feature composition may be allowed or disallowed. Third, the algebra
is useful for describing, beside composition, also other operations on features
formally and independently of the language, e.g., type checking [69] and interaction
analysis [51]. Fourth, the algebraic description can be taken as an architectural view
of a software system. External tools can use the algebra as a basis for optimizing
feature expressions [17, 29].
The big picture of our endeavor is that the feature algebra serves as a formal
foundation for automatic feature-based program synthesis [16, 29] and architectural
metaprogramming [15]. Both paradigms emerged from FOSD and facilitate the
treatment of programs as values manipulated by metaprograms, e.g., in order to add
a feature to a program. This requires a formal theory that describes precisely which
manipulations are allowed. Architectural metaprogramming applies this principle at
the level of a software architecture. The algebra provides a formalism to express the
necessary abstraction from the implementation level and is a means of reasoning
about and manipulating software architectures. Metaprograms operate on feature-
algebraic expressions to synthesize programs at the architectural level efficiently
and consistently.
We introduce a uniform representation of features, outline the properties of the
algebra, explain how the algebra models the key concepts of FOSD, and discuss
alternative configurations of the algebra and their implications for the properties
of feature composition. We have implemented all axioms, lemmas, and theorems
in Prover9 3 so that we can derive proofs of fundamental properties of feature
composition fully automatically.

1 http://www.eclipse.org/aspectj/
2 http://www.cs.utexas.edu/~schwartz/ATS.html
3 http://prover9.org/

2

http://www.eclipse.org/aspectj/
http://www.cs.utexas.edu/~schwartz/ATS.html
http://prover9.org/

2 A Language-Independent Representation of Features

2.1 Features and Their Composition

Different researchers have proposed different views of what a feature is or should
be. A characterization that is common to most (if not all) work on FOSD is: a
feature is a structure that extends and modifies a given program in order to satisfy a
stakeholder’s requirement, to implement a design decision, and to offer a configu-
ration option [6]. This informal characterization guides our work towards a formal
framework of FOSD.
Mathematically, we assume an abstract set F of features and describe feature
composition by an operator • : F × F → F . This allows us to combine elementary
features to more complex ones, but also to recombine these further. A program p
(which can itself be viewed as a feature) is composed of a series of features:

p = fn • (fn−1 • (. . . • (f2 • f1)))

The order of features in a composition may matter since feature composition is not
generally commutative, and parenthesization may matter since feature composition
is not in every case associative, as we will show. For simplicity, we define feature
composition such that each feature can appear only once in a composition. Allowing
multiple instances of one and the same feature in a composition would be possible,
but this would only complicate the algebraic framework and does not provide any
new insights.

2.2 The Structure of Features

We develop our model of features in several steps. Even though the algebra is
language-independent, we explain its details and their implications by means of Java
code. First, we consider a feature to be ultimately composed of elemental structures
such as single fields or methods arranged in the form of a tree. (Sec. 2.2–3.1). More
generally, we will need to consider forests of such trees to make the algebra work;
we call these forests basic features.
Basic features are composed by superimposition of their tree structures. In a next
step, we introduce the concept of a modification that acts as a rewrite on basic
features (Sec. 3.2). Finally, a full feature takes the form of a triple, called a quark,
consisting of a basic feature and two kinds of modifications (Sec. 4).
The tree structures in a basic feature are called feature structure trees (FSTs), while
the forest itself is called a feature structure forest (FSF). As a borderline case, we
also admit the empty FSF. An FST organizes the feature’s structural elements, e.g.,
files, classes, fields, or methods, hierarchically. Figure 1 depicts an excerpt of the
Java implementation of a feature BASE and its representation in form of an FST.
One can think of an FST as a stripped-down abstract syntax tree that contains only
the essential information. The nature of this information depends on the degree of
granularity at which software artifacts are to be composed, as we discuss below.

3

1 package util;
2 c l a s s Calc {
3 i n t e0=0, e1=0, e2=0;
4 void enter(i n t v) { e2=e1; e1=e0; e0=v; }
5 void clear() { e0=e1=e2=0; }
6 String top() { re turn String.valueOf(e0); }
7 }

enterclear

top

Calc

util

e1

e0

e2

package

class

BASE

method field

Fig. 1. Implementation and FST of the feature BASE.

For example, the FSTs we use to represent Java code contain nodes that denote
packages, classes, interfaces, fields, methods, etc. They do not contain information
about the internal structure of methods and so on. A different granularity would
be to represent only packages and classes but not methods or fields as FST nodes
(coarse granularity), or to represent additionally statements or expressions (fine
granularity) [43]. However, the choice of the level of granularity does not affect our
description of the algebra.
Each node of an FST is labeled with a name and a type. We call two nodes compatible
when they have the same name and type and compatible parents. A node’s name 4

corresponds to the name of the artifact’s structural element it represents and a
node’s type corresponds to the syntactic category to which the element belongs.
For example, the class Calc is represented by a node Calc of type class. We
must consider both name and type to prevent the combination of incompatible
nodes during feature composition, e.g., the composition of two classes with different
names, or of a field with a method of the same name.
For the purposes of the present paper, we consider FSTs and FSFs to be ordered;
there is an analogous model for the case of unordered trees. The rightmost child of
a node represents the topmost element in the textual order of an artifact, e.g., the
first member in a class is represented by the rightmost child node. Note that, at the
granularity we chose for Java, the order of nodes could be arbitrary, but this may be
different at a finer granularity (e.g., the order of statements matters) and it may also
differ in other languages (e.g., the order of most XHTML elements matters) [10].

2.3 Feature Composition

How does the abstract description of a composition of basic features map to the
concrete composition at the structural level? That is, how are FSTs composed in
order to obtain new FSTs? Our answer is: by FST superimposition [10,17,23,27,60].

2.3.1 Superimposition
Superimposition has been applied successfully to the composition of class hierar-
chies in multi-team software development [60], the extension of distributed pro-
grams [24], the implementation of collaboration-based designs [66], feature-oriented
programming [17, 61], subject-oriented programming [35, 68], aspect-oriented pro-

4 Depending on the language, a name could be a simple identifier, a signature, etc.

4

gramming [55,56], and software component adaptation [23]. Although very different,
all these applications superimpose hierarchically organized program constructs by
matching their relative positions, names, and types in the hierarchy.
Two trees are superimposed by superimposing their subtrees, starting from their roots
and descending recursively. 5 To keep the algebra simple, we want superimposition
to be a total operation. If the roots of the two trees under consideration are not
compatible, we just combine these trees into a two-element FSF. Otherwise, the two
nodes are merged by superimposing recursively the FSF Fl of children of the left
tree onto the FSF Fr of children of the right tree. In analogy to our conventions for
FSTs (see Sec. 2.2), the children in Fl are superimposed onto those in Fr beginning
with the rightmost node of Fl, thus preserving the order in the resulting FST; nodes
in Fl that cannot be merged with nodes in Fr are added to the left; the nodes in Fr

remain at their original positions.
In Figure 2, we illustrate the process of FST superimposition for trees with compati-
ble roots. Superimposition is denoted by the operator • . In Figure 3, we depict the
corresponding Java code. Our feature BASE is extended by superimposing a feature
ADD onto it. The result is a new feature, which we call ADDBASE. We will present
more complex examples later.

enterclear

top

Calc

util

e1

e0

e2

util

add

entercleartop

add

DDA BASE DDA ASEB

Calc

e1

e0

e2

Calc

util

Fig. 2. An example of FST superimposition (ADD • BASE = ADDBASE).

Superimposition is orthogonal to the extension mechanisms provided by Java.
Whereas existing classes of a program can be extended by inheritance or dele-
gation creating new derived classes, with superimposition, existing classes can be
extended without creating new classes.

2.3.2 Terminal and Non-Terminal Nodes
Independently of any particular language, an FST is made up of two different kinds
of nodes:
Non-terminal nodes are the inner nodes of an FST, including the root. The subtree

rooted at a non-terminal node reflects the structure of some implementation arti-
fact of a feature. The artifact structure is regarded as transparent (substructures
are represented by child nodes) and is subject to the recursive superimposition
process. A non-terminal node has only a name and a type, i.e., no superimposi-
tion of additional content is necessary.

5 Conceptually, FST superimposition is a form of tree amalgamation that considers inner
nodes and that starts from a common root when there is one [21].

5

1 package util;
2 c l a s s Calc {
3 void add() { e0=e1+e0; e1=e2; }
4 }

•
1 package util;
2 c l a s s Calc {
3 i n t e0=0, e1=0, e2=0;
4 void enter(i n t val) { e2=e1; e1=e0; e0=val; }
5 void clear() { e0=e1=e2=0; }
6 String top() { re turn String.valueOf(e0); }
7 }

=
1 package util;
2 c l a s s Calc {
3 i n t e0=0, e1=0, e2=0;
4 void enter(i n t val) { e2=e1; e1=e0; e0=val; }
5 void clear() { e0=e1=e2=0; }
6 String top() { re turn String.valueOf(e0); }
7 void add() { e0=e1+e0; e1=e2; }
8 }

Fig. 3. Java code for the superimposition ADD • BASE = ADDBASE.

Terminal nodes are the leaves of an FST. A terminal node has a name, a type,
and usually some content. Conceptually, a terminal node may also be the root
of some substructure which, however, is regarded as opaque in our model
(substructures are not represented by child nodes). The content of a terminal is
not shown in the FST.

While the superimposition of two non-terminals continues the recursive descent in
the FSTs, the superimposition of two terminals terminates the recursion and requires
a special treatment that may differ for each type of node.
Let us illustrate these concepts for Java. In Java, we choose to represent packages,
classes, and interfaces by non-terminals. The implementation artifacts they contain
are represented by child nodes, e.g., a package contains several classes and classes
contain inner classes, methods, and fields. Two compatible non-terminals are super-
imposed by superimposing their child nodes, e.g., two packages with equal names
are merged to one package with the same name that contains the superimposition
of the child elements (classes, interfaces, subpackages) of the two original pack-
ages. In contrast, Java methods, fields, imports, modifier lists, and extends and
implements clauses are represented by terminals (the leaves of an FST), at which
the recursion terminates. For each type of terminal node, there needs to be a rule for
superimposing their contents.

2.3.3 Superimposition of Terminals
We now turn to the question of superimposing terminals. Each terminal type has
to provide its own rule for superimposition. Here are four examples for Java and
similar languages:
• Two methods can be superimposed if it is specified how the method bodies

6

are merged, e.g., by overriding and calling the original method by using the
keywords original [19] or Super [17] inside a method body.
• Two field declarations with equal name and type are superimposed by replacing

one initial value (if any) by the other.
• Two implements clauses are superimposed by taking the union of their

elements and removing duplicates.
• Two modifier lists are superimposed by a specific policy, e.g., public replaces
private, but not vice versa; the superimposition of a modifier list containing
static with one not containing static is undefined, i.e., causes an error,
and so on.

In other languages, such as XML or BNF grammars, similar rules based on over-
riding, replacement, or concatenation are useful [10, 17]. If the language does not
provide a rule, the superimposition of the left onto the right terminal just leaves the
right one unchanged (to preserve totality of superimposition). In the implementation,
a further possibility is to disallow the composition of two terminals of a certain type
and to throw an exception if it is being attempted. However, in our case studies, this
phenomenon never occurred [10].
Figure 4 and Figure 5 depict how Java methods are superimposed during the com-
position of the two basic features COUNT and BASE. The two methods enter of
COUNT and BASE are superimposed by inlining one method into the other. The
keyword original specifies how the method bodies are merged by inlining (with-
out knowledge of their source code). 6 The two clear methods are superimposed
analogously. The semantics of this composition is similar to method overriding in
Java, except that, in Java, the method of a subclass overrides the corresponding
method of a superclass and, with superimposition, the method of the superimposing
class overrides the method of the superimposed one.

OUNT

enter

e1enterclear

top

e2

e0

Calc

util

e1entercleartop

Calc

utilutil

COUNT BASE BASE

clear count

terminal composition

e2

e0

merged bodies

count

Calc

C

Fig. 4. Superimposing Java methods in COUNT • BASE = COUNTBASE.

Beside inlining, alternative superimposition rules for terminals such as wrapping are
possible [17, 36].

6 Technically, if a node n_new with the keyword original in a method m is superim-
posed onto a node n_old that also contains a declaration of method m, then the declaration
of m in n_old is replaced by that of m in n_new, while replacing the pseudo-call to
original by the original body of m taken from n_old; parameters and local variables
receive fresh names if necessary.

7

1 package util;
2 c l a s s Calc {
3 i n t count=0;
4 void enter(i n t val) { o r i g i n a l(val); count++; }
5 void clear() { o r i g i n a l(); i f (count > 0) count--; }
6 }

•
1 package util;
2 c l a s s Calc {
3 i n t e0=0, e1=0, e2=0;
4 void enter(i n t val) { e2=e1; e1=e0; e0=val; }
5 void clear() { e0=e1=e2=0; }
6 String top() { re turn String.valueOf(e0); }
7 }

=
1 package util;
2 c l a s s Calc {
3 i n t e0=0, e1=0, e2=0;
4 void enter(i n t val) { e2=e1; e1=e0; e0=val; count++; }
5 void clear() { e0=e1=e2=0; i f (count > 0) count--; }
6 String top() { re turn String.valueOf(e0); }
7 i n t count=0;
8 }

Fig. 5. Superimposing Java methods by inlining.

2.4 Discussion

The superimposition of FSFs requires several properties of the language in which
the elements of a feature are expressed:
(1) The structure of a feature must be hierarchical, i.e., a forest.
(2) Every structural element of a feature must have a name and type that become

the name and type of the node in the FST.
(3) An element must not contain two or more direct child elements with the same

name and type.
(4) The language must provide superimposition rules for elements that do not

have a hierarchical substructure (terminals), or their superimposition leaves the
program unchanged.

These constraints are satisfied by most contemporary programming languages. We
have developed a tool, called FeatureHouse, that implements feature composition
based on the feature algebra [10]. Using FeatureHouse, we have been able to
compose features written in various languages such as Java, C#, C, Haskell, and
JavaCC. 7 Other researchers have shown that also other (non-code) languages such
as grammar or markup languages align well with the constraints above [3, 17].
Languages that do not satisfy these constraints are not “feature-ready”, since they do
not provide sufficient structural information. For example, XHTML is not feature-
ready since most elements of an XHTML document do not have unique names.
However, it may be possible to make such languages feature-ready by assigning

7 http://www.fosd.de/fh/

8

http://www.fosd.de/fh/

names to elements explicitly or by extending the languages with an overlaying
module structure, as Xak does for XML languages [3].

3 Feature Algebra

The feature algebra provides a formal foundation for FOSD. It abstracts from the
concrete case of FSFs by listing the essential operators together with the algebraic
laws, formulated as axioms, that we deem reasonable in some concrete setting of
FOSD. All axioms hold in the concrete algebra of ordered FSFs as well as in the
mentioned algebra of unordered FSFs, but also in many others, since they are not
very restrictive. A manipulation of an algebraic expression induces a corresponding
manipulation of an FSF.
As an important design decision, the set of operators of the algebra must be rich
enough to admit, for every FSF, an expression that corresponds to it, in the ideal
case even uniquely. 8 This way, the algebraic expressions facilitate formal reasoning
about the corresponding FSFs. Thus, FSFs can be converted, without information
loss, to algebraic expressions and vice versa. Our laws for algebraic expressions
describe what is allowed and disallowed when manipulating FSFs.
Since the algebra uses only axioms in the shape of (implicitly universally quantified)
equations, it lends itself to automated theorem proving with off-the-shelf first-order
provers. We have implemented all axioms, lemmas, and theorems of the algebra in
Prover9, to which we refer in the relevant paragraphs. In Appendix A, we list the
source code of the corresponding Prover9 scripts.

3.1 Introductions

Introductions are the abstract counterparts of FSFs. Therefore, every feature algebra
has to comprise a set I of introductions. Among them one usually distinguishes a
subset of atomic introductions. In the concrete algebra of FSFs these correspond to
leaf nodes, characterized by the unique maximal paths from the respective roots to
them. A basic feature can also be represented as the superimposition of all paths
resp. atomic introductions in its FSF. Hence, an abstract superimposition operator is
the second main ingredient of a feature algebra; it is called introduction sum. First,
we explain the properties of paths and, then, we introduce introduction sum.

3.1.1 Paths
To obtain an algebraic representation of FSFs, we first flatten their hierarchical
structure and convert every FSF into a list of its paths.
Specifically, we use a simple prefix notation to identify paths, which is similar to
fully qualified names in Java: the path name of an FSF node n consists of the names

8 This requirement may necessitate restrictions on a given language. For example, to enforce
it for Java, we require the textual order of the subelements of an element to be the order of
the children of the node that represents the element (see Sec. 2.2).

9

of all the nodes along the path from the root of the tree in the FSF to which n
belongs, separated by dots. 9

Often we will need additional information about the genesis of a certain FSF. To
this end, we use the concept of a feature path name which consists of a path name
prefixed with the identifier of a feature in which the introduction occurs and a double
colon ‘::’; for brevity, this is not depicted in the FSFs. As a notational convention,
the identifier of a feature is its name written in italics rather than in small capitals.
For example, the feature path name of the method clear in our feature BASE

(from Fig. 2) is Base ::util.Calc.clear.
Let us now represent FSFs by lists of feature path names. To obtain a normalization,
we do not use arbitrary lists of such paths. For every path name, also every non-
empty prefix denotes a valid path to some ancestor node; the same holds for feature
path names. For example, the prefix Base ::util of Base ::util.Calc denotes a valid
path, too. We use only prefix-closed lists and arrange them in a particular order. The
rationale behind this restriction is a possible extension of the algebra to be explained
in Section 3.2.2. The paths belonging to an FST in an FSF all start with the name
of the respective root node. They are grouped together in the corresponding list
and ordered according to a generalized postfix traversal of the respective tree. In
particular, paths leading to children reside left of the paths to their parents. According
to our conventions, upon superimposition, this achieves that “missing” inner nodes
are added to the partner tree before their children.
Every single path in an FSF, in particular, every maximal path to a leaf, is represented
by the (repetition-free) list of all its prefixes. For example, the path Base ::util.Calc
corresponds to the list

[Base ::util.Calc, Base ::util, Base]

3.1.2 Introduction Sum
Introduction sum ⊕ is a binary operation defined over the set I of introductions;
it is the abstract counterpart of FSF superimposition denoted by • in Section 2.3.
To emphasize that we are now working towards a more formal setting, we will,
from now on, write ⊕ instead of •. The result of an introduction sum is again an
introduction:

Definition 1 (Introduction sum ⊕)

⊕ : I × I → I

We choose as the above-mentioned atomic introductions the lists for the maximal
paths that can occur. Since, notationally, this would quickly become excessive, we
allow single paths as shorthands for the lists that represent them. Thus, an FSF
is denoted algebraically as the sum of all paths that correspond to its structural

9 To be specific, the fully qualified name of an atomic introduction would also need to
include the type of each path element. For brevity and because there are no ambiguities in
our examples, we omit the type information here.

10

elements. For instance, our feature BASE (from Fig. 2) is expressed as the sum

BASE = Base ::util.Calc.top⊕ Base ::util.Calc.clear

⊕ Base ::util.Calc.enter ⊕ Base ::util.Calc.e2

⊕ Base ::util.Calc.e1⊕ Base ::util.Calc.e0

Since the paths of an FSF are unique, the set of these summands is unique as well.
Two features are composed by adding their atomic introductions. By our conventions,
FSF list Fl is superimposed onto FSF list Fr by traversing Fl from right to left and
successively adding the paths that are not yet in Fr to Fr such that the ordering
scheme is respected. This way, adding a path p to one of its prefixes (both viewed
as shorthands for the respective lists) yields p again. Therefore, we may, for clarity,
add prefixes to a sum without changing the FSF that is being denoted. For example,
the previous sum is equivalent to

BASE = Base ::util.Calc.top⊕ Base ::util.Calc.clear

⊕ Base ::util.Calc.enter ⊕ Base ::util.Calc.e2

⊕ Base ::util.Calc.e1⊕ Base ::util.Calc.e0

⊕ Base ::util.Calc⊕ Base ::util

Note that the common prefixes of the paths at the beginning of the list have been
factored out and are mentioned only once. From now on, we will predominantly use
this form of representation.
Since each atomic introduction preserves the feature path name of corresponding
FSF node, the source feature of an introduction remains known during the manipu-
lation of an algebraic expression, e.g., BASE in Base ::util.Calc. This allows us to
convert each algebraic expression (containing a sum of introductions with prefixes)
straightforwardly back to an FSF, either to the original FSF or to a new composed
FSF. When converting an introduction sum to a composed FSF, it is associated
with a new (composed) feature. Two atomic introductions with the same path name
that belong to different features, are composed via superimposition, as explained
informally in Section 2.3. Of two atomic introductions with the same fully qualified
name that belong to the same feature only the rightmost is effective, e.g.,

Foo :: i⊕ Bar ::j ⊕ Foo :: i = Bar ::j ⊕ Foo :: i

but
BarFoo :: i⊕ Bar ::j ⊕ Foo :: i 6= Bar ::j ⊕ Foo :: i

For example, the introduction sum representing the superimposition of Figure 2 is

ADDBASE = Add ::util.Calc.add⊕ Add ::util.Calc⊕ Add ::util
⊕ Base ::util.Calc.top⊕ Base ::util.Calc.clear

⊕ Base ::util.Calc.enter ⊕ Base ::util.Calc.e2

⊕ Base ::util.Calc.e1⊕ Base ::util.Calc.e0

⊕ Base ::util.Calc⊕ Base ::util

11

This sum represents a composed FSF consisting of a package util with a class
Calc that contains four methods (including add) and three fields.
As a second example, the introduction sum that represents the superimposition of
Figure 4 is

COUNTBASE = Count ::util.Calc.clear ⊕ Count ::util.Calc.enter

⊕ Count ::util.Calc.count⊕ Count ::util.Calc⊕ Count ::util
⊕ Base ::util.Calc.top⊕ Base ::util.Calc.clear

⊕ Base ::util.Calc.enter ⊕ Base ::util.Calc.e2

⊕ Base ::util.Calc.e1⊕ Base ::util.Calc.e0

⊕ Base ::util.Calc⊕ Base ::util

This example differs from the previous one since it involves terminal superimposition.
The sum represents a composed FSF consisting of a package util with a class
Calc that contains three methods and three fields, and the bodies of the two enter
methods are merged using a composition rule for method bodies (similarly for
clear).

3.1.3 Axiomatization
We assume an abstract set I of introductions. Introduction sum ⊕ over I is assumed
to induce an idempotent monoid (I,⊕ ,0), where 0 ∈ I: 10

Axiom 1 (Associativity of ⊕)

(i3 ⊕ i2)⊕ i1 = i3 ⊕ (i2 ⊕ i1)

Introduction sum is associative like FSF superimposition is associative. This applies
for terminals and non-terminals.

Axiom 2 (Neutrality of 0)

0⊕ i = i⊕ 0 = i

0 is the empty introduction, i.e., an FSF without nodes.

Axiom 3 (Distant idempotence of ⊕)

i2 ⊕ i1 ⊕ i2 = i1 ⊕ i2

Only the rightmost occurrence of an introduction i is effective in a sum, because it
has been introduced first. That is, duplicates of i have no effect, as pointed out at the
end of Section 2.1.

Lemma 1 (Direct idempotence of ⊕)

i⊕ i = i

10 All standard definitions of algebraic structures and properties are according to Hebisch
and Weinert [37].

12

For i1 = 0, direct idempotence follows from distant idempotence.

3.1.4 Discussion
Associativity is crucial for the practicality of the algebra and for the languages and
tools that implement feature composition on the basis of the algebra. It ensures that
the history of the introduction of structural elements is irrelevant. That is, associa-
tivity guarantees a pleasant and useful flexibility of feature composition. Although
some languages for feature composition lack this property, e.g., AspectJ [52], it
is definitely desirable, so that we choose to include a corresponding axiom in our
algebra.
A further pleasant property of feature composition would be commutativity. It would
ensure that all composition orders (permutations) of a set of features are behaviorally
equivalent. However, this is not guaranteed in most languages and tools for feature
composition – so we cannot require it. For example, while in Java the addition of
new packages, classes, interfaces, and methods, etc. is commutative, the overriding
of methods is not. Similar examples can be found for other languages. We decided
not to make the commutativity of introduction sum a general postulate of our algebra,
although it may hold in some cases.
Another issue is the relevance or irrelevance of distant (and direct) idempotence. In
Section 2.1, we have motivated distant idempotence (i.e., the fact that the repeated
addition of a fixed feature has no effect) with simplicity. However, there is a further
reason: typically, languages and tools for feature composition have the idempotence
property. This is easy to see since, usually, a single feature cannot introduce a
member twice to a single class, e.g., a feature A can add a field f to a class C
only once. Of course, one can imagine allowing multiple instances of a feature
but, in that case, the problem of idempotence is relegated to the instances, i.e.,
feature instance composition is distantly idempotent. We refrain from distinguishing
between different instances of a single feature since most languages and tools for
feature composition do so as well and because nothing is gained.

3.1.5 Consequences of Distant Idempotence
Distant idempotence has some interesting consequences. It allows us to define an
introduction inclusion relation:

Definition 2 (Introduction inclusion ≤)

i2 ≤ i1 ⇔ i2 ⊕ i1 = i1

This means that all atomic introductions of i2 are also present in i1. 11 This relation
is closely connected to the subtype relation in the Deep calculus [40].
From the definition we obtain the two following laws.

11 This particular definition, rather than the symmetric i2 ≤ i1 ⇔ i1 ⊕ i2 = i1 has been
chosen, since it reflects our idea that, in i2 ⊕ i1, the left introduction i2 is superimposed
onto i1.

13

Lemma 2 (Reflexivity of ≤)
i ≤ i

Lemma 3 (Transitivity of ≤)

i3 ≤ i2 ∧ i2 ≤ i1 ⇒ i3 ≤ i1

Mathematically, a reflexive and transitive relation is known as a preorder. In pre-
orders, least/greatest elements are defined as usual, but need not be unique.

Lemma 4 (Least element 0)
0 ≤ i

Lemma 5 (Least element 0 is unique)

i ≤ 0 ⇒ i = 0

Lemma 6 (Upper bounds)

i2 ≤ i2 ⊕ i1 and i1 ≤ i2 ⊕ i1

In fact, by the definition of introduction inclusion, distant idempotence is equivalent
to the property on the right.
The sum of two elements is even a least upper bound.

Lemma 7 (Least upper bound)

i1 ≤ i ∧ i2 ≤ i ⇒ i1 ⊕ i2 ≤ i

Based on the inclusion relation, we can define an equivalence relation between
introduction sums:

Definition 3 (Introduction equivalence ∼)

i2 ∼ i1 ⇔ i2 ≤ i1 ∧ i1 ≤ i2

This means that two sums of introductions are considered equivalent if they have
the same atomic introductions.
Introduction inclusion and equivalence are useful for the comparison of different
algebraic expressions and, consequently, of different programs composed of fea-
tures [4, 5]. Moreover, least and greatest elements are unique up to introduction
equivalence.

Lemma 8 (Quasi-commutativity w.r.t. ∼)

i2 ⊕ i1 ∼ i1 ⊕ i2

In Appendix A.1, we provide an implementation in Prover9, with which the proofs
of Lemmas 1–8 can be generated automatically.

14

3.2 Modifications

Besides superimposition, also other techniques for feature composition have been
proposed, most notably composition by quantification and weaving [12, 25, 57]. The
idea is that, when expressing the changes that a feature causes to another feature,
we specify the points at which the two features are supposed to be composed.
This idea has been explored in depth in work on multi-dimensional separation
of concerns [68], aspect-oriented programming [53], adaptive programming [49],
and strategic programming [48]. The process of determining the location of the
composition is called quantification and the process of effecting the changes is
called weaving [31]. In the remainder, we distinguish between two approaches of
composition: composition by superimposition and composition by quantification and
weaving. Our final definition of feature composition incorporates both (see Sec. 4).
In order to model composition by quantification and weaving, we introduce the
concept of a modification. A modification consists of two parts:
(1) A characterization of the FSF nodes at which it will affect a feature during

composition.
(2) A specification of how it affects these nodes.

In the context of our concrete model, a modification is performed by an FSF traversal
that, at the same time, determines the nodes to be modified and applies the necessary
changes to them. We take a declarative view of composition by quantification and
weaving. Querying an FSF can yield more than one node at a time. This allows us to
specify the modification of an entire set of nodes at once without having to reiterate
it for every set member.
In the practice of programming, many different forms of changes of nodes are
possible, e.g.,
(1) add a new child node (e.g., add a method to a class);
(2) alter a terminal’s content (e.g., override and extend a method’s body);
(3) delete a node (e.g., remove a method);
(4) rename a node (e.g., rename a class);
(5) alter a node’s type (e.g., transform an interface to a class).

We concentrate on definitions of change that add new children or modify a terminal’s
content, i.e., the first two of the options above. The last three options are interesting as
well, but are not common practice in feature-oriented languages and tools. Typically,
these kinds of changes are supported in refactoring tools and transformation systems
that have other properties than languages and tools for feature composition [34].
Common feature-oriented languages omit the last three options not without reason.
On the one hand, their omittance simplifies the implementation of the language,
especially, type checking and, on the other hand, it keeps the language simple, so
that the programmer can comprehend the intention of the program better [47]. Next,
allowing deletion of a feature may introduce inconsistency if parts of a program rely
on its presence. Furthermore, if we included the last three options, we could not
attain certain important properties of feature composition such as associativity.
Composition by superimposition and composition by quantification and weaving
are very similar. But quantification enables us to address parts of a program more

15

specifically than superimposition, which always is applied at a root of an FSF. That
is, we can locate the places of change by a pattern on FSFs (e.g., “all methods in
package util whose name begins with set”) that the structural elements of a
program have to satisfy in order to be affected by a modification. For example, a
feature could add a new field to every Java class of a package, regardless of the
name of the class. Naturally, applying such a modification to different programs may
lead to different results. Nevertheless, once the points of change are known, the two
kinds of composition become equivalent. That is, once we decide on a program, we
can find an equivalent introduction sum for every modification. Figure 6 illustrates
this similarity.
We have observed the duality of composition by superimposition and composition
by quantification and weaving before, but at the level of concrete programming
techniques [12]. The feature algebra makes it explicit at a more abstract level.

enterclear

top

Calc

util

e1

e0

e2

modification

change: add

query: *.Calc*

util

enterclear

top

Calc

util

e1

e0

e2

add

select

Calc

add

composition by quantification and weaving composition by superimposition

Fig. 6. Two dual notions of composition.

3.2.1 Semantics of Modification
In our concrete FSF model, a modification m consists of a query q, which selects a
subset of the atomic introductions of an introduction sum, and a definition of change
c that will be used to effect the desired changes:

m = (q, c)

A simple query can be represented by a path expression in which the node names
may contain wildcards. 12 For example, the query q with the path expression util.
Calc.∗ , applied to our example, would return the sum of all introductions that are
members of the class Calc. However, we do not explore further how to express
query expressions concretely. This is an issue of tool support that is being addressed
in ongoing work [25].
For simplicity, we make the steps of querying and applying the changes transparent.
We assume an abstract set M of modifications and define an operator modification
application over M and the set I of introductions:

12 In practice, queries with regular expressions or queries over types, or tools like XPath or
XQuery might be useful.

16

Definition 4 (Modification application �)

� : M × I → I

A modification applied to an atomic introduction returns either that introduction
again or the changed one:

m� i = (q, c)� i =

 c(i), when i is matched by q

i, otherwise

In terms of FSF expressions, our example of Figure 6 can be written as follows.
Assume we have a base feature BASE:

BASE = Base ::util.Calc.top⊕ Base ::util.Calc.clear

⊕ Base ::util.Calc.enter ⊕ Base ::util.Calc.e2

⊕ Base ::util.Calc.e1⊕ Base ::util.Calc.e0

⊕ Base ::util.Calc⊕ Base ::util

Furthermore, assume that we have a modification mAdd that adds method add to
any class whose name begins with Calc: 13

mAdd =(∗.Calc∗, cadd)

Applying modification mAdd to BASE yields the new program:

mAdd � BASE = Add ::util.Calc.add⊕ Add ::util.Calc⊕ Add ::util
⊕ Base ::util.Calc.top⊕ Base ::util.Calc.clear

⊕ Base ::util.Calc.enter ⊕ Base ::util.Calc.e2

⊕ Base ::util.Calc.e1⊕ Base ::util.Calc.e0

⊕ Base ::util.Calc⊕ Base ::util

3.2.2 Axiomatization
A modification is applied to a sum of introductions by applying it to each introduction
in turn and summing the results:

Axiom 4 (Distributivity of � over ⊕)

m� (i2 ⊕ i1) = (m� i2)⊕ (m� i1)

The successive application of changes of a modification to an introduction sum
implies the left distributivity of � over ⊕ . The distributivity law captures precisely
the intention of quantification, i.e., that a modification visits each node of an FSF.

13 As mentioned before, the representation of queries and changes is a matter of tool support
and is not formalized in the algebra but illustrated only for presentation purposes; cadd
represents the definition of change that adds method add.

17

Now it should become clear why we use only prefix-closed lists: A prefix-closed list
contains all intermediate nodes in the structure of a software artifact, e.g., packages
and classes. This circumstance allows us to define modifications that change also
these inner nodes and not only the leaves of FSTs.
We define two modifications m1 and m2 to be equivalent if they behave identically
on all introductions, i.e., if m1 � i = m2 � i for all i. In the following, we write M
also for the set of equivalence classes of modifications and � for the corresponding
induced operation on them.

Axiom 5 (Identical modification 1)

1� i = i

The empty modification is denoted by 1 ∈ M . It is the modification (actually an
equivalence class) that does not change any introduction.

3.2.3 Modification Product
We define an operator modification product over the set M of modifications:

Definition 5 (Modification product ~)

~ : M ×M →M

Applying a product of two modifications to an introduction means to apply first the
right factor and then the left factor to the result:

Axiom 6 (Iterative application ~)

(m2 ~m1)� i = m2 � (m1 � i)

Note that the left modification may affect the extensions made by the right modifica-
tion, i.e., m2 may affect the introductions added by m1.

3.2.4 Algebraic Structure
We begin with the algebraic properties of modification product. The discussion
of modification application follows in Section 3.3. In Appendix A.2, we provide
Prover9 scripts by which proofs of the lemmas regarding modifications can be
generated automatically.
Up to modification equivalence, the modification product induces again a monoid
(M,~,1):

Axiom 7 (Identity 1)
1~m = m~ 1 = m

Lemma 9 (Associativity of ~)

(m3 ~m2)~m1 = m3 ~ (m2 ~m1)

18

As for introduction sum, for modification product, we do not require commutativity
since it would limit the power of modification and is typically not seen in languages
supporting modification in practice. In Section 4.4.2, we discuss commutativity as
an optional axiom.

3.3 Introductions and Modifications in Concert

In order to describe feature composition, our algebra uses the operation of modifica-
tion application �. Modification application integrates our two kinds of algebraic
structure: (I,⊕ ,0) and (M,~,1).
A notable property of (I,⊕ ,0) is that it induces a semimodule over the monoid
(M,~,1). This is due to the definition of the operation of modification application
and the distributive and associative laws (Axiom 4 and Lemma 9).
A semimodule over a monoid is related to a vector space but weaker (modification
application plays the role of the scalar product) [37]. In a vector space, the additive
and multiplicative operations are commutative and there are inverse elements with
respect to addition and multiplication. Nevertheless, the properties of a semimod-
ule guarantee a pleasant and useful flexibility of feature composition, which is
manifested in the associativity and distributivity laws.

4 The Quark Model

So far, we have introduced two sets (I and M) and three operations (⊕ : I × I → I ,
~ : M ×M → M , and � : M × I → I) for composition; basic features have
been identified with FSFs whose abstract counterpart is the introduction. Now, we
integrate them into a notion of full features or quarks that involve both introductions
and modifications.
The goal of the quark model is to provide a concise notation and formalism to
represent features consisting of introductions and modifications. There are several
options to integrate the three operations and, interestingly, they map to different
choices in programming language design, as we will explain. We begin with a
formalization of different forms of quarks and discuss their mandatory and optional
algebraic properties and their relationship to existing and future programming
languages.

4.1 Simple Quarks

For the purpose of integrating introductions and modifications, we introduce the
quark model. 14 In a first step, we define a quark as a pair that represents a feature

14 The idea and name of the quark model are due to Don Batory. Subsequently, the model
was developed further in cooperation with us. The term ‘quark’ was chosen as an analogy to
the physical particles in quantum chromodynamics. Originally, quarks have been considered
to be atomic, but newer theories, e.g., preon or string theory, predict a further substructure.

19

consisting of an introduction and a modification:

f = 〈i,m〉

The introduction i of feature f represents an FSF; m is the modification that feature
f applies.
In a second step, we introduce an operator for quark composition over the set Q of
quarks:

Definition 6 (Quark composition �)

� : Q×Q→ Q

The composition of two quarks results again in a quark, and there are several options
of how the elements of the two input quarks are combined to yield the output quark,
as we will explain in Section 4.2.
A basic feature is represented in the quark model as a pair 〈i,1〉 where 1 is the empty
modification. The empty feature is represented as the pair of the empty introduction
and the empty modification: 〈0,1〉. With the quark composition � to be discussed
in the next subsection, the application of quark f to introduction i is defined as the
composition f � 〈i,1〉.

4.2 Local and Global Quarks

There are two options of applying modifications while composing a sequence of
features:
(1) The modifications of a feature are applied to and may affect only the features

that have been composed before, i.e., that are to the right in the sequence. In
this case, we speak of local modifications.

(2) The modifications of a feature are applied to and may affect all features of the
sequence. In this case, we speak of global modifications.

The distinction between local and global modifications is motivated by the different
implementations of modification in languages and tools for feature composition. On
the one hand, languages and tools that support local modification usually interpret
a feature composition as a stepwise process in which features on the right are
developed and composed earlier than features to their left [17]. The intention in
disallowing that features affect features to be developed and composed subsequently
is to reduce program complexity and prevent inadvertent interactions [7, 52].
On the other hand, there are languages and tools for feature composition that do
not support stepwise development. With them, features are composed in one step
and can affect each other without limitations. AspectJ is such a language. This is
the reason why we include both local and global modification in the quark model.
Quarks that apply modifications locally are called local quarks and quarks that apply
modifications globally are called global quarks.
Quarks with local modifications li are composed as follows:

20

Axiom 8 (Local quark composition)

f2 � f1 = 〈i2, l2〉� 〈i1, l1〉 = 〈i2 ⊕ (l2 � i1), l2 ~ l1〉

Local modifications can affect only introductions of features that have been con-
structed earlier. In our example, l2 affects only i1 and not i2 (underlined term). For a
composition fn � (fn−1 � (. . . (f2 � f1))) of n features, a modification li of feature
fi can affect only the introductions of a feature fj if i > j.
In our calculator example, suppose we would like to add a new class Counter to
package util and a new field count to every class in package util. We can use
a local quark combining introduction sum and modification application to achieve
the desired composition result. Assume a base feature QUARK1 in the form of a
quark that consists of an introduction sum and the empty modification:

QUARK1 = 〈 (Base ::util.Calc.top⊕ Base ::util.Calc.clear

⊕Base ::util.Calc.enter ⊕ Base ::util.Calc.e2

⊕Base ::util.Calc.e1⊕ Base ::util.Calc.e0

⊕Base ::util.Calc⊕ Base ::util),1〉

Furthermore, assume a feature QUARK2 that adds class Counter by introduction
sum and injects field count by modification application:

QUARK2 = 〈 (Counter ::util.Counter ⊕ Counter ::util), (util.∗, count) 〉

Composing the two quarks yields the desired result:

QUARK2 � QUARK1 = 〈 (Counter ::util.Counter ⊕ Counter ::util
⊕Counter ::util.Calc.count

⊕Base ::util.Calc.top⊕ Base ::util.Calc.clear

⊕Base ::util.Calc.enter ⊕ Base ::util.Calc.e2

⊕Base ::util.Calc.e1⊕ Base ::util.Calc.e0

⊕Base ::util.Calc⊕ Base ::util), (util.∗, ccount)〉

The important point to understand is that the local modification of QUARK2 does not
add field count to class Counter, but only to class Calc. A local modification
of a feature cannot affect program elements of the same feature and elements of
features that are composed subsequently (i.e., that are to the left in the feature
composition expression). With global modification, this is different.
Quarks with global modifications gi are applied as follows:

Axiom 9 (Global quark composition)

f2 � f1 = 〈i2, g2〉� 〈i1, g1〉 = 〈(g2 ~ g1)� (i2 ⊕ i1), g2 ~ g1〉

A global modification can affect also the introduction that is just being added during
the composition. In our example, both, g2 and g1 may affect i2 and i1 (underlined

21

terms). For a composition fn � (fn−1 � (. . . (f2 � f1))) of n features, a modification
gi of feature fi can affect the introductions of a feature fj for any pair (i, j).
In our calculator example, suppose we compose again QUARK1 and QUARK2 but
now with global quark composition (for disambiguation we use QUARK′2, which is
identical to QUARK2 except that its modification is a global modification). The result
differs from local quark composition in that the modification of QUARK′2 is now
global and adds field count not only to class Calc but also to class Counter:

QUARK′2 � QUARK1 = 〈 (Counter ::util.Counter.count

⊕Counter ::util.Counter ⊕ Counter ::util
⊕Counter ::util.Calc.count

⊕Base ::util.Calc.top⊕ Base ::util.Calc.clear

⊕Base ::util.Calc.enter ⊕ Base ::util.Calc.e2

⊕Base ::util.Calc.e1⊕ Base ::util.Calc.e0

⊕Base ::util.Calc⊕ Base ::util), (util.∗, ccount)〉

4.3 Full Quarks

Given the alternatives of local and global modification discussed in Section 4.2, we
define a full quark as a triple consisting of a global modification, an introduction,
and a local modification:

f = 〈g, i, l〉
The composition of two quarks results in a quark that is constructed by the following
rules. The new introduction part of the quark is constructed using modification appli-
cation and introduction sum, while the new modification parts result by modification
product.
Axioms 8 and 9 lead to the following composition scheme results:

Axiom 10 (Full quark composition)

f2 � f1 = 〈g2, i2, l2〉� 〈g1, i1, l1〉

= 〈g2 ~ g1, (g2 ~ g1)� (i2 ⊕ (l2 � i1)), l2 ~ l1〉

Note that Axioms 8 and 9 are special cases of Axiom 10 with gi = 1 and li = 1,
respectively, and projecting onto the non-1 components.
Moreover, an introduction i can be embedded into a full quark of the form 〈1, i,1〉.
For such quarks, our axioms yield:

〈1, i2,1〉� 〈1, i1,1〉 = 〈1, i2 ⊕ i1,1〉

4.4 Algebraic Structure

We begin with an examination of the properties of the composition of simple,
local, global, and full quarks assuming only the axioms given so far; we call the

22

set of these axioms the standard configuration. Then, we discuss a set of further,
optional axioms, which we call henceforth optional configurations, and which
limit the expressibility of modifications in order to improve the flexibility of quark
composition. In Appendix A.3, we provide the Prover9 scripts by which proofs of the
lemmas and theorems regarding quarks in the standard and optional configurations
can be generated automatically.

4.4.1 Standard Configuration
In the column “standard configuration” of Table 1, we list the properties of the
composition of simple, local, global, and full quarks that follow from the axioms
that we have postulated so far. In particular, we are interested in associativity, identity,
and direct and distant idempotence of quark composition.
Table 1 reveals that the composition of simple quarks is most flexible. It is associative,
has the identity element 〈1,0,1〉, and it is directly and distantly idempotent. The
composition of local quarks is associative and 〈1,0,1〉 is the identity element; but
it is not idempotent. The composition of global and full quarks does not have any
of the above properties. This is due to the fact, that in a composition of full quarks
with 〈1,0,1〉, the global modifications are always applied.

4.4.2 Optional Configurations
In order to increase the flexibility of the composition of quarks, we have experi-
mented with two optional axioms that limit the expressiveness of modifications.
First, we explain the optional axioms and discuss subsequently which of their com-
binations cause which properties of quark composition, in particular, associativity,
identity, and direct and distant idempotence.

Option 1 (Distant idempotence of ~)

(m2 ~m1 ~m2)� i = (m2 ~m1)� i

The first optional axiom postulates the distant idempotence of modification product.
That is, like with introduction sum, the repeated application of a single modification
has no effect on the program.

Option 2 (Commutativity of ~)

(m2 ~m1)� i = (m1 ~m2)� i

The second optional axiom postulates commutativity of modification product. That
is, the application order of modifications has no impact on the program behavior.
Table 1 shows how the two optional axioms affect the associativity, identity, and
direct and distant idempotence of quark composition – compared to the standard
configuration. Postulating distant idempotence of modification product makes global
quark composition distantly idempotent. The combination of distant idempotence
and commutativity makes global quark composition associative.

23

co
nfi

gu
ra

tio
n

as
so

ci
at

iv
ity

id
en

tit
y

di
re

ct
id

em
po

te
nc

e
di

st
an

ti
de

m
po

te
nc

e

si
m

pl
e

lo
ca

l
gl

ob
al

fu
ll

si
m

pl
e

lo
ca

l
gl

ob
al

fu
ll

si
m

pl
e

lo
ca

l
gl

ob
al

fu
ll

si
m

pl
e

lo
ca

l
gl

ob
al

fu
ll

st
an

da
rd

√
√

√
√

√
√

di
st

an
t

id
em

po
te

nc
e

√
√

√
√

√
√

√

co
m

m
ut

at
iv

ity
√

√
√

√
√

√

di
st

an
t

id
em

po
te

nc
e

&
co

m
m

ut
at

iv
ity

√
√

√
√

√
√

√
√

Ta
bl

e
1.

O
ve

rv
ie

w
of

th
e

al
ge

br
ai

c
pr

op
er

tie
s

of
qu

ar
k

co
m

po
si

tio
n

as
su

m
in

g
di

ff
er

en
to

pt
io

na
la

xi
om

s.
T

he
pr

es
en

ce
of

a
ch

ec
k

m
ar

k
in

di
ca

te
s

th
at

th
e

re
sp

ec
tiv

e
pr

op
er

ty
ha

s
be

en
pr

ov
ed

.T
he

ab
se

nc
e

of
a

ch
ec

k
m

ar
k

in
di

ca
te

s
th

at
th

er
e

is
a

co
un

te
re

xa
m

pl
e

to
th

e
re

sp
ec

tiv
e

pr
op

er
ty

.

24

5 Discussion

We have presented a model of FOSD in which features are represented as FSFs
and feature composition is expressed by tree superimposition and tree walks. This
reflects the state of the art in programming languages and composition models that
favor superimposition [35, 61, 64, 66, 73], quantification and weaving [18, 31, 46, 53],
or a combination of both [12, 57, 68]. Our algebra describes precisely what the
properties of the composition models are and how they can be integrated. This is not
obvious from previous work, which has been based on specific implementations [12].
Feature algebra makes the similarity between composition by superimposition and
composition by quantification and weaving explicit.
The quark model provides a compact and concise notation for feature composition
comprising introduction and modification. A notable property of quarks is their
compositionality. That is, the composition of two quarks results again in a quark.
While this property is straightforward from the algebraic viewpoint, many contem-
porary programming languages and tools that support modification do not have it,
e.g., aspect-oriented languages such as AspectJ, as discussed by Lopez-Herrejon
et al. [52]. Our algebra and quark model shows how to constrain and integrate
introduction and modification to attain a proper degree of compositionality. We
believe that this is a valuable input for language and tool design.
The quark model allows us to choose between local and global modification. This
variability is motivated by the presence of different lines of research. Local mod-
ification follows the paradigm of functions or transformations in stepwise devel-
opment [17, 18]. Global modification by quantification is motivated by work on
metaobject protocols and aspect-oriented programming. Again, feature algebra de-
scribes precisely the differences between both approaches and, provided we impose
some disciplining restrictions, shows a way to integrate them.
A notable result is that our feature algebra forms a semimodule over a monoid,
which is a weaker form of a vector space. The properties of this algebraic structure
suggest that our decisions regarding the semantics of introductions and modifica-
tions and their operations are not arbitrary. With the standard configuration of our
algebra, we achieve a high flexibility in feature composition, which is manifested in
the associativity and distributivity laws. Specifically, we found that the following
properties must hold to achieve minimal composition flexibility of basic features:
• Introduction sum must be distantly idempotent and associative.
• Modification product must satisfy the associativity axiom.
• Modification application must distribute over introduction sum.

In the standard configuration, the composition of simple quarks is most flexible.
Local quark composition is at least associative and an identity element can be found.
The composition of global and full quarks is least flexible.
In order to achieve a minimal flexibility of the composition of full features, additional
properties must hold:
• Modification product must be distantly idempotent.
• Modification product must be commutative.

In order to guarantee these additional properties, we have postulated two optional

25

axioms (distant idempotence and commutativity of modifications) and found that,
with combinations (optional configurations) of the three, we can attain associativity
for all kinds of quark composition and distant idempotence for global quark com-
position. However, while this is a pleasing result, we still need to comment on the
limitations that the optional axioms impose on the programming languages that
support modification application.
First, distant idempotence for modifications can be implemented easily in a program-
ming language. For example, the AspectJ compiler simply has to keep track of all
pieces of advice (modifications) that are being applied and to remove the duplicates.
With distantly idempotent modification application in AspectJ, the composition of
AspectJ quarks becomes distantly idempotent, too.
Second, commutativity is more difficult to attain. It has been shown that two modifi-
cations are commutative when they do not refer to each other and when the changes
they apply do not overlap [7]. Requiring this property in a language like AspectJ
would limit the expressiveness of modifications dramatically. In order to ensure
that two modifications are indeed commutative, an analysis of the entire program
would be necessary. A way out of this dilemma is to exploit a property that we call
pseudo-commutativity [7]:

m2 � (m1 � i) = m′1 � (m′2 � i)

The modifications m1 and m′1 are not the same but implement similar changes to
a program that result in an equivalent behavior – ditto for m2 and m′2. In prior
work, we have shown that, for two modifications written in AspectJ, two pseudo-
commutative counterparts can always be found whose swapped applications result
in a behaviorally equivalent program [7]. Furthermore, we have shown that this
process can be automated, thus, achieving a flexibility similar to the one provided
by commutativity.
Our analysis has demonstrated that there is a trade-off between expressiveness and
flexibility of feature composition. One advantage of an algebraic approach is that
we can evaluate the effects of our own and possible alternative decisions directly
by examining the properties of the resulting algebra, instead of implementing the
mechanisms first in a programming language.

6 Perspectives

6.1 Higher-Order Modifications

A fundamental asymmetry in our algebra is the distinction between introductions
and modifications. Since a modification applies to an introduction sum, it acts at
a metalevel. In the literature, the addition of further levels on top of modifications
has been proposed [8, 22, 70, 72]. In our algebra, this would require the inclusion of
modifications that modify modifications, i.e., higher-order modifications. Higher-
order modifications quantify over sums of lower-order modifications, much like
modifications quantify over sums of introductions. Our introductions can be viewed

26

as modifications of order 0, modifications that apply to introductions have order 1,
modifications that apply to modifications of order 1 are of order 2, and so on. In
this view, introduction and modification become the same concept, in which a
modification of a higher order affects a modification of the next lower order. This
terminates when order 0, i.e., the level of introductions, has been reached. The
operations of the algebra are then defined by induction, forming a hierarchy of one
level per order; introduction sum and modification product become effectively the
same operation (we use the operator ~ for consistency) with axioms analogous to
Axiom 6:

~(0) : M (0) ×M (0) →M (0)

~(1) : M (1) ×M (1) →M (1) �(1) : M (1) ×M (0) →M (0)

~(2) : M (2) ×M (2) →M (2) �(2) : M (2) ×M (1) →M (1)

...
...

~(n−1) : M (n−1) ×M (n−1) →M (n−1) �(n−1) : M (n−1) ×M (n−2) →M (n−2)

~(n) : M (n) ×M (n) →M (n) �(n) : M (n) ×M (n−1) →M (n−1)

6.2 Programming Language Design

Interestingly, different kinds of quarks can be used to describe different kinds
of languages. In Table 2, we illustrate that there are indeed differences between
languages and tools for feature composition that are reflected by their corresponding
quarks. The algebra and the quark model are formal means to explore and discuss
the similarities and differences without being distracted by language-specific details.
For example, it is interesting to note that, although FeatureHouse, CaesarJ, and
FeatureC++ support both introduction sum and modification, FeatureHouse applies
the modification locally but CaesarJ and FeatureC++ globally. This fundamental
difference has not been considered before, even though it may influence program
comprehension and lead to errors [52]. It would be interesting to explore the effects
on practical software engineering. The algebra and the quark model revealed this
issue apart from the other differences between the languages (e.g., CaesarJ is based
on Java, FeatureC++ is based on C++, and FeatureHouse is a cross-language tool).
Furthermore, the quark model offers a perspective for future languages to support
both local and global modification. To the best of our knowledge, so far, there is no
such language and, hence, it remains an open issue what such a languages would
look like. The algebra with its mandatory and optional axioms already describes their
properties. From the viewpoint of language design, it is open how to represent global
and local application in program text (e.g., by keywords or modifiers) and whether
it is useful to allow programmers this way to protect certain program elements from
being changed.
Together with the results of Table 1, we can infer the properties of contemporary
programming languages with respect to feature composition. For example, both

27

quark tool or language

〈1, i,1〉 Jak [17], Classbox/J [19], Jiazzi [54]

〈1,0, l〉 ARJ∗ [7]

〈g,0,1〉 AspectJ∗ [45], AspectC++∗ [67]

〈1, i, l〉 FeatureHouse [10]

〈g, i,1〉 CaesarJ [14], FeatureC++ [11]

〈g, i, l〉 —
∗ Although inter-type declarations of aspect-oriented languages are related
to introductions, we do not regard them as mechanisms for superimposition.

Table 2
Correspondence of quark types and composition tools and languages.

CaesarJ and FeatureC++ support global quarks. The composition of global quarks
is associative when the application of modifications is distantly idempotent and
commutative. When we look at the implementations of CaesarJ and FeatureC++,
especially at how modifications are implemented, we can infer whether the overall
feature composition is associative or has other properties – both are not associative.
Usually, feature composition involves complex mechanisms (introduction and local
and global modification), so that inferring overall properties of feature composition
from properties of individual mechanisms is a feasible approach to understand the
complexity involved.
Finally, it is interesting to use the algebra and the quark model to guide the design of
future programming languages. It is often the case that a feature-oriented or aspect-
oriented language is designed without the properties of feature composition in
mind. Usually, after contemporary languages have been designed, researchers have
analyzed which properties the actual language implementations have. We propose a
different approach. Before the designers develop a feature composition language or
tool, they should figure out which properties are desirable and how expressive the
language should be. Based on these findings, they should include proper language
mechanisms. As stated before, there is a trade-off between flexibility of composition
(e.g., commutative feature composition) and expressiveness (e.g., global and local
modification application), which has to be taken into account during language design.
Tables 1 and 2 help language designers to make their choices.

6.3 Tool Development

We expect that the algebra will eventually have an impact on practical software
engineering. So far, we have illustrated its use in theoretical explorations of the
essential properties of features and feature composition and the relationship of the
mechanisms involved. By capturing the essence of features and feature composition
in a concrete representation of features and accompanying tools, we can build a tool
infrastructure that can be reused for features written in different languages and for
operations that reason about features in different ways.

28

To illustrate the potential of our approach for practical software engineering, we
have been developing a tool suite, called FeatureHouse, that performs feature com-
position for a wide variety of software artifacts written, e.g., in Java, C#, C, Haskell,
JavaCC, or XML, following the laws of the algebra [10, 25]. 15 FeatureHouse com-
bines introduction sum and local modification application, as defined by our algebra.
Technically, it relies on FSFs. In order to implement introduction sum, two FSFs are
superimposed, as described in Section 2.3. In order to implement local modification
application, we have developed an XML-based language for defining queries and def-
initions of change [25]. Modification application is implemented by pattern matching
on nodes and subtrees in an FSF. In order to apply modifications locally, the FSFs
corresponding to different features are superimposed in steps, and modifications are
applied to the corresponding intermediate results of the superimposition.
We have used FeatureHouse for the feature-based composition of several small to
medium-sized software systems written in various languages involving introduction
sum and modification product and application, and we have demonstrated that the
approach to software composition formalized by the algebra is indeed language
independent [10, 25]. Besides gaining the insight that feature composition is largely
language-independent, we have learned much about the properties of languages
for feature composition (e.g., that the choice of the level of granularity of feature
composition is crucial and shall be investigated further [10]), which complements
the insights gained by our formal treatment. We believe that exploring feature
composition both from a practical and a theoretical point of view is an appropriate
way to strike a balance between formal precision and practicality.

6.4 Architectural Metaprogramming

The big picture of our endeavor is that the feature algebra serves as a formal founda-
tion for the vision of automatic feature-based program synthesis and architectural
metaprogramming [15,16,29]. The idea is to scale metaprogramming and generative
programming techniques such as feature composition from the level of source code
snippets to the level of software architecture.

6.4.1 Synthesis
Treating programs as values of metaprograms that manipulate them requires a formal
theory that describes what is allowed and what is not. For example, a program
transformation that simply deletes all elements of an input program is certainly not
very useful in program synthesis. Metaprograms that apply arbitrary changes are
even more dangerous since they can introduce subtle errors. Besides composition,
we envision further operations on features, e.g., feature interaction analysis, type
checking, visualization, decomposition, and refactoring.
Let us illustrate the role of the algebra for automatic feature-based program synthesis
and architectural metaprogramming by means of an example. Suppose we have two
Java programs, PROGA and PROGB , and we would like to merge them in the course

15 http://www.fosd.de/fh

29

http://www.fosd.de/fh

of composing two code bases (sets of features):

PROGA = 〈1, (F1 ::p.C.m⊕ F1 ::p.C ⊕ F1 ::p),1 〉
PROGB = 〈1, (F2 ::p.C.n⊕ F2 ::p.C ⊕ F2 ::p),1 〉

By analyzing the algebraic expressions that represent the code bases, we can infer
that, in this particular case, feature composition is commutative (there is no terminal
superimposition and the order of classes, methods, and fields is irrelevant). This
information allows a tool to choose the composition order freely. Also, the informa-
tion that a modification is local allows a tool to infer which features are definitely
not affected by it. Swapping the composition order is useful when implementing
incremental composition tools, such that some complex transformations can be done
early and other, simpler ones later [7]. Similarly, the information of an overlap of
FSFs (e.g., both ProgA and ProgB have a class C in package p) can reveal possible
structural interactions between features. The disjointness of two FSFs indicates their
structural independence, which is a useful information for refactoring tools that aim
at increasing variability [44].

6.4.2 Abstraction
Furthermore, the algebra serves as a formalism for abstraction, which is essential
to architectural metaprogramming. In fact, the feature algebra can be a means for
reasoning about and manipulating software architecture. Metaprograms operate on
feature algebra expressions to synthesize programs. At every step, a tool maintains
the connection between the architectural and the implementation level. It guarantees
that the operations transform the structures from one to another consistent state. One
can think of algebraic expression manipulation as a way of symbolic optimization.
Features and their constituents have names in the corresponding algebraic expression
(symbols). If we can assign a meaning to a name, we can choose to replace features
with other features and to alter the order of features in order to optimize the program
behavior and quality attributes such as performance and resource consumption.
For illustration, suppose we have a simple database system consisting of a stor-
age manager (STORE), a simple hash-based index structure (HEAP), a transaction
management (TRANS), and a statistics feature (STATS):

DB = STATS � TRANS � HEAP � STORE

STORE = 〈 . . . 〉
HEAP = 〈 . . . 〉

TRANS = 〈 . . . 〉
STATS = 〈 . . . 〉

Furthermore, suppose we know from our customer that the database system is
going to process huge amounts of data. From this knowledge, we can optimize
our algebraic expression symbolically by replacing the term HEAP with BTREE,
in which the former represents a simple heap and the latter an efficient B-Tree
index and storage structure. Information of the inner structure of HEAP and BTREE,

30

represented by the corresponding quarks, helps to identify potential interactions and
options to rearrange the overall expression.
Another example is the mutual interaction of the features STATS and TRANS. The
former collects statistics on the database system, including information on committed
and interrupted transactions. If the transaction feature is not selected (e.g., in a single-
user database), we have to alter the implementation of the statistics feature in order
to let it operate properly without depending on transactions. A tool can infer the
points of interaction from the corresponding algebraic expressions.
The point is that we can make all these decisions and manipulations purely based
on the algebraic expressions and based on the knowledge that, for example, B-trees
are an efficient means to store and access large amounts of data. Of course, in this
case, the domain knowledge has to be represented in algebraic terms, too, which is
an interesting point of further research.

7 Related Work

7.1 Authors’ Previous Work

Lopez-Herrejon, Batory, and Lengauer model features as functions and feature com-
position as function composition [52]. They distinguish between introductions and
advice, which correspond roughly to our introductions and modifications. However,
in their work, there is no semantic model that defines precisely what introductions
and advice are. In our feature algebra, we define introductions in terms of FSFs
and modifications in terms of tree walks. This enables us to bridge the gap between
algebra and implementation.
Apel and Hutchins have developed a calculus, called gDeep, for features and feature
composition independently of a particular language [4, 5]. The calculus includes
an operational semantics and type system. The advantage of an algebra-based
approach is that we can reason on an even more abstract level about features than
gDeep, which is useful for domain-specific optimization [17,20,29] and architectural
metaprogramming [15] (see Sec. 8). The advantage of a calculus is that it allows us to
formulate a general logic-based type system for FOSD, into which the type systems
of the artifact languages can be plugged. We believe that both abstraction levels
(calculus and algebra) are equally important in exploring the principles of feature
composition. A promising starting point is to connect the introduction inclusion
relation of the algebra with the feature subtype relation of gDeep.
Höfner, Khedri, and Möller have developed an algebra for expressing software
and hardware variabilities in the form of features [38]. This has recently been
extended [39] to express a limited form of feature interaction. However, their algebra
does not consider the structure and implementation of features.
Liu, Batory, and Lengauer have developed a model of feature interaction [51], in
which interactions are made explicit in feature expressions. Making interaction
explicit in our model would not incur any further algebraic operators; both features
and their interaction code would be represented as quarks.

31

With FeatureHouse [10] we have been developing tool support for feature composi-
tion that builds on the insights and laws of the algebra.
Finally, in the shorter conference version of the present paper [13], we have laid
the foundation for this journal paper. In the conference version, we have defined
the operations of introduction sum, modification application, and modification
composition (which corresponds to modification product) as well as the quark model
including local and global modifications. In addition to this earlier work, we provide
here a complete formal axiomatization with automatically generated proofs of all
lemmas and theorems as well as a discussion of optional axioms and their impact on
the flexibility of feature composition.

7.2 Work of Others

Ramalingam and Reps have proposed the use of algebraic methods for reasoning
about program modifications [62, 63]. There are several interesting connections
between our work and this early work, e.g., distant idempotence corresponds to
extended idempotence. However, our algebra incorporates novel developments in
the field of programming such as feature-oriented programming, multi-dimensional
separation of concerns, and aspect-oriented programming, that led to the concepts
of local and global modifications as well as to the quark model.
There are some calculi that support feature-like structures and composition by
superimposition [9, 28, 30, 32, 33, 40, 58]. These calculi are typically tailored to
Java-like languages and emphasize the type system. Instead, our feature algebra
enables reasoning about feature composition at a more abstract level. We emphasize
the structure of features and their static composition, independently of a particular
language or execution semantics.
The notion of a feature is close to that of a component. Bosch [23] noted the possibil-
ity of superimposing the internal structures of components for adaptation purposes.
However, many contemporary component calculi focus on concurrency and process-
theoretic issues as well as on connector and composition languages [1, 65, 75]. We
use superimposition and quantification and weaving to control composition. The se-
lection of a set of features is equivalent to a specification in a composition language;
modifications are equivalent to connectors. Our FSF model emphasizes the static
structure of features, which enables us to model not only code artifacts, but any kind
of artifact that provides a sufficient structure.
In the field of aspect-oriented programming, several approaches have been proposed
to model and formalize quantification and weaving mechanisms [41, 50, 53, 72, 74].
However, their focus is on the operational semantics and on typing. Our feature
algebra provides a static view of quantification and weaving, which is useful for
feature composition that involves the introduction of new structures.
Several languages support features and their composition by superimposition [11,
17, 19, 54, 59]. Our algebra is a theoretical foundation that underlies and unifies all
these languages. It reveals the properties that a language must have in order to be
feature-ready. Several languages exploit the synergistic potential of superimposition
and quantification and weaving [11, 12, 57, 68]. The feature algebra allows us to

32

study their relationship and integration, independently of a specific language.
As mentioned previously, features are implemented not only by source code. Several
tools support the feature-based composition of non-source code artifacts [2,3,17,26].
Our algebra is general enough to describe a feature containing non-code artifacts as
long as their representations can be mapped to FSFs.

8 Conclusion

We have presented a model of feature-oriented software development (FOSD)
in which features are represented as feature structure forests (FSFs) and feature
composition is expressed by tree superimposition (introduction sum) and tree walks
(modification application). This reflects the state of the art in programming languages
and composition models for feature composition. Our algebra describes precisely
what their properties are and how FOSD concepts of contemporary languages, such
as aspects, collaborations, or refinements, can be integrated.
The quark model ties the different elements of the algebra together in a concise
notation. We have discussed several alternative instances of the algebra and their
implications on the properties of quark composition. Furthermore, we have shown
that alternatives in the structure and composition of quarks correspond to alternatives
in programming paradigms, tools, and languages. We have illustrated how the
algebra could and should have an impact on the theory of FOSD, on practical feature-
based software engineering, and on upcoming software development paradigms such
as automatic feature-based program synthesis and architectural metaprogramming.

Acknowledgments

We thank Don Batory, Tony Hoare, Peter Höfner and the anonymous AMAST’08
and SCP reviewers for helpful comments. The work has been funded in parts by the
German Research Foundation (DFG), project numbers AP 206/2-1 and MO 690/7-1.

References

[1] F. Achermann, O. Nierstrasz, A Calculus for Reasoning About Software Composition,
Theoretical Computer Science 331 (2–3) (2005) 367–396.

[2] V. Alves, R. Gheyi, T. Massoni, U. Kulesza, P. Borba, C. Lucena, Refactoring Product
Lines, in: Proceedings of the International Conference on Generative Programming and
Component Engineering (GPCE), ACM Press, 2006, pp. 201–210.

[3] F. Anfurrutia, O. Díaz, S. Trujillo, On Refining XML Artifacts, in: Proceedings of the
International Conference on Web Engineering (ICWE), vol. 4607 of LNCS, Springer-
Verlag, 2007, pp. 473–478.

[4] S. Apel, D. Hutchins, An Overview of the gDeep Calculus, Tech. Rep. MIP-0712,
Department of Informatics and Mathematics, University of Passau (2007).

33

[5] S. Apel, D. Hutchins, A Calculus for Uniform Feature Composition, ACM Transactions
on Programming Languages and Systems (TOPLAS) (2010).

[6] S. Apel, C. Kästner, An Overview of Feature-Oriented Software Development, Journal
of Object Technology (JOT) 8 (5) (2009) 49–84.

[7] S. Apel, C. Kästner, D. Batory, Program Refactoring using Functional Aspects,
in: Proceedings of the International Conference on Generative Programming and
Component Engineering (GPCE), ACM Press, 2008, pp. 161–170.

[8] S. Apel, C. Kästner, T. Leich, G. Saake, Aspect Refinement - Unifying AOP and
Stepwise Refinement, Journal of Object Technology (JOT) – Special Issue: TOOLS
EUROPE 2007 6 (9) (2007) 13–33.

[9] S. Apel, C. Kästner, C. Lengauer, Feature Featherweight Java: A Calculus for Feature-
Oriented Programming and Stepwise Refinement, in: Proceedings of the International
Conference on Generative Programming and Component Engineering (GPCE), ACM
Press, 2008, pp. 101–112.

[10] S. Apel, C. Kästner, C. Lengauer, FeatureHouse: Language-Independent, Automatic
Software Composition, in: Proceedings of the International Conference on Software
Engineering (ICSE), IEEE CS, 2009, pp. 221–231.

[11] S. Apel, T. Leich, M. Rosenmüller, G. Saake, FeatureC++: On the Symbiosis of Feature-
Oriented and Aspect-Oriented Programming, in: Proceedings of the International
Conference on Generative Programming and Component Engineering (GPCE), vol.
3676 of LNCS, Springer-Verlag, 2005, pp. 125–140.

[12] S. Apel, T. Leich, G. Saake, Aspectual Feature Modules, IEEE Transactions on Software
Engineering (TSE) 34 (2) (2008) 162–180.

[13] S. Apel, C. Lengauer, B. Möller, C. Kästner, An Algebra for Features and
Feature Composition, in: Proceedings of the International Conference on Algebraic
Methodology and Software Technology (AMAST), vol. 5140 of LNCS, Springer-
Verlag, 2008, pp. 36–50.

[14] I. Aracic, V. Gasiunas, M. Mezini, K. Ostermann, An Overview of CaesarJ, Transactions
on Aspect-Oriented Software Development (TAOSD) 1 (1) (2006) 135–173.

[15] D. Batory, From Implementation to Theory in Product Synthesis (Keynote), in:
Proceedings of the International Symposium on Principles of Programming Languages
(POPL), ACM Press, 2007, pp. 135–136.

[16] D. Batory, Program Refactorings, Program Synthesis, and Model-Driven Design
(Keynote), in: Proceedings of the International Conference on Compiler Construction
(CC), vol. 4420 of LNCS, Springer-Verlag, 2007, pp. 156–171.

[17] D. Batory, J. Sarvela, A. Rauschmayer, Scaling Step-Wise Refinement, IEEE
Transactions on Software Engineering (TSE) 30 (6) (2004) 355–371.

[18] I. Baxter, Design Maintenance Systems, Communications of the ACM (CACM) 35 (4)
(1992) 73–89.

34

[19] A. Bergel, S. Ducasse, O. Nierstrasz, Classbox/J: Controlling the Scope of Change in
Java, in: Proceedings of the International Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA), ACM Press, 2005, pp. 177–189.

[20] T. Biggerstaff, A Perspective of Generative Reuse, Annals of Software Engineering
5 (1) (1998) 169–226.

[21] S. Böcker, D. Bryant, A. Dress, M. Steel, Algorithmic Aspects of Tree Amalgamation,
Journal on Algorithms 37 (2) (2000) 522–537.

[22] E. Bodden, F. Forster, F. Steimann, Avoiding Infinite Recursion with Stratified Aspects,
in: Proceedings of the International Net.ObjectDays Conference, Gesellschaft für
Informatik, 2006, pp. 49–64.

[23] J. Bosch, Super-Imposition: A Component Adaptation Technique, Information and
Software Technology 41 (5) (1999) 257–273.

[24] L. Bouge, N. Francez, A Compositional Approach to Superimposition, in: Proceedings
of the International Symposium on Principles of Programming Languages (POPL),
ACM Press, 1988, pp. 240–249.

[25] S. Boxleitner, S. Apel, C. Kästner, Language-Independent Quantification and Weaving
for Feature Composition, in: Proceedings of the International Conference on Software
Composition (SC), No. 5634 in LNCS, Springer-Verlag, 2009, pp. 45–54.

[26] M. Bravenboer, E. Visser, Concrete Syntax for Objects: Domain-Specific Language
Embedding and Assimilation Without Restrictions, in: Proceedings of the International
Conference on Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA), ACM Press, 2004, pp. 365–383.

[27] M. Chandy, J. Misra, An Example of Stepwise Refinement of Distributed Programs:
Quiescence Detection, ACM Transactions on Programming Languages and Systems
(TOPLAS) 8 (3) (1986) 326–343.

[28] D. Clarke, S. Drossopoulou, J. Noble, T. Wrigstad, Tribe: A Simple Virtual Class
Calculus, in: Proceedings of the International Conference on Aspect-Oriented Software
Development (AOSD), ACM Press, 2007, pp. 121–134.

[29] K. Czarnecki, U. Eisenecker, Generative Programming: Methods, Tools, and
Applications, Addison-Wesley, 2000.

[30] E. Ernst, K. Ostermann, W. Cook, A Virtual Class Calculus, in: Proceedings of the
International Symposium on Principles of Programming Languages (POPL), ACM
Press, 2006, pp. 270–282.

[31] R. Filman, D. Friedman, Aspect-Oriented Programming Is Quantification and
Obliviousness, in: Aspect-Oriented Software Development, Addison-Wesley, 2005, pp.
21–35.

[32] R. Findler, M. Flatt, Modular Object-Oriented Programming with Units and Mixins, in:
Proceedings of the International Conference on Functional Programming (ICFP), ACM
Press, 1998, pp. 94–104.

35

[33] M. Flatt, S. Krishnamurthi, M. Felleisen, Classes and Mixins, in: Proceedings of the
International Symposium on Principles of Programming Languages (POPL), ACM
Press, 1998, pp. 171–183.

[34] M. Fowler, K. Beck, J. Brant, W. Opdyke, D. Roberts, Refactoring: Improving the
Design of Existing Code, Addison-Wesley, 1999.

[35] W. Harrison, H. Ossher, Subject-Oriented Programming: A Critique of Pure Objects,
in: Proceedings of the International Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA), ACM Press, 1993, pp. 411–428.

[36] W. Harrison, H. Ossher, P. Tarr, General Composition of Software Artifacts, in:
Proceedings of the International Symposium on Software Composition (SC), vol.
4089 of LNCS, Springer-Verlag, 2006, pp. 194–210.

[37] U. Hebisch, H. Weinert, Semirings, World Scientific, 1998.

[38] P. Höfner, R. Khedri, B. Möller, Feature Algebra, in: Proceedings of the International
Symposium on Formal Methods (FM), vol. 4085 of LNCS, Springer-Verlag, 2006, pp.
300–315.

[39] P. Höfner, R. Khedri, B. Möller, An Algebra of Product Families, Software and Systems
Modeling. To appear.

[40] D. Hutchins, Eliminating Distinctions of Class: Using Prototypes to Model Virtual
Classes, in: Proceedings of the International Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA), ACM Press, 2006,
pp. 1–19.

[41] R. Jagadeesan, A. Jeffrey, J. Riely, A Calculus of Untyped Aspect-Oriented Programs,
in: Proceedings of the European Conference on Object-Oriented Programming
(ECOOP), vol. 2743 of LNCS, Springer-Verlag, 2003, pp. 54–73.

[42] K. Kang, S. Cohen, J. Hess, W. Novak, A. Peterson, Feature-Oriented Domain Analysis
(FODA) Feasibility Study, Tech. Rep. CMU/SEI-90-TR-21, SEI, CMU (1990).

[43] C. Kästner, S. Apel, M. Kuhlemann, Granularity in Software Product Lines, in:
Proceedings of the International Conference on Software Engineering (ICSE), ACM
Press, 2008, pp. 311–320.

[44] C. Kästner, S. Apel, S. ur Rahman, M. Rosenmüller, D. Batory, G. Saake, On the
Impact of the Optional Feature Problem: Analysis and Case Studies, in: Proceedings
of the International Software Product Line Conference (SPLC), SEI, CMU, 2009, pp.
181–190.

[45] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, W. Griswold, An Overview of
AspectJ, in: Proceedings of the European Conference on Object-Oriented Programming
(ECOOP), vol. 2072 of LNCS, Springer-Verlag, 2001, pp. 327–353.

[46] G. Kiczales, J. Rivieres, The Art of the Metaobject Protocol, MIT Press, 1991.

[47] M. Kuhlemann, D. Batory, C. Kästner, Safe Composition of Non-Monotonic Features,
in: Proceedings of the International Conference on Generative Programming and
Component Engineering (GPCE), ACM Press, 2009, pp. 177–185.

36

[48] R. Lämmel, E. Visser, J. Visser, Strategic Programming Meets Adaptive Programming,
in: Proceedings of the International Conference on Aspect-Oriented Software
Development (AOSD), ACM Press, 2003, pp. 168–177.

[49] K. Lieberherr, B. Patt-Shamir, D. Orleans, Traversals of Object Structures: Specification
and Efficient Implementation, ACM Transactions on Programming Languages and
Systems (TOPLAS) 26 (2) (2004) 370–412.

[50] J. Ligatti, D. Walker, S. Zdancewic, A Type-Theoretic Interpretation of Pointcuts and
Advice, Science of Computer Programming (SCP) 63 (3) (2006) 240–266.

[51] J. Liu, D. Batory, C. Lengauer, Feature-Oriented Refactoring of Legacy Applications,
in: Proceedings of the International Conference on Software Engineering (ICSE), ACM
Press, 2006, pp. 112–121.

[52] R. Lopez-Herrejon, D. Batory, C. Lengauer, A Disciplined Approach to Aspect
Composition, in: Proceedings of the International Symposium on Partial Evaluation
and Semantics-Based Program Manipulation (PEPM), ACM Press, 2006, pp. 68–77.

[53] H. Masuhara, G. Kiczales, Modeling Crosscutting in Aspect-Oriented Mechanisms, in:
Proceedings of the European Conference on Object-Oriented Programming (ECOOP),
vol. 2743 of LNCS, Springer-Verlag, 2003, pp. 2–28.

[54] S. McDirmid, M. Flatt, W. Hsieh, Jiazzi: New-Age Components for Old-Fashioned
Java, in: Proceedings of the International Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA), ACM Press, 2001, pp. 211–222.

[55] S. McDirmid, W. Hsieh, Aspect-Oriented Programming with Jiazzi, in: Proceedings
of the International Conference on Aspect-Oriented Software Development (AOSD),
ACM Press, 2003, pp. 70–79.

[56] M. Mezini, K. Ostermann, Conquering Aspects with Caesar, in: Proceedings of the
International Conference on Aspect-Oriented Software Development (AOSD), ACM
Press, 2003, pp. 90–100.

[57] M. Mezini, K. Ostermann, Variability Management with Feature-Oriented Program
ming and Aspects, in: Proceedings of the International Symposium on Foundations of
Software Engineering (FSE), ACM Press, 2004, pp. 127–136.

[58] M. Odersky, V. Cremet, C. Röckl, M. Zenger, A Nominal Theory of Objects with
Dependent Types, in: Proceedings of the European Conference on Object-Oriented
Programming (ECOOP), vol. 2743 of LNCS, Springer-Verlag, 2003, pp. 201–224.

[59] M. Odersky, M. Zenger, Scalable Component Abstractions, in: Proceedings of the
International Conference on Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA), ACM Press, 2005, pp. 41–57.

[60] H. Ossher, W. Harrison, Combination of Inheritance Hierarchies, in: Proceedings of the
International Conference on Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA), ACM Press, 1992, pp. 25–40.

[61] C. Prehofer, Feature-Oriented Programming: A Fresh Look at Objects, in: Proceedings
of the European Conference on Object-Oriented Programming (ECOOP), vol. 1241 of
LNCS, Springer-Verlag, 1997, pp. 419–443.

37

[62] G. Ramalingam, T. Reps, A Theory of Program Modifications, in: Proceedings of
the International Joint Conference on Theory and Practice of Software Development,
on Advances in Distributed Computing (ADC), and the Colloquium on Combining
Paradigms for Software Development (CCPSD), vol. 494 of LNCS, Springer-Verlag,
1991, pp. 137–152.

[63] G. Ramalingam, T. Reps, Modification Algebras, in: Proceedings of the International
Conference on Algebraic Methodology and Software Technology (AMAST), Springer-
Verlag, 1991, pp. 547–558.

[64] T. Reenskaug, E. Andersen, A. Berre, A. Hurlen, A. Landmark, O. Lehne, E. Nordhagen,
E. Ness-Ulseth, G. Oftedal, A. Skaar, P. Stenslet, OORASS: Seamless Support for the
Creation and Maintenance of Object-Oriented Systems, Journal of Object-Oriented
Programming (JOOP) 5 (6) (1992) 27–41.

[65] J. Seco, L. Caires, A Basic Model of Typed Components, in: Proceedings of the
European Conference on Object-Oriented Programming (ECOOP), vol. 1850 of LNCS,
Springer-Verlag, 2000, pp. 108–128.

[66] Y. Smaragdakis, D. Batory, Mixin Layers: An Object-Oriented Implementation
Technique for Refinements and Collaboration-Based Designs, ACM Transactions on
Software Engineering and Methodology (TOSEM) 11 (2) (2002) 215–255.

[67] O. Spinczyk, D. Lohmann, M. Urban, AspectC++: An AOP Extension for C++,
Software Developer’s Journal 1 (5) (2005) 68–74.

[68] P. Tarr, H. Ossher, W. Harrison, S. Sutton, Jr., N Degrees of Separation: Multi-
Dimensional Separation of Concerns, in: Proceedings of the International Conference
on Software Engineering (ICSE), IEEE CS, 1999, pp. 107–119.

[69] S. Thaker, D. Batory, D. Kitchin, W. Cook, Safe Composition of Product Lines,
in: Proceedings of the International Conference on Generative Programming and
Component Engineering (GPCE), ACM Press, 2007, pp. 95–104.

[70] S. Trujillo, M. Azanza, O. Díaz, Generative Metaprogramming, in: Proceedings of the
International Conference on Generative Programming and Component Engineering
(GPCE), ACM Press, 2007, pp. 105–114.

[71] S. Trujillo, D. Batory, O. Díaz, Feature Oriented Model Driven Development: A
Case Study for Portlets, in: Proceedings of the International Conference on Software
Engineering (ICSE), IEEE CS, 2007, pp. 44–53.

[72] D. Tucker, S. Krishnamurthi, Pointcuts and Advice in Higher-Order Languages, in:
Proceedings of the International Conference on Aspect-Oriented Software Development
(AOSD), ACM Press, 2003, pp. 158–167.

[73] M. VanHilst, D. Notkin, Using Role Components in Implement Collaboration-
based Designs, in: Proceedings of the International Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA), ACM Press, 1996,
pp. 359–369.

[74] D. Walker, S. Zdancewic, J. Ligatti, A Theory of Aspects, SIGPLAN Notices 38 (9)
(2003) 127–139.

38

[75] M. Zenger, Type-Safe Prototype-Based Component Evolution, in: Proceedings of the
European Conference on Object-Oriented Programming (ECOOP), vol. 2374 of LNCS,
Springer-Verlag, 2002, pp. 470–497.

A Implementation in Prover9

In this section, we list the Prover9 implementation of all axioms, lemmas, and
theorems. A typical Prover9 script consists of a section for the definition of axioms
(formulas(assumptions)) and a section for the lemmas and theorems to
prove (formulas(goals)). We begin with a basic script covering axioms and
lemmas for introductions (Sec. A.1). Then, we provide two scripts implementing
the axioms and lemmas for modifications (Sec. A.2). Finally, we provide two scripts
implementing the axioms and theorems for quarks (Sec. A.3).
Note that, in order to allow a smooth and efficient treatment in Prover9, we have used
a simplified representation in which introductions are treated as “constant-valued”
modifications, i.e., as modifications m with m� j = im for all introductions j and
some fixed introduction im. Otherwise, we would have needed to distinguish the
“types” of introductions and modifications by a predicate and to endow all equational
laws with preconditions expressing type correctness.

A.1 Introductions

For introductions and introduction sum, we define an operator and six axioms:

1 formulas(assumptions).
2
3 % introduction sum %
4 op(500, infix, "+").
5
6 % associativity %
7 x + (y + z) = (x + y) + z.
8 % identity I %
9 0 + x = x.

10 % identity II %
11 x + 0 = x.
12 % distant idempotence %
13 x + (y + x) = y + x.
14 % inclusion %
15 x <= y <-> x + y = y.
16 % equivalence %
17 eqv(x,y) <-> x <= y & y <= x.
18
19 end_of_list.

Using the six axioms, we prove the following eight lemmas: 16

1 formulas(goals).
2
3 % direct idempotence %
4 x + x = x.
5 % least element %

16 Note that Prover9 is not able to prove multiple goals of which some are not in normal
form. In this case, each goal has to be proved separately.

39

6 0 <= i.
7 % least element is unique %
8 i <= 0 -> i = 0.
9 % upper bound I %

10 x <= x + y.
11 % upper bound II %
12 y <= x + y.
13 % reflexivity %
14 x <= x.
15 % transitivity %
16 x <= y & y <= z -> x <= z.
17 % quasicommutativity I %
18 eqv(x+y,y+x).
19
20 end_of_list.

A.2 Modifications

For modification product, we define three operators and eleven axioms, including
the ones necessary for modifications which stem from introductions:

1 formulas(assumptions).
2
3 % introduction sum %
4 op(500, infix, "+").
5 % modification product %
6 op(510, infix, "/").
7 % modification application %
8 op(520, infix, "*").
9

10 %%%%%%%%%%%%%%%%%
11 % introductions %
12 %%%%%%%%%%%%%%%%%
13
14 % associativity %
15 (x + y) + z = x + (y + z).
16 % identity I %
17 0 + x = x.
18 % identity II %
19 x + 0 = x.
20 % distant idempotence %
21 x + (y + x) = y + x.
22 % inclusion %
23 x <= y <-> x + y = y.
24 % equivalence %
25 eqv(x,y) <-> x <= y & y <= x.
26
27 %%%%%%%%%%%%%%%%%
28 % modifications %
29 %%%%%%%%%%%%%%%%%
30
31 % distributivity %
32 x * (y + z) = (x * y) + (x * z).
33 % empty modification %
34 1 * x = x.
35 % iterative application %
36 (x / y) * z = x * (y * z).
37 % identity I %
38 1 / x = x.
39 % identity II %
40 x / 1 = x.
41
42 end_of_list.

40

Using the eleven axioms, we prove the following lemma:

1 formulas(goals).
2
3 % associativity %
4 ((x / y) / z) * i = (x / (y / z)) * i.
5
6 end_of_list.

A.3 Quarks

For quark composition, we define an additional operator and an additional axiom.
Furthermore, we include all optional axioms regarding modification product, which
have to be commented out if quark composition in the standard configuration shall
be examined:

1 formulas(assumptions).
2
3 %%%%%%%%%%%%%%%%%
4 % introductions %
5 %%%%%%%%%%%%%%%%%
6
7 % associativity %
8 (x + y) + z = x + (y + z).
9 % identity I %

10 0 + x = x.
11 % identity II %
12 x + 0 = x.
13 % distant idempotence %
14 x + (y + x) = y + x.
15 % inclusion %
16 x <= y <-> x + y = y.
17 % equivalence %
18 eqv(x,y) <-> x <= y & y <= x.
19
20 %%%%%%%%%%%%%%%%%
21 % modifications %
22 %%%%%%%%%%%%%%%%%
23
24 % empty modification %
25 1 * x = x.
26 % distributivity %
27 x * (y + z) = (x * y) + (x * z).
28 % associativity %
29 (x / y) / z = x / (y / z).
30 % identity I %
31 1 / x = x.
32 % identity II %
33 x / 1 = x.
34 % distant idempotence %
35 x / (y / x) = y / x.
36 % commutativity %
37 x / y = y / x.
38 % iterative application %
39 (x / y) * z = x * (y * z).
40
41 %%%%%%%%%%
42 % quarks %
43 %%%%%%%%%%
44
45 % quark composition %
46 [x1,y1,z1] @ [x2,y2,z2] = [x1 / x2, (x1 / x2) * (y1 + (z1 * y2)), z1 / z2].
47

41

48 end_of_list.
49
50 formulas(goals).

Using these axioms, we can prove several properties of the composition of simple,
local, global, and full quarks:

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 % associativity of quark composition %
3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
4
5 % associativity of composition of simple quarks %
6 [1,y1,1] @ ([1,y2,1] @ [1,y3,1]) = ([1,y1,1] @ [1,y2,1]) @ [1,y3,1].
7 % associativity of composition of local quarks %
8 [1,y1,z1] @ ([1,y2,z2] @ [1,y3,z3]) = ([1,y1,z1] @ [1,y2,z2]) @ [1,y3,z3].
9 % associativity of composition of global quarks %

10 [x1,y1,1] @ ([x2,y2,1] @ [x3,y3,1]) = ([x1,y1,1] @ [x2,y2,1]) @ [x3,y3,1].
11 % associativity of composition of full quarks %
12 [x1,y1,z1] @ ([x2,y2,z2] @ [x3,y3,z3]) = ([x1,y1,z1] @ [x2,y2,z2]) @ [x3,y3,z3].
13
14 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
15 % identity of quark composition %
16 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
17
18 identity of simple quarks %
19 [1,0,1] @ [1,y2,1] = [1,y2,1].
20 identity of local quarks %
21 [1,0,1] @ [1,y2,z2] = [1,y2,z2].
22 identity of global quarks %
23 [1,0,1] @ [x2,y2,1] = [x2,y2,1].
24 identity of full quarks %
25 [1,0,1] @ [x2,y2,z2] = [x2,y2,z2].
26
27 %%%
28 % direct idempotence of quark composition %
29 %%%
30
31 direct idempotence of simple quarks %
32 [1,y,1]@[1,y,1]=[1,y,1].
33 direct idempotence of local quarks %
34 [1,y,z]@[1,y,z]=[1,y,z].
35 direct idempotence of global quarks %
36 [x,y,1]@[x,y,1]=[x,y,1].
37 direct idempotence of full quarks %
38 [x,y,z]@[x,y,z]=[x,y,z].
39
40 %%
41 % distant idempotence of quark composition %
42 %%
43
44 distant idempotence of simple quarks %
45 [1,y1,1]@([1,y2,1]@[1,y1,1])=[1,y2,1]@[1,y1,1].
46 distant idempotence of local quarks %
47 [1,y1,z1]@([1,y2,z2]@[1,y1,z1])=[1,y2,z2]@[1,y1,z1].
48 distant idempotence of global quarks %
49 [x1,y1,1]@([x2,y2,1]@[x1,y1,1])=[x2,y2,1]@[x1,y1,1].
50 distant idempotence of full quarks %
51 [x1,y1,z1]@([x2,y2,z2]@[x1,y1,z1])=[x2,y2,z2]@[x1,y1,z1].
52
53 end_of_list.

42

