
Feature (De)composition in Functional Programming

Sven Apel†, Christian Kästner‡, Armin Größlinger†, and Christian Lengauer†

† Department of Informatics and Mathematics, University of Passau
{apel,groesslinger,lengauer}@uni-passau.de

‡ School of Computer Science, University of Magdeburg
kaestner@iti.cs.uni-magdeburg.de

Abstract. The separation of concerns is a fundamental principle in software en-
gineering. Crosscutting concerns are concerns that do not align with hierarchical
and block decomposition supported by mainstream programming languages. In
the past, crosscutting concerns have been studied mainly in the context of ob-
ject orientation. Feature orientation is a novel programming paradigm that sup-
ports the (de)composition of crosscutting concerns in a system with a hierarchi-
cal block structure. In two case studies we explore the problem of crosscutting
concerns in functional programming and propose two solutions based on feature
orientation.

1 Introduction

The principle of separation of concerns is fundamental in software engineering [1]. The
idea is to break down software into manageable pieces in order to allow a programmer
to concentrate on individual concerns in isolation. A concern is a semantically coherent
issue of a problem domain that is of interest to a stakeholder, e.g., transaction manage-
ment in a database system or multi-user support in an operating system. Concerns are
the primary criteria for decomposing a software system into code units [2].

In the research area of programming languages, a wide variety of abstraction, mod-
ularization, and composition mechanisms have been invented to achieve a high degree
of separation of concerns, e.g., functions, classes, and packages. However, in the late
1990s, the point was made that traditional mechanisms are not sufficient for the imple-
mentation of a particular class of concerns, called crosscutting concerns [3].

Crosscutting is defined as a structural relationship between concern implementa-
tions that is alternative to hierarchical and block structure. A key observation is that
programming languages that support only hierarchical and block structure, i.e., that of-
fer only mechanisms like functions, classes, and packages, are not sufficient for the
(de)composition of crosscutting concerns [3, 4, 5]. This limitation is called the tyranny
of the dominant decomposition [4]: a program can be modularized in only one way at
a time, and the concerns that do not align with this modularization end up scattered
across many modules and tangled with one another. The reason for scattering and tan-
gling is that typically only mechanisms are provided that support the (de)composition
of concerns that align well with the given module structure, e.g., established by classes
or functions. Overlapping or crosscutting concerns like transaction management are
not supported. For example, Zhang and Jacobson have analyzed several large software

projects and found many crosscutting concerns that affect large parts of the code ba-
sis [6].

Since the 1990s, the problem of crosscutting concerns has been studied in depth and
many approaches, most notably aspect-oriented programming, have been proposed [3,
7, 4, 8]. Many researchers have focused on enhancing object-oriented programming to
support the separation, modularization, and composition of crosscutting concerns. In-
terestingly, in an early publication, it was conjectured that the problem of crosscutting
concerns occurs also in functional programming [3]. Still, only few researchers ex-
plored the problem of crosscutting in functional programming – mainly with a focus on
language theory and not on code structure and modularity. So, it is not known what the
shape and impact of crosscutting concerns in functional programs are. Also there are
only few practical tools and languages that support crosscutting concerns (see Sec. 6).

In our work on software product lines [9,10,11], we noted the existence of crosscut-
ting concerns in functional programs when we wanted to decompose software systems
into reusable code units that can be combined flexibly to produce different variants
of a program tailored to specific scenarios or needs. As with other software artifacts,
e.g., written in Java, we found that crosscutting concerns in functional programs lead to
code scattering and tangling. This motivated us to explore the problem of crosscutting
in functional programming and to develop proper development support. Our solution is
based on feature orientation, a programming paradigm for large-scale software compo-
sition and software product lines [8, 12, 13].

We contribute an analysis and discussion of the problem of crosscutting concerns
in functional programs and explain why traditional programming mechanisms of func-
tional languages, such as functions, algebraic data types, and monads, are not sufficient
for implementing them. Based on this discussion, we propose two solutions that rely
on feature orientation. Finally, we discuss our experience on crosscutting concerns in
Haskell programs made in two case studies and how to support crosscutting concerns
using the two feature-oriented tools that we have built / extended for this purpose.

2 Abstraction and Modularization in Functional Programming

For simplicity, we concentrate on a representative collection of mechanisms of func-
tional programming languages: modules, algebraic data types, functions, and monads.
We discuss each mechanism with respect to its capability to separate and modularize
concerns, especially crosscutting concerns.

Modules. A module encapsulates a set of definitions, in particular, data type and func-
tion definitions. It exports an interface for communication with other modules and hides
the details of the implementation of inner data type and function definitions. Modules
are used to decompose a system into a hierarchy that is formed by “use” relationships.
In this sense, modules are similar to packages and classes in object-oriented languages.

It has been observed that, in object-oriented languages, crosscutting concerns typi-
cally cut across the boundaries of packages and classes, e.g., concerns like synchroniza-
tion and persistence. For example, the support of Enterprise Java Beans in an IBM appli-
cation server cuts across 35 top-level components [14]. In our case studies, we observed

this phenomenon in functional programs as well. Specifically, we found module-level
crosscutting to be the most frequent form of crosscutting. The reason is that modules
are coarse-grained building blocks and that they impose a hierarchical block structure
on the program that does not align with many crosscutting concerns.

Algebraic Data Types. A programmer may define her / his own data type on the basis
of previously defined data types. An algebraic data type definition provides a list of
alternative constructors that are used by the programmer to construct different variants
of the data type. For example, a list data type usually has a constructor for an empty list
and a constructor for adding an element to a list.

An algebraic data type encapsulates the data related to a concern. In this context,
crosscutting means that a single data type definition contains constructors that belong to
multiple concerns and the implementation of a single concern affects multiple data type
definitions. For example, in a data type definition of a list, there may be constructors
for transient and persistent lists. Of course, one could implement two data types, one
for transient lists and one for persistent lists but, in this case, the list concern would be
scattered across two data type definitions.

Type-level crosscutting has been observed in object-oriented programming, e.g.,
synchronization in Oracle’s Berkeley DB is scattered across 28 of 300 classes [15]. Our
case studies revealed that scattering occurs in functional programming too, especially,
since data types cannot be extended like classes in object-oriented languages.

Functions. The function is the primary means for decomposing and structuring the
computation of a functional program. A function cooperates with other functions via
its interface (its signature). The internal implementation of a function is not accessible
from the outside. Instead, parameters and a return value are used for exchanging data.

A function encapsulates a concern regarding the computation of a program. Cross-
cutting means here that the evaluation of a function involves the evaluation of terms
that belong to multiple concerns and that a concern is implemented by the evaluation
of terms in different functions. This implies that the number and types of the parame-
ters and the return value of a function may be influenced by multiple concerns. Note
that higher-order functions and lazy evaluation do not solve the problem of crosscut-
ting. Both are means to modularize programs [16] but, since they take effect at function
application and composition, the module structure they impose is hierarchical.

For example, in an expression evaluator, an evaluation function processes different
shapes of terms. Depending on the presence of other concerns, e.g., support of vari-
ables or choice constructs, the implementation of the evaluation function varies. The
implementations of the concerns ‘basic evaluation’, ‘variables’, ‘choice’ are tangled
in the definition of a single function, even in individual equations. This situation oc-
curs because the concerns overlap (i.e., crosscut) at the function level. Function-level
crosscutting has been observed in object-oriented and imperative programs. For exam-
ple, the disc quota concern in FreeBSD is scattered across 22 functions located in 11
files [17]. In our Haskell case studies, we have observed some function-level crosscut-
ting, although it does not occur as frequently as module-level crosscutting.

Monads. A monad is a kind of abstract data type used to represent computations.
With a monad, one can program with state while preserving referential transparency.
Functional programs can make use of monads for structuring procedures that include
sequenced operations (imperative programming style), or for defining arbitrary deter-
ministic control flow (like handling concurrency, continuations, or exceptions).

Since monads can be used to emulate an imperative programming style, they may
be subject to monad-level crosscutting. This is similar to method- or procedure-level
crosscutting in object-oriented and imperative languages. Inside the implementation of
a method or procedure, implementations of multiple concerns may be tangled, and a
single concern may affect implementations of multiple methods or procedures as, e.g,
in the case of the disc quota concern in FreeBSD [17]. Like methods or procedures,
monads are used to decompose a program into blocks of stateful computations. For
example, a monad can be used to untangle the different phases of a compilation process.
In this case, the data exchanged between the phases are passed implicitly but, inside the
monad, the different concerns (compilation phases) are still tangled. In our case studies,
we found only few cases of monad-level crosscutting.

Discussion. Previous experience with object-oriented and imperative languages indi-
cates that crosscutting is a real problem that is likely to occur also in functional pro-
gramming. The reason for the latter is that, like object-oriented and imperative lan-
guages, functional languages provide mechanisms for hierarchical and block decompo-
sition, but not for crosscutting decomposition. A conclusion from previous work is that
a primary (dominant) decomposition is not sufficient for separating and modularizing
all kinds of concerns [4]. Crosscutting is the relationship between different overlapping
decompositions. Mezini and Ostermann even argue that crosscutting is a problem of
knowledge representation in that it is caused by the fact that hierarchical decomposition
requires a primary model of the data to be represented that dominates other models [18].
According to this view, there is a general problem with hierarchical and block decom-
position such as provided by contemporary functional languages and their mechanisms:
in the presence of crosscutting concerns, (1) the implementation of multiple concerns
is entangled inside a module / algebraic data type / function / monad and (2) the im-
plementation of a crosscutting concern is scattered across multiple modules / algebraic
data types / functions / monads.

We assume the reader’s agreement that a separation and modularization of concerns
(incl. crosscutting concerns) is desirable. We do not repeat the previously postulated and
observed positive effects that a proper separation and modularization of concerns can
incur [2, 19, 1, 3, 4], but concentrate on possible solutions for functional programming.

3 An Analysis of Crosscutting in Two Haskell Programs

We have analyzed the occurrences and properties of crosscutting concerns in two Haskell
programs. We chose Haskell since it is a widely used functional language and offers all
of the mechanisms we were interested in studying. The first program, called Arith, is an
arithmetic expression evaluator written by the third author. The evaluator supports vari-
ables, choices, lambda abstraction, static and dynamic scoping, and different evaluation

strategies. The second program, called Functional Graph Library (FGL), is a library
for graph data structures and algorithms developed by M. Erwig.1 The library contains
implementations for directed and undirected graphs, with labeled and unlabeled edges
and nodes, dynamic and static allocation, and all kinds of algorithms.

In a first step, we selected, for each of the two programs, a set of concerns. The
selection was driven by two criteria: concerns that are (1) common and well-known
in the target domain or (2) good candidates for crosscutting. For example, for Arith,
we selected different evaluation strategies and arithmetic operations (13 concerns) and,
for FGL, different flavors of graphs and graph algorithms (18 concerns). For Arith,
selecting concerns was easy since the third author wrote the program; for FGL, we
studied the documentation and examples.

In a second step, we browsed the source code of both programs, looking for the
code that implements the selected concerns, and rating their locality and separation
from other concerns in the code basis. When we found indications of a crosscutting
concern, i.e., code scattering and tangling, we classified it as module-level, type-level,
function-level, monad-level, or equation-level crosscutting. We added equation-level
crosscutting in order to distinguish between the case that a function definition contains
two or more equations that belong to different concerns (function level) and the case
that a single equation contains itself code belonging to different concerns (equation
level).

For example, the code for evaluating expressions that contain variables is scattered
in Arith across the entire program at all levels. Specifically, it affects the parser and
main modules, the expression, type, and error data types, the evaluation and lookup
functions, as well as internals of several equations of the evaluation function.

In Table 1, we list the numbers of occurrences of crosscutting in Arith and FGL.
In column ‘overall elements’, we show the number of elements (modules, functions,
etc.) contained in Arith and FGL. For example, the upper left 2 means that, in Arith,
there are two modules. In column ‘elements affected’, we show the number of elements
influenced by multiple concerns. For example, the upper 2 means that, in Arith, both
modules contain code of more than one concern. In column ‘concerns crosscut’, we
show the number of concerns that are tangled inside an element. For example, the upper
right 24 means that the two modules of Arith contain code of, in all, 24 concerns,
which is, on average, 12 concerns per module. Numbers on all concerns are provided in
Appendices A and B.

During our analysis we noted a difference between Arith and FGL. Arith contains
all kinds of crosscutting concerns. In FGL, we found only module-level crosscutting.
A reason may be that FGL is a library and many functions and data types are largely
independent, e.g., individual graph algorithms do not interfere at all. Furthermore, the
crosscutting concerns of Arith are mainly at a coarse grain, i.e., at the module, type,
and function level; we found only few instances of crosscutting at the monad or equa-
tion level. This observation will be relevant in the comparison of our two solutions
(see Sec. 4.2). We did not find crosscutting for which higher-order functions or lazy
evaluation are relevant.

1 http://web.engr.oregonstate.edu/~erwig/fgl/haskell

http://web.engr.oregonstate.edu/~erwig/fgl/haskell

Arith (425 LOC, 13 concerns) FGL (2573 LOC, 18 concerns)
overall
elements

elements
affected

concerns
crosscut

overall
elements

elements
affected

concerns
crosscut

module level 2 2 24 43 8 21
type level 7 5 21 11 0 0

function level 25 3 21 289 0 0
monad level 11 2 6 52 0 0

equation level 69 1 5 582 0 0

overall elements: overall number of elements; elements affected: number of elements affected
by multiple concerns; concerns crosscut: number of concerns tangled inside a type of element;

Table 1. An overview of crosscutting concerns in Arith and FGL.

Finally, an interesting question was whether the identified crosscutting concerns
could be implemented more modularly using native Haskell mechanisms (not using
feature orientation, as we propose in the next section). For Arith, we can answer this
question definitely: most crosscutting concerns cannot be untangled without adverse
effects on other parts of the program structure. The reason is that, in Arith, all kinds of
crosscutting occur and that, especially at a fine grain, mechanisms like Haskell modules
and functions are not capable of separating code belonging to different overlapping con-
cerns. For example, a function’s formal parameters, that belong to a different concern
than the function itself, are difficult to separate from the function’s definition.

For FGL, the answer is more difficult. On the one hand, we found only module-level
crosscutting and, using a sophisticated module structure with proper imports, we could
have untangled the different concern implementations. The difficulty with this approach
is that we would hardwire the composition of modules, i.e., one could not easily remove
or add new modules implementing additional concerns such as new algorithms – this
is possible with feature orientation. On the other hand, the developers have accepted a
structure with scattered and tangled code. The reason could be that they were not aware
of the problem of crosscutting concerns (this unawareness is still wide-spread in real
world programming) or that a different structure would not have match their intuition
or would have lead to other structural problems, which we are not aware of.

4 Feature-Oriented Decomposition of Functional Programs

In order to achieve a proper separation of concerns in functional programs, we propose
to use the paradigm of feature orientation.

4.1 Feature Orientation

The basic idea of feature orientation is to decompose software systems in terms of fea-
tures. A feature is the realization of a requirement on a software system relevant to
some stakeholder [8, 12]; features are used to represent commonalities and variabilities
of software systems [13]. Decomposition means both the mental process of structuring a

complex problem into manageable pieces and the structuring that results from this pro-
cess. Technically, the implementation of a feature is an increment in program function-
ality and involves the addition of new program structures and the extension of existing
program structures [12, 20]. Feature orientation has been used to structure and synthe-
size software systems of different sizes (up to 300 KLOC) written or represented in dif-
ferent languages, e.g., Java, C, C#, C++, XML, JavaCC, UML [13,12,9,10,20,11,21].

Here, we are interested mainly in the mechanisms that feature-oriented program-
ming languages and tools offer in order to express, modularize, and compose crosscut-
ting concerns. The subtle difference between the concept of a feature and of a concern
is not relevant to our discussion (see Apel et al. [20]) – in the remainder of the paper, we
use both terms synonymously. There are two principal approaches to the decomposition
of a software system into features: physical decomposition and of virtual decomposi-
tion [22]. Common to both approaches is the support of variant generation of software
systems. For example, most database systems have a transaction management but some
do not need this feature, e.g., those for mobile and embedded systems. A physical or
virtual decomposition allows programmers to configure a software system on the basis
of a feature selection by removing or including feature-related code (crosscutting or not
crosscutting).

In a physical decomposition, code belonging to a feature is encapsulated in a desig-
nated feature module. In order to generate a final program, the desired feature modules
are composed. The mechanisms for expressing and composing feature modules must
cope with crosscutting concerns. There are numerous approaches for implementing fea-
ture modules, e.g., mixin layers [12], aspects [15], and hyperslices [4].

In a virtual decomposition, code belonging to a feature is not isolated in the form
of a physical code unit, but only annotated. That is, the code belonging to different
concerns is left intermixed inside a module implementation, and it is specified which
code belongs to which feature. A standard approach is to use the #ifdef statement of the
C preprocessor. In a more recent approach, the presentation layer of an editor is used to
annotate code (e.g., by colors), instead of adding textual annotations to the program [9].
The advantage is that there can be different views on the source code to show only the
code of a certain feature or feature combination [23]. For example, in order to analyze
the multi-user support of a database system in isolation, a programmer can hide all code
of other features, such as of the transaction management. Furthermore, it is possible to
generate a variant that contains only the code of some selected features. For correctness,
it is checked that only meaningful fragments of a program are assigned to features in
order to avoid errors during and after composition [9, 24], but this detail is outside the
scope of this paper.

4.2 Our Approach

Presently, it is not clear whether a physical or virtual decomposition is superior. The ad-
vantage of the virtual approach is that every optional syntax element of a program can
be annotated with a feature, including parameters and (sub)expressions. In the physical
approach, mainly large structures such as packages, classes, and methods can be ex-
tended; extensions at the method level are difficult [9, 22, 15]. The advantage is that a
programmer can achieve real information hiding by defining interfaces [18]. This is not

possible in the virtual approach, which intermixes (colored) code belonging to different
features.

We explore the capabilities of a physical and virtual decomposition for separating
crosscutting concerns in functional programs, in particular, of Haskell programs. In
order to support the physical decomposition of Haskell programs, we have extended an
existing tool for feature composition, called FEATUREHOUSE,2 and, in order to support
the virtual decomposition of Haskell programs, we have extended an existing tool for
virtual feature decomposition, called CIDE.3

Composing Haskell Files with FEATUREHOUSE. FEATUREHOUSE is a tool for fea-
ture composition. A feature is represented by a containment hierarchy. A containment
hierarchy is a directory that contains possibly further subdirectories and a set of soft-
ware artifacts such as Java, Haskell, and HTML files. Feature composition is performed
by the superimposition of the software artifacts found inside the involved contain-
ment hierarchies. Superimposition merges two software artifacts by merging their cor-
responding substructures based on nominal and structural similarities [10, 11].

In Figure 1, we illustrate a physical decomposition of an expression evaluator con-
sisting of a feature EXPR for the representation of simple expressions including opera-
tors for addition and subtraction, a feature EVAL for the evaluation of expressions, and a
feature MULT for multiplication. When composed (denoted by ‘•’) with feature EXPR,
feature EVAL adds a new function (incl. three equations) to the module introduced by
EXPR. Composing feature MULT with the result adds a new constructor to the data type
for expressions and a new equation to the evaluation function.

With FEATUREHOUSE, composing a feature with a Haskell program can result in
the following additions to the program:

– definitions to a module (e.g., functions, data types, type classes, instances)
– imports and exports to a module
– type constructors and derived instances to a data type definition
– equations to a function
– signatures to a type class

The FEATUREHOUSE tool, along with the case studies presented in Section 5, can be
downloaded from FEATUREHOUSE’s website. More technical details on composition
are reported elsewhere [11].

Coloring Haskell Files with CIDE. CIDE is a tool for virtual feature decomposition.
As explained in Section 4.1, a programmer assigns colors to code fragments. Each color
stands for a separate feature. We have extended the CIDE tool in order to be able to
color Haskell programs, beside others such as Java, C, XML, and JavaCC documents.

In Figure 2, we depict an excerpt of the expression evaluator in which code be-
longing to the features EVAL and MULT has been colored.4 Using views on the source
code, code belonging to individual features can be selected and hidden in the editor or

2 http://www.fosd.de/fh
3 http://www.fosd.de/cide
4 For readability, we have added comments that indicate which lines belong to which features.

http://www.fosd.de/fh
http://www.fosd.de/cide

1 module Expr where {
2 data Expr = Num Int | Add Expr Expr | Sub Expr Expr deriving Show;
3 }

•
1 module Expr where {
2 eval :: Expr −> Int;
3 eval (Num x) = x;
4 eval (Add x y) = (eval x) + (eval y);
5 eval (Sub x y) = (eval x) − (eval y);
6 }

•
1 module Expr where {
2 data Expr = Mul Expr Expr deriving Show;
3 eval (Mul x y) = (eval x) ∗ (eval y);
4 }

=
1 module Expr where {
2 data Expr = Num Int | Add Expr Expr | Sub Expr Expr | Mul Expr Expr deriving Show;
3 eval :: Expr −> Int;
4 eval (Num x) = x;
5 eval (Add x y) = (eval x) + (eval y);
6 eval (Sub x y) = (eval x) − (eval y);
7 eval (Mul x y) = (eval x) ∗ (eval y);
8 }

Fig. 1. Composing an expression evaluator from the features EXPR, EVAL, and MULT.

even removed in a generation step. For example, one could hide all code that belongs to
features other than EVAL or set the focus on code belonging to MULT.

As mentioned previously, CIDE enforces a principle of safe coloring. Typically,
it is not meaningful to allow a programmer to color code fragments arbitrarily. The
reason is that colored code fragments can be hidden or removed in CIDE, and the
remaining code (without the code of the removed feature) should be still syntactically
correct Haskell code. To this end, CIDE uses information of the language’s syntax to
ensure syntactical correctness [9, 25]. For example, entire modules, functions, and data
types, as well as individual type constructors, function equations, module imports and
exports, and even single parameters or (sub)expressions can be colored. Examples of
non-optional elements that must not be colored individually are a module’s, function’s,
or data type’s name, opening or closing brackets, or isolated keywords like where or
case.

CIDE, including support for Haskell and the case studies presented in Section 5,
can be downloaded from CIDE’s website. More technical details on CIDE are reported
elsewhere [9].

1 module Expr where {
2 data Expr = Num Int | Add Expr Expr
3 | Sub Expr Expr | Mul Expr Expr // Feature MULT

4 deriving Show;
5 eval :: Expr -> Int; // Feature EVAL

6 eval (Num x) = x; // Feature EVAL

7 eval (Add x y) = (eval x) + (eval y); // Feature EVAL

8 eval (Sub x y) = (eval x) - (eval y); // Feature EVAL

9 eval (Mul x y) = (eval x) * (eval y); // Feature MULT

10 }

Fig. 2. Colored version of the expression evaluator (EXPR, EVAL , MULT).

5 Case Studies

In order to separate the crosscutting concerns identified in our analysis, we have decom-
posed Arith and FGL with our tools FEATUREHOUSE and CIDE.5 Our goal has been to
explore the capabilities of feature decomposition for separating crosscutting concerns
in functional programs.

5.1 Physical Decomposition with FEATUREHOUSE

Arith. We have decomposed Arith into the 13 concerns described above. For reasons
we explain shortly, we required multiple feature modules for some concerns, so that we
implemented overall 13 concerns with 27 feature modules.

The main task of the decomposition was to divide the two Haskell modules of Arith
into multiple fragments that contain the definitions that belong to the different features.
Typically, a feature adds new function and data type definitions to the Arith base pro-
gram and extends existing functions by new equations and existing data types by new
constructors. For example, feature UNOP adds a new data type UnOp to Arith and ex-
tends the existing data type Exp by a constructor for unary operations.

When adding new equations to a function, we stumbled over a problem, e.g., when
adding the equation ‘eval env (Bin op exp1 exp2)...’ to function eval in order to support
the evaluation of binary operations. The problem is that the order in which the equations
of a function appear in a module may matter, although this is more an exception than
the rule. That is, when swapping two equations of a function, the program behavior may
change, e.g., the program fragments below on the left and right side are not equivalent
because their patterns overlap:

eval env (Bin op exp1 exp2) = ...
eval _ _ = ...

eval _ _ = ...
eval env (Bin op exp1 exp2) = ...

5 We thank Malte Rosenthal and Fabian Wielgorz, two of our students, for helping us in coloring
Arith and FGL.

When refining modules via superimposition, we can always add something at the
end or in front of an existing element. This is no problem when adding new func-
tions, type classes, and data types, since their lexical order within the enclosing module
does not matter. But adding a new equation right before another equation or between
two equations is problematic. With superimposition and its implementation in FEA-
TUREHOUSE there is no linguistic means to express this kind of extension properly.
This implies that implementing the different equations of eval using a case expression
would not solve the problem, either. However, this problem is not specific to Haskell
but occurs also for statements in Java and other languages [9]. A workaround, called
sandwiching [19], is to split the target module exactly at the position at which we want
to refine it. We had to use this workaround twice in Arith.

A further problem was to separate code of crosscutting concerns at the monad and
function level. Let us illustrate this by an example. In Arith, function eval plays a cen-
tral role in expression evaluation. Depending on the features selected, the definition of
the function must vary. For example, if feature BINOP is selected, function eval must
contain an equation that processes binary operations:

eval (Bin op exp1 exp2) = zRes (tvBinOp op) (eval exp1) (eval exp2);

Likewise, if feature UNOP is selected, function eval must contain an equation that pro-
cesses unary operations:

eval (Un op exp) = mRes (tvUnOp op) (eval exp);

But, if we select feature VAR for processing expressions containing variables, we cannot
simply add a further equation. We have to change every equation of eval in order to pass
an environment parameter through the expression evaluation. That is, we have to extend
the signature of function eval by a new parameter that represents the environment that
maps variable names to values. Accordingly, the definition of the function has to be
changed from

eval :: Exp TVal −> Res TVal;

to

eval :: Env TVal −> Exp TVal −> Res TVal;.

But extending a given function with a new parameter and changing the function’s equa-
tions is not possible in FEATUREHOUSE. This problem is also known in object-oriented
and feature-oriented languages [9]. Hence, we had to copy the existing versions of func-
tion eval, add a new parameter, and pass it to the recursive invocations of eval:6

eval env (Bin op exp1 exp2) = zRes (tvBinOp op) (eval env exp1) (eval env exp2);
eval env (Un op exp) = mRes (tvUnOp op) (eval env exp);

6 A different solution would be to write eval as monadic function whose type is para-
meterized with the monad in which the evaluation takes place. Different evaluation
strategies would be obtained by running eval in different monads. In this case, the
code for evaluation would still be scattered across multiple monads.

Finally, we found that the number of implemented feature modules is higher than
the number of concerns that we identified upfront. The reason is that, for some con-
cerns, we had to implement more than one feature module. For example, evaluating
lambda expressions is very different for a lazy and a strict evaluation order. So we had
to implement a feature for lambda expressions with lazy evaluation order and another
for lambda expressions with strict evaluation order. This problem is also known as fea-
ture interaction problem [8] or optional feature problem [26], and our additional feature
implementations are called lifters or derivatives.

FGL. We have decomposed FGL into the 18 concerns or features, based on the analysis
of Section 3, using 20 feature modules. Most features separate code concerning differ-
ent kinds of graphs or different graph algorithms. In contrast to Arith, the spectrum of
extensions features make to the base program is broader. Beside adding new functions
and data types, some features add new type classes and instance declarations. And, be-
side extending existing functions with new equations and existing data type definitions
with new constructors, some features extend modules with new import and export dec-
larations. Like in Arith, we had to use sandwiching twice in order to extend a function
by new equations, but we did not need lifters.

In Table 2, we provide numbers on the implemented feature modules in Arith and
FGL. The first thing to observe is that the overall code size in terms of lines of code is
higher in the physically decomposed variants than in the corresponding original variants
(532 instead of 425 for Arith and 2736 instead of 2573 for FGL). The reasons are, on
the one hand, that the use of feature modules imposes an overhead due to the additional
syntax and boilerplate code and, on the other hand, that, for some features, there are
multiple feature modules in order to cope with feature interactions. It seems that this
is the price for decomposing features physically in order to be able to compose them
again in different combinations.

In column ‘overall’ of Table 2, we list the number of elements of a particular ele-
ment type contained in Arith and FGL. For example, the upper left 2 means that there
are two modules in Arith. In column ‘extended’, we show the number of elements be-
ing extended by feature modules. For example, the middle left 2 means that each of the
two modules of Arith has been extended by subsequently applied feature modules. In
column ‘extensions’, we show the number of extensions applied to elements of a par-
ticular type. For example, the lower left 31 means that the two modules of Arith have
been extended 31 times: each module, on average, 16 times.

5.2 Virtual Decomposition with CIDE

Arith. For the virtual decomposition of Arith, we began with a full version containing
all functionality and proceeded by coloring code step by step, based on the analysis pre-
sented in Section 3. The coloring was straightforward and did not pose any challenges.
Compared to the physical decomposition, (1) we were faster, which is due to the sim-
pler process (no actual rewrites to the code) and the knowledge we gained from the
physical decomposition, (2) we did not have the problem of changing equation orders,
since the order is already predefined in the colored code, (3) we could easily decompose

Arith (532 LOC, 27 feature modules) FGL (2730 LOC, 20 feature modules)
modules data types functions monads modules data types functions monads

overall 2 7 25 11 43 11 289 52
extended 2 5 4 2 8 0 0 0

extensions 31 18 32 4 28 0 0 0

overall: overall number of occurrences; extended: number of elements being extended;
extensions: number of extensions applied to the type of element;

Table 2. An overview of the extensions made by features in physical decomposition.

crosscutting concerns at the monad and equation level, since CIDE is able to color indi-
vidual parameters or subexpressions, and (4) feature interactions are straightforwardly
represented and handled in CIDE with overlapping colors.7

Let us explain the virtual decomposition by an example. In the physical decom-
position, we traded the possibility of separating feature VAR from the other features
for some overhead in code size caused by code replication. This was necessary be-
cause superimposition does not support the addition of new parameters to a function
(see Sec. 5.1). Exactly this kind of situation can be solved elegantly with a virtual de-
composition. In the colored variant of Arith, we have only one variant for each equation
and the additional parameters and parameter passing are colored; for readability, we
have underlined the code that belongs to feature VAR:

eval env (Bin op exp1 exp2) = zRes (tvBinOp op) (eval env exp1) (eval env exp2);
eval env (Un op exp) = mRes (tvUnOp op) (eval env exp);

We handled monad-level crosscutting similarly: instead of replicating the monad
implementation, we colored the parts that belong to different features. Nevertheless, we
felt that, when coloring definitions of functions and monads with too many colors, the
code became difficult to understand.

FGL. Like Arith, we have decomposed FGL, using CIDE, into a similar set of features
as in the physical decomposition using FEATUREHOUSE. This process was very simple
and straightforward since, in FGL, we found only module-level crosscutting. That is,
apart from a faster decomposition, in FGL, virtual decomposition did not outperform
physical decomposition.

Overall, we were able to color exactly the concerns of Arith and FGL that we iden-
tified in our analysis; see Table 1 for more information. Using CIDE’s views, we can
analyze concern-related code in isolation and generate different variants of Arith and
FGL, which is an unusual but useful form of separation of concerns.

5.3 Discussion

In summary, we made the following observations in our case studies:
7 A program element that is annotated with multiple colors belongs to multiple features, and it

is only present if all of the features in question are present. Hence, overlapping colorings in
CIDE represent structural interactions between features [9].

1. There is indeed crosscutting at all levels (module, function, data type, monad).
2. Both a physical and virtual decomposition of Haskell programs into features achieve

a proper separation of concerns at different levels of granularity. Compared to a
native Haskell implementation, features can be combined more easily in different
ways.

3. A physical separation leads to an increase in code size due to different kinds of
boilerplate code. Also some features are implemented in more than one module
(due to sandwiching and listers/derivatives), which does not contradict the idea of
separation of concerns but which we felt is unintuitive and complicated.

4. A too fine-grained virtual decomposition is counter-productive since the colored
code is difficult to understand – even using views on the source code.

5. There are concerns that cut across function signatures, equations, and expressions;
these require workarounds in a physical decomposition or a virtual decomposition
à la CIDE. However, most crosscutting occurs at the level of modules and data type
definitions, at which a physical decomposition is appropriate, too.

6. Functional programming in Haskell aligns mostly well with feature decomposition.
However, in the physical approach, the significance of the lexical order of function
equations causes problems, although the order of equations is in most situations
irrelevant. A virtual decomposition or workarounds like sandwiching have to be
used in these cases. The problem of the lexical order is not only a technical problem
caused by the syntax and semantics of Haskell, but a general problem of physical
decomposition [11].

7. Feature decomposition is largely orthogonal to data and function decomposition in
functional programming. Only in some cases a feature is implemented by exactly
one function, data type, or module, e.g., in the case of graph algorithms in FGL.

8. The feature optionality problem occurs also in functional programs and leads to an
increased number of containment hierarchies in a physical decomposition (see third
point above).

As a final remark, we are not able to judge whether a virtual or a physical separation is
superior. Our analysis and our case studies were not intended to answer this question.
In a different line of research, we have addressed this issue and identified complemen-
tary strengths and weaknesses of virtual and physical decomposition that suggest an
integration of both [22].

6 Related Work

Kiczales et al. were among the first to conjecture that crosscutting concerns occur in
functional programs. Their approach is to use aspect-oriented programming to sepa-
rate and modularize crosscutting concerns [3]. Aspect orientation is related to feature
orientation – the two paradigms differ mainly in the language mechanisms that are com-
monly used [20]: typically, aspect-oriented languages use metaprogramming constructs
like pointcuts to quantify over the events in the program’s execution a crosscutting
concern affects, and implicit invocation mechanisms like advice to execute code trans-
parently. Feature-oriented tools and languages for a physical decomposition support
mainly mixin- and collaboration-based programming techniques which are simpler and

less expressive than aspect-oriented mechanisms [27]. Almost all previous work focuses
on aspect-oriented mechanisms in the context of theory of functional programming lan-
guages. Our study extends the state of the art with an analysis of crosscutting concerns
in functional programs and the proposal of feature orientation as a possible solution.

AspectML and its predecessors [28] are functional programming languages with
support for aspects. These languages are not intended for programming but for study-
ing type systems. Consequently, there is no experience on whether crosscutting occurs
in functional programs or what the properties of the crosscutting concerns are. Tucker
and Krishnamurthi have developed a variant of Scheme with aspect-oriented mecha-
nisms [29]. They do not aim at the analysis of crosscutting concerns in functional pro-
grams but at the relationship of aspect-oriented mechanisms and higher-order functions.
Masuhara et al. have developed an aspect-oriented version of Caml, called Aspectual
Caml [30]. They focus on language theory and not on the properties and impact of
crosscutting in functional programs. Aldrich has used a simple functional language,
called TinyAspect, to explore crosscutting at the module level [31]. This work concen-
trates mainly on the principle of information hiding, not on the impact of crosscutting
in functional programming.

Hofer and Ostermann have offered a simple example of crosscutting in a Haskell
program [32]. They noted that there is a relationship between aspects and monads. They
argue that some significant properties of aspects, such as quantification, are not sup-
ported by monads and, consequently, monads are not capable of separating crosscutting
concerns properly. We found that a virtual decomposition of monad-level crosscutting
is feasible.

7 Conclusions

We have explored the problem of crosscutting concerns in functional programming. We
have analyzed and discussed the capabilities of mechanisms of functional languages for
separating, modularizing, and composing crosscutting concerns. We have proposed an
approach based on physical and virtual feature decomposition and have extended two
corresponding tools. In two case studies, we have explored the incidence and character-
istics of crosscutting as well as the performance of our tools in separating crosscutting
concerns. We found that crosscutting occurs in functional programs and that physical
and virtual decompositions are able to alleviate the problem of code scattering and tan-
gling, however, with different mutual strengths and weaknesses.

Acknowledgments. This work is being supported in part by the German Research
Foundation (DFG), project number AP 206/2-1.

References

1. Dijkstra, E.: On the Role of Scientific Thought. In: Selected Writings on Computing: A
Personal Perspective. Springer-Verlag (1982) 60–66

2. Parnas, D.: On the Criteria to be Used in Decomposing Systems into Modules. Comm. ACM
15 (1972) 1053–1058

3. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J.M., Irwin,
J.: Aspect-Oriented Programming. In: Proc. Europ. Conf. Object-Oriented Programming,
Springer-Verlag (1997) 220–242

4. Tarr, P., Ossher, H., Harrison, W., Sutton, Jr., S.: N Degrees of Separation: Multi-
Dimensional Separation of Concerns. In: Proc. Int. Conf. Software Engineering, IEEE CS
(1999) 107–119

5. Kiczales, G., Mezini, M.: Separation of Concerns with Procedures, Annotations, Advice and
Pointcuts. In: Proc. Europ. Conf. Object-Oriented Programming, Springer-Verlag (2005)
195–213

6. Zhang, C., Jacobsen, H.A.: Efficiently Mining Crosscutting Concerns Through Random
Walks. In: Proc. Int. Conf. Aspect-Oriented Software Development, ACM Press (2007)
226–238

7. Skotiniotis, T., Palm, J., Lieberherr, K.: Demeter Interfaces: Adaptive Programming without
Surprises. In: Proc. Europ. Conf. Object-Oriented Programming, Springer-Verlag (2006)
477–500

8. Prehofer, C.: Feature-Oriented Programming: A Fresh Look at Objects. In: Proc. Europ.
Conf. Object-Oriented Programming, Springer-Verlag (1997) 419–443

9. Kästner, C., Apel, S., Kuhlemann, M.: Granularity in Software Product Lines. In: Proc. Int.
Conf. Software Engineering, ACM Press (2008) 311–320

10. Apel, S., Lengauer, C.: Superimposition: A Language-Independent Approach to Software
Composition. In: Proc. Int. Symp. Software Composition, Springer-Verlag (2008) 20–35

11. Apel, S., Kästner, C., Lengauer, C.: FeatureHouse: Language-Independent, Automated Soft-
ware Composition. In: Proc. Int. Conf. Software Engineering, IEEE CS (2009)

12. Batory, D., Sarvela, J., Rauschmayer, A.: Scaling Step-Wise Refinement. IEEE Trans. Soft-
ware Engineering 30 (2004) 355–371

13. Czarnecki, K., Eisenecker, U.: Generative Programming: Methods, Tools, and Applications.
Addison-Wesley (2000)

14. Colyer, A., Clement, A.: Large-Scale AOSD for Middleware. In: Proc. Int. Conf. Aspect-
Oriented Software Development, ACM Press (2004) 56–65

15. Kästner, C., Apel, S., Batory, D.: A Case Study Implementing Features using AspectJ. In:
Proc. Int. Software Product Line Conf., IEEE CS (2007) 222–232

16. Hughes, J.: Why Functional Programming Matters. Comput. J. 32 (1989) 98–107
17. Coady, Y., Kiczales, G.: Back to the Future: A Retroactive Study of Aspect Evolution in

Operating System Code. In: Proc. Int. Conf. Aspect-Oriented Software Development, ACM
Press (2003) 50–59

18. Mezini, M., Ostermann, K.: Untangling Crosscutting Models with CAESAR. In: Aspect-
Oriented Software Development. Addison-Wesley (2005) 165–199

19. Parnas, D.: Designing Software for Ease of Extension and Contraction. IEEE Trans. Soft-
ware Engineering SE-5 (1979) 264–277

20. Apel, S., Leich, T., Saake, G.: Aspectual Feature Modules. IEEE Trans. Software Engineer-
ing 34 (2008) 162–180

21. Apel, S., Janda, F., Trujillo, S., Kästner, C.: Model Superimposition in Software Product
Lines. In: Proc. Int. Conf. Model Transformation, Springer-Verlag (2009)

22. Kästner, C., Apel, S.: Integrating Compositional and Annotative Approaches for Product
Line Engineering. In: Proc. GPCE Workshop Modularization, Composition, and Genera-
tive Techniques for Product Line Engineering. Number MIP-0804, Dept. of Informatics and
Mathematics, University of Passau (2008) 35–40

23. Kästner, C., Apel, S., Trujillo, S.: Visualizing Software Product Line Variabilities in Source
Code. In: Proc. SPLC Workshop Visualization in Software Product Line Engineering, Lero,
International Science Centre, University of Limerick (2008) 303–313

24. Kästner, C., Apel, S., Trujillo, S., Kuhlemann, M., Batory, D.: Guaranteeing Syntactic Cor-
rectness for all Product Line Variants: A Language-Independent Approach. In: Proc. TOOLS
EUROPE, Springer-Verlag (2009)

25. Kästner, C., Apel, S.: Type-checking Software Product Lines – A Formal Approach. In:
Proc. Int. Conf. Automated Software Engineering, IEEE CS (2008) 258–267

26. Liu, J., Batory, D., Lengauer, C.: Feature-Oriented Refactoring of Legacy Applications. In:
Proc. Int. Conf. Software Engineering, ACM Press (2006) 112–121

27. Apel, S., Batory, D.: How AspectJ is Used: An Analysis of Eleven AspectJ Programs. Tech-
nical Report MIP-0801, Dept. of Informatics and Mathematics, University of Passau (2008)

28. Dantas, D., Walker, D., Washburn, G., Weirich, S.: AspectML: A Polymorphic Aspect-
Oriented Functional Programming Language. ACM Trans. Programming Languages and
Systems 30 (2008) 1–60

29. Tucker, D., Krishnamurthi, S.: Pointcuts and Advice in Higher-Order Languages. In: Proc.
Int. Conf. Aspect-Oriented Software Development, ACM Press (2003) 158–167

30. Masuhara, H., Tatsuzawa, H., Yonezawa, A.: Aspectual Caml: An Aspect-Oriented Func-
tional Language. In: Proc. Int. Conf. Functional Programming, ACM Press (2005) 320–330

31. Aldrich, J.: Open Modules: Modular Reasoning about Advice. In: Proc. Europ. Conf. Object-
Oriented Programming, Springer-Verlag (2005) 144–168

32. Hofer, C., Ostermann, K.: On the Relation of Aspects and Monads. In: Proc. Workshop
Foundations of Aspect-Oriented Languages, ACM Press (2007) 27–33

A Overview of the Concerns of Arith

The below table lists, for each concern of Arith, the number of elements being involved
in the concern’s implementation:

concern module data type function monad equation
binary operations 2 2 3 0 12
unary operations 1 2 2 0 6
boolean 2 3 3 0 4
variables 2 4 8 0 17
choice 2 1 2 0 2
lambda abstraction 2 3 4 0 10
lazy evaluation 1 1 1 0 8
strict evaluation 1 1 1 0 7
dynamic scoping 1 1 1 0 4
static scoping 1 1 1 0 4
no variables 1 1 1 0 4
Windows console 1 0 0 1 0
Linux console 1 0 0 1 0

B Overview of the Concerns of FGL

The below table lists, for each concern of FGL, the number of elements being involved
in the concern’s implementation:

concern module data type function monad equation
static graph 2 0 21 0 21
dynamic graph 3 0 20 0 20
graphviz interface 2 1 9 0 6
monadic graph 3 2 51 1 52
unlabeled nodes 2 0 2 0 2
unlabeled edges 2 0 19 0 19
articulation points 2 1 9 0 15
breadth first search 1 0 18 0 19
depth first search 2 1 31 0 38
connected components 1 0 5 0 8
independent components 1 0 2 0 3
shortest path 2 0 11 0 12
dominators 1 0 10 0 11
Voronoi diagrams 1 0 7 0 7
max flow 1 1 0 8 0 11
max flow 2 1 1 21 0 32
min spanning tree 1 0 7 0 9
transitive closure 1 0 2 0 2

