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Abstract. Superimposition is a composition technique that has been
applied successfully in several areas of software development. In order
to unify several languages and tools that rely on superimposition, we
present an underlying language-independent model that is based on fea-
ture structure trees (FSTs). Furthermore, we offer a tool, called FST-
Composer, that composes software components represented by FSTs.
Currently, the tool supports the composition of components written in
Java, Jak, XML, and plain text. Three nontrivial case studies demon-
strate the practicality of our approach.

1 Introduction

Software composition is the process of constructing software systems from a
set of components. It aims at improving the reusability, customizability, and
maintainability of large software systems.

One popular approach to software composition is superimposition. Super-
imposition is the process of composing software artifacts of different components
by merging their corresponding substructures. For example, when composing two
components, two internal classes with the same name, say Foo, are merged, and
the result is called again Foo.

Superimposition has been applied successfully to the composition of class
hierarchies in multi-team software development [1], the extension of distributed
programs [2,3], the implementation of collaboration-based designs [4–6], feature-
oriented programming [7,8], subject-oriented programming [9,10], aspect-oriented
programming [11, 12], and software component adaptation [13]. All these ap-
proaches superimpose hierarchically organized program constructs by matching
their levels, names, and types in the hierarchy.

It has been noted that, when composing software, not only code artifacts
have to be considered but also noncode artifacts, e.g., documentation, grammar
files, makefiles [8,10]. Thus, superimposition, as a composition technique, should
be applicable to a wide range of software artifacts. While there are tools that
implement superimposition for noncode artifacts [8, 14–19], they are specific to
their underlying languages.

It is an irony that, while superimposition is such a general approach, up
to now, it has been implemented for every distinct kind of software artifact



from scratch. In our recent work, we have explored the essential properties of
superimposition and developed an algebraic foundation for software composition
based on superimposition [20].

We present a model of superimposition based on feature structure trees (FSTs).
An FST represents the abstract hierarchical structure of a software component.
That is, it hides the language-specific details of a component’s implementation.
The nodes of an FST represent the structural elements of a component. However,
an FST contains only nodes that represent the modular component structure
(modules and submodules) and that are relevant for composition.

Furthermore, we have a tool, called FSTComposer, that implements com-
position by superimposition on the basis of FSTs. At present, FSTComposer
is able to compose software components written in Java, Jak,1 XML, and plain
text. Three nontrivial case studies demonstrate the practicality and scalability
of our approach and tool.

2 A Tree Representation of Software Artifacts

A software component is represented as an FST. The nodes of an FST represent
a component’s structural elements. Each node has a name,2 which is also the
name of the structural element that is represented by the node.

FSTs are designed to represent any kind of component with a hierarchical
structure. For example, a component written in Java contains packages, classes,
methods, etc., which are represented by nodes in the FST. An XML document
(e.g., XHTML) may contain tags that represent the underlying document struc-
ture, e.g., chapters, sections, paragraphs. A makefile or build script consists of
definitions and rules that may be nested.

An FST is a stripped-down abstract syntax tree: it contains only the infor-
mation that is necessary for the specification of the structure of a component.
The nature of this information depends on the degree of granularity at which
software artifacts are to be composed [22], as we discuss below.

Principally, a component may contain elements written in different code
and noncode languages, e.g., makefiles, design documents, performance pro-
files, mathematical models, diagrams, documentation, or deployment descrip-
tors, which all can be represented as FSTs [8,10]. While our work is not limited
to code artifacts, for simplicity, we explain our ideas by means of Java.

Furthermore, type information is attached to the nodes. This is important
during component composition in order to prevent the composition of incom-
patible nodes, e.g., the composition a field with a method.

The FSTs we consider are unordered trees. That is, the children of a node
in an FST do not have a fixed order, much like the order of field declarations
1 Jak is a Java-like language for stepwise refinement and feature-oriented program-

ming [21]. It extends Java by the keyword refines in order to express subsequent
class extensions.

2 Mapped to specific component languages, a name could be a string, an identifier, a
signature, etc.



in a Java class is irrelevant. However, some languages may require a fixed order
(e.g., the order of sections in a text document matters). This will be addressed
in further work.

Figure 1 depicts an excerpt of the implementation of a Java component
BasicStack and its representation in form of an FST. The FST contains nodes
that represent packages, classes, interfaces, fields, and methods, etc. They do
not reflect information about the internal structure of methods or the variable
initializers of fields. That is, our FST only represents the modular substructure of
a software artifact (and not more). The structure and content of modules is not
always modelled completely, e.g., our FST in Figure 1 does not represent the full
Java abstract syntax tree including statements, parameters, or expressions, but
only the main structural elements. A different granularity would be possible [22],
e.g., we could represent only packages and classes but not methods or fields as
FST nodes, or we could also represent statements or expressions. However, we
will demonstrate that the granularity we chose is sufficient for composition, while
it simplifies the overall process. At the same time, reasoning at a finer grain is
still possible, i.e., method bodies can be composed without representing their
substructure, as we will show in Section 3.2.

1 package util;
2 class Stack {
3 LinkedList data = new LinkedList ();
4 void push(Object obj) {
5 data.addFirst(obj);
6 }
7 Object pop() {
8 return data.removeFirst ();
9 }

10 }
datapush

pop

class

package

BasicStack

util

Stack

fieldmethod

Fig. 1. Java code and FST of the component BasicStack.

3 Component Composition by FST Superimposition

Superimposition is the process of composing trees recursively by composing
nodes at the same level (counting from the root) with the same name3 and
type. Our aim is to abstract from the specifics of present tools and languages
and to make superimposition available to a broader range of software artifacts.
Moreover, a general model allows us to study the essence of software composition
by superimposition, apart from language- and tool-specific issues. Our work is
motivated by the observation that, principally, composition by superimposition

3 Of course, the use of aliasing techniques would allow a programmer to compose
artifacts that have different names [23].



is applicable to any kind of software artifact that provides a sufficient struc-
ture [8, 10], i.e., a structure that can be represented as an FST.

With superimposition, two trees are composed by composing their corre-
sponding nodes, starting from the root and proceeding recursively. Two nodes
are composed to form a result node (1) when their parents (if there are parents)
have been composed, i.e., they are on the same level, and (2) when they have the
same name and type. The result node receives the name and type of the nodes
that have been composed. Some nodes (the leaves of an FST) have also content,
which is composed as well (see Sec. 3.2). If two nodes have been composed, the
process of composition proceeds with their children. If a node has no counterpart
to be composed with, it is added as separate child node to the composed parent
node. This recurses until all leaves have been reached.

In Figure 2, we list a Java function compose that implements recursive com-
position. In Line 2, two nodes are composed, which succeeds only when the nodes
are compatible (same name and type). In the case that the two nodes are ter-
minals, their content is composed as well. In Lines 4–9, all children of the input
trees (which are in fact subtrees) are composed recursively. That is, for each
node in treeA, findChild returns the corresponding node in treeB, if there is
one. Then, in Lines 8 and 10–13, the remaining nodes that have no counterpart
to be composed with are added to the new parent node.

1 static Tree compose(Tree treeA , Tree treeB) {
2 Node newNode = treeA.node (). composeNode(treeB.node ());
3 i f (newNode != null) {
4 Tree newTree = new Tree(newNode );
5 for(Tree childA : treeA.children ()) {
6 Tree childB = treeB.findChild(childA.name(),childA.type ());
7 i f (childB != null) newTree.addChild(compose(childA , childB ));
8 else newTree.addChild(childA.copy ());
9 }

10 for(Tree childB : treeB.children ()) {
11 Tree childA = treeA.findChild(childB.name(),childB.type ());
12 i f (childA == null) newTree.addChild(childB.copy ());
13 }
14 return newTree;
15 } else return null;
16 }

Fig. 2. A Java function for composing FSTs.

Figure 3 illustrates the process of FST superimposition with a Java example;
Figure 4 depicts the corresponding Java code. Our component BasicStack is
composed with a component TopOfStack. The result is a new component,
which is called CompStack1, that is represented by the superimposition of
the FSTs of BasicStack and TopOfStack. The nodes util and Stack are
composed with their counterparts, and their subtrees (i.e., their methods and
fields) are composed in turn (i.e., are merged).
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Fig. 3. FST superimposition of TopOfStack • BasicStack = CompStack1.

3.1 Terminal and Nonterminal Nodes

Independently of any particular language, an FST is made up of two different
kinds of nodes:

Nonterminal nodes are the inner nodes of an FST. The subtree rooted at
a nonterminal node reflects the structure of some implementation artifact
of a component. The artifact structure is transparent and subject to the
recursive composition process. That is, a nonterminal node has only a name
and a type, and no further content.

Terminal nodes are the leaves of an FST. Conceptually, a terminal node may
also be the root of some structure, but this structure is opaque in our model.
The substructure of a terminal does not appear in the FST. That is, a
terminal node has a name, a type, and content.

While the composition of two nonterminals continues the recursive descent in
the FSTs to be composed, the composition of two terminals terminates the
recursion and requires a special treatment. There is a choice of whether and how
to compose terminals:

Option 1: Two terminal nodes with the same name and type cannot be com-
posed, i.e., their composition is considered an error.

Option 2: Two terminal nodes with the same name and type can be composed
in some circumstances; each type has to provide its own rule for composition
(see Sec. 3.2).4

In Java FSTs, packages, classes, and interfaces are represented by nonterminals.
The implementation artifacts they contain are represented by child nodes, e.g.,
a package contains several classes and classes contain inner classes, methods,
and fields. Two compatible nonterminals are composed by composing their child
nodes, e.g., two packages with equal names are merged into one package that
contains the composition of the child elements (classes, interfaces, subpackages)
of the two original packages.
4 Note that it would also be possible to provide specific rules for nonterminal compo-

sition, but we did not encounter this case so far.



1 package util;
2 class Stack {
3 Object top() { return data.getFirst (); }
4 }

•
1 package util;
2 class Stack {
3 LinkedList data = new LinkedList ();
4 void push(Object obj) { data.addFirst(obj); }
5 Object pop() { return data.removeFirst (); }
6 }

=
1 package util;
2 class Stack {
3 LinkedList data = new LinkedList ();
4 void push(Object obj) { data.addFirst(obj); }
5 Object pop() { return data.removeFirst (); }
6 Object top() { return data.getFirst (); }
7 }

Fig. 4. Java code of TopOfStack • BasicStack = CompStack1.

Java methods, fields, imports, modifier lists, and extends, implements, and
throws clauses are represented by terminals (the leaves of an FST), at which
the recursion terminates. Their inner structure or content is not considered in
the FST model, e.g., the fact that a method contains a sequence of statements
or that a field refers to a value or an expression.

Note that the first option of disallowing terminal composition [1] prevents
method extension. But method extension is common practice in many approaches
of software composition [6,8,10,24–28]. Therefore, we choose the second option:
providing language-specific composition rules for composing terminal nodes.

3.2 Composition of Terminals

In order to compose terminals, each terminal type has to provide its own rule
for composition. Here are seven examples for Java-like languages:

– Two methods are composed if it is specified how the method bodies are com-
posed (e.g., by overriding and using the keywords original [27] or Super [8]
inside a method body).

– Two fields are composed by replacing one value with the value of the other
or by requiring that one has a value assigned and the other has not.

– Two implements clauses are composed by concatenating their entries and
removing duplicates.

– Two extends clauses are composed by replacing one entry with another
entry (in the case of single inheritance) or by concatenating their entries
and removing duplicates (in the case of multiple inheritance).



– Two throws clauses are composed by concatenating their entries and remov-
ing duplicates.

– Two modifier lists are composed by replacement following certain rules, e.g.,
public may replace private, but not vice versa.

– Two import declaration lists are composed by concatenating their entries
and removing duplicates.

Overall, in Java-like languages, there are three kinds of composition rule pat-
terns: overriding (methods), replacement (fields, extends clauses, modifier lists),
and concatenation (imports, implements and throws clauses).

Figures 5 and 6 depict how Java methods are composed during the composi-
tion of the two features EmptyCheck and BasicStack using a wrapping com-
position rule. The methods push of EmptyCheck and BasicStack are com-
posed in CompStack2 by one method (push) wrapping the other (push wrappee).
The two pop methods are composed analogously. The keyword original [27],5

provides a means to specify (without knowledge of their source code) how method
bodies are merged. This composition rule is also applicable to other types and
languages [8,14]. Other composition rules for composing method bodies, such as
inlining would be possible.

datapush

pop

datapush

pop

push

pop

util

Stack

util

Stack

CompStack

count

BasicStack

util

Stack

count

EmptyCheck

terminal composition wrappers

2

Fig. 5. Composing Java methods (FST representation).

Harrison et al. [23] propose a catalog of more sophisticated composition rules
that permit a quantification over and a renaming of the structural elements of
components. We argue that their rules are not specific to Java and can be reused
to compose components written in other languages.

3.3 Discussion

Superimposition of FSTs requires several properties of the language in which
the elements of a component are expressed:
5 In the composed variant, original is replaced by a call to the wrapper.



1 package util;
2 class Stack {
3 int count = 0;
4 void push(Object obj) { original(obj); count ++; }
5 Object pop() {
6 i f (count > 0) { count --; return original (); } else return null;
7 }
8 }

•
1 package util;
2 class Stack {
3 LinkedList data = new LinkedList ();
4 void push(Object obj) { data.addFirst(obj); }
5 Object pop() { return data.removeFirst (); }
6 }

=
1 package util;
2 class Stack {
3 int count = 0;
4 LinkedList data = new LinkedList ();
5 void push_wrappee(Object obj) { data.addFirst(obj); }
6 void push(Object obj) { push_wrappee(obj); count ++; }
7 Object pop_wrappee () { return data.removeFirst (); }
8 Object pop() {
9 i f (count > 0) { count --; return pop_wrappee (); } else return null;

10 }
11 }

Fig. 6. Composing Java methods.

1. The substructure of a component must be hierarchical, i.e., an n-ary tree.
2. Every element of a component must provide a name that becomes the name

of the node in the FST.
3. An element must not contain two or more direct child elements with the

same name and type.
4. Elements that do not have a hierarchical substructure (terminals) must pro-

vide composition rules, or cannot be composed.

These constraints are usually satisfied by object-oriented languages. But also
other (noncode) languages align well with them [8, 14]. Languages that do not
satisfy these constraints do not provide sufficient structural information for a
composition by superimposition. However, they may be enriched by providing
an overlaying module structure [14].

4 Implementation

We have a tool, called FSTComposer, that implements superimposition based
on the FST model. Currently, it supports the composition of components written
in Java, Jak, XML, and plain text.



FSTComposer expects a list of software components that participate in
a composition. It takes a file as input that contains a list of the component
names. Then, FSTComposer looks up the locations of the components in the
file system.

In FSTComposer, software components are represented by containment
hierarchies [8]. A containment hierarchy is a file system directory that contains
all artifacts (code and noncode) that belong to a component; the directory may
contain subdirectories denoting Java packages, etc.

Figure 7 shows the components EmptyCheck and BasicStack containing
source and nonsource code artifacts. The composition ‘EmptyCheck • Basic-
Stack = CompStack2’ composes both their containment hierarchies recur-
sively. For example, the resulting artifact Stack.java is composed of its coun-
terparts in EmptyCheck and in BasicStack, matched by name and type.

util util util

Doc.htmlDoc.htmlStack.java Stack.java

Stack.java   Stack.java = Stack.java

Doc.htmlStack.java

2EmptyCheck BasicStack CompStack

Fig. 7. Composing two containment hierarchies.

Based on an input list of components (essentially, the paths of the con-
tainment hierarchies), FSTComposer generates an FST per component. There
must be a distinct parser per language. That is, when composing components
that contain Java and XML artifacts, two different parsers create the corre-
sponding FSTs.

Currently, our Java and Jak parsers generate FSTs containing nodes for pack-
ages, classes, interfaces, methods, fields, imports, modifier lists, and implements,
extends, and throws clauses. Packages, classes, and interfaces the nonterminal
nodes of a Java FST. The rest are terminals. We have implemented the seven
composition rules for terminal nodes, that we have explained in Section 3.2, for
Java and for Jak.

Furthermore, we have an XML parser that generates, for each tag, attribute
and piece of raw text content, a distinct node; tags become nonterminals; at-
tributes and pieces of text content become terminals; attributes are composed
like fields in Java (cf. Sec. 3.2) and pieces of raw text are composed by concate-
nating their content.



Finally, the text parser is trivial in that it creates nonterminal nodes for
directories and simply stores the content of text files in a terminal node each;
text nodes are composed by concatenation.

Usually, after the composition step, FSTComposer writes out the composed
artifacts. But it can also write out the FSTs of the input and output components
in the form of an XML document (containing all information about the Java,
Jak, XML, or text artifacts). This language-independent program representation
can be the input for further pre- or post-processing of components and compo-
nent compositions, e.g., optimization, visualization, interaction analysis, or error
checking on the basis of FSTs.

The FSTComposer tool along with some examples and case studies can be
downloaded from the FSTComposer Web site.6

5 Case Studies

We have conducted three case studies to demonstrate the practicality of our ap-
proach. Firstly, we have composed a graphical programming tool, called GUIDSL,
out of a set of software components, which has been implemented by Batory [29].
Secondly, we have composed a series of programs of a small library of graph
algorithms, called graph product line (GPL), which has implemented by Lopez-
Herrejon and Batory [30]. Thirdly, we have composed several variants of a graph-
ical UML editor, which is an open source program that has been refactored into
components by a student. The source code of the three case studies can be
downloaded at the FSTComposer Web site.

5.1 GUIDSL

GUIDSL is a tool for software product line configuration [29]. GUIDSL consists of
26 components. For example, there are components that implement the graphical
user interface, a parser for grammars that define valid configurations, user event
handling, etc. Overall, the code base of GUIDSL contains 294 classes (from which
145 result classes are being composed), implemented by 9,345 lines of Jak code.

GUIDSL was developed in a stepwise manner using components in order to
foster extensibility and maintainability. Basically, there is only one valid con-
figuration that forms a meaningful working tool. Other configurations may be
valid (syntactically correct) but do not contain all necessary features to work
appropriately. We generated a GUIDSL variant consisting of all 26 components,
implemented by 7,684 lines of composed Java code.7

6 http://www.infosun.fim.uni-passau.de/cl/staff/apel/FSTComposer/
7 For comparability of the lines-of-code metric, we formatted the code of our case

studies using a standard Java pretty printer (http://uranus.it.swin.edu.au/∼jn/
java/style.htm). Furthermore, we counted only lines that contain more than two
characters (thus, ignoring lines with just a single bracket) and that are not simply
comments (http://www.csc.calpoly.edu/∼jdalbey/SWE/PSP/LOChelp.html).

http://www.infosun.fim.uni-passau.de/cl/staff/apel/FSTComposer/
http://uranus.it.swin.edu.au/~jn/java/style.htm
http://uranus.it.swin.edu.au/~jn/java/style.htm
http://www.csc.calpoly.edu/~jdalbey/SWE/PSP/LOChelp.html


We checked the correctness of the composition by testing GUIDSL manually.
This was feasible since it is a graphical tool with a fixed set of functions and
options that all could be tested. All parser passes and the generation of the
composed Java program took less than two seconds.

5.2 Graph Product Line

GPL consists of 26 components written in Jak. For example, the basic compo-
nents implement weighted, unweighted, directed, and undirected graph struc-
tures. Further components implement advanced features such as breadth-first
search, depth-first search, cycle checking, the Kruskal algorithm, the Prim al-
gorithm, etc. The overall code base of GPL contains 57 classes (from which 31
result classes are being composed), implemented by 1,308 lines of Jak code.

Beside Jak code, 9 of the 26 GPL components contain an XHTML file that
documents the usage and functionality of the graph structures and algorithms.
The XHTML files have been prepared by Don Batory and Salvador Trujillo
in order to be ready for superimposition [14, 31]. In our case study, we have
applied some minor adaptations to match the syntax of FSTComposer, i.e., we
have given some XHTML tags unique name attributes in order to specify which
tags superimpose other tags. Being superimposed, these XHTML files form the
tailored documentation of GPL, depending on the selected components during
composition. Due to the lack of space, we refer the reader to the FSTComposer
Web site for XHTML examples (of the GPL case study).

Finally, GPL contains some JPEG files that are loaded by the XHTML doc-
umentation. During composition, these files are treated like text documents, but
their content is not read. A composition of two JPEG files is not necessary. Nev-
ertheless, artifacts with completely opaque content, such as images, align well
with the FST model. Artifacts with the same name and type are composed by
replacement (a warning is displayed).

Overall, we generated 10 different variants of graph structures along with
compatible algorithms with a minimum of 8 and a maximum of 12 components.
The code bases of the generated programs range from 200 to 400 lines of com-
posed Java code and 200 to 300 lines of composed XHTML code.

We used GUIDSL to guarantee the validity of the generated configurations [29],
e.g., the Kruskal algorithm requires a weighted graph. We checked the correct-
ness of the composed graph implementation with automated tests. The entire
composition process, including parsing the Jak and XHTML code, took less than
a second per composed program variant.

5.3 Violet

Violet is a graphical UML diagram editor written in Java.8 It has been refac-
tored by a student as a class project at the University of Texas at Austin.9 The
8 http://sourceforge.net/projects/violet/
9 The project was done in the course of the 2006 FOP class at the Department of

Computer Sciences of the University of Texas at Austin.

http://sourceforge.net/projects/violet/


refactored version of Violet consists of 88 components ready for superimposition.
They implement support for different UML diagram types as well as drag-and-
drop and look-and-feel functionality. Overall, the refactored code base of Violet
contains 157 classes (from which 67 final classes are being composed), imple-
mented by 5,220 lines of Java code.

Beside Java code, 83 of the 88 Violet component contain, in summary, 98
property files. A property file contains text-based configuration information of
the Violet UML editor, e.g., edge1.tooltip=Association. Individual compo-
nents of Violet provide individual configuration information. Property files are
simply composed by text concatenation. There is no further module structure
that demands a recursive descent in the FST during composition. As with GPL,
Violet contains some JPEG files, but they had not to be composed.

We generated 10 different variants of Violet with a minimum of 51 and a
maximum of 88 components. The code bases of the generated programs range
from 3,100 to 4,100 lines of composed Java code and 160 lines of text in form of
property files.

In order to guarantee their validity, we used the GUIDSL tool for selecting
the components of the 10 variants. We tested the variants manually, which was
feasible since they differed mainly in their options available in the graphical
menus of the editor. All parser passes and the generation of the composed Java
and property files took less than two seconds each.

6 Integrating Further Languages

In the previous section, we have illustrated how the FST model abstracts from
implementation-specific details of programming languages, while capturing well
the abstract hierarchical structure of software components. Currently, FSTCom-
poser supports the composition of components written in Java, Jak, XML, text,
and binaries. Due to the generality of the FST model, FSTComposer can be
extended to compose also further kinds of artifacts.

Suppose we want to compose software components containing Bali gram-
mar files (a declarative language and tool for processing BNF grammars) [8].
It has been demonstrated that Bali grammars are ready for composition by
superimposition. That is, they can be represented as FSTs and composed by
superimposition using a proprietary tool [8]. Firstly, we would need a parser
that produces FSTs in a format accessible to FSTComposer. Such a parser
can be built by extending an existing parser. Secondly, we would have to define
the types of nodes (by providing a typically empty subclass per type) that may
appear in a Bali FST, e.g., nodes for grammar production rules, axioms, etc.
(analogously to nodes for classes and methods in Java). Finally, we would have
to define Bali-specific composition rules for composing terminal nodes, e.g., pro-
duction rules can be extended by providing additional alternatives, similarly to
method overriding in Java. Section 7 lists a selection of languages that can be
modeled by FSTs.



7 Related Work

Superimposition is a composition technique that has been applied successfully
in different areas of software development. Superimposition was initially used
for extending distributed programs in multiple places [2, 3]. Subsequently, sev-
eral researchers adopted this idea in order to merge class hierarchies developed
by multiple teams [1], to adapt components [13], to support subject-oriented
programming [9, 10], feature-oriented programming [7, 8], and aspect-oriented
programming [11,12], and to implement collaboration-based designs [6]. Several
languages support composition by superimposition, e.g., Scala [32], Jiazzi [25],
Classbox/J [27], ContextL [33], Jak [8], and FeatureC++ [34].

Batory et al. [8], Tarr et al. [10], and Clarke et al. [15] noted that super-
imposition as a composition technique is not limited to source code artifacts
but applies to any kind of artifact relevant in the software development pro-
cess. Several proprietary tools support the composition of nonsource code arti-
facts [8, 14,16–19].

While it has been noted that there is a unique core of all composition mech-
anisms based on superimposition [8, 10], researchers have not condensed the
essence of superimposition into a set of general tools. We believe that our FST
model captures the essence of superimposition. It is language-independent. We
envision tools that operate on FSTs (or their algebraic representations) to com-
pose, visualize, optimize, and verify software components. Thus, the FST model
provides an intermediate format not only for different languages but also for
different tools that aim at reasoning about components.

In a parallel line of research, we have developed an algebra and a calcu-
lus (incl. operational semantics and type system) of feature composition which
is consistent with the FST model [20, 35]. It will allow us to explore general
properties of software composition as well as typing issues. Furthermore, it is
a means to infer whether a given language fits the FST model and, more in-
terestingly, which properties a language must have to be ‘ready’ for FST-based
superimposition.

Beside superimposition, also other composition techniques have been pro-
posed. For example, composition by quantification, as used in metaprogram-
ming [36] and aspect-oriented programming [37], is a frequently discussed tech-
nique. In the context of our FST model, quantification can be modeled as a tree
walk [20], in which each node is visited and a predicate specifies whether the node
is modified or not. Harrison et al. [23] propose a sophisticated set of rewriting
rules that are based on tree walks. Aggregation is another component compo-
sition technique. It can be modeled by FSTs that contain nodes that represent
themselves components, i.e., that contain FSTs. Even aggregated components
can be superimposed, since they have a hierarchical structure that can be rep-
resented as an FST. In summary, FSTs are a means to model the connection
between different composition techniques and to explore their relationship; FSTs
are not specific to superimposition.

So far, we do not consider inter-language interaction. That is, while FST-
Composer can compose components containing artifacts written in different



languages, it cannot recognize interactions between these artifacts. For example,
a Java class may expect some XML document as input, which is defined in an-
other component. Grechanik [38] et al. propose an approach based on recursive
types and type reification to bridge the gap between different languages, which
can be used in concert with FSTComposer.

Finally, superimposition is a specific instance of model weaving in model-
driven development [39] and of graph amalgamation in model theory [40].

8 Conclusion

We model software components by tree structures and component composition
by tree superimposition. The FST model abstracts from the specifics of a partic-
ular programming language or tool. Any reasonably structured software artifact
that can be represented as an FST can be composed by our approach.

As a proof of concept, we have developed a tool that implements FST super-
imposition. Currently, we have parsers for Java, Jak, XML, text, and binaries
that generate FSTs ready for composition. Beside generating code for feature
composition, FSTComposer is able to generate XML documents representing
the FSTs involved in a composition, ready for further processing.

Three case studies have demonstrated the applicability of our approach and
our tool: FST superimposition scales to medium-sized programs (10 KLOC).
Scalability to larger programs remains to be shown in further work.

We intend to plug various other languages into the tool in order to demon-
strate the generality of our approach. C# and Bali have been shown to be
compatible with the FST model. Furthermore, we are working on a formaliza-
tion of the FST model and further tools that operate on FSTs, e.g., a tool that
visualizes FSTs and a tool that analyzes interactions between components.
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