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Software projects are complex technical and organizational systems involving large numbers of artifacts and

developers. To understand and tame software complexity, a wide variety of program analysis techniques have
been developed for bug detection, program comprehension, verification, and more. At the same time, repository
mining techniques aim at obtaining insights into the inner socio-technical workings of software projects at a

larger scale. While both program analysis and repository mining have been successful on their own, they

are largely isolated, which leaves considerable potential for synergies untapped. We present SEAL, the first

integrated approach that combines low-level program analysis with high-level repository information. SEAL

maps repository information, mined from the development history of a project, onto a low-level intermediate

program representation, making it available for state-of-the-art program analysis. SEAL’s integrated approach

allows us to efficiently address software engineering problems that span multiple levels of abstraction, from

low-level data flow to high-level organizational information. To demonstrate its merits and practicality, we

use SEAL to determine which code changes modify central parts of a given software project, how authors

interact (indirectly) with each other through code, and we demonstrate that putting static analysis’ results

into a socio-technical context improves their expressiveness and interpretability.
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1 INTRODUCTION
Software systems are among the most complex human-made systems today. To understand the

inner workings and external qualities of complex software systems, researchers and developers

have devised a variety of program analysis techniques to extract relevant information, including

bug finders, program verifiers, and code metric tools.

The rise of open-source software has triggered the development of repository mining techniques

that extract organizational information from software repositories. For example, researchers have

investigated how code changes evolve on different platforms [59] or analyzed the characteristics

of uncompilable code [21]. Other approaches analyze the socio-technical interaction around a

software project to better understand how developers collaborate [7, 24–26].

Such high-level repository mining approaches analyze code typically at file, textual, or syntactical

level and thus miss important information that is only encoded in the underlying program semantics.

Information on the program semantics is often only accessible by low-level static program analysis

techniques such as data-flow analyses. While high-level repository analyses are sufficient to get

good first results, information that is hidden in the program’s semantics, e.g., information on

data-flow, is overlooked. This insufficiency precludes important use cases such as accounting bugs

and security vulnerabilities directly to the commits/developers that introduced or know best how

to fix them. For illustration, let us consider the example in Figure 1: Alice commits a change c1,
later Bob also changes the same file with commit c2. With a purely textual or syntactical repository

analysis, no connection between the two changes can be inferred, except that both change the same

file. By mapping the change to a control-flow graph, we can leverage powerful program analysis

techniques to detect previously hidden data dependencies between the changes and, in turn, infer

that c2 could be related to a bug in c1.
Our central hypothesis is that a combination of low-level program analysis (in particular, data-

flow analysis) with high-level repository information empowers us to answer practically- and

scientifically-relevant questions that neither can answer alone. Many questions are difficult to

answer solely based on data from a high-level repository analysis, for example, “Which developers

Source Code

Repository Analysis
(High-Level)

Program Analysis
(Low-Level)

Control-Flow

Graph

c1

c2

Revision 1 Revision 2

c1

Alice Bob

c2

Data-Flow Dependency

Fig. 1. Combining low-level program analysis with high-level repository analyses: Alice makes a change c1
to a source code file creating revision 1. Later, Bob modifies the same file at a different location with c2
creating revision 2. A typical repository analysis cannot find a connection between c1 and c2, except that both

modified the same, possibly very large, file. If we map the changes of Alice and Bob onto the corresponding

control-flow graph and run a data-flow analysis, we discover a data-flow dependency (red) from c2 to c1.
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SEAL: Integrating Program Analysis and Repository Mining 3

are affected by a change?” or “Which portion of a code base is influenced by a particular change?”.

The underlying problem is that repository analyses often do not have precise data-flow information

at their disposal, if at all, or try to include this information in an ad-hoc manner, making it difficult

to apply them to a wide range of practical settings. Conversely, state-of-the-art program analysis

techniques and tools do not have organizational information (e.g., about versions or developers) at

their disposal. This problem is hard to solve by just combining different tools, because the high-level

information needs to map correctly to the program operational semantics and a fairly low-level

program representation. We seek to integrate high-level repository information with low-level

information in a principled way and make the combined information available for interpretation.

For this purpose, we have developed SEAL, a parameterizable approach that combines change

information from a project’s history with information on the program semantics computed by

an inter-procedural, flow- and context-sensitive data-flow analysis. SEAL’s integrated approach

allows us to precisely analyze data-flow interactions between commits—a previously infeasible

endeavor. More generally, SEAL establishes a mapping from a high-level information source (in

our case, commit information) to an intermediate program representation that is suited for writing

precise, low-level program analyses, conceptually decoupling the information source from the

actual analysis. SEAL defines a general and parameterizable relation between data flows and high-

level information and allows us, for the first time, to embed statements on the program semantics

into the socio-technical context of a software project.

We implemented SEAL on top of LLVM [35] and PhASAR [51] in the form of a parameterizable

framework that adds commit information to the compiler’s intermediate representation (LLVM IR)

and combines it with an inter-procedural data-flow analysis to determine which commits interact

with each other at the level of data-flow. We designed SEAL to be modular and reusable to enable

the commit information to be used by different static program analyses that target LLVM IR.

By means of a divers set of 13 open-source projects, we demonstrate the practicality of SEAL.

Specifically, we apply it to four relevant software analysis problems and demonstrate how a

combination of commit and data-flow information can be leveraged to solve these problems: (1)

We use SEAL to detect potentially impactful changes that modify central code (i.e., code which

interacts with lots of other code) in a software project. (2) We demonstrate the applicability of SEAL

to socio-technical analyses by analyzing the socio-technical structure that arises from interactions

among authors via commits. (3) We apply our approach to analyze which authors could be affected

by a change. (4) Furthermore, we discuss how data generated by SEAL can be used to enrich existing

data-flow analyses by making them change-aware and putting their results into a socio-technical

context without paying the full costs for follow-up analyses.

In summary, we make the following contributions:

• A novel approach, called SEAL, that combines high-level repository mining and precise low-level

program analysis.

• An open-source implementation of SEAL built on top of LLVM [35] and PhASAR [51] as well as

a modified implementation of Clang that allows one to inject repository change information

during compilation, which is integrated with PhASAR, allowing for precise data-flow analyses.

• An evaluation consisting of four different studies, three that demonstrate the applicability of

SEAL, evaluated on 13 open-source projects, and a showcase of how SEAL can be used to make

existing data-flow analyses change-aware.

All results and a replication package are publicly available.
1
Our implementation and additional

evaluation tools are open source and available on our project Website.
2

1
Supplementary Website: https://se-sic.github.io/paper-SEAL/ and on Zenodo: https://doi.org/10.5281/zenodo.7595363

2
https://vara.readthedocs.io/en/vara-dev/
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1 int main() {
2 int i = 20;
3 int j = 22;
4 return i + j;
5 }

◁ 3e8882e
◁ ea8426c
◁ c4d9b1a
◁ 0872f49
◁ 3e8882e

(a) Running example C program. The column on the right-hand side shows the hashes of the commits that

modified the line last.

1 define dso_local i32 @main() #0 {
2 entry:
3 %retval = alloca i32, align 4, !Commit !3
4 %i = alloca i32, align 4, !Commit !9
5 %j = alloca i32, align 4, !Commit !5
6 store i32 0, i32* %retval, align 4, !Commit !3
7 store i32 20, i32* %i, align 4, !Commit !9
8 store i32 22, i32* %j, align 4, !Commit !5
9 %0 = load i32, i32* %i, align 4, !Commit !7
10 %1 = load i32, i32* %j, align 4, !Commit !7
11 %add = add nsw i32 %0, %1, !Commit !7
12 ret i32 %add, !Commit !7
13 }

◁ 3e8882e
◁ ea8426c
◁ c4d9b1a
◁ 3e8882e
◁ ea8426c
◁ c4d9b1a
◁ 0872f49
◁ 0872f49
◁ 0872f49
◁ 0872f49

(b) LLVM-IR representation of the running example of Figure (a). For simplicity, we depict the meta-data

nodes that contain the commit information as triangles (◁) on the right-hand side.

Fig. 2. Running example: commit information at source-code level and its mapping to the IR.

2 SEAL AT A GLANCE
In this section, we provide an overview of SEAL and show how mapping repository information

onto a compiler IR enables SEAL to combine high-level data with a specialized data-flow analysis.

We define the concept of commit interactions, an abstraction that merges both kinds of information

and enables us to reason about how data flows connect seemingly unrelated commits. Then, we

describe in detail how SEAL can compute these commit interactions using the mapped repository

information and a static taint analysis.

2.1 Code Annotation
In a preparation step, we map information from the version control system into a representation

on which we later conduct the program analysis. As program representation, we use the compiler’s

intermediate representation (IR), which is a common abstraction used in modern compilers and

static analysis tools. It is important to note that SEAL and the definitions in Section 2.2 are based on,

but not restricted to, a given IR. A key mechanism of our approach is that, during the construction

of the IR, we add information to the specific IR instructions that relate them to the commit that

introduced the corresponding code. The compiler determines the last change for each source-code

line by accessing repository meta-data (e.g., git-blame
3
) and then annotates the commit hash to

the respective instruction. Each commit itself is a snapshot of the repository that represents the

changes compared to the previous commit.

Figure 2a lists a C program that serves as our running example. The hash of the commit that

introduced each source-code line is shown on the right (◁). During compilation, SEAL adds this

information to the IR, as shown in Figure 2b. Each of the IR instructions is annotated by its

corresponding commit hash (right side).

3
Git-blame is a versioning system mechanism that annotates each line in a file with the commit that last modified it.
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2.2 Commit Interactions
We devise a formal framework that serves as a basis for SEAL. In particular, the framework defines

the abstract structure of commit interactions and commit-interaction paths, based on a given

relationship between program elements, data flows, in our case.

A program P is a composition of instructions i1, . . . , in ∈ P stemming from a sequence of

commits c1, . . . , cm ∈ C, where C is the set of all commits from the repository.

Definition 1. Let base be a function that maps an IR instruction i ∈ P to the corresponding base
commit c ∈ C, which gets attached during compilation.

The base commit represents the initial commit that introduced the source line in question to the

code base, as illustrated on the right-hand side of Figure 2b

Definition 2. Function instructions computes the set of all instructions added by commit c (i.e.,
the set of instructions whose base commit is c).

instructions(c) = { i | base(i) = c ∧ i ∈ P }

Applied to our example of Figure 2b, instructions returns for commit 3e8882e a set containing the

two instructions alloca in Line 3 and store in Line 6.

Next, we define interactions between commits. We define the relation⇝ (relates to) to represent

data-flow interactions. In general, our framework abstracts from any concrete relationship and

does not require specific properties of the relation⇝. However, in a concrete instantiation, certain

properties can be defined by the user to express desired analysis semantics. In our case, we require

⇝ to be transitive and not symmetric because the effects of data-flow interactions are directional,

meaning, a write to a variable does only affect subsequent reads and not preceding ones.

Definition 3. For two commits c1, c2 ∈ C, interactions computes all tuples of instructions related

by⇝ that belong to c1 and c2.

interactions(c1, c2) =
{
( i1, i2 ) | i1 ⇝ i2 ∧ i1 ∈ instructions(c1)

∧ i2 ∈ instructions(c2)
}

Function interactions applied to 3e8882e and 0872f49, for our running example in Figure 2b,

would return an empty set, since there are no data flows between instructions added by 3e8882e
and instructions added by 0872f49. Applied to ea8426c and 0872f49 we obtain: { ( alloca :4, load :
9 ), ( store :7, load :9 ), . . .}, where inst:n denotes instruction inst at line number n from Figure 2b.

Once we created a fixed mapping from commit information to IR and determined the interactions

for our program, we can investigate interactions between commits derived from interactions

between instructions.

Definition 4. The constructor CI for a commit interaction is a function that maps a pair of

instructions that interact with respect to⇝ to a pair of commits.

CI(i1, i2) =
(
base(i1), base(i2)

)
with base(i1) ≠ base(i2) ∧ i1 ⇝ i2

Intuitively, two commits interact when code added by the first commit interacts with code from the

second commit. In our example, we obtain the commit interaction ( ea8426c , 0872f49 ), for the
pair ( alloca :4, load :9 ) of instructions. That is, code changes from ea8426c interact with changes

introduced by 0872f49.
To further aggregate information from commit interactions and add a context-specific meaning,

we group commit interactions for every instruction into a commit-interaction path.

ACM Trans. Softw. Eng. Methodol., Vol. , No. , Article . Publication date: February 2023.
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Definition 5. The constructor CIP for a commit-interaction path takes an instruction i ∈ I and
outputs a tuple whose first element is the set of all commits that interact with the base commit of i,
except the base commit itself; the second element is the base commit for i.

CIP(i) =
({

base(i ′) | i ′⇝ i ∧ i ′ ∈ P ∧ base(i ′) ≠ base(i)
}
, base(i)

)
A commit-interaction path aggregates over multiple commit interactions based on a target instruc-

tion i. All commits, except the base commit of the target instruction i, belonging to the interaction

set of i are merged into a single set. For the ret instruction in Line 12 from Figure 2b, we obtain the

corresponding CIP(ret : 12) =
(
{ c4d9b1a, ea8426c } , 0872f49

)
, which indicates that two other

commits, c4d9b1a and ea8426c, interact with the base commit 0872f49 at instruction ret.

2.3 Computing Commit Interactions
For computing commit interactions, we have implemented a flow- and fully context-sensitive,

alias-aware, inter-procedural taint analysis based on Interprocedural Distributive Environments
(IDE) [50].

IDE is an algorithmic framework to implement data-flow analysis. To check whether a property

of interest holds at a certain point in a program, IDE constructs a so-called exploded super-graph
(ESG). An ESG is constructed by replacing each node in the program’s inter-procedural control-flow

graph with a bipartite graph representation of the corresponding flow function. Flow functions

for identity (id), generating (gen) and removing (kill) data-flow facts are distributive and can be

represented as bipartite graphs as Figure 3 shows. Thus, all gen/kill-problems such as uninitialized

variables, available expressions, reaching definitions and taint analysis can be expressed in IDE. If

a node (i, d) in the ESG is reachable from a special tautological node Λ, the data-flow fact d (∈ D,

the data-flow fact domain) holds at instruction i (∈ I, the set of program instructions). In addition,

ESG edges can be annotated with lambda functions to specify value computations that are solved

over a separate value domain V . These so-called edge functions allow one to encode an additional

value computation problem that is solved while performing a reachability check. The runtime of

IDE is O(|N| · |D|3) [50], where |N| is the number of nodes in the inter-procedural control-flow

graph and |D| is the size of the data-flow domain D. Thus, the analysis efficiency highly depends

on the size of the underlying data-flow domain. The value domain V can even be infinite and

does not affect the algorithm’s complexity. Rather than encoding a linear-constant propagation

using flow functions that operate on the data-flow fact domain D := ⟨v, c⟩, with v ∈ V the set of

program variables and c ∈ Z that comprises tuples of program variables and their constant integer

values, a linear-constant propagation can be instead encoded much more efficiently using D := V
and V := Z. This enables the IDE framework to propagate only constant program variables as

data-flow facts while computing their constant values on the separate edge function domain. The

effect of a set of instructions can be summarized by composing flow (and edge) functions. The

composition h = g ◦ f of two flow functions f and g, called jump function, can be obtained by

combining their bipartite graph representations. h can be produced by merging the nodes of g
with the corresponding nodes of the domain of f. Once a summary for a complete procedure p has

been constructed, it can be (re)applied in each subsequent context where the procedure p is called.

Figure 4 shows an excerpt of a program and its respective ESG for the taint analysis that SEAL

uses to compute commit interactions.

Taint analysis is a parameterizable analysis that tracks values that have been tainted by one or

more sources through the program and that reports potential leaks if a tainted value reaches a sink.
Sources and sinks may comprise functions and instructions. The taint analysis T that we use in

our experiments tracks data flows between the instructions of a given target program. It treats all

variable declarations as sources and propagates these variables through the program. As we are

ACM Trans. Softw. Eng. Methodol., Vol. , No. , Article . Publication date: February 2023.
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Λ •

��

a •

��

b •

��
• • •

(a) Identity

Λ •

�� ��

a • b •

��
• • •

(b) Generate

Λ •

��

a •

��

b •

• • •

(c) Kill

Fig. 3. Distributive flow functions and their bipartite graph representations.

define i32 @main()

Λ •
∅��

��

oooo

λx.x∪ {c4d9b1a}
��

%i • %j • %0 •
%i = alloca i32

•

��
λx.x∪ {c4d9b1a}

''

•

��

• •
%j = alloca i32

•

��

•
λx.x∪ {c4d9b1a}

��

•

��

•
store i32 20, i32* %i

•

��

•

��

•
λx.x∪ {c4d9b1a}

��

•
store i32 22, i32* %j

•

��

•

��
λx.x∪ {0872f49}

''

•

��

•
%0 = load i32, i32* %i

• • • •

Fig. 4. Excerpt of the exploded super-graph for analysis T conducted on the program shown in Figure 2b.

Identity edge functions (λx.x) have been omitted. Solid arrows (→) indicate individual flow (and edge)

functions. The two-headed arrow (↠) indicates a single jump function j that summarized the effects of the

complete function on %0; the remaining jump functions have been omitted to avoid cluttering. The jump

function j specifies the value computation problem j = {0872f49}∪ {c4d9b1a}∪ {c4d9b1a}∪ ∅ and evaluates

to %0⇝ {0872f49, c4d9b1a}.

interested in all instructions that interact with tainted variables, our set of sinks is empty. We then

lift the data flows (i.e., the interactions of instructions with each other) to their respective commits,

such that we can determine commit interactions (cf. Section 2.2).

We define the relevant intra-procedural (normal) flow and edge functions, which utilize our

definitions from Section 2.2 to access commit information, formally in Figure 5 and Figure 6. For

the sake of brevity, we omit a formal description for inter-procedural (i.e., call, return, call-to-return)
flow and edge functions and describe them only informally! The call and return flow functions

map actual parameters onto the formal parameters at a call site, and vice versa at a callee’s exit

instructions (return or throw instructions). The call-to-return flow function generates flow facts

for calls to heap-allocating functions, such as, malloc() or operator new(), and propagates all

data-flow facts alongside a call site that are not involved in the function call under analysis. The

call and return edge function implementations are realized as identity, and the call-to-return edge

function implementation forwards to the normal edge function implementation.

The analysis T , starting at the program’s entry point main, taints the target program’s variables

(e.g., alloca instructions, cf. Figure 2b) as they occur and propagates them as data-flow facts through

ACM Trans. Softw. Eng. Methodol., Vol. , No. , Article . Publication date: February 2023.
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Ji : alloca xK(d) ≜

{
{d, x} if d = Λ

{d} otherwise

Ji : y = load xK(d) ≜

{
{y, x} ∪ pts(x) if d ∈ pts(x)

{d} otherwise

Ji : store x yK(d) ≜


{x, y} ∪ pts(y) ∪ pts(x) if d ∈ pts(x)

{i} if d = y∨ d ∈ pts(y)

{d} otherwise

Ji : inst ojK(d) ≜

{
{d, i} if d = oj

{d} otherwise

Fig. 5. T ’s normal flow functions. Each type of instruction that is important to the analysis is associated with

its respective distributive flow function that specifies the ESG edge that needs to be constructed. Function

pts() returns the points-to set of a given value. We assume that x ∈ pts(x) always holds.

Ji : alloca xK(d1, d2) ≜

{
λx.{base(i)} if d1 = Λ ∧ d2 = x

λx.x otherwise

Ji : store x yK(d1, d2) ≜


λx.{base(i)} if x = C ∧ d1 = d2 ∧ d1 ∈ pts(y)

λx.x ∪ base(i) if d1 ∈ pts(x) ∧ d2 ∈ pts(y)

λx.∅ if d1 = d2 ∧ d1 ∈ pts(y)

λx.x otherwise

Ji : inst ojK(d1, d2) ≜


λx.x ∪ base(i) if (d1 = Λ ∧ d2 = o

j
n

0

) ∨ (o
j
n

0

= d1 ∧ d1 = d2) ∨

(o
j
n

0

= d1 ∧ i = d2)

λx.x otherwise

Fig. 6. T ’s normal edge functions that specify a computation along the ESG edge d1 → d2 for a given

instruction and data-flow facts d1, d2. C represents a constant literal. The function pts() retrieves the

points-to set for a given variable. We assume that x ∈ pts(x) always holds.

the program. When analyzing libraries, the analysis treats every publicly accessible function as an

entry point. Each tainted variable (i.e., data-flow fact) is associated with a set of commits that is

encoded in lambda calculus using IDE’s edge functions. Initially, it contains only a data-flow fact’s

base commit produced by base(i). Whenever an instruction i interacts with one of the data-flow

facts d, base(i) is added to d’s associated set of commits. A set of commits of a data-flow fact d
can be overwritten if it is used as a target of a store instruction. In this case, all elements of d are

removed and the commit of the store instruction itself as well as all elements of the set whose

associated data-flow fact is to be stored are added. An excerpt of the exploded super-graph for our

taint analysis T conducted on the program from Figure 2b is shown in Figure 4.

In the context of our general definitions from Section 2.2, T computes the interactions (data

flows) and constructs a CIPi for every instruction i ∈ P as output.

2.3.1 Indirect Function Calls. Our IDE-based taint analysis can “see” through indirect call sites [50].

The IDE algorithm is guided through the program under analysis with help of an inter-procedural

control-flow graph (ICFG) which includes call-graph information. We use a call-graph algorithm

that resolves indirect calls to function pointers or virtual functions using points-to information

ACM Trans. Softw. Eng. Methodol., Vol. , No. , Article . Publication date: February 2023.



SEAL: Integrating Program Analysis and Repository Mining 9

computed by a scalable (inter-procedural) Andersen-Style [1] points-to analysis. There is no

difference between C and C++ according to the analysis. Calls to function pointers are resolved

by computing the points-to set of the respective function pointer. Calls to virtual functions are

resolved by computing the points-to set of the respective receiver object to find the corresponding

virtual function table for statically determining potential callee targets.

2.3.2 Soundness and Completeness. Our taint analysis presented in Section 2.3 is unsound. This
has good reasons: Implementing an analysis that computes a more complex semantic property

on realistic C/C++ programs in a sound manner and in an inter-procedural (i.e., whole program)

setting is virtually impossible or would introduce so much imprecision that it renders the analysis

results unusable [40]. Instead, our analysis aims at soundiness [40], a well-known term in static

analysis. Soundy analyses apply sensible underapproximations to compute meaningful results in an

inter-procedural analysis setting and are widely accepted in the static analysis community [40, 56].

A soundy analysis, for instance, would sanely assume that system calls and calls to libC behave

as expected: calls to such functions are not analyzed and instead, a summary that models their

effects is consulted when they have a relevant effect on the client analysis. This is also why all

static analyses used for compiler optimization that aim at computing more complex properties are

intra-procedural only.

With respect to completeness, our taint analysis is set up to analyze all functions whose definitions

are available. The call targets of system calls and calls to libC are typically available only as

declarations or are modeled as intrinsic functions by the LLVM framework. LLVM represents

specific low-level functions, such as memcpy or memset as intrinsic functions for which there are no

definitions. Instead, these function declarations are used to describe only semantics. So, it is up to

the code generator to replace them with a software or hardware implementation when generating

machine code for the desired target architecture. Our taint analysis hence models function calls to

the system and libC by applying summaries that describe their effects on points-to, call-graph, and

data-flow information. All other call sites, for which the corresponding call targets are available

only as declarations, are soundily [40] modeled using the identity transformation.

3 IMPLEMENTATION
In this section, we explain how we instantiated SEAL on top of Clang and LLVM, creating Vlang

4

as a modified version of Clang. In what follows, we provide an overview of the full commit-analysis

pipeline and how we compile and analyze real-world projects, with the help of Vlang and the

analysis framework PhASAR [51].

3.1 Lowering Commit Information to LLVM-IR
The first step of our analysis pipeline is the lowering step from an abstract syntax tree (AST) to

LLVM-IR, in which we enrich LLVM-IR with commit meta-data. During the compilation of a trans-

lation unit, Vlang computes for each AST node the last commit that modified the related code and

adds it as meta-data to the corresponding generated IR instructions. When lowering an instruction,

Vlang queries our framework for relevant commit information, providing a corresponding file,

line number, and line offset from the AST node’s expansion location (i.e., the location in the file

before macro expansion). The framework then computes the blame of the file using the library

libgit2
5
. It is important to note that the method for identifying last modifying commits can be

configured by the user. In our study, we use git blame. Then, Vlang generates a commit meta-data

4
https://github.com/se-sic/vara-llvm-project/

5
https://github.com/libgit2/libgit2/
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Fig. 7. Overview of the full build and commit-analysis pipeline. WLLVM injects Vlang into the project’s

compilation process to generate LLVM-IR files, containing commit meta-data for every translation unit. Then,

all LLVM-IR files are combined into one whole-program file, which is subsequently analyzed to compute

commit interactions.

object based on the line number’s commit hash and the commit meta-data returned back to Vlang

and attaches it to the instruction.

For illustration, consider our example of Figure 2a: On the right, we show commit hashes per

code line. During compilation, Vlang creates an AST and lowers it to LLVM-IR. Figure 2b shows

the LLVM-IR output after lowering. Let us start with the first statement in Line 3. During lowering,

Vlang creates two instructions for this statement: one allocation for the stack variable (alloca in

Line 4 of Figure 2b) and one to initialize it to 20 (store in Line 7). As one can see, Vlang added

commit meta-data to both of these instructions referenced by the meta-data tag !Commit and an

identifier ID. The ID !9 points to the meta-data section of the file containing the commit hash.

For the sake of simplicity, we leave out the actual meta-data nodes and depict the hash on the

right-hand side of Figure 2b.

After Vlang has processed the input file, all generated LLVM-IR that are related to commits

from the project’s Git repository is tagged with the corresponding commit meta-data. The enriched

LLVM-IR serves as input to our data-flow analysis (cf. Section 3.3).

3.2 Creating a Whole-Program Bitcode File
A precise commit-interaction analysis requires the data-flow analysis to be inter-procedural, i.e.,

whole program and context sensitive [53]. Analyzing every compilation unit in separate bitcode

file leads to approximations whenever callees of a call site are defined in another translation unit.

We thus implemented our analysis to be whole program. To create a whole-program bitcode file

from the project’s source code, we inject our tool Vlang into the build process. This enables us to

reuse the existing build scripts by using using Whole Program LLVM (WLLVM)
6
as a compiler

wrapper, which invokes Vlang and generates and links bitcode files.

6
https://github.com/travitch/whole-program-llvm/
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3.3 Taint Analysis for Commit Interactions
We implement our taint analysis T as an IDE [50] analysis in the PhASAR [51] framework. PhASAR

has been built on top of LLVM and provides, among others, a generic IDE solver implementation,

and all required infrastructure (e.g., control-flow analysis) to solve concrete client data-flow analysis

problems.

PhASAR’s generic IDE [50] solver operates on a problem interface type whose implementations

correspond to concrete data-flow analysis problems. The interface mainly comprises flow and edge

function factories that are queried by the data-flow solver to construct the exploded super-graph

and solve the value computation problems that are specified along the edges. We implemented

these flow and edge functions factories according to our descriptions in Section 2.3.

3.4 Data Overview
SEAL aims to be extendable, and the results shall be integrateable into existing study setups and

tool. For this purpose, SEAL has a four layered design, where at each layer the relevant information

can be extracted for use by external tools. In what follows, we given a short overview of the data

that is produced by each layer and describe how other tools can access it.

AST-level commit information. In the preparation step, before data-flow analysis, SEAL’s

compiler extension Vlangmakes commit information accessible through LLVM’s AST. The commit

data is provided by a general abstraction in Vlang that offers an interface to map AST nodes to

commit hashes. Through this interface, tools an easy way to query commit information related to a

particular AST node (e.g., to combine commit information with error messages).

LLVM-IR with commit information. During LLVM-IR code generation, Vlang attaches com-

mit information provided by the AST interface to the generated LLVM IR information in form of as

meta-data. This way, commit information is attached to LLVM’s internal representation and can

be queried, like any other meta data, through the usual framework API (e.g., to attribute LLVM’s

warnings about missed optimizations with author information).

Data-flow based commit interactions. After commit interactions have been computed, they

can be accessed within LLVM’s analysis infrastructure, enabling other analyses to query this

information. As described in Section 4.2, this enables other analyses to attach socio-technical

information to their analysis results (e.g., an analysis that detected a SQL injection can automatically

determine developers that interacting with the vulnerable code and include them in the resolving

process). In addition, these raw commit-interaction data can also be exported into a yaml for further

analysis.

Aggregated socio-technical information. To ease the analysis of data-flow-based commit

interactions, SEAL provides different graph aggregations of the raw commit interaction data,

including: commit, author, and commit-author graphs, which we use in Section 4.1. With these

graphs, existing approaches have a straight forward way integrated the data-flow based commit

information.
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12 F. Sattler, S. Böhm, P.D. Schubert, N. Siegmund, S. Apel

112 /* Make sure everything is properly aligned. */
113 static OPUS_INLINE int align(int i)
114 {
115 struct foo {char c; union { void* p; opus_int32 i; opus_val32 v; } u;};
116

117 int alignment = offsetof(struct foo, u);
118

119 /* Optimizing compilers should optimize div and multiply into and
120 for all sensible alignment values. */
121 return ((i + alignment - 1) / alignment) * alignment;
122 }

Fig. 8. The function align in file src/opus_private.h from opus revision 348e694.

4 COMMIT INTERACTIONS: APPLICATIONS
To illustrate the merits and potential of SEAL, we discuss research problems from different domains

that can be addressed only by a combination of high-level repository information and low-level

data-flow information. More importantly, some problems can be analyzed only if the high-level

information is already available during analysis. We will use these problems in the next section

to evaluate SEAL from two angles: qualitatively, using scenarios we found in real-world software

projects demonstrating how the questions can be answered using SEAL, and quantitatively, using a
number of real-world case studies demonstrating that our approach is indeed practical.

4.1 Commit Interaction Graph Analysis
First, we address three problems related to the field of repositorymining and similar areas of research

that are hard to approach using only high-level or low-level information, but become much more

tangible when combining these two. For our evaluation, we aggregate commit interactions in a

commit interaction graph. Not only does a graph representation come very naturally, because of the

data-flow relation that is used to compute commit interactions, but it also allows us to use methods

from graph theory to reason about commit interactions. We can also apply transformations to the

graph to access different kinds of information, e.g., information about commit authors.

Central code. With commit interactions, we are able to quantify the impact of the changes made

by a commit on the program’s data-flow dependency structure. This is related to the area of change
impact analysis where researchers have developed a multitude of techniques on how to estimate

the impact of a change on a software project, using either high-level information or dependency

information [36, 38]. While there are approaches that use both [15, 18, 20, 31], with SEAL, we can

combine both kinds of information at the same time in a joint analysis.
Previously, Zimmermann and Nagappan [63] used dependency graphs to identify central program

units in a software project and highlight their role as a proxy for defect-prone code. In a similar

fashion, Ferreira et al. [14] investigated how interactions between functions in the presence of

preprocessor directives relate to the occurrence of vulnerabilities. With commit interactions, we

can identify code locations that are central in the dependency structure of the software system

under analysis at a much finer granularity and, in addition, link them to commit meta-data (e.g.,

when or by whom the code was introduced). Changes to such central code are interesting because

their effect on the data that flows through the program is likely very high. For example, the function

int align(int i) from the audio codec opus—one of the subject projects of our evaluation in

Section 5— calculates how much memory an object of size i needs when it is stored with proper

memory alignment (Figure 8). The function receives the size of the object via the parameter i. That
parameter is then used to calculate the size with alignment which is then returned from the function,
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meaning that there is a data flow from the parameter to the return value. As a consequence, there

are also data flows between values passed to the function and usages of its return value. Also, the

function is widely used throughout opus with 67 usages across 8 of 22 source files which causes it

to have many data flow connections to many different locations in the system. So it is fair to say

that this function is indeed central. To show how commit interactions can be used to identify such

central code, we formulate the following problem:

P1: Which fraction of commits affects central code?

It is important to reiterate at this point that this problem, while being interesting in itself, serves

here as a showcase of demonstrating SEAL’s ability to address this and similar problems in practice

and research in a more systematic and efficient way to what is possible so far. Before we measure the

centrality of the code introduced by a commit, we first define how we represent commit interactions

in a commit interaction graph.

Definition 6. The commit interaction graph of a program is a directed graph with commits as

nodes and interactions among commits as directed edges: CIG =
(
C ′,CI

)
In this definition, CI refers to the set of all commit interactions of a program and C ′ ⊆ C is the set

of commits that participate at least in one commit interaction, that is, C ′ = {c1, c2 | (c1, c2) ∈ CI }.

Note that this graph may contain multi-edges since there may be commit interactions that originate

from different instructions but have the same base commits.

With commit interactions represented in a graph, we can now employ methods from graph

theory to identify commits affecting central code. We identify such commits by identifying central

nodes in the commit interaction graph using the node degrees of the commits. We use the node

degree to measure centrality since it relates to our definition of central code quite well; other

centrality measures are possible as well. A high node degree means that a commit participates

in interactions with many other commits which is an indicator that the code introduced by that

commit is central in the dependency structure of the software system under analysis. We are

particularly interested in commits that introduce a relatively small change, since such commits are

more easily overlooked than very large commits. This does not mean, however, that large commits

cannot introduce central code. In fact, just because of their size, we expect large commits to be very

likely to introduce, at least, some central code. For our example from opus, each usage of function

align produces incoming interactions (size of the object) and outgoing interactions (size with

alignment), and thus, commits associated with that function have a high node degree. Therefore,

any—even small—change to align that affects its return value affects every location the function is

used at. At the same time, the function itself and consequently any commit that touches only that

functions is only few lines long. This scenario is illustrated in Figure 9a, where a small change to

central code introduces many outgoing interactions with other commits. In Figure 9b, new code is

introduced that is not central by itself, but merely interacts with central code. In this case, only

few interactions are attributed to the new commit. This scenario illustrates that commits touching

central code can have a large effect on the rest of a software project and, if such commits can be

detected, this information might guide testing and review efforts on these critical changes to the

code base. SEAL helps to identify such cases.

Author interactions. Commits consist not only of code changes, but they also contain meta-

data, such as when or by which author a commit was created. From these data, SEAL can extract

information about socio-technical interactions in a software project. Socio-technical interactions

are often analyzed using communication or collaboration relationships between developers at

the file or function level and may also include dependencies between artifacts [17, 24–26, 42].

However, indirect dependencies are missed this way, which may still be relevant to properly
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Central code

Modified
central code

Interaction

New/changed
interaction

(a) A line belonging to central code is

changed (green) resulting in many changed

interactions (dashed arrows).

Central code

New code

(b) Introduced code (green) that interacts

with central code but only adds one new

interaction (dashed arrow).

Fig. 9. The influence of changes related to central code on commit interactions. The colored boxes represent

different commits and arrows denote commit interactions.

characterize certain aspects of the socio-technical interactions in a project, e.g., classifying the

roles of developers.

For example, consider the function ssh_handle_packets from libssh in Figure 10. In this func-

tion, a context object, which is returned by ssh_poll_get_ctx, is passed to ssh_poll_ctx_dopoll,
creating an indirect dependency between the two functions. This indirect dependency is inter-

esting because information carried by the context object could be relevant for the computation

in ssh_poll_ctx_dopoll. Thus, if a developer modifies the context object in ssh_poll_get_ctx
he/she also indirectly influences the function ssh_poll_ctx_dopoll but might not be aware of

that. With SEAL, we can incorporate such indirect dependencies in socio-technical analyses that

can only be detected with a data-flow analysis and, thus, uncover hidden dependencies between

developers. We formulate the following problem to demonstrate that SEAL’s information on commit

interactions are useful for answering socio-technical questions about a software project:

P2: Which authors interact via commit interactions and what are the characteristics of the arising
socio-technical structure?

By lifting SEAL’s commit interaction graph to author information, we can easily identify which

authors interact with each other indirectly via data flow. For this purpose, we project on the commit

interaction graph such that the authors of the commits become nodes and interactions between

authors become directed edges. This projection can be implemented with vertex identification, that

is, all nodes whose commits have the same author are identified with each other. The remaining

edges then represent interactions between authors at a data-flow level. With this information, we

can not only see which authors interact with each other, but also which authors interact with

especially many (or few) other authors, for example, to determine an author’s role in a software

project [8, 25].

Commit–author interactions. A commit can interact with commits from one (Figure 11a) or

multiple authors (Figure 11b). The fact that a high number of authors participate in interactions for

a commit suggests that the author needs to be familiar with code from many different developers

rather thanwith their own code or the code of only few developers. This againmay have implications

for the bug-proneness of the associated source code [23] and emerging coordination requirements

between authors [22]. Another example where commit–author interaction data is useful is to select
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1 int ssh_handle_packets(ssh_session session, int timeout) {
2 ssh_poll_handle spoll;
3 ssh_poll_ctx ctx;
4 ...
5 spoll = ssh_socket_get_poll_handle(session->socket);
6 ssh_poll_add_events(spoll, POLLIN);
7 ctx = ssh_poll_get_ctx(spoll);
8 ...
9 int rc = ssh_poll_ctx_dopoll( ctx , tm);
10 ...
11 return rc;
12 }

Fig. 10. Shortened version of function ssh_handle_packets from libssh. The context object ctx returned
by ssh_poll_get_ctx in line 7 is passed to ssh_poll_ctx_dopoll in line 9 creating an indirect data flow

between the two functions. SEAL can detect such indirect connections.

Commit in
question

(a) A commit (right) interacts with many

commits authored by a single developer.

Commit in
question

(b) A commit (right) interacts with many

commits authored by many developers.

Fig. 11. Code from a commit can interact with code authored by one or multiple developers.

potential candidates for code review by determining which authors’ code is affected by the commit

to be reviewed. To collect this information, we need both, commit interaction data (data flow) and

commit meta-data (author names). We demonstrate that with SEAL, we indeed can combine these,

addressing the following problem:

P3: How many authors interact via commit interactions?

To address this problem, we combine the commit and author interaction graphs. The resulting

graph contains all commits and authors as nodes, and a directed edge from a commit c1 to an

author a if and only if there is an edge (c1, c2) in the program’s commit interaction graph and a is

the author of commit c2. Note that this graph can also be constructed directly from information

contained in the commit interaction graph. The outgoing node degree of commit nodes gives us

the number of interacting authors showing whether a commit interacts with many or only a few

authors.

4.2 Socio-Technical Data-Flow Analysis
Data-flow analysis is typically not concerned with commit or socio-technical information, but it

can highly benefit from this additional information. Firstly, computing commit interactions helps

solve a multitude of additional data-flow problems with virtually no additional overhead compared
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to computing commit interactions only. Secondly, combining information on commit interactions

computed by SEAL with information of a client data-flow analysis provides new insights that were

previously locked away. As an example, taint analysis is frequently used to detect code injection

vulnerabilities, such as SQL injections, but it can report only the detected potential security issues,

it cannot attribute its findings to a specific project version, author(s), or development team.

As described in Section 2.3, our commit interaction analysis T needs to exhaustively compute

the precise, full exploded supergraph using IDE [50] to generate the commit data. It propagates all

variables of a given target program and therefore computes all data flows for all program variables.

Thus, T also solves all data-flow problems that are concerned with data flows of program variables.

All variations of taint analysis—for any given set of sources and sinks—can therefore be directly

answered using the exploded supergraph that has already been constructed for T . Reusing the

parts of a previously computed exploded supergraph for a new analysis is beneficial since IDE’s [50]

runtime complexity is O(|N| · |D|3).
More importantly, a taint analysis that is set up to detect SQL injections, for example, cannot

only be solved on T ’s exploded supergraph, but, in contrast to a traditional data-flow analysis,

also access commit information. SEAL allows one to compose different data-flow analyses with

commit information and, for the first time, allows us to embed statements obtained by program

analysis into the socio-technical context of a software project. To demonstrate that augmenting

client data-flow analysis results with information on commit interactions indeed provides novel

insights, we formulate the following problem:

P4: Can commit information be utilized to gain additional insights from traditional data-flow analyses
by making them change-aware?

To showcase how SEAL can be used to enrich existing data-flow analyses, we employ an exist-

ing taint analysis from PhASAR. We parameterize the taint analysis for detecting SQL injection

vulnerabilities, and we enrich it with commit information. For an example, consider Figure 12,

which depicts a program snippet that is vulnerable to SQL injection attacks. Any user input is

considered as tainted and must be sanitized by a call to function sanitizeSQLString before it

is sent to the SQL database server using the sink function executeQuery. By allowing the taint

1 string sanitize(const string &s) {
2 if (test) { return s; }
3 return sanitizeSQLString(s);
4 }
5 int main(int argc, char **argv) {
6 . . .

9 string input = argv[1];
10 string sani = sanitize(input);
11 auto *res = stmt–>executeQuery(q + sani);
12 . . .

16 }

◁ de8781b
◁ ea8426c
◁ de8781b
◁ de8781b
◁ c4d9b1a

◁ 0872f49
◁ 5341f7b
◁ 5341f7b

◁ c4d9b1a

Fig. 12. A program that is vulnerable to SQL injections. Each ◁ indicates the commit that last modified each

line. The complete code example is shown later in Figure 21.

analysis to exchange information with the commit analysis T , SEAL can attribute the findings

directly to the commits, authors, as well as development teams that are involved in the critical

data flows (and potential security vulnerabilities) as reported by the taint analysis. This allows

one to determine which commit introduced a potential vulnerability, which authors worked on

the code that caused the data flows involved, and also helps proposing developers that shall look
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Table 1. Subject Projects. Metrics for bison, grep, and gzip include submodules.

Domain LOC Commits Authors Revision

bison Parser 591 687 26 281 253 849ba01b8b

brotli Compression 34 833 1 030 87 ce222e317e

curl Web tools 195 685 26 949 871 1803be5746

grep UNIX utils 619 598 23 794 262 70517057c9

gzip Compression 622 480 22 193 242 7d3a3c0a12

htop UNIX utils 25 775 2 243 156 44d1200ca4

libpng File format 74 571 4 098 58 a37d483651

libssh Protocol 95 235 5 126 115 cd15043656

libtiff File format 88 561 3 470 45 1373f8dacb

lrzip Compression 19 215 935 25 465afe830f

lz4 Compression 18 813 2 541 130 bdc9d3b0c1

opus Codec 70 267 4 077 107 7b05f44f4b

xz Compression 38 441 1 298 22 e7da44d515

into and handle the reported issue. A further illustration of how commit data can help to find

code authors related to an SQL injection vulnerability is given in Section 7.2. In practice, static

analysis—especially if conducted in a whole program manner—produces lots of potential findings,

many of which may be false positives [2, 19], such that it has become a real challenge to prioritize

and check them. It is important to note that SEAL cannot determine per se whether a finding is

a true or false positive with respect to the original analysis’ semantics. But with socio-technical

information, one can contextualize the results to asses their likelihood, and SEAL helps to prioritize

and distribute them by providing socio-technical context information. For example, findings that

concern multiple people are potentially more complex and could therefore be processed later, or

findings could be filtered to involve developers only from a specific team, so that people who

potentially understand the issue better can look at it.

5 SEAL IN ACTION
To demonstrate SEAL’s merits and potential, we apply it to investigate the problems presented

in Section 4. Again, our goal is not to evaluate these problems in full detail, as this would surely

require an entire research paper on its own. Instead, we aim at demonstrating that, with SEAL, we

are indeed able to tackle such problems in a way that was hard to achieve without it.

Experimental setup. We use PhASAR in its most precise configuration for our analysis T . It uses

a call graph based on points-to information computed by an Andersen-style [1] pointer analysis to
resolve indirect call sites and it provides our client taint analysis with control-flow, type-hierarchy,

and points-to information. Note that this setting aims at soundyness. Soundy analyses, introduced

by Livshits et al. [39], use sensible under-approximations to cope with hard-to-analyze language

features that would otherwise produce unduly imprecise results.

We selected 13 open-source C/C++ projects from a diverse set of application domains and

with different sizes to increase external validity. Table 1 lists these projects along with relevant

information. It also lists the revisions that we used for our analysis.

5.1 Commit Interaction Graph Analysis
In the first part of our evaluation, we address the problems P1–P3 of Section 4: (1) quantitatively

using our subject projects and (2) qualitatively highlighting interesting insights we obtained.
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Central code. P1 is concered with the fraction of commits that affects code that is central in

the dependency structure of a program. Thereby, we are interested in commits that introduce a

relatively small change (cf. Section 4).

As an example, Figure 13 depicts a scatterplot of the two relevant variables—commit size and

node degree in the commit interaction graph—for opus and htop.
7
The horizontal line denotes the

20-percentile and the vertical line the 80-percentile respectively, putting small commits with a high

node degree in the upper left quadrant. The marginal distributions show that most commits are

relatively small and have a low node degree. While the distribution of the commit size has a similar

shape for all of our subject projects, there are some differences when it comes to node degrees. For

example, for opus, we have three clusters: the biggest cluster consists of commits with a low node

degree (below 400), followed by a smaller cluster with medium-sized node degrees (400–800), and
an even smaller one where the commits have very high node degrees (above 800). It is this latter
cluster that is relevant to identify small commits with central code.

(a) opus (b) htop (c) libtiff

Fig. 13. Number of insertions vs. node degree for commits including kernel density estimations.

As an example for a change to central code, we qualitatively inspect commit 348e694 from opus

(marked in Figure 13a). This commit has a very high node degree but touches only one line that

belongs to the function int align(int i), which we already established to play a central role in

the program’s data flow in Section 4. This demonstrates how even a small change can have a huge

influence on the data that flows through a program, also showing that blame interactions carry

different information than code churn.

A second example is commit 5e4b182 from htop. This commit refactors functions that are

intended to replace C’s memory allocation functions and shows a very high node degree. These

functions were initially introduced back in commit a1f7f28, and its successor commit b54d2dd
replaced all occurrences of the original memory allocation functions in htop with the new substi-

tutes contributing to their central role in the project. Commit b54d2dd also has a high node degree,

but it is much larger and it touches 42 different files. This example matches the scenario described

in Figure 9a that we used to motivate our notion of central code: Commit 5e4b182 modifies central

code and, thus, affects many commit interactions despite being relatively small.

Investigating P1 demonstrates that, with SEAL, one can gain deep insights into the structure

of a software project by combining high-level repository information and low-level data-flow

information into novel software metrics, e.g., estimating the importance of a change.

7
The plot excludes a few very large commits that can be considered outliers (e.g., import from the old repository, large-scale

code reformatting, etc.). We excluded outliers using Tukey’s fence (k = 3), which removes data points that lie more than k

times the interquartile range above or below the first or third quartile.
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112 /* Make sure everything is properly aligned. */
113 static OPUS_INLINE int align(int i)
114 {
115 struct foo {char c; union { void* p; opus_int32 i; opus_val32 v; } u;};
116

117 - int alignment = offsetof(struct foo, u);

117 + unsigned int alignment = offsetof(struct foo, u);
118

119 /* Optimizing compilers should optimize div and multiply into and
120 for all sensible alignment values. */
121 return ((i + alignment - 1) / alignment) * alignment;
122 }

Fig. 14. Commit 348e694 from opus changes only a single line in the function align.

Author interactions. P2 is concerned with the socio-technical structure of a software project

demonstrating how meta-data associated with commits can be utilized with SEAL. In particular,

we investigate how developers interact with each other at a data-flow level.

As an example, Figure 15 shows for each author of opus, libssh, and libtiff (blue dots) the

number of surviving commits (commits that occur in the commit interaction graph) and the number

of other authors his/her commits interact with at a data-flow level. It is immediately apparent

that, in opus, there is one main developer who authored the vast majority of commits and hence,

interacts with code from all other authors. All other authors submitted only comparatively few

commits to the project. This pattern can be observed in many of our subject projects, especially

the smaller ones. One notable exception to this pattern is libtiff (Figure 15c) which has more

authors that contributed a larger number of commits. Interestingly, despite this inequality in the

distribution of number of commits, the number of interacting authors is more evenly distributed.

That is, there are authors who introduce interactions to code from many other authors with only a

few commits, whereas the other authors’ code interacts with only very few other authors. Such

information is useful to identify which authors contributed to central or only peripheral parts of a

project [25], which is interesting since changes to central code can have a bigger impact on the

project.

(a) opus (b) libssh (c) libtiff

Fig. 15. Number of commits vs. number of interacting authors for authors, including kernel density estima-

tions.
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SEAL is able to identify interactions between authors that cannot be detected by purely textual

or syntactical approaches, which are commonly used when analyzing socio-technical aspects of

software projects [17, 24–26]. Figure 16 shows the difference between author interactions computed

by a file-based approach, where one considers two commits interacting if they edit the same file

(co-edits), and CI-based author interactions as computed by SEAL. We notice that SEAL identifies

less interactions as compared to the file-based approach, which is apparent in the negative range of

the y-axis (orange). This result is in line with recent findings that a file-based approach reports

many spurious links that using a more precise static analysis can avoid [18]. In addition to removing

spurious interactions, for almost all of our subject projects, SEAL also finds unknown interactions

between authors that the file-based approach could not detect, especially in larger projects. This

includes interactions across files and among distant code fragments that are connected via data

flow.

As an example, let us consider the author of commit 3659e8c of libssh. This author contributed

only one commit affecting source code to the project, which happens to implement asynchronous

socket handling and, according to the commit message, ”is intended as a ground work for making

libssh asynchronous“. The implementation is mostly restricted to a single file so approaches based

on file- or function-level co-edits can only ever find author interactions within that file. However,

since socket handling is a very integral part to libssh this commit actually interacts with code

from all over the code base written by many different authors (we consider this a central commit

according to P1). Some of the interactions even originate from indirect dependencies that can only

be detected with a precise data-flow analysis. Indeed, the indirect dependency in the function

ssh_handle_packets as described in Section 4 involves the commit in this example. With SEAL,

we not only detect this case, indeed, we find 50 additional authors that interact with code from the

author in question, indirectly, via data flow.

Another common approach for calculating interactions between authors relies on call relations

between functions. Figure 16 compares SEAL to an analysis that extract call-graph data directly

from LLVM (i.e., that establishes a link between two authors if a function where one contributed

code to calles another where the other author contributed code to). It is important to note that both

the call-based approach and SEAL report less author interactions than the file-based approach. This

is further evidence that the links inferred by the file-based approach are spurious. Furthermore, the

CI-based approach finds considerably more links than the call-graph-based approach, especially

for larger projects. This is because SEAL also considers indirect dependencies that can propagate

across functions that are not connected via a call-relation. We refer the reader to Section 7.1 for a

detailed example illustrating the role of indirect dependencies.

Commit–author interactions. P3 is concerned with identifying which other authors’ code a

commit affects via data flow. To address this problem, we need both commit interactions and author

information. Figure 18 shows for each commit its number of interacting authors, normalized by

the number of distinct authors per subject project that have, at least, one commit participating

in a commit interaction. The violin plot visualizes the associated probability density. There are

significant differences across projects. An extreme is xz: All surviving commits are from the same

author and, hence, every commit interacts with commits from that one author. For other projects

with few authors, such as gzip and lrzip, most commits interact only with code from few other

authors. As projects grow and gain more contributors, most commits tend to interact with more

authors (relative to the total number of authors of a project), as can be observed, for example, for

bison and lz4. However, we do not only observe differences between projects of different size, but

also between projects of similar size and a similar number of contributors. For example, while for

opus most commits interact with about half of the authors, the results for libssh show two groups
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Fig. 16. Changes between CI-based and file-based author interactions. Each column represents an individual

author. Orange boxes depict links to other authors that are produced by the file-based approach but are not

inferred by CI, as there exists no data-flow indicating a connection between the two authors. Blue boxes

depict additional links that CI discovers through data-flow information that a file-based approach does not.

of commits—one where commits interact with comparatively few authors, and one where commits

interact with comparatively many authors. There could be various reasons for such differences and

they cannot all be explained by commit interactions alone. For example, the roles of the authors in

a project can influence with which authors their commits interact [25], and the architecture of a

project could also be of relevance. The crucial point is that, with SEAL, we are able to study these

kinds of socio-technical problems in the first place.

5.2 Socio-Technical Data-Flow Analysis
To illustrate that making a data-flow analysis change-aware provides additional insights, let us

apply SEAL’s augmented taint analysis (Section 4.2) on the program shown in Figure 12. The taint

analysis will reveal an SQL injection vulnerability in Line 11. The analysis is able to detect the

undesired data flow by checking the data-flow information for variable argv already computed

by the commit analysis. The data-flow path that causes the potential SQL injection vulnerability

comprises the following sequence of instructions: p = i9 → icallsite
10

→ i2 → iretsite
10

→ i11.
Besides being able to answer data-flow queries directly, the taint analysis is able to access any

information on commit interactions at any point in the program. For example, the analysis can query

the commit that generated an instruction with base(i). It can therefore determine that the commit

base(i3) does—contrary to the intended semantics of sanitize—circumvent the sanitization of

variable s. Or, using CIP(i), the analysis can determine all commits—and thus all authors—involved

in the disallowed data-flow path. This is highly interesting in actual software development practice,

since the findings of any data-flow analysis can now be associated with the commits and developers

that have been involved in the code for which an issue has been found. Combining commit and
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Fig. 17. Changes between CI-based and call-graph-based author interactions. Each column represents an

individual author. Orange boxes depict links to other authors that are produced by the call-graph-based

approach, but not by the CI based approach, as there is no data flow indicating a connection between the

two authors. Blue boxes depict additional links that CI discovers through data-flow information that a

call-graph-based approach does not.

Fig. 18. Number of distinct authors each commit interacts with, normalized by the number of authors per

project. Violins show the associated probability densities.

data-flow information opens up a multitude of useful scenarios: The taint analysis, in our example,

is able to compute CIP(i13), and it can therefore report that the authors of the commits 3e8882e and
ea8426c have been working on the code between which the undesired data flow has been found. It

can report the potential SQL injection directly to these authors. Since the commit information is

data-flow sensitive, the taint analysis can relate commits and their corresponding authors to the

SQL injection even when they did not touch the part of the code that executes the SQL statement
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directly. Furthermore, the analysis is able to issue that commit ea8426c and its respective author

(knowingly or unknowingly) introduced the vulnerability by only sanitizing the input when the

test switch is disabled. This ability has a huge potential for addressing a large number of interesting

follow-up research questions.

6 THREATS TO VALIDITY
Internal validity: Lowering commit information to LLVM-IR is complex due to the inherent

technical complexity and, therefore, might introduce errors in our commit mapping. So, to vali-

date the correctness of our commit meta-data mapping, we devised a validation procedure based

on LLVM’s debug meta-data that allows us to validate the lowered information. The validation

procedure additionally computes the commit information on the fly, based on debug meta-data,

and compares these to the annotated commit meta-data from our lowering strategy. This way, we

guarantee that our meta-data are, at least, as precise as if we had used LLVM debug information

for calculation. Note that, using LLVM debug information in general (and not only for evaluation)

would constrain our approach to only being usable with debug builds, so, building our own lowering

strategy is necessary to support release builds.

We use git blame to determine the last modifying commit, which only offers line-based precision.

For what we have seen, this does not distort the overall picture, as we where still able to locate

many interesting cases in our subject projects, demonstrating the principle merits and potential of

SEAL. Nevertheless, to open up our framework for further improvements, we have set up it in a

way that it enables users to exchange the commit querying functionality.

Another source that may introduce imprecision in our mapping are compiler optimizations. For

certain code transformations, it is not clear how the commit meta-data should be handled, for ex-

ample, when the common-subexpression-elimination pass removes code where two subexpressions

originate from code added by different commits. To circumvent the influence of compiler opti-

mization, we run our analysis passes before all optimization passes. A more general but laborious

solution would be to modify all optimizations passes to preserve and update commit meta-data,

but running our analysis first renders this unnecessary, producing the same results.

External validity: In our evaluation, we test our approach on several relevant problems and

scenarios with the goal to cover a wide range of different use cases, which we evaluated on different

real-world projects, varying in size, age, and maturity. We selected 13 common C/C++ open source

projects from different application domains and analyzed them qualitatively and quantitatively.

Our results revealed many interesting events in the analyzed real-world software projects , which

demonstrates the potential of our approach and shows that combining repository information with

precise data-flow analysis can uncover previously unobservable interactions.

Since our approach and a large part of our implementation is language independent, we see no

principle roadblock for using SEAL on projects written in languages close to C/C++, such as Rust,

Go, or Swift, which already have mature LLVM front-ends.

7 DISCUSSION
In the following, we illustrate the advantages of determining commit interactions based on data

flow, highlight key strengths of SEAL, and discuss potential limitations. Furthermore, we lay out

potential applications of SEAL and discuss how existing study setups and tools could benefit from

data-flow based CI.
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1 int DataService::process() {
2 int data = loadDataFromFile();
3 return compute(data);
4 }

◁ f2f294b
◁ f2f294b
◁ f2f294b
◁ f2f294b

Sven
Sven
Sven
Sven

(a) Data processing service written by the backend developer Sven. (File: Service.cpp)

1 int loadDataFromFile() {
2 return 10;
3 }
4

5 int loadDataFromDatabase() {
6 return 21;
7 }

◁ 9209cff
◁ 9209cff
◁ 9209cff
◁ 9209cff
◁ ffb0fb5
◁ ffb0fb5
◁ ffb0fb5

Eric
Eric
Eric
Eric
Ada
Ada
Ada

(b) Loading utilities to access user data written by Eric and database developer Ada. (File: UserData.cpp)

1 int compute(int Val) {
2 return Val + someComplexComputation();
3 }

◁ 28f1624
◁ 28f1624
◁ 28f1624

Leonie
Leonie
Leonie

(c) Conceptual implementation of a heavy computation step built by Leonie. (File: Compute.cpp)

Fig. 19. Conceptual example of a software project with multiple authors and files.

7.1 Data-Flow Based Commit Interactions
Example. SEAL leverages a data-flow analysis to determine which commits interact, and by that,

which code written by one developer influences the code of other developers. In Section 5.1, we

demonstrated that SEAL can identify small but central changes to a code base by using information

on data flow. We also showed that, by lifting SEAL’s commit interaction graph to author infor-

mation, we can build an author-interaction graph that establishes interactions based on data-flow

relationships between their code. Author interactions hint at coordination requirements between

authors [4, 5, 34] in that when one author’s code consumes data produced by another author, the

two should coordinate. Compared to existing approaches to compute coordination requirements,

such as file-based [26] or call-graph-based approaches [41], considering data flow has two clear

benefits: First, using data-flow information spurious connections can be excluded (if there is no

data flow between two code parts, they do not influence each other). Second, data flows, especially

inter-procedural data flows, reveal dependencies between code that current approaches cannot

find.

For illustration, let us highlight conceptual differences in the data produced by existing approaches

and data-flow-based commit interactions on a exemplary study in which we want to determine

coordination requirements between developers based on code dependencies. Consider the example

code in Figure 19: A data processing service consisting of the service itself (Figure 19a), a user-

data access layer (Figure 19b), and a computation worker (Figure 19c). Like in the real world, the

different parts of the code base are implemented by different developers (names shown on the right).

To demonstrate key differences in the data produced, we compare the interactions computed by

SEAL against the two commonly used approaches for computing artifact coupling, file-based and

call-graph-based, which we did also use in our evaluation (Section 5.1). The coordination graphs

computed by the different approaches are depicted in Figure 20. When comparing the file-based

graph (Figure 20a) to the other two, we notice that link 1 between Eric and Ada is included only in

the file-based graph. The point is that link 1 is actually spurious as, at the code level, there is no

coordination requirement between the two functions in the file. The reason is that the file-based
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Sven Leonie

Eric Ada

(1)

(a) File-based

Sven Leonie

Eric Ada

(b) Call-graph-based

Sven Leonie

Eric Ada

(2)

(3)

(4)

(c) SEAL based

Fig. 20. Coordination requirements between authors as determined by different artifact coupling approaches.

approach over-approximates by considering everything in a file as related without taking program

semantics into account [18]. A programmer can easily see that these two functions are alternatives

and, therefore, Eric and Ada can work independently. Furthermore, the file-based graph, compared

to the other two graphs, does not contain the links, such as the one between Sven and Leonie and

between Sven and Eric. This is due to the limitation of not considering dependencies across files.

When we compare the call-graph-based graph with SEAL, we notice that SEAL inverts the

direction of link 2 and finds two additional links (3, 4). SEAL inverts the direction of link 2 because,

from a data-flow perspective. Sven’s code consumes data produced only by Eric but does not supply

input to Eric’s code
8
. When we consider link 3, we see a bidirectional connection between Sven

and Leonie, capturing the fact that data from Sven are used as an input to the code of Leonie and

vice versa. SEAL differentiates between a function call with and without data. In contrast, when

using a call-graph approach, we find only that there is a connection between Sven and Leonie and

between Sven and Eric. With SEAL however, we now know that Eric’s code does not depend on

Sven’s code, since no input is passed to Eric’s implementation, but Leonie’s code does depend on

Sven’s code as her code works on input provided by Sven.

Many studies treat collaboration links between developers as undirected [41], or cannot infer a

direction in links between artifacts, such as in co-changes retrieved from files that are commonly

committed within one commit [33]. With SEAL, we obtain information about the direction that is

based on the underlying data flows. This code-based directionality adds additional value, compared

to temporal directionality [28], as it encodes who is using whose code. Parts of this information is

also present in call graphs, we can infer only who is calling whose code but not, for instance, which

data are passed to the function and how the returned data are used. Ignore this information, we

would not be able to notice indirect data dependencies, such as the one between Eric and Leonie that

produces link 4. This link arises from the fact that Sven forwards data computed by Eric’s loading

function to Leonie’s compute implementation. This information hints at an important coordination

requirement that should not be missed as when Eric adapts what user data are loaded, Leonie’s

implementation needs to handle it. Hence, coordination between Eric and Leonie is important

before Eric makes a change. This kind of coordination requirement is found only with SEAL and

can be found only by utilizing a whole-program inter-procedural data-flow analysis.

8
This is in itself is neither a drawback or advantage of SEAL compared to the call-graph-based approaches as the meaning

of directionality depends on the use case and follows from the actual research question (e.g., where determining a link

between to artifacts does not require directionality, a link between developers does if we want to determine who is using

whose code).
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Integration of SEAL into other research. A good example for illustrating SEAL’s merits arises

from the work fromMauerer et al. [41]: In a large-scale empirical study, they explore the relationship

between software quality metrics and socio-technical congruence by analyzing the alignment of

social communication structures with technical dependencies. Important for our discussion is

that they determine these dependencies by extracting them from the version control system: two

artifacts are related when they appear in the same commit, and two artifacts are dependent when

they have static language-level dependencies, such as call-graph connections and type references.

As explained in our example above, data flows carry additional information compared to file or

call-graph-based approaches and thus enrich the artifact dependency networks of Mauerer et al.

[41].

SEAL can not only help to determine artifact relationships, but with our author-interaction

graph, approaches that analyze developer communities [28] or organizational structures [27] can

profit from detailed data-flow based interaction data, such as, the work from Joblin et al. [28], who

mine developer communities based on commit information and source-code structure. Specifically,

they use a function-based and a committer-author-based approach to determine related authors.

This way, they potentially miss important non-local links between developers, as conceptually

shown in our example. With SEAL, they are able to extend their information on developers with

data-flow-based author interactions and expand their author network as well as remove potential

spurious links.

Another example in which SEAL’s commit interactions can be beneficial is in coordinating bug

fixes or semantic code changes in large code bases or ecosystems. It has been reported that, for

large industry code bases, even small code changes can cause severe bugs in other parts of the

code [62] (e.g., a pointer can now be null, an integer variable can now have values larger than x, or

a list that was previously sorted is now unsorted). As preventing changes is not an option (applying

a bug fix that patches a vulnerability can not be delayed indefinitely), developers need to find ways

to coordinate and let others know about the change. With with commit-author interaction data

produced by SEAL, we can easily figure out who’s code could be affected by a change. Think about

link 4 from Eric to Leonie that SEAL found because data produced by Eric is passed via Sven to

Leonie’s code. With this information, Eric can proactively contact Leonie to look at his proposed

change to determine that her code works well with it.

7.2 Socio-Technical Data-Flow Analysis
Example. Interpreting or acting on program analysis findings is a difficult task, especially in

larger software projects [2]. One reason is that common program analysis tools focus on technical

aspects, showing what is wrong in the code or highlighting conceptual problems [44, 45]. Typically,

program analysis tools do not put their findings into a socio-technical context, ignoring the social

structure around the code. Manually fitting this information post-hoc onto the analysis results is

cumbersome and difficult, once because developers do not have this information in their heads

but also because tools such as git blame provide only raw information that is not contextualized

with regard to the analysis semantics. With SEAL, we build a bridge and automatically attach

socio-technical information onto low-level analysis findings.

Consider the example in Figure 21 (cf. Section 4.2), where a program analysis tool, such as

PhASAR, identified an SQL injection. After the tool analyzed the code, it reports that there is a

possible SQL injection vulnerability at Line 11, arising from a data flow from variable sani (Line

10), which contains unsanitized user input. Following this report, an engineer from the company’s

security team can investigate the problem and finds that the recent change 5341f7b, depicted in

Figure 22, introduced the offending variable in Line 10. Based on this information, Leonie can

be contacted by the security engineer and asked to fix the SQL injection. However, this initial
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1 string sanitize(const string &s) {
2 if (test) { return s; }
3 return sanitizeSQLString(s);
4 }
5 int main(int argc, char **argv) {
6 auto *con = driver–>connect(/* credentials */);
7 auto *smt = con–>createStatement();
8 string q = "SELECT name FROM students where id=";
9 string input = argv[1];
10 string sani = sanitize(input);
11 auto *res = stmt–>executeQuery(q + sani);
12 if (!res–>rowsCount()) cout << "no records\n";
13 while (res–>next()) cout << res–>getString("name");
14 delete stmt; delete res; delete con;
15 return 0;
16 }

◁ de8781b
◁ ea8426c
◁ de8781b
◁ de8781b
◁ c4d9b1a
◁ 3e8882e
◁ 3e8882e
◁ 3e8882e
◁ 0872f49
◁ 5341f7b
◁ 5341f7b
◁ 0872f49
◁ 0872f49
◁ 3e8882e
◁ c4d9b1a
◁ c4d9b1a

Eric
Eric
Eric
Eric
Sven
Sven
Sven
Sven
Ada
Leonie
Leonie
Ada
Ada
Sven
Sven
Sven

Fig. 21. A program that is vulnerable to SQL injections. Each ◁ indicates the commit that last modified each

line and right next to it, is the name of the commits author.

10 + string sani = sanitize(input);

11 + auto *res = stmt–>executeQuery(q + sani);

12 - auto *res = stmt–>executeQuery(q + input);

Fig. 22. Commit 5341f7b in which Leonie wants to prevent SQL injections by adding a call to sanitize.

(SQL Injection) Danger: possible SQL injection detected

~/application/src/main.cpp:31
Vulnerable Function: main(int argc, char **argv)
      10:    string sani = sanitize(input);
    > 11:    auto *res = stmt –> executeQuery(q + sani);

Code Author: 
  Leonie
Possibly related Authors:
  - Eric
  - Sven
  - Alex

Fig. 23. A socio-technical bug report, linking the author of the vulnerable code and possibly related authors

that interact through data flow with the vulnerable code location to a found SQL injection.

conclusion is wrong! Leonie’s code did not introduce the SQL injection, since the actual problem is

in the implementation of sanitize, where unsanitized data is leaked when running in test mode.

This is likely found out only later when she starts digging into her code and the implementation of

sanitze and refers the problem back to the security engineer.

Missattributions like this arise due to missing information and cost valuable developer time. From

the point of the security engineer, the tool report was plausible, and Leonie’s change seemed related,

so the ticket was forwarded to her. With SEAL, this scenario could have worked out differently, if

the tool’s initial report would be combined with socio-technical information, obtained by SEAL’s

data-flow analysis. By attaching the commit-interaction path of the offending call instruction for

executeQuery, which contains all commits that had influence on the data flowing into the call,

we can determine all authors that are involved. Figure 23 depicts an exemplary error message,

where the SQL injection tool’s finding is contextualized with socio-technical information. So, in

our example, the security engineer would see the report about the SQL injection, together with the

information that the two developers Leonie and Eric are involved. The security engineer would

then assign both the ticket and involve Eric from the beginning.
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Integration of SEAL to other research. Inspired by our example, a number of existing program

analysis tools qualify to be extended with additional socio-technical information. For example,

Bessey et al. present an extensive experience report [2] that details on how industrial-grade static

analyzers are used to find bugs in the real world and how these tools are perceived by companies

and software developers: When confronted with analysis findings, developers tend to get emotional;

At the end, it is their code that is supposedly flawed. Experience shows that the more peers are

involved in discussing and dealing with analysis findings, the more likely it is that someone can

diagnose an error (or identify a reported error as a false positive), report on experiences of similar

errors, and eventually fix it [2]. SEAL provides this additional socio-technical information. For

instance, it reports the set of authors involved in a given analysis finding, which makes it easier to

assign errors to the relevant developers.

Furthermore, the information produced by program analysis tools can be filtered according to the

attached socio-technical information (e.g., an analysis tool used within an integrated development

environment could show only the findings that actually have a socio-technical connection to the

developer using it). In this vein, Harman and O’Hearn report on the difficulty of making bug reports

more actionable [19]. In particular, they debunk the implicit assumption that analysis and testing

technology that follow the ”ROFL“ (Report Only Failure List) strategy is enough to get engineers

to fix reported bugs. Software developers, however, are never short on lists of fail and failure

reports that need to be taken care of. Any additional piece of information that helps developers

prioritize these todos are helpful. The report of Harman and O’Hearn underlines the importance

of the following information to find and prioritize bugs: (i) relevance, the developer to whom the

bug report is sent is one of the set of suitable people to fix the bug; (ii) context, the bug can be

understood effectively; (iii) timeliness, the information arrives in time to allow, an effective bug

fix; and (iv) debug payload, the information provided by the tool makes the fix process efficient

(reproduced from [19]). SEAL helps to deliver such information.

The socio-technical interaction provided by SEAL may benefit scheduling code reviews, e.g.,

developers with a lot of data dependencies to the changed code can be suggested as reviewers,

as the changes could potentially interact with their code and introduce bugs. In 2008, a Debian

developer accidentally broke a random number generator in a particular version of OpenSSL with

what was thought to be a fix [49]. This shows that—in practice—it can be quite difficult to assign

suitable reviewers for a given pull-request. With help of information as computed by SEAL, this

could possibly have been avoided by allowing peers that are familiar with this complex part of

OpenSSL’s code base to intervene.

7.3 Limitations
A bottleneck of using SEAL is clearly the computational cost of the underlying data-flow analysis.

Table 2 depicts the overhead generated by SEAL for the projects of our study (cf. Section 5.1). We

see that, for the average project, computing the blame data adds roughly two minutes. Interesting to

note, computing blame information correlates with the history length of a project (ρpearson = 0.75

and ρspearman = 0.90), so project with longer histories should expect a bit more overhead
9
. Overall,

we can see that for nearly all projects the analysis time dominates the overhead. As described in

Section 2.3, we tuned SEAL’s analysis to be as precise as practically feasible. Specifically, we made

our analysis context-sensitive, alias-aware, and inter-procedural. From our point of view, this is

8
https://www.praetorian.com/blog/introducing-gokart/

9
For the history-length correlation, we observed only curl as an outlier, which took particularly long to compute it’s blame

data. A manual inspection of the project revealed that many files in curl contain very old code (committed pre 2007), which

combined with the amount of commits in the history, means that the blame computation often needs to traverse a very

large part of the history.
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Table 2. Blame-annotation overhead (t
Blame

) and analysis time (t
Analysis

) measurements in seconds. These

measurements are further contextualized with history size (tBlame/Commit) and project size (tAnalysis/LOC).

LOC Commits t
Blame

t
Blame

Commit

t
Blame

LOC
t
Analysis

t
Analysis

LOC

bison 591 687 26 281 293.82 1.34 0.06 14 849.20 0.03

brotli 34 833 1 030 17.68 0.62 0.02 614.95 0.02

curl 195 685 26 949 939.42 6.83 0.94 47 639.50 0.24

grep 619 598 23 794 233.14 1.09 0.04 669.76 0.00

gzip 622 480 22 193 139.03 0.43 0.02 70.75 0.00

htop 25 775 2 243 36.78 1.15 0.10 313.90 0.01

libpng 74 571 4 098 43.93 0.31 0.02 559.62 0.01

libssh 95 235 5 126 38.74 0.65 0.03 13 469.70 0.14

libtiff 88 561 3 470 15.48 0.32 0.01 6 005.81 0.07

lrzip 19 215 935 1.27 0.03 0.00 593.82 0.03

lz4 18 813 2 541 4.08 0.01 0.00 1 404.06 0.07

opus 70 267 4 077 84.02 3.48 0.20 10 379.50 0.15

xz 38 441 1 298 20.73 1.44 0.05 9.18 0.00
0 5000 10000 15000 20000 25000

0

200

400

600

800
pearson = 0.75
spearman = 0.90

t
Blame

curl

Commits

not too problematic since SEAL is designed to run once to capture a full and precise picture of a

given software project. Nevertheless, the underlying data-flow analysis is highly configurable in

the sense that PhASAR allows one to select different helper analyses and to change each analysis’

parameters to trade off precision and performance. For instance, PhASAR allows its users to choose

a less precise but faster points-to analysis. Similarly, one can choose a call-graph algorithm that

underapproximates information and does not resolve indirect function calls instead of the one

we chose. SEAL’s call-graph algorithm more expensively tries to identify potential call targets

at indirect function calls to improve analysis precision, using points-to information and type

hierarchies. Especially C++ developers seem to minimize the amount of indirect jumps [52] such

that underapproximating call-graph algorithms may still provide enough precision for a users

needs. Through these tuning knobs, users can reduce the analysis time if (slightly) less precise

results are acceptable for their setting.

Another limitation of SEAL is that the granularity of commit data are currently line-based, which

is the common granularity used by git and other tools that work on git data. Previous work already

demonstrated for different use cases [16, 37] that a syntax-based approach could, with a additional

cost, improve the precision. With token-based blame information, as proposed by Germán et al.

[16], SEAL could be even more precise.

Commit interactions based on data-flow dependencies provide a new way to infer dependencies

between developers that is based on how their code interacts. However, there might be other

kinds of dependencies that give rise to coordination requirements or are otherwise of interest. For

example, external communication via file system or network, interactions through non-functional

properties, side channels, and operating system level functionality could also require coordination

between developers. Therefore, even if we can include data-flow dependencies with SEAL, we

should still keep broadening the scope and exploring new kinds of information that is currently

not available to determine developer interactions.

8 RELATEDWORK
SEAL can be applied to different areas since many techniques can profit from either incorporating

repository information or detailed low-level program information. So, we discuss work that is

directly related to our evaluation and we put our work in context to related areas that can benefit

from our commit analysis.
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Code complexity metrics. Various code complexity metrics have been proposed [13]. Tornhill

[57] discusses multiple software metrics and analysis approaches that are used in companies on real

world software projects to drive decision making and help with software maintenance. Software

metrics help developers to focus on important code regions and maximize their improvement efforts.

In their systematic mapping study, Varela et al. [58] categorized almost 300 different source code

metrics from 226 studies into programming paradigms for which they are used.They compare how

and from which systems the metrics are extracted and rank them by the number of occurrences in

studies.

A close look at Tornhill [57] and Varela et al. [58] reveals that nearly all common software metrics

rely only on syntactical information. Very few software metrics go beyond syntax and, even if they

do, they mostly consider information that is simple to obtain, like inheritance relationships. We see

a potential for improvement here by incorporating more combined analysis approaches, such as

commit interactions, especially when the analyses incorporate change information as well, which

can help to refine results by putting them into a historical context.

Bug prediction. Bug prediction focuses on identifying and predicting potentially buggy code

locations. D’Ambros et al. [9] compare a wide range of different bug prediction approaches. Many of

the approaches focus on high-level information, such as change metrics (e.g., number of revisions),

source code metrics (e.g., depth of inheritance tree), and code churn, and do not incorporate lower-

level information, such as data flow, which can be used to approximate the program semantics.

Khatri and Singh [32] performed a SWOT analysis on cross-project defect prediction (CPDP),

analyzing a wide range of approaches. Interestingly, one key opportunity for improvement of

CPDP that they highlight is the integration of more process metrics, such as number of developers

working on a module. Our work can enable CPDP approaches to integrate process metrics that

also incorporate low-level interactions between code changes or authors.

Program analysis. Program analysis techniques have been used successfully to prove specific

properties about a program [12] and to detect bugs [48]. Program analysis tools, such as SpotBugs

or clang-tidy, build on these techniques to catch bugs early in the development cycle. However,

typical program analysis techniques, including srcML, analyze only one specific version of a pro-

gram and do not incorporate version control information, which precludes detecting evolutionary

problems, for example, detecting architectural decay by measuring the gradual deterioration of the

coupling between classes. In addition, one could also extend already existing regression analyses

by incorporating version control information directly into the analysis semantics. By utilizing both

high-level repository information and data-flow information in a joined analysis, one could bridge

this gap.

Socio-technical software analytics. In a special issue about software analytics, Menzies and

Zimmermann highlight the importance of using analytical methods that incorporate data from

real-world software projects to reason about software development processes [43]. They predict

that the field will develop and benefit from more and different data sources. In the same vein, in a

meta-analysis on socio-technical software-engineering research, Storey et al. [54] examine a wide

range of publications to determine the current state of the art and areas for further improvement.

They highlight that many research papers employ a data-driven approach. So far the used data

sources (e.g., issue, bug, or commits) often do not incorporate low-level dependency information as

provided by data-flow analysis. For example, the state of the art in socio-technical analyses is to use

function-level semantic coupling [26] or fine-grained co-edits [17] to represent interdependencies

between software artifacts. Our work tries to address this shortcoming by providing a conceptual

framework that combines the existing data sources with program semantics. This information
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could then be used to discover previously hidden socio-technical connections and coupling between

developers that are invisible when only looking at syntactical information.

Software repository mining. Software repository mining focuses on gathering, modeling, and

studying the data and software artifacts produced by developers during the software development

process [10]. Kagdi et al. [29] state that source code changes are the fundamental unit of software

evolution but also mention that current version control systems do not provide information about

code semantics. This moved the initial focus of the research area to consider mostly change meta-

data; a shortcoming which we address with SEAL.

Change impact analysis. The goal of change-impact analysis is to determine the consequences

of a change using dependency analysis techniques, such as data-flow or control-flow analyses [3].

In a survey, Li et al. [38] analyze 23 different code-based change-impact analyses and built a

framework to compare them. The authors state that many approaches use traditional program

analysis techniques. They further highlight that useful information for improving change-impact

analysis can be obtained with repository mining techniques. For example, Kagdi et al. [30] ran

their conceptual coupling analysis on the current and previous version of source code to improve

their analysis precision. Lehnert [36] lists only few approaches that combine repository mining

with traditional program analysis. For example, Kagdi and Maletic [31] use high-level information

and dependency information separately and look whether predictions based on either of these two

agree. Conceptually SEAL is able to improve existing change-impact analysis approaches as we

combine syntactic and semantic information into one joint analysis.

In a user study, Hanam et al. [18] have shown that semantic relations computed by static analysis

helped users in completing code review tasks faster compared to using only syntactic relations. Their

approach uses abstract interpretation in combination with an AST-based diff to extract semantic

relations from JavaScript projects to reduce unwanted ”noise“ in purely syntactic relations. In

contrast to their approach, SEAL has information about all commits available during the analysis,

allowing for even more control in determining which interactions are noise and which are not.

Still, the results of Hanam et al. support our claims that combining static analysis with change

information can be beneficial for change impact analysis.

AST-based analysis. There are tools that combine repository information with syntax infor-

mation. With such light-weight syntax-based repository mining tools, most notably Boa [11],

researchers can gather repository metrics and high-level code information about a wide range of

different software projects. However, those do not model language semantics and do not allow us to

attribute socio-technical information to the results of other more sophisticated program analyses.

Some research in this direction builds on srcML, ”an infrastructure for the exploration, anal-

ysis, and manipulation of source code“ [6]. srcML has been used, among other things, for type

checking [46], program slicing [47], and pointer analysis [64]. However, srcML only provides an

AST-based view on the code, and does not come with support for more sophisticated analyses, such

as a data-flow analysis. The reason is that, srcML by itself does not model language semantics.

For example, srcML does not run the preprocessor or model C/C++ language feature, such as,

overload resolution or template instantiation, which are important to infer semantics. That’s why

we built SEAL on top of Clang and LLVM, a industry strength compiler framework, enabling us to

combining program analysis with repository mining. In any case, syntax analysis is less precise

than a data-flow analysis in determining dependencies between program parts.

Variability-aware analysis. Variability-aware analysis aims at efficiently analyzing variant-rich

software systems [55]. The key is that, instead of analyzing all variants individually, a variational
program representation (i.e., a program representation that retains all points of variability) is
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analyzed [61]. The goal is to save analysis effort by efficiently reusing analysis results across

variants [60]. Variability-aware analysis is related to SEAL’s approach in that it incorporates

multiple variants of a software system (possibly generated by different variability implementation or

configuration mechanisms) in a program analysis run. In contrast to SEAL, the goal is performance;

incorporating historical and socio-technical repository information is not in scope.

9 CONCLUSION
State-of-the-art software repository analyses often do not have precise information about a pro-

gram’s operational semantics at their disposal, if at all, or they try to include selected information

in an ad-hoc manner. On the flip side, program analyses such as data-flow analysis do not have

access to repository information, which restricts the interpretability of their results by excluding

the socio-technical context. SEAL bridges this gap by conceptually mapping repository specific

information into the compiler’s internal representation. The mapped information can be used

by specialized data-flow analyses to infer relationships between commits (i.e., determine commit

interactions) or by existing data-flow analyses to augment their results with repository information.

In a evaluation on 13 open-source projects, we have demonstrated that SEAL and the generated

data-flow-aware repository information can be utilized to answer relevant questions in research

and practice. The first part of our evaluation shows that, with SEAL, we can obtain new insights that

could not have be found with existing methods that do not integrate both repository information

and data-flow information. Our qualitative analysis has uncovered interesting cases, for example,

where textually small changes have a far reaching impact, which could only be pinned down by

considering data flows. The second part of the evaluation, demonstrates how repository information

computed by SEAL can be utilized to augment existing program analyses. This allows us to put the

analysis results into a socio-technical context for further interpretation, for example, by relating

SQL injection vulnerability directly to the involved developers.

Overall, our evaluation demonstrates SEAL can be used to track down previously hidden interac-

tions and to augment existing analyses with socio-technical information, which enables us to gain

insights that could previously not be tracked down.
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