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Abstract
Present-day automatic optimization relies on powerful static (i.e.,
compile-time) analysis and transformation methods. One popular
platform for automatic optimization is the polyhedron model. Yet,
after several decades of development, there remains a lack of
empirical evidence of the model’s benefits for real-world software
systems. We report on an empirical study in which we analyzed a set
of popular software systems, distributed across various application
domains. We found that polyhedral optimization at compile time
often lacks the information necessary to exploit the potential for
optimization of a program’s execution. However, when conducted
also at run time, polyhedral optimization shows greater relevance
for real-world applications. On average, the share of the run time
amenable to polyhedral optimization is increased by a factor of
nearly 3.

Categories and Subject Descriptors D.2.8 [Metrics]: Perfor-
mance Measures; D.3.4 [Processors]: Optimization; F.1.2 [Modes
of Computation]: Parallelism and Concurrency

General Terms Experimentation, Languages, Measurement, Per-
formance

Keywords Polyhedron Model, JIT, Loop Parallelisation, LLVM,
Polly

1. Introduction
Automatic code optimization is becoming an increasingly challeng-
ing task. The variety and complexity of optimization targets have
increased recently, with the introduction of hyperthreading, SIMD
extensions, multicore processors, general-purpose computing on
graphics hardware (GPGPU computing), low-power computing, etc.
Programmers and compiler implementers are confronted with the
architectural differences and, consequently, the non-portability of
performance between different platforms. Just setting a few compiler
optimization flags is no longer sufficient.

To tackle this problem, a wide variety of approaches to the
automatic optimization of program code has been proposed
[5, 13, 14, 32]. One popular approach is polyhedral optimization. It
is based on the polyhedron model [14], which represents iterative
executions as polyhedra. The model serves to optimize loop pro-
grams automatically (e.g., parallelization and data localization) by
applying algebraic transformations. Its main benefit is that all loop
transformations can be found via linear optimization and, therefore,
their cost is independent of the problem size.

Full automation comes at the price of limitations on the structure
of the programs that can be optimized. In particular, loop bounds
and memory accesses are limited to affine linear expressions. In the
past, a number of extensions of the polyhedron model have been
proposed to overcome affine linearity in certain cases [20]. Another
promising approach is to apply polyhedral optimization not only
at compile time but also at run time. The idea is that, at run time,

more is known about the actual structure of the loops, thus, enabling
more loops to be optimized. Among the many implementations
of polyhedral optimizers, there are two major projects that target
main-stream compilers; POLLY [18, 19] and GRAPHITE [34]. Both
share the approach of an automatic and language-agnostic detection
of compatible loops at compile time, called static control parts
(SCoPs).

Despite the rich work on extending the polyhedron model and
polyhedral optimization, there is a lack of empirical evidence of the
potential benefits of the model and its variants in practice across
different domains. Therefore, for the first time, we conducted a com-
prehensive empirical study on the potential benefit of polyhedral
optimization for automatic loop parallelization in practice. In partic-
ular, (1) we were interested in whether state-of-the-art polyhedral
methods are applicable in practice; (2) we were interested in how far
this potential can be enhanced by an application at run time; (3) we
were interested in the upper bound of the benefit of the polyhedron
model and extensions thereof.

In an empirical study, we have analyzed a corpus of 51 real-
world C/C++ programs, using (an extension of) the plugin POLLY
for the LLVM [25] compiler infrastructure, including programs of
different sizes (500–600.000 lines of code) and different domains
(e.g., multimedia processing, compression, scientific computing, and
compilers). In particular, we measured the fraction of the program
code that can be expressed in the polyhedron model and the time
spent inside static control parts (SCoPs) in relation to the total run
time. This is a more general approach than just quantifying the
effects of a certain specific instance of polyhedral optimization.

We found that the potential benefit of state-of-the-art compile-
time polyhedral optimization is rather marginal (10 % on average).
This is mainly due to a lack of knowledge about parameter values
at compile time, which introduces non-linearity of the memory
accesses of a loop program. The potential benefit of run-time
optimizations is higher (29 % on average). Just by supplying the
missing information via a run-time program analysis, the SCoP
coverage could be raised in cases from 4 % to 32 %.

Based on these findings and a calculation of the theoretical
upper bound, we discuss for the first time the merits of polyhedral
optimization in practical programming. We conclude that it is
challenging to apply polyhedral optimization to the most critical
regions of a program without additional knowledge about the
program execution. However, by exploiting information available
just-in-time, the model is capable of covering most of the critical
program regions and providing program transformations to exploit
the potential for parallelism.

Based on our findings, future research shall focus on acquiring
more information about the critical program regions at run time. This
would increase the impact of polyhedral optimization in real-world
applications.

In summary, we make the following contributions:



• the first substantial empirical study of the impact of polyhedral
optimization across a broad spectrum of applications,

• an open-source polyhedral analysis engine that is independent
of the syntax of the source language, and that incorporates
extensions of the polyhedron model for inclusion of run-time
information in the optimization,

• a discussion of the practical potential of compile-time and run-
time polyhedral optimization based on the empirical results and
a statistical analysis.

The analysis engine, the sample systems, and all results of our
empirical study are available at the project’s Web site:
http://www.infosun.fim.uni-passau.de/cl/staff/simbuerger/pprof/

2. The Polyhedron Model
2.1 Basic Model
Let us introduce the necessary basics of the polyhedron model.
A more comprehensive introduction can be found elsewhere [14].
The model serves to parallelize loop programs automatically by
applying algebraic transformations. Its main benefit is that loop
transformations can be derived fully automatically and their cost is
independent of the problem size.

The polyhedron model provides an abstract representation for
loop programs. A loop program consists of a number of statements.
Each statement has an associated iteration domain (which is defined
by the loops surrounding the statement) and a schedule (which
determines the execution order of the statement instances).

Each program statement S comes with its own iteration domain
DS , which is a subset of Zn. Each point~i ∈ DS in this domain
represents a statement instance (S;~i), i.e., statement S is executed
once for every such~i. A schedule ΘS for statement S is a function
θS : DS → Zm that maps each instance of statement S to a single
point in (multi-dimensional) time1; hence, the schedule determines
the execution order of the statement instances via the lexicographic
order in Zm. Each statement can contain memory accesses to arrays
(the only aggregate data structure allowed in the model); these are
represented by relations between the domain of the statement and the
indices accessed of the respective array, e.g., {(S;~i) 7→ (A; 2 ·~i)}
for an access A[2*i] in statement S.

The most important computational task when using the poly-
hedron model for program transformations is to compute the data
dependences between statement instances. A statement instance
(T ;~j) depends on an instance (S;~i) iff there exist memory accesses
in S and T such that both statements access the same memory cell
(for the given values of~i and ~j). Transformations of the program
must not violate the dependences (by executing dependent instances
in the wrong order or in parallel). To make the determination of the
data dependences computable, the following restriction is imposed.
The constraints of all domains, schedules, and memory access rela-
tions must be affine, i.e., all constraints can be written in the form
M~i ≥ ~b for M ∈ Zk×n, ~b ∈ Zk. Geometrically, these objects
are (Z-)polyhedra; hence, the name of the model. Note that some
dimensions of~i can be structure parameters, which allows parame-
ters to occur additively (weak parametrization, e.g., Figure 2(a)) in
all constraints, schedules and memory accesses, but not multiplica-
tively (strong parametrization, e.g., Figure 2(b)). This restriction
implies that the control flow of the loop program (represented by
the domains and schedules) must be known at compile time, i.e.,
the loop bounds and conditionals must be affine expressions. Thus,

1 Note that schedule and iteration domain do not necessarily have an equal
dimensionality.

1 int i,j;
2 for (i=0; i<=n; ++i)
3 for (j=i; j<=n; ++j)
4 i f (i >= n-j) {
5 S: A[i+n][j+i] = B[n+2*i-1][j];
6 T: B[i+n][j-i] = A[n-2*i+1][j];
7 }

Figure 1. A static control program (SCoP).

non-affine conditions and recursive control flow cannot benefit from
polyhedral optimization.

Other consequences of the restriction are that the only aggregate
data structure allowed is the array (scalars can be represented as
zero-dimensional arrays) and the only statement type allowed in the
loop body is the assignment. Calls to functions with side effects
inside a loop body are not supported by the basic model because the
memory-access behavior and the control flow are hidden inside the
body of the called function.

These strict requirements limit the number of programs that can
be analyzed. Each loop in the program complying with them is
called a static control part (SCoP) [6].

An example of a SCoP is given in Figure 1. The SCoP consists
of two statements, labeled S and T . They share the domain {(i, j) |
0 ≤ i ≤ n ∧ i ≤ j ≤ n ∧ i ≥ n − j}. Note that the condition
i ≥ n − j, derived from the conditional statement, is added to
the constraints of the domain derived from the loop bounds. The
control flow is known at compile time because the predicate and the
loop bounds are affine expressions. Both statements perform a read
access and subsequently a write access. The read and write accesses
are summarized in the relations R and W , respectively:

R = {(S; (i, j)) 7→ (B; (n+ 2 ∗ i− 1, j));

(T ; (i, j)) 7→ (A; (n− 2 ∗ i+ 1, j))}
W = {(S; (i, j)) 7→ (A; (i+ n, j + i));

(T ; (i, j)) 7→ (B; (i+ n, j − i))}

The program in Figure 1 is sequential. Therefore, the schedule for
its statements can be given by θS(i, j) = (i, j, 0) and θT = (i, j, 1).
Notice that the lexicographic order in the range of the schedule
yields the sequential execution order of the loop iterations (in the first
two dimensions) and the textual order between statement instances
of the same iteration (in the third dimension). The aim of polyhedral
optimization is to find “better” schedules, e.g., schedules that speed
up the execution via parallelism or that improve cache efficiency.
The search for better schedules is not discussed in this paper; we
are interested in the more general question of what fraction of real-
world codes can be modeled in the basic model and in extensions
thereof to be accessible by polyhedral optimization in the first place.

2.2 Classification of SCoPs
Successful detection of SCoPs in source code depends on two factors.
First, the time of detection; is detection performed at compile time or
at run time? Second, the extensions applied to the model to overcome
certain restrictions, e.g., extensions to deal with multiplicative
parameters via quantifier elimination in the reals [20].

Let us introduce three different classes of SCoPs – Static, Dy-
namic and Extended – which will be used throughout our empirical
study. Each class defines a larger set of SCoPs than the previous
one. It has to be noted that none of the run-time–based classes have
been implemented in a production compiler yet. This made it neces-
sary for us to extend LLVM to be able to detect SCoPs of classes
Dynamic and Extended.



Class Static reflects the current state of the art of polyhedral opti-
mization. Class Dynamic is one of the hot topics in the polyhedron
research community. Class Extended can be viewed as an upper
bound on practicality.

2.2.1 Class Static
This smallest class covers classical SCoPs, i.e., all SCoPs that can
be represented in the basic polyhedron model and apply all analysis
and transformation steps at compile time. Current implementations
of the model (e.g., POLLY or GRAPHITE) are capable of detecting
SCoPs of this class.

2.2.2 Class Dynamic
Much like class Static, class Dynamic incorporates also only SCoPs
that can be represented in the basic polyhedron model. However, the
SCoP detection of this class takes place at run time of the program
to be analyzed.

At compile time, any possible violation of the model’s restric-
tions in a given part of the code precludes polyhedral optimization.
But, the knowledge available at run time enables a more precise
evaluation of the adherence of the restrictions in the given program
run. Class Dynamic encompasses all code regions that are SCoPs
when the values of parameters and the aliasing of pointers and arrays
are known. In addition, control flow may be amenable to analysis at
run time.

Next, we describe three patterns that can be detected in class
Dynamic in addition to class Static. We use these patterns also in
our empirical study. All patterns assume that SCoP detection is
performed at run time.

Known Parameters The basic polyhedron model requires all loop
bounds and memory accesses to be affine linear (Figure 2(a), weak
parametrization). Non-linearity introduced by parameters, as shown
in Figure 2(b) (strong parametrization), cannot be handled in the
basic model.

1 int i;
2 for (i=0; i<=n; i++) {
3 A[i+n] = __;
4 __ = A[i-1+n];
5 }

(a) linear memory access (weak
parametrization)

1 int i;
2 for (i=0; i<=n; i++) {
3 A[m*i+n] = __;
4 __ = A[m*(i-1)+n];
5 }

(b) non-linear memory access
(strong parametrization)

Figure 2. Linear vs. non-linear memory access. The expression
i − n + 1 can be handled in the basic polyhedron model. The
expressionm∗(i−1)+n cannot be handled in the basic polyhedron
model, due to the multiplicative parameter m. The wildcard __ can
be replaced by any expression.

In Figure 2(b), parameter m, although loop-invariant, is multi-
plied with the value of iteration variable i, forming a non-linear
expression. However, the value of parameter m is known at run time.
By substituting it for the parameter name, the loop nest complies
with the polyhedron model. In contrast to more sophisticated meth-
ods of dealing with non-linearity [20], this does not require any
changes to the model.

Run-time knowledge about parameters is not limited to constant
parameter values. If parameter m adopts a limited number of values,
one can provide a transformed loop program for each value. In
the worst case, polyhedral analysis and optimization has to be
performed every time the loop nest is reached by the control flow of
the program.

Known Aliasing As soon as we consider input languages that
support pointers, we have to deal with the possibility of aliasing.
Present alias analyses can provide only a conservative approxima-
tion, leading to so-called may-alias, i.e., alias whose existence must
be assumed but is uncertain. There are two alternative ways of deal-
ing with a may-alias: (1) one installs the corresponding dependence
at compile time or (2) one tests for the alias at run time and respects
its dependence conditionally.

In class Dynamic, we rely on the fact that the real aliasing is
revealed at run time anyway and, therefore, we do not reject SCoPs
that include unknown aliasing behavior.

Known Control Flow and Side-Effects Aside from the restric-
tions on loop bounds and arrays, the polyhedron model requires a
well-formed control flow of the loop nest: any conditional in its body
must also be of the affine linear form Ax ≥ b, and any side-effects
of function calls must be known. Using run-time information, it
becomes possible to establish the loop invariance or affine linearity
of certain conditional predicates using the known parameter values.
In the case of a function call with unknown side-effects, there is no
possibility of a reasonable polyhedral analysis at compile time: one
would have to view the entire body of the respective function call as
atomic with an arbitrary effect on the entire memory.

In class Dynamic, we permit calls to functions whose entire
bodies form valid SCoPs at compile time, i.e., the function body
itself must be in class Static and conditionals must become affine
linear after known parameter values have been substituted.

In class Dynamic, we have to be careful which functions we allow
to be called in SCoPs. Unfortunately, calling a function which itself
forms a valid SCoP in class Dynamic cannot be permitted in general.
The function may use its arguments (parameters) in products with
iterators and, hence, calling the function with an iterator as argument
leads to non-linearities. However, we can permit functions that form
valid SCoPs in class Static as the function arguments can only occur
as linear parameters in the contained SCoP. We restrict the arguments
at the function call to affine linear expressions. This restriction is
conservative, as the uses of a called function’s parameters determine
the compatibility with the model as well. This leaves room for
improvement in the class Dynamic.

Aside. The more practical alternative is to exploit run-time
knowledge on program input values and parameters, and inline
the function body just-in-time (excluding recursion). However, this
technique is not restricted to the class Dynamic alone. Therefore,
we exclude its investigation from this study.

2.2.3 Class Extended
As stressed previously, affine linearity is the key limiting factor in
applying the polyhedron model at compile time or at run time. Some
violations of this restriction at compile time dissolve when run-time
information turns a variable into a constant (class Dynamic). For
violations that remain, the restriction to affine linearity is removed in
class Extended; only static knowledge of the control flow is required.

Conceptually, dropping the restriction to affine linearity opens
the way for a multitude of aggregate data structures like lists, trees,
etc. Obviously, many –especially irregular– access patterns possible
on such structures will not be treatable by polyhedral methods.
However, some have already shown to be treatable, e.g., polynomial
loop bounds [20], and others will likely follow.

For now, we view class Extended more as an upper bound on
what is possible, than as a terrain of practicality.

3. Experiment Planning & Execution
We conducted an empirical study to estimate the potential of
polyhedral optimization of real-world programs. We are interested
in the impact of polyhedral methods in three areas:



• application of the basic model at compile time,
• application of the basic model at run time,
• any conceivable relaxations of the basic model (upper bound).

3.1 Goals
Our empirical study has been designed to answer the following
questions. What is the potential of the basic polyhedron model
at compile time? Can the potential benefit of polyhedral methods
be improved by using run-time information? Can the model’s
coverage be improved significantly by giving up the restriction
to affine linearity, even if the result may not not be well-suited for
optimization? How applicable is the polyhedron model augmented
by run-time knowledge? How applicable is the polyhedron model
without restrictions to affinity? Are there differences with regard to
the above questions between different application domains?

3.2 Measurement Methodology
Empirical evaluation in the context of polyhedral optimization
proceeds usually by measuring the effect of a specific instance
of polyhedral optimization on the run time of benchmarks. However,
we have a more general view on this issue and do not limit our focus
to a specific optimization. We are interested in the fraction of the
run time that is, in general, in reach of polyhedral optimization.
Therefore, instead of measuring the run time of a transformed
program, we analyze the fraction of the sequential run time that
we can reach with polyhedral transformation, the so-called dynamic
SCoP coverage.

Definition (Dynamic SCoP coverage). Let S be the set of SCoPs of a
program. Let t : S→ R be a function that returns the accumulated
run time of a SCoP in the run(s) of the program. Let T be the
accumulated run time of the program for arbitrary sets of input
values. Dynamic SCoP coverage (DynCov) is then defined as:

DynCov := (Σs : s ∈ S : t(s)) ∗ 1

T

Dynamic SCoP coverage allows us to estimate the potential
benefit of an optimization by looking at the fraction of the sequen-
tial program’s run time that is spent inside SCoPs. Furthermore,
dynamic SCoP coverage shows whether our transformations were
able to hit the hot spot(s) of our application. The higher the SCoP
coverage, the larger the impact of polyhedral optimization on a
specific program run.

Our experiments measure the dynamic SCoP coverage of
each program in the three classes Static (DynCovStat), Dynamic
(DynCovDyn) and Extended (DynCovExt). Note that, even though
DynCov can be ordered by DynCovStat ≤ DynCovDyn ≤ DynCovExt,
this does not imply Static ⊆ Dynamic ⊆ Extended. Every SCoP
detected is maximized in size and, therefore, does not necessarily
represent the same SCoP in a different (lower) class.

3.3 Experimental Variables
The variables of our empirical study are listed in Table 1. Our main
focus lies on a single dependent variable, DynCov. It is influenced
by the total run time and the input data of the executed program. The
input data determine the code paths chosen in the program run and,
therefore, controls the fraction of SCoPs that are executed during
one program run. We chose to control the test input by making it
constant per program (Input). However, we tracked the achieved
code coverage of each program to ensure that the major fraction of
code paths in the program have been visited at least once.

Additionally, DynCov depends on the program’s total run time
by definition. As the run time of a program itself depends on the
input values, we do not consider the total run time as a variable

for our experiments. However, the selected values of Input control
the impact of the program’s run time by assuming that the chosen
benchmarks give an accurate view on the real-world execution of the
tested program. Further ramifications of this exclusion are discussed
in Section 5.2.

Our study requires two more variables to refine our findings,
both of them independent. We distributed all tested programs across
a wide variety of application domains (Dom). All programs that
were expected to behave similarly or perform a similar task (e.g.,
compilation) were grouped in the same domain. Based on the
introduction in Section 2.1, we collected DynCov for each program
instance in each class (Class).

3.4 Hypotheses
Compile-time analysis is always limited by the amount of infor-
mation that is available. The majority of static-analysis problems
remains undecideable at compile time. The same applies to the poly-
hedron model. Therefore, we expect the model to be more applicable
when given more information about the underlying loop programs.
This general expectation leads to the formalization of the hypotheses
tested with our experiments:

H1.1: DynCovDyn is significantly greater than DynCovStat
(DynCovDyn > DynCovStat), on average.

H1.2: DynCovExt is significantly greater than DynCovDyn

(DynCovExt > DynCovDyn) and therefore transitively greater than
DynCovStat, on average.

H2.1: The benefits of applying the polyhedron model just-in-time
(DynCovDyn − DynCovStat) differ significantly across different
domains (Dom), on average.

H2.2: The benefits of extending the model beyond affine linearity
(DynCovExt − DynCovDyn) differ significantly across different
domains (Dom), on average.

3.5 Sample Programs
We conducted the study on an unbiased selection of open-source
programs, as listed in Table 2. The selection was not entirely random,
as we could select only programs that were compatible with our
measurement infrastructure (see Section 3.8).

3.6 Tasks
In order to set up a real-world scenario for each of the tested pro-
grams, we relied on benchmarks. We selected two different kinds
of benchmarks depending on their availability. Our preferred test
input was a benchmark, which is commonly being used in the re-
spective application domain, e.g., the reference input data for com-
pression programs of SPEC2006. In the case of the absence of
such a benchmark, we resorted to benchmarks used by the devel-
opers of the program. The assumption here was that a commonly
accepted benchmark targets real-world scenarios more objectively
than a benchmark used by the developers. The set of programs un-
der investigation is distributed across a wide range of application
domains. Table 2 shows a complete list of all programs tested, as
well as their input parameters in our tests.

3.7 Design
Based on the variables introduced in Section 3.3, we performed two
experiments to validate our hypotheses. In the first experiment, we
compared DynCov of the three classes Static, Dynamic and Extended.
The second experiment compared the difference in DynCov between
classes across different domains.

Each sample program consists of three different program in-
stances (one for each class) and belongs to one of eight application



Name Abbreviation Type Scale type Unit Range

Dynamic SCoP coverage DynCov Dependent Ratio % [0, 100]
Application domain Dom Independent Nominal Text {Compilation, Compression, Databases, Encryption,

Multimedia, Scientific, Simulation, Verification}
Testing class Class Independent Nominal Text {Static, Dynamic, Extended}
Test input Input Controlled Nominal Text See Table 2

Table 1. Description of dependent, independent, and controlled experimental variables. Dependent variables are influenced by independent
and controlled variables. Independent variables are not influenced by other variables. Controlled variables influence the dependent variables,
but are fixed during the experiments

Name Version Tested inputs

Compilation
SPIDERMONKEY 1.8.5 Integrated tests & SunSpider

benchmark
PYTHON 3.2.3 Integrated tests
RUBY 1.9.3-p286 Integrated tests
SDCC 3.2.0 Integrated tests & Dhrystone

benchmark
TINYCC (9966fd4) Integrated tests

Compression
7Z 9.20.1 SPEC2006 input data (set: ref)
BZIP2 1.0.6 SPEC2006 input data (set: ref)
GZIP 1.2.4 SPEC2006 input data (set: ref)
XZ 5.1.1alpha SPEC2006 input data (set: ref)

Database
LEVELDB (c8c5866) Integrated benchmark
SQLITE3 3.7.13 Leveldb’s integrated benchmark
POSTGRESQL 9.1.2 Integrated benchmark

Encryption
OPENSSL 1.0.0e Integrated test-binaries
CCRYPT 1.9 Integrated tests
LIBMCRYPT 2.6.8 Integrated benchmark

Multimedia
LIBAV (be64629) Integrated benchmark
POVRAY 3.6.1 Integrated sample scenes
X264 (8a62835) Integrated benchmark (1 sample

video)
Scientific

LAMMPS 11/19/2011 Integrated sample problems
LAPACK 3.4.1 Integrated tests
LINPACK 2/25/94 Integrated benchmark

Simulation
LULESH 1.0.1 Integrated benchmark
LULESH-OMP 1.0.1 Integrated benchmark
CRAFTY 20.0 Integrated benchmark

Verification
CROCOPAT 2.1.5 Integrated benchmark
MINISAT 2.2.0 SAT-Race 2008 (reduced)

Table 2. Projects from which we generated the sample programs
for our experiments and benchmarks used in the empirical study. A
detailled description of test inputs can be found on the project’s Web
site (Version numbers in parentheses indicate GIT commit hashes).

domains. Our experiments measure the dynamic SCoP coverage
(DynCov) for each program instance.

3.8 Experimental Setting
In our experiments, we use the Low-Level Virtual Machine (LLVM)
compiler framework [25]. Its common representation during all
stages of compilation is the LLVM Intermediate Representation
(LLVM-IR). LLVM-IR is a strongly typed static single-assignment
(SSA)-based language that can represent a wide variety of high-
level languages. High-level languages are supported via differ-
ent language frontends, which provide LLVM-IR as output, e.g.,

Preoptimization pass Purpose

-mem2reg Promote memory to registers
-instcombine Instruction combiner
-simplify-cfg Clean up the CFG
-tailcallelim Eliminate tail calls
-reassociate Reassociate expressions
-loop-rotate Rotate loops
-indvars Simplify induction variables
-polly-region-simplify Single-Entry-Single-Exit regions

Table 3. Preoptimization used for all LLVM-IR files throughout the
empirical study.

CLANG [2] for C/C++, RUBINIUS [1] for Ruby and PYPY [8] for
Python. LLVM-IR can be optimized independently of platform and
language. LLVM performs polyhedral optimization via the plugin
POLLY [18, 19]. POLLY retrieves information about SCoPs from
compatible loop nests found in the LLVM-IR. POLLY’s SCoP detec-
tion is able to derive a polyhedral description of the loop nest when
the restrictions of class Static are obeyed.

On top we built an open-source polyhedral analysis engine
that is independent of the syntax of the source language, and that
incorporates extensions of the polyhedron model for inclusion of
run-time information in the optimization.

To assist POLLY in identifying SCoPs in LLVM-IR code, various
preprocessing steps must be performed, as shown in Table 3. These
steps correspond to a relevant subset of the optimizations of LLVM’s
optimization level O3 (irrelevant steps such as jump-threading were
removed). In our experiments, we use the same steps.

Looking at a program’s control flow, a SCoP can be represented
as a region in the control-flow graph (CFG). Assuming that no
restriction of the polyhedron model is violated, a region in the CFG
is a SCoP if it satisfies the Single-Entry-Single-Exit (SESE) property.
LLVM includes an analysis pass to generate the required region
information, based on a refined version of the program-structure
tree [23]. We have created one further optimization step, polly-
region-simplify, as shown in Table 3, which establishes the SESE
property for every region found in the CFG.

We have chosen to use instrumentation to retrieve precise timing
information instead of sampling. Instead of deriving timing infor-
mation for SCoPs based on common profiling frameworks such as
OPROFILE [26] or GPROF [15], we have implemented the instrumen-
tation based on the Performance Application Programming Interface
(PAPI) [12]. It allowed us to retrieve timing information precisely at
the entry and exit edges of a SCoP with high-precision timers. Out
of the 4 possible clock variants (real, virtual, user, system), we have
chosen virtual time for our measurements. Virtual time consists of
a process’s user time (time spent in user mode) and system time
(time spent in privileged mode). The ramifications of this choice are
discussed in section 5.2.



Our measurements have been implemented as a Makefile-
driven [3] build system. To avoid repeated compilation of high-level
source code, we stored each program in statically linked LLVM-IR.
For future use, we decided to skip any pre processing of these IR-
files and apply optimizations as shown in Table 3 before scanning
for and instrumenting any SCoPs. This kind of instrumentation is
bound to a SCoP. Therefore, its overhead depends on the number
of SCoPs detected in the program. This number varies between the
three different classes (Class). Thus, each sample program had to be
run with three different binaries, one for each class, as introduced in
Section 3.7. With the instrumentation, we were able to calculate the
necessary DynCov for each program run.

Static’s SCoP detection has been implemented by instrumenting
all SCoPs detected by POLLY, without further modification of the
detection process. Instrumentation was inserted only at transition
edges between SCoPs (SESE). For Dynamic and Extended, we had
to track all failures during POLLY’s SCoP detection. As SCoPs
can be represented as nodes in the region tree, we analyzed the
rejected SCoPs in a bottom-up fashion and fixed all possible
failures under the assumption that sufficient run-time information
is available, e.g., we would be able to insert parameter values into
non-linear expressions induced by strong parametrization, as shown
in Figure 2(b). If we were able to fix a problem with the assumed
run-time information, we proceeded with POLLY’s SCoP detection
and expanded the detected region to the maximal possible size.

All experiments were conducted on an Intel i5 M520 processor
(2 physical cores, 2.40 GHz) with 4GB RAM. In order to stabilize
the values of run time measurements, we ensured (using the FIFO
scheduling class in Linux) that the programs measured could not be
preepmted during execution.

3.9 Deviations
We experienced measurement bias in a few cases, caused by the
introduction of sample program instances for every class. Since
every instance required different SCoPs to be instrumented, we
experienced different function body alignment and cache effects,
which led to minor inconsistent behavior of DynCov (DynCovStat >
DynCovDyn). This circumstance does not bias our empirical results,
as we discuss in Section 5.2.

4. Analysis
All results of our measurements are listed in Table 4 (at the end of
the paper). The complete set of experimental results is available at
the project’s Web site.

4.1 Descriptive Statistics
Figure 3 shows the distributions of dynamic coverage of the three
classes Static, Dynamic, and Extended; Table 5 lists the correspond-
ing values of mean, variance, and standard deviation. At first glance,
the dynamic coverage of Static is lowest, followed by Dynamic and
Extended, but the variance of Dynamic and Extended is considerably
higher than of Static – an observation that we discuss in Section 5.

Class µ s s2

Static 10 14 190
Dynamic 29 26 680
Extended 39 26 650

Table 5. Mean (µ), standard deviation (s), and variance (s2) for all
three classes.

Table 6 lists the mean dynamic coverages as well as relative
differences between the three classes on a per-domain basis. An
immediate observation is that the coverages and their relative

Figure 3. Distributions of DynCov for every class in form of
boxplots. The left end of each box represents the lower quartile (25th
percentile). The right end of each box represents the upper quartile
(75th percentile). The left/right whiskers mark the lowest/highest
datum within 1.5 interquartile range of the lower/upper quartile. The
band inside each box denotes the median. Outliers are represented
by circles.

differences differ considerably between individual domains. We
will discuss this in Section 5.

Domain µStat ∆ µDyn ∆ µExt

Compilation 6.8 14 21 11 32
Compression 9.3 5.1 14 25 40
Database 9.6 3.2 13 16 29
Encryption 11 17 28 11 39
Multimedia 18 18 35 25 60
Scientific 4.2 37 41 0.23 42
Simulation 30 6.2 36 9.0 45
Verification 5.0 0.85 5.9 8.8 15

Table 6. Mean (µ) dynamic coverage and difference between
domains (in %): ∆ denotes the benefit between the corresponding
left and right column.

4.2 Hypothesis Testing
Let us comment on the significance of our measurements. Our case
study consists of three independent data sets (CLASS). A Shapiro-
Wilk Test [33] on the dynamic SCoP coverage (DYNCOV) data of
the classes Static (p � 0.05), Dynamic (p < 0.05) and Extended
(p � 0.05) reveals that none of the three data sets is normally
distributed.

With respect to H1.1, a Mann-Whitney-U Test [27] reveals that
DynCovDyn is significantly greater than DynCovStat (p� 0.05).

With respect to H1.2, a Mann-Whitney-U Test reveals that
DynCovExt is significantly greater than DynCovDyn (p < 0.05).

With respect to H2.1, a Kruskal-Wallis Test [24] reveals that the
benefit of Dynamic (DynCovDyn−DynCovStat) differs significantly
accross different domains (p� 0.05). This is also shown in Table 6,
e.g., the average benefit of Scientific (37 %) vs. the average benefit
of Verification (0.85 %).

With respect to H2.2, a Kruskal-Wallis Test reveals that the
benefit of Extended (DynCovExt−DynCovDyn) differs significantly
accross different domains (p � 0.05). Again, this can be seen in
Table 6, e.g., the average benefit of Compression (25 %) vs. the
average benefit of Scientific (0.23 %).

In summary, we can accept all of our hypotheses.

5. Discussion
Next, we describe the ramifications on polyhedral analysis and
optimization of our results in detail.



5.1 Results
We begin with the potential of compile-time polyhedral analysis
(class Static). In our experiments, polyhedral analysis at compile
time is able to optimize 0.79–15.1 % (as shown in Figure 3) of
a program’s total run time. Exceptions are SHA512, LULESH-
OMP (Outliers in Figure 3) and POSTGRES: SHA512 is a very
short running benchmark (TStat = 0.024s), which increases the
influence of a detected SCoP; LULESH-OMP is hand-optimized
code for OPENMP parallelization, which increases the chances
of compatible loops due to the regular nature of OPENMP codes;
only POSTGRES showed unexpected results. We did not expect
a database management system to achieve such a high coverage
(DynCovStat = 24%). While these outliers illustrate that compile-
time polyhedral optimization may be selectively highly beneficial,
the overall picture is that, in many cases, it could not play to its
strengths and is practically limited.

As soon as run-time information is available to polyhedral
analysis (class Dynamic), DynCov rises to 5–50 % (as shown in
Figure 3); this increase is significant (H1.1). So, exploiting run-time
information for polyhedral optimizations is of practical relevance.

Giving up on the restriction to affine linearity (class Extended)
improves the overall benefit of polyhedral analysis even further to
19–51 %, as shown in Figure 3; this increase in DynCov is also
significant (H1.2). While this class serves only as upper bound for
the potential of polyhedral optimization, which cannot reached with
current models and implementations, it highlights the fact that there
is still room for improving the model as well as implementations.

A notable observation is that the descriptive variance (s2 = 680)
of DynCovDyn is significantly greater (p� 0.05) than DynCovStat
(s2 = 190). According to hypothesis H2.1, DynCovDyn differs sig-
nificantly from DynCovStat across different domains. This suggests
that the high variance is caused by a considerable difference between
individual domains. Table 6 reveals that the domains Multimedia
(+18 %) and Scientific (+37 %) gain the most when applying the
polyhedron model at run time. This finding confirms the common
belief that these domains are well-suited for polyhedral analysis. The
smallest benefit was achieved in the domains Verification (+0.85 %)
and Database (+3.2 %). This complies with the common expecta-
tion that these domains are not well-suited for polyhedral analysis.

The same reasoning applies to the high variance of DynCovExt.
According toH2.2, DynCovExt differs significantly from DynCovDyn

across different domains. However, the greatest benefit could not
only be achieved in the expected domains, as experienced in class
Dynamic. Instead, giving up on the restriction to affine linearity,
results in a significant increase in coverage in the domain Com-
pression (+25%). This shows that these show potential of being
accessible with more sophisticated extensions to the polyhedron
model in the future. In contrast, the domains that are expected to
be well suited for polyhedral analysis could not always improve
their DynCov to the same degree (e.g., Scientific +0.23 %). This
suggests that the code regions that remain after detecting all SCoPs
that belong to Dynamic, lack even statically known control-flow and
are therefore out of reach of the polyhedron model anyway.

5.2 Threats to Validity
Construct validity Our measurement methodology results in dif-
ferent instrumentations per binary per class. This circumstance has
an influence on the run-time fraction of SCoPs measured. The dif-
fering instrumentation is necessary because we have to detect the
SCoPs based on the testing class and instrument each detected SCoP.
They may not be a precise subset of each other in LLVM-IR. For
each program of each class, we compared the difference between
instrumented run time and the uninstrumented run time for each
program to the expected overhead caused by our instrumentation.

As mentioned in Section 3.8, we measure virtual time with high-
precision timers provided by the operating system. It is obvious
that instrumentation causes higher run-time overhead than sampling.
Mainly, this overhead is generated due to the instrumented calls
to obtain timing information. However, it is possible that the
instrumented code suffers from other negative side-effects as well,
e.g., cache effects or ineffective function body alignment. Note that
our instrumentation is bound to the entry and exit of a SCoP. Thus,
it is possible that it slows down a SCoP more than other program
parts, which would increase DynCov. This did not cause problems
during our experiments. We verified that by comparing the average
run-time overhead (calibrated separately) of one instrumentation
call and the actual average run time overhead of one instrumentation
call (measured on each sample program).

Internal validity Furthermore, we depend on the quality of our
input parameters, because we measure run time. We have taken care
of this threat to validity by choosing the developer’s own benchmark
sets or by using the known default benchmark of the according
domain, such as SUNSPIDER [? ] for a JavaScript engine. This does
not remove the dependence from Input, but we assume that the
developer’s own test cases catch the important code paths and the
default benchmarks of a domain test the most common use cases,
that is, we assume the benchmarks reflect the real world correctly.

External validity As with any comparable study, the selection
of sample systems threatens the generalizabilty of our results. We
controlled this threat by selecting randomly a large and diverse
number of sample systems.

5.3 Perspectives
In our experiments, polyhedral optimization does not show great
potential when applied at compile time, but this does not necessarily
imply that the polyhedron model, in general, is not suited for
application at compile time. The tools we use for determining the
coverage data (LLVM, POLLY) are practical tools that implement
only a subset of the polyhedron model yet. Extensions proposed in
academia will constantly flow into these tools and improve the
situation (e.g., correct handling of integer wrapping and multi-
dimensional arrays in LLVM).

Having said that, our study demonstrates the potential of apply-
ing polyhedral optimizations at run time. Using run-time information
increased the dynamic coverage substantially. We consider this ob-
servation a major result and an important sign to the community to
follow this path, both in terms of refining and extending the model
and by extending practical tools accordingly.

Giving up on the restriction to affine linearity unfolds the full
potential of polyhedral optimization that is theoretically possible
and in reach of the polyhedron model; our results demonstrate that
there is considerable room to extend the polyhedron model and its
implementations.

6. Related Work
Let us introduce other studies, extensions of the polyhedron model
and alternative technologies related to our work. The introduced
extensions have the potential to enable access to SCoPs of classes
Dynamic and Extended.

6.1 Alternative Studies
Alnaeli et. al. [4] conducted an empirical study on the paralleliz-
ability of open source systems. In their work they analyzed 11 open
source software systems for their past and current parallelization op-
portunities. They conclude that the main problem with the programs
tested were function calls inside the loop’s bodies. Therefore, future
research should focus more on dealing with side-effects in function



calls. In contrast to our work, they did not investigate the run time
fraction of the parallel loops found.

6.2 Alternative Extensions
The following extensions focus on extending the polyhedron model’s
reach beyond affine linearity at compile time.

Benabderrahmane et al. [7] allows modeling arbitrary, non-
recursive, control flow within a SCoP at compile time. This is
done by converting control dependences to data dependences, if
necessary. The same extension can be used to deal with while-
loops in SCoPs. The while-loop is transformed into an unbounded
for-loop and an exit-conditional is introduced in the body in form
of a write access. Every existing statement depends on this exit-
conditional, thus terminating the loop execution if the condition is
violated. These capabilities come at the cost of a loss of precision of
the whole analysis. In particular, the introduced dependence to the
exit-conditional enforces a sequential schedule.

In contrast to stretching the modeling capabilities by giving up
precision, there are a few extensions to the model that cope with
non-linearity by using new algebraic methods, without giving up
precision. First, it is possible to deal with multiplicative parameters
throughout the modeling, the transformation and the code generation
at compile time by using real quantifier elimination [20]. Second,
cylindrical algebraic decomposition [20] can be used to provide
support for input programs that feature more complicated non-
linearity, like polynomials in the index variables. However, both
approaches suffer from significant performance penalties in the code
synthesis as well as in the generated code itself, due to the more
complex modeling and transformation phase.

6.3 Alternative Technologies
In addition to the LLVM framework, there are several other compiler
frameworks that support the polyhedron model.

Most earlier and some current systems extract SCoPs directly
from the program source code. Hence, a syntactic markup of
SCoPs is required. LooPo [17] was the first such system. A recent
system is PoCC [30], which implements a full compiler toolchain
for automatic polyhedral optimization. It supports two polyhedral
transformation tools: PLuTo [9, 10] and LeTSeE [28, 29]. The
PLuTo scheduling algorithm focusses on providing a transformation
that optimizes data locality on shared memory systems. In contrast to
generating the optimal solution, LeTSeE uses an iterative approach
by exploring the legal transformation space and tries to converge on
the optimal solution.

Recently, implementations of the polyhedron model working
on a compiler’s intermediate representation (as does POLLY) have
become available. The main advantage is that, unlike the source-
code-based tools, SCoPs need not be written in a fixed syntactic
form, since the loop structure and array accesses are obtained from
loop and pointer analyses on the IR. A project similar to POLLY is
the GCC project GRAPHITE [34]. Other implementations working
on IR include the Wrap-IT [16] research project (based on Open64)
and the IBM XL compiler [11].

Research on the field of run–time-based polyhedral optimization
has started to emerge. The latest contribution by Jimborean [22]
merges speculative techniques, like the LRPD test [31], and adaptive
compilation with polyhedral optimization. However, most of the
polyhedral optimization is still performed at compile time.

7. Conclusions and Future Work
The polyhedron model is a well-studied and promising approach to
automatic program optimization. By means of an empirical study of
the potential of polyhedral optimization –the first study of its kind–
we have demonstrated that current practical implementations of

the polyhedron model do not achieve practically relevant dynamic
coverages when applied to real-world programs at compile time
(10 %). But, we found that polyhedral analysis benefits significantly
from the available amount of information when applied at run time
(the code regions that can be covered increase from 10 % to 29 %
on average). The time is ripe for researchers and tool builders to tap
this potential. Overcoming the limits of affine linearity can increase
the dynamic coverage, which encourages to push the boundaries of
the polyhedron model further toward practical application.

Beside the material and results of our empirical study, we
contribute our polyhedral analysis engine to help other researchers
to conduct empirical studies on polyhedral optimization. Our set of
sample systems and benchmarks are a good start for a community
effort to coordinate efforts in improving polyhedral optimization.
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Name Stat TStat Dyn TDyn Ext TExt TRaw Stat | Dyn | Ext

Compilation
PYTHON 0 0 0 0 0 0 0

JS 0.31 6.1 21 11 38 26 5.9

RUBY 27 770 68 450 75 1500 330

TCC 1.7 1.0 1.9 1.0 19 1.6 0.78

SDCC 4.6 37 13 45 27 67 34
Compression

GZIP 2.6 12 3.8 12 36 38 13

XZ 12 170 19 200 38 440 120

7ZA 17 88 17 87 36 180 58

BZIP2 5.1 18 18 23 48 150 16
Database

POSTGRES 24 270 26 290 45 420 0

LEVELDB 1.4 0.058 1.7 0.077 0 0.076 59

SQLITE3 3.4 210 11 250 43 1200 130
Encryption

HMAC 5.6 0.000 25 11 0.000 11 12 0.000 14 0

MD5 1.3 0.000 38 5.7 0.000 14 4.2 0.000 14 0

CCRYPT 0.34 0.12 14 0.16 45 0.94 0

RC4 0. 6.4× 10−5 0. 6.6× 10−5 0. 6.4× 10−5 0

MCRYPT-CIPHERS 12 0.052 13 0.054 38 0.14 0.020

SHA512 71 0.023 88 0.028 88 0.030 0.010

BLOWFISH 0. 0.0030 0.85 0.0031 0.94 0.0031 0

SHA1 0.066 0.0046 89 0.0048 88 0.0049 0

DES 1.1 0.000 37 1.1 0.000 35 36 0.0013 0

RSA 25 0.98 28 1.1 45 5.4 1.2

ECDSA 0.60 1.5 30 3.7 49 35 3

SHA256 0.042 0.024 70 0.036 71 0.036 0.020

BN 17 1.4 42 2.7 50 13 2.0

DSA 15 0.066 32 0.13 45 0.41 0.12

MCRYPT-AES 0.99 0.000 61 1.0 0.000 77 4.8 0.0010 0

CAST 23 1.8 24 1.8 52 2.6 2.2
Multimedia

POVRAY 15 450 28 630 90 780 310

X264 4.6 25 33 55 40 81 22

AVCONV 33 390 46 950 50 2200 160
Scientific

XLINTSTRFS 6.0 2.8 55 15 55 16 2.5

XLINTSTC 0 0 0 0 0 0 15

XEIGTSTC 6.6 16 52 54 53 65 14

LINPACK 5.8 16 85 17 85 17 34

XLINTSTD 0 0 0 0 0 0 8.5

XLINTSTDS 5.4 2.3 64 9.3 65 9.8 2.3

XEIGTSTD 9.6 15 50 61 51 74 12

XLINTSTZ 0 0 0 0 0 0 17

XEIGTSTZ 4.8 20 51 61 51 73 18

XLINTSTRFC 2.1 6.7 50 19 51 21 6

XLINTSTRFD 6.9 2.8 55 15 55 16 2.5

XLINTSTS 0 0 0 0 0 0 7.9

XLINTSTZC 0.45 3.5 65 8.7 66 8.9 3.4

XEIGTSTS 11 13 52 58 52 69 10
Simulation

LULESH-OMP 44 1300 47 1700 48 1900 280

CRAFTY 33 150 36 180 49 760 50

LULESH 20 360 21 360 34 560 220

LAMMPS 24 570 42 1600 50 2700 300
Verification

CROCOPAT 3.5 230 5.2 230 20 340 150

MINISAT 6.6 2700 6.6 2700 10.0 2900 2300

Table 4. Dynamic SCoP coverage of the 3 different analysis classes: Static, Dynamic, Extended (in %). The TRaw column shows the run time
of the program without instrumentation. The columns TStat,TDyn, TExt show the run time of this program in the respective class (in s).


