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Abstract—Present-day automatic optimization relies on power-
ful static (i.e., compile-time) analysis and transformation methods.
One popular platform for automatic optimization is the polyhe-
dron model. Yet, after several decades of development, there
remains a lack of empirical evidence of the model’s benefits
for real-world software systems. We report on an empirical
study in which we analyzed a set of popular software systems,
distributed across various application domains. We found that
polyhedral analysis at compile time often lacks the information
necessary to exploit the potential for optimization of a program’s
execution. However, when conducted also at run time, polyhedral
analysis shows greater relevance for real-world applications. On
average, the share of the execution time amenable to polyhedral
optimization is increased by a factor of nearly 3. Based on
our experimental results, we discuss the merits and potential
of polyhedral optimization at compile time and run time.

I. INTRODUCTION

Automatic code optimization is becoming an increasingly
challenging task. The variety and complexity of optimization
targets have increased recently, with the introduction of hy-
perthreading, SIMD extensions, multicore processors, general-
purpose computing on graphics hardware (GPGPU computing),
low-power computing, etc. Programmers and compiler imple-
menters are being confronted with the architectural differences
and, consequently, the non-portability of performance between
different platforms. Just setting a few compiler optimization
flags is no longer sufficient.

To tackle this problem, a wide variety of approaches
to the automatic optimization of program code has been
proposed [1], [2], [3], [4]. One popular approach is polyhedral
optimization. It is based on the polyhedron model [1], which
represents iterative executions as polyhedra. The model
serves to optimize automatically programs containing loops
(e.g., via parallelization or data localization) by applying
algebraic transformations. Its main benefit is that all loop
transformations can be discovered via linear programming and
at a cost that is independent of the problem size.

Full automation comes at the price of limitations on the
structure of the programs that can be optimized. In particular,
loop bounds and memory-access functions are limited to
affine linear expressions, in order to be analyzable at compile
time (e.g., array access functions like A[3xi+1] are allowed,
whereas access functions like A[ixi] are disallowed). In the
past, a number of extensions of the polyhedron model have
been proposed to overcome affine linearity in certain cases [5].
Another promising approach is to apply polyhedral optimization
not only at compile time but also at run time. The idea is that, at
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run time, more is known about the actual structure of the loops,
thus enabling more loops to be optimized. Among the many
implementations of polyhedral optimizers, there are two major
projects that target main-stream compilers: POLLY [6], [7]
and GRAPHITE [8]. Both share the approach of an automatic
and language-agnostic detection of compatible loops at compile
time, called static control parts (SCoPs).

Despite the rich work on extending the polyhedron model and
polyhedral optimization, there is a lack of empirical evidence
of the relevance of the model and its variants in practice across
different domains. Therefore, for the first time, we conducted a
comprehensive empirical study on the practicality of polyhedral
optimization for automatic loop parallelization. In particular, we
are interested in (1) whether state-of-the-art polyhedral methods
are applicable and beneficial in practice, and (2) how far this
potential can be enhanced by an application also at run time.

In an empirical study, we analyzed a corpus of 51 real-world
C/C++ programs, using (an extension of) the plugin POLLY for
the LLVM compiler infrastructure [9]. These subject programs
are of different sizes (500-600 000 lines of code) and different
domains (e.g., multimedia processing, compression, scientific
computing, and compilers). In particular, we measured the
fraction of the program code that can be expressed in the
polyhedron model and the time spent inside static control parts
(SCoPs) in relation to the total run time. This approach is more
general than quantifying the effects of a certain specific instance
of polyhedral optimization, because it provides a perspective
on the applicability of an entire collection of optimizations in
the polyhedron model.

We found that the benefit gained by state-of-the-art compile-
time polyhedral optimization is rather marginal (10 % on aver-
age). This is mainly due to a lack of knowledge of parameter
values at compile time, which may lead to non-linearity in the
memory access functions of a loop program. The potential ben-
efit of run-time optimizations is higher. Just by supplying the
missing information via run-time program analysis, the SCoP
coverage could be raised from 4 % to 41 % (29 % on average).

Based on our findings, we discuss, for the first time, the
merits of polyhedral optimization in practical programming. We
conclude that it is challenging to apply polyhedral optimization
to the most critical regions of a program without additional
knowledge about the program’s execution. However, by exploit-
ing information available just in time, the polyhedron model is
capable of covering most of the critical program regions and
providing program transformations to exploit the potential for
parallelism and other optimizations.
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Our findings suggest that future research should focus on
acquiring more information about the critical program regions
at run time. This would increase the impact of polyhedral
optimization in real-world applications.

In summary, we make the following contributions:

« the first substantial empirical study of the impact of polyhe-

dral optimization across a broad spectrum of applications,

e an open-source polyhedral analysis engine that is in-
dependent of the syntax of the source language and
that incorporates extensions of the polyhedron model for
inclusion of run-time information in the optimization,

« a novel instrumentation-based measurement method that
quantifies the dynamic coverage that polyhedral optimiza-
tions can attain,

« a discussion of the practical potential and perspectives of
compile-time and run-time polyhedral optimization based
on the empirical results and a statistical analysis.

The analysis engine, the sample programs, and all results of
our empirical study are available at the project’s Web site:
http://www.infosun.fim.uni-passau.de/cl/staff/simbuerger/pprof/

II. THE POLYHEDRON MODEL

In this section, we introduce the necessary background of the
polyhedron model. The polyhedron model represents programs
—in particular, loops— in an algebraic form as polyhedra, to
make them amenable to algebraic transformations. A major
use case of the model and the corresponding transformations is
to parallelize loops; others are cache-locality optimization, and
memory-usage optimization (see Sec. VI). The main benefit
of the polyhedron model is that loop transformations can be
derived fully automatically and independently of the problem
size. The price paid to attain full automation and feasible
complexity is that not all kinds of programs can be processed.

The polyhedral optimization of a program consists of two
steps: (1) detecting the loops of a program that can be repre-
sented in the model, called static control parts (SCoPs) [10],
and (2) applying the actual transformations to optimize the
program (loop parallelization, etc.).

In the remainder of the section, we introduce the basic
model and classify SCoPs as compile-time (Static) or run-time
(Dynamic). A comprehensive survey of the polyhedron model
can be found elsewhere [1].

A. Basic Model

In the polyhedron model, a loop program consists of a
number of statements. Each statement has an associated it-
eration domain (which is defined by the loops surrounding
the statement) and a schedule (which determines the execution
order of the statement instances). In the following, we will
use Figure 1, which gives an example of a SCoP, to introduce
briefly the key concepts of the polyhedron model.

Each program statement S comes with its own iteration
domain Dg, which is a subset of Z™. Each point ic Dg
in this domain represents a statement instance (S Z), ie.,
statement S is executed once for every such i. Our example
has two statements: S and T (see Lines 4 and 5). They are

++1)
++5)

for (int i=0; i<=n;
for (int j=i; j<=n;
if (i >=n-j) {
Ali+n][j+1]
T: B[i+n][j-i] =
}

B[n+2*xi-11[j1;
Aln-2xi+1]11[j1;

= T S U TCR S
wn

Fig. 1: A static control part (SCoP)

surrounded by two loops and an if statement and, therefore,
share the iteration domain Dg = Dy = {[i,j] : 0 <i<n A
i <j<nAn—j<i}, where n denotes a structure parameter
that is constant during the execution of S and 7. Note that the
control flow is known at compile time because the predicate
and the loop bounds are affine expressions.

Each statement can contain memory accesses to arrays (the
aggregate data structure the model focusses on); these are
represented by relations between the domain of the statement
and the indices of the array cells accessed. In our example,
both statements perform a read access and subsequently a write
access. The read and write accesses are summarized in the
relations R and W, respectively:

R={S[i,j]— Bn+2xi—1,j];
Tli, 5] —= Aln—2x%i+1,4]}

W = {S[i,j] — Ali +n,j +1|;
Tli, 7]~ Bli+n,j5 —i]}

R and W map the iteration (i, ) of S and T to the elements
of A and B, respectively, which are accessed.
Transformations of the program must not violate the pro-
gram’s semantics by executing dependent statement instances
in the wrong order or in parallel. Therefore, the most important
computational task, when using the polyhedron model for pro-
gram transformations, is to compute the dependences between
statement instances. A statement instance (T;f) depends on
an instance (.S; Z) iff there are memory-accesses to the same
memory cell in S and T (for the given values of i and f).
Determining the dependences is undecidable in the general
case, because this would require to solve arbitrary systems
of equations derived from the accesses (cf. the unsolvability
of Hilbert’s 10" problem [11]). However, dependences can
be computed when iteration domains and accesses are defined
by affine expressions (i.e., all constraints can be written
in the form Mi > b for M € Zkxn, b€ Z¥).! Note that
some dimensions of i can be structure parameters, which
allows parameters to occur additively (weak parametrization;
Figure 2a) in all constraints, schedules and memory accesses,
but not multiplicatively (strong parametrization; Figure 2b).
The restriction to affine expressions implies that non-affine
conditions and recursive control flow cannot benefit from
polyhedral optimization. Other consequences of the restriction
are that the only aggregate data structure allowed is the array
(scalars can be represented as zero-dimensional arrays), and the

' Geometrically, these objects are (Z-)polyhedra.
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only statement type allowed in the loop body is the assignment.
Calls of functions with side effects inside a loop body are not
supported by the basic model, because the memory access
behavior and the control flow are hidden inside the body of
the function called.

Clearly, these strict requirements limit the number of pro-
grams that can be analyzed automatically. The key question of
how many SCoPs are amenable to the polyhedral optimization
of practical programs, and to which extent, is the driving
motivation of our empirical study (see Sec. III).

B. Classification of SCoPs

The successful detection of SCoPs in given source code
depends on two factors. First, is the detection performed at
compile time or at run time? Second, which extensions are
applied to the model to overcome certain restrictions, e.g.,
extensions to deal with multiplicative parameters via quantifier
elimination in the reals [5]?

Let us introduce two different classes of SCoPs —Static and
Dynamic— which we address in our empirical study.

1) Class Static: This class covers all SCoPs that can be
represented in the basic polyhedron model and to which
all corresponding analysis and transformation steps can be
applied at compile time.

2) Class Dynamic: Much like class Static, this class incor-
porates also only SCoPs that can be represented in the basic
polyhedron model. However, the SCoP detection takes place
while the program to be analyzed is being executed.

Class Static reflects the current state of the art of polyhedral
optimization. At compile time, any possible violation of the
model’s restrictions in a given part of the code is prohibitive.
But, the additional knowledge available at run time enables a
more precise evaluation of the adherence to the restrictions in
the given program run. Class Dynamic encompasses all code
regions that are SCoPs when the values of parameters and the
aliasing of pointers and arrays are known. In addition, control
flow may be amenable to analysis at run time. Hence, Dynamic
covers a larger set of SCoPs than Static.

Current implementations of the polyhedron model (e.g.,
POLLY or GRAPHITE) are capable of detecting SCoPs of
class Static only. Thus, we had to prepare our experimental
setup to be able to detect SCoPs of classes Dynamic (see Sec.
1I-H).

Next, we describe three SCoP patterns that fall into class
Dynamic, but not into class Static. We use these patterns in
our empirical study.

a) Known Parameters: The basic polyhedron model
requires all loop bounds and memory accesses to be affine linear
(Figure 2a, weak parametrization). Non-linearity introduced by
parameters, as shown in Figure 2b (strong parametrization),
cannot be handled in the basic model, i.e., is not in Static.

In Figure 2b, parameter m, although loop-invariant, is multi-
plied with the value of iteration variable i, forming a non-linear
expression. However, the value of parameter m is known at run
time. By substituting it for the parameter name, the loop nest
complies with the polyhedron model.

1 int 1i; 1 int 1i;

> for (i=0; i<=n; i++) { 2 for (i=0; i<=n; i++) {
3 Ali+n] = __; 3 Almxi+n] = __;

4 __ = A[i-1+n]; 4 __ = A[mx(i-1)+n];
s} 5}

(b) non-linear memory access
(strong parametrization)

(a) linear memory access
(weak parametrization)

Fig. 2: Linear vs. non-linear memory access. The expression ¢ —n + 1
can be handled in the basic polyhedron model. The expression m *
(¢ — 1) + n cannot be handled in the basic polyhedron model, due to
the multiplicative parameter m. The wildcard __ can be replaced by
any expression.

Run-time knowledge about parameters is not limited to
constant parameter values. If parameter m adopts a limited
number of values, one can provide a specialized loop code
for each value. In the worst case, polyhedral analysis and
optimization has to be performed every time the loop nest
is reached by the control flow of the program.

b) Known Aliasing: As soon as we consider input
languages that support pointers, we have to deal with the
possibility of aliasing. Contemporary alias analyses can
provide only a conservative approximation, leading to a
so-called may-alias, i.e., an alias whose existence must be
assumed but is uncertain. There are two alternative ways of
dealing with a may-alias: (1) one postulates the corresponding
dependence at compile time or (2) one tests for the alias at
run time and respects its dependence conditionally.

In class Dynamic, we rely on the fact that the actual aliasing
is revealed at run time and, therefore, we include SCoPs that
give rise to unknown aliasing behavior at compile time.

c¢) Known Control Flow and Side Effects: Aside from
the restrictions on loop bounds and arrays, the polyhedron
model requires a well-formed control flow of the loop nest:
any conditional in its body must also be of affine linear
form Ax > b (e.g., ‘if (i >= n-j){ }’ is in affine
linear form, while ‘if (i >= random()){ }’ is not), and
any side effects of function calls must be known (must-alias
information —i.e., an alias whose (non-)existence is certain— of
the callee must be available).

With run-time information, it becomes possible to establish
the loop invariance or affine linearity of certain conditional
predicates using the known parameter values. In the case of a
function call with unknown side effects, there is no possibility
of a reasonable polyhedral analysis at compile time: one would
have to view the entire body of the respective function call as
atomic with an arbitrary effect on the entire memory.

In class Dynamic, we permit calls of functions whose bodies
form valid SCoPs at compile time, i.e., the function body must
be in class Static and conditionals must become affine linear
after known parameter values have been substituted.

In class Dynamic, we have to be careful which functions
we allow to be called in SCoPs. Unfortunately, calling a
function that itself forms a valid SCoP in class Dynamic,
cannot be permitted in general. The function may use its
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arguments (parameters) in products with iterators, and calling
the function with an iterator as argument leads to non-linearities.
However, we can permit functions that form valid SCoPs
in class Static, since the function arguments can only occur
as linear parameters in the contained SCoP. We restrict the
arguments of the function call to affine linear expressions. This
restriction is conservative, since the uses of a called function’s
parameters determine the compatibility with the model.

III. EXPERIMENT SETUP AND EXECUTION

We conducted an empirical study to estimate the potential
of polyhedral optimization of real-world programs.

A. Goals

We designed our study to answer the following questions.
What is the potential of the basic polyhedron model at compile
time? Can the applicability of polyhedral optimization be
improved by using run-time information? How beneficial is
the polyhedron model if run-time information is added?

B. Measurement Methodology

Empirical evaluations in the context of polyhedral
optimization proceed usually by measuring the effect of a
specific instance of polyhedral optimization on the run time
of benchmarks. We have a more general view on this issue
and do not limit our focus to a specific optimization. We are
interested in the fraction of the run time that is, in general,
in reach of polyhedral optimization. Therefore, instead of
measuring the run time of a transformed program, we analyze
the fraction of the sequential run time that we can reach with
polyhedral transformation, the execution SCoP coverage. This
requires a novel instrumentation approach (see Sec. III-H).

Definition (Execution SCoP coverage). Let S be the set of
SCoPs of a program. Let t : S — R be a function that
returns the accumulated run time of a SCoP in the run(s)
of the program. Let T be the accumulated run time of the
program for arbitrary sets of input values. Execution SCoP
coverage (ExecCov) is then defined as:

1
ExecCov := T+ Zt(s)
s€eS

Execution SCoP coverage allows us to estimate the potential
benefit of an optimization by determining the fraction of
the sequential program’s run time that is spent inside SCoPs.
Furthermore, execution SCoP coverage shows whether our
transformations were able to hit the hot spot(s) of the program.
The higher the SCoP coverage, the larger the impact of
polyhedral optimization on a specific program run.

Our experiments measure the execution SCoP coverage of
each program in the two classes Static (ExecCovgiat) and
Dynamic (ExecCovpyy). Note that, even though ExecCov can
be ordered by ExecCovstay < ExecCovpyn, this does not imply
that Static C Dynamic.2

2Every SCoP detected is maximized in size, i.e., consecutive SCoPs are
merged to one single SCoP. Therefore, a SCoP in Static does not necessarily
correspond to the same SCoP in Dynamic. However, every statement that is
part of a SCoP in Static is part of a SCoP in Dynamic.

C. Experiment Variables

The experimental variables of our empirical study are listed
in Table I. We consider only one dependent variable: ExecCov.
It varies depending on the two independent variables Class and
Dom. Of course, we expect that the choice of using compile-
time information only (Static) or run-time information addi-
tionally (Dynamic) during SCoP detection influences ExecCov.

Furthermore, we consider the domain to which a subject
program belongs an independent variable (Dom). The reason
is that we expect that some domains are more amenable to
polyhedral optimization (e.g., scientific code) than others (e.g.,
database systems).

ExecCov is influenced not only by the SCoP class and
domain but also by input data that we pass to the program
being executed (i.e., the benchmark we use). These input
data have an effect on the code paths chosen in the program
run and, therefore, influence the fraction of SCoPs that are
executed during a program run. We controlled this variable
(Input) by making it constant per program. Nevertheless, we
took care that the benchmarks we selected are realistic and
cover a major fraction of the code paths in the program (see
Sec. III-F). Further ramifications of these choices are discussed
in Section V-B.

D. Hypotheses

Compile-time analysis is always limited by the amount of
information that is available. The majority of static-analysis
problems remain undecidable at compile time. The same
applies to the polyhedron model. Therefore, we expect the
model to be more useful when given more information about
the program executed. This general expectation leads to the
formalization of the hypotheses tested with our experiments:

Hy: ExecCovpyy, is significantly greater than ExecCovgiag
(ExecCovpyy, > ExecCovsgag), On average.

H, follows naturally from the ordering of ExecCov given
in Section III-B (ExecCovgiay < ExecCovpyy). However, it is
not clear whether applying polyhedral optimization at run time
provides any benefit. It is necessary to verify that the run time
spent in newly found SCoPs contributes significantly to the
program’s total run time.

Ho: The benefits of applying the polyhedron model just in time
(ExecCovpyn — ExecCovgyay) differ significantly across
different domains (Dom), on average.

Synthetic benchmarks suggest that different application
domains do not benefit equally from compile-time polyhedral
optimization. H; makes the same statement for run-time
polyhedral optimization (Class Dynamic).

The above two hypotheses are concerned with the issue of
whether the differences of Static and Dynamic are statistically
significant. Additionally we pose the following research ques-
tion:

R;y: Is the difference between Static and Dynamic relevant in
practice?

We consider an increase in execution coverage of around 10%

or more practically relevant.
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TABLE I: Description of dependent, independent, and controlled experimental variables. Dependent variables are influenced by independent
and controlled variables. Independent variables are not influenced by other variables. Controlled variables influence dependent variables, but

are fixed during the experiments.

Name Abbreviation Type Scale type  Unit  Range

Execution SCoP coverage ExecCov Dependent Ratio % [0, 100]

Application domain Dom Independent Nominal Text  {Compilation, Compression, Databases, Encryption,
Multimedia, Scientific, Simulation, Verification}

Testing class Class Independent Nominal Text  {Static, Dynamic}

Test input Input Controlled Nominal Text  see Table II

E. Subject Programs

We conducted our study on the basis of an unbiased selection
of open-source programs, as listed in Table II. Basically, we
considered which domains are typically targets of a polyhedral
optimization (Encryption, Multimedia, Scientific, Simulation)
and selected at least two subject programs from each. Our
intention for this selection was to choose programs that are well-
known in the community. To get a broader picture, we selected
subject programs of domains that are typically not targets of a
polyhedral optimization (Compilation, Compression, Database,
Verification) in a similar fashion. This selection was not entirely
random: we were forced to choose programs that are compatible
with our measurement infrastructure (see Section III-H).

F. Tasks

To set up a real-world scenario for each of the programs
tested, we relied on benchmarks. We selected two different
kinds of benchmarks depending on their availability. Our
preferred test input was a benchmark that is commonly being
used in the respective application domain, e.g., the reference
input data for compression programs of SPEC2006. In
the case of the absence of such a benchmark, we resorted
to benchmarks used by the developers of the program. The
assumption here was that a commonly accepted benchmark
targets real-world scenarios more objectively than a benchmark
used by the developers. The set of programs under investigation
is distributed across a wide range of application domains.
Table II shows a complete list of all programs tested, as well
as their input parameters in our tests.

G. Design

Based on the variables introduced in Section III-C, we
performed two experiments to validate our hypotheses and
to answer our research question. In the first experiment, we
compared ExecCov of the two classes Static and Dynamic.
The second experiment compared the difference in ExecCov
between Static and Dynamic across different domains.

Each subject program consists of two different program
instances (one for each class) and belongs to one of eight
application domains. Our experiments measure the execution
SCoP coverage (ExecCov) for each program instance.

H. Experiment Setting

In our experiments, we used the Low-Level Virtual Machine
(LLVM) compiler framework [9]. Its common representation
during all stages of the compilation is the LLVM Intermediate

TABLE II: Subject programs and benchmarks used in the empirical
study. A detailed description of test inputs can be found on the
project’s Web site (version numbers in parentheses indicate GIT
commit hashes).

Name Version Tested inputs
Compilation
SPIDERMONKEY 1.8.5 Integrated tests &
SunSpider benchmark
PYTHON 323 Integrated tests
RUBY 1.9.3-p286  Integrated tests
Nlefe 3.2.0 Integrated tests &
Dhrystone benchmark
TINYCC (9966fd4) Integrated tests
Compression
7z 9.20.1 SPEC2006 input data (set: ref)
BZIP2 1.0.6 SPEC2006 input data (set: ref)
GZIP 1.24 SPEC2006 input data (set: ref)
XZ S.1.1alpha  SPEC2006 input data (set: ref)
Database
LEVELDB (c8c5866) Integrated benchmark
SQLITE3 3.7.13 Leveldb’s integrated benchmark
POSTGRESQL 9.1.2 Integrated benchmark
Encryption
OPENSSL 1.0.0e Integrated test-binaries
CCRYPT 1.9 Integrated tests
LIBMCRYPT 2.6.8 Integrated benchmark
Multimedia
LIBAV (be64629) Integrated benchmark
POVRAY 3.6.1 Integrated sample scenes
X264 (8262835) Integrated benchmark
Scientific
LAMMPS 11/19/2011  Integrated sample problems
LAPACK 34.1 Integrated tests
LINPACK 2/25/94 Integrated benchmark
Simulation
LULESH 1.0.1 Integrated benchmark
LULESH-OMP 1.0.1 Integrated benchmark
CRAFTY 20.0 Integrated benchmark
Verification
CROCOPAT 2.1.5 Integrated benchmark
MINISAT 2.2.0 SAT-Race 2008 (reduced)

Representation (LLVM-IR). LLVM-IR is a strongly typed,
static single-assignment (SSA) language that connects to a
wide variety of high-level languages. High-level languages are
supported via different frontends, which provide LLVM-IR as
output, e.g., CLANG [12] for C/C++, RUBINIUS [13] for
Ruby, and PYPY [14] for Python. LLVM-IR can be optimized
independently of platform and language. LLVM performs
polyhedral optimization using the plugin POLLY [6], [7].
POLLY retrieves information about SCoPs from compatible
loop nests found in the LLVM-IR. POLLY’s SCoP detection
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TABLE III: Preoptimization used for all LLVM-IR files throughout
the empirical study.

Preoptimization pass Purpose

-mem2reg Promote memory to registers
-instcombine Instruction combiner
-simplify-cfg Clean up the CFG
-tailcallelim Eliminate tail calls
-reassociate Reassociate expressions
-loop-rotate Rotate loops

-indvars Simplify induction variables

-polly-region-simplify ~ Single-Entry-Single-Exit regions

is able to derive a polyhedral description of the loop nest if
the restrictions of class Static are obeyed.

On top of POLLY, we built an open-source polyhedral
analysis engine that is independent of the syntax of the source
language, and that simulates all extensions necessary to detect
SCoPs that are in class Dynamic by assuming that the necessary
run-time information is present at the time of SCoP detection.
This in itself is a valuable contribution to the community
interested in experimenting with polyhedral optimization.

To assist POLLY in identifying SCoPs in LLVM-IR code,
various preprocessing steps must be performed, as shown in
Table III. These steps correspond to a relevant subset of the
optimizations of LLV M’s optimization switch O3 (We omitted
irrelevant steps such as jump-threading). In our experiments,
we use the same steps as POLLY.

To detect SCoPs in LLVM-IR, POLLY has to reconstruct
all necessary information about loops, memory accesses and
conditions. Looking at a program’s control flow, a SCoP can
be represented as a region in the control-flow graph (CFG). As-
suming that no restriction of the polyhedron model is violated,
a region in the CFG is a SCoP if it satisfies the Single-Entry-
Single-Exit (SESE) property. LLV M includes an analysis pass
to generate the required region information, based on a refined
version of the program-structure tree [15]. We have created
one further optimization step, polly-region-simplify, as shown
in Table III, which establishes the SESE property for every
region found in the CFG. A (simplified) schematic CFG of the
example SCoP in Figure 1 is shown in Figure 3. The SCoP
ranges across all basic blocks between BB2 and BB8 and has the
SESE property. Due to this property, it is possible to introduce
two additional basic blocks —BB1 and BB9- into the CFG, which
we use to place timing calls as close to the SCoP as possible.

We use instrumentation to retrieve precise timing information
instead of sampling. Instead of deriving timing information
for SCoPs based on common profiling frameworks such as
OPROFILE [16] or GPROF [17], we have implemented
the instrumentation based on the Performance Application
Programming Interface (PAPI) [18]. It allowed us to retrieve
timing information precisely at the entry and exit edges of a
SCoP with high-precision timers. Among the four possible
clock variants (real, virtual, user, system), we have chosen
virtual time for our measurements. Virtual time consists of
a process’s user time (time spent in user mode) and system

BBO: Before SCoP| BB1:inti =0

BB3: intj = |

[BB5: if (ng <= 1) {S(y); TaN}]

BB7: Exit (j-loop)

BB9: Exit (i-loop)

Fig. 3: Schematic view of the control-flow graph of Figure 1. The
highlighted region marks the SCoP detected by POLLY.

time (time spent in privileged mode). The ramifications of this
choice are discussed in Section V-B.

Our measurements are integrated into the build system.
To avoid repeated compilation of high-level source code, we
stored each program in statically linked LLVM-IR. For future
use, we decided to skip any preprocessing of these IR files and
apply optimizations, as shown in Table III, before scanning for
and instrumenting any SCoPs. This kind of instrumentation
is bound to a SCoP. Therefore, its overhead depends on the
number of SCoPs detected in the program. This number varies
between the two classes. Thus, each sample program had
to be run with two different binaries, one for each class, as
introduced in Section III-G. With the instrumentation, we were
able to calculate the necessary ExecCov for each program run.

In class Static, we have implemented SCoP detection by
instrumenting all SCoPs detected by POLLY, without further
modification of the detection process. We inserted the instru-
mentation only at transition edges between SCoPs. For class
Dynamic, we had to track all failures during POLLY’s SCoP
detection. As SCoPs can be represented as nodes in the region
tree, we analyzed the rejected SCoPs bottom-up and accepted
those that are valid SCoPs under the assumption that sufficient
run-time information is available (e.g., we would be able to
insert parameter values into non-linear expressions induced by
strong parametrization, as shown in Figure 2b).

If we were able to accept a SCoP with the assumed run-time
information, we proceeded with POLLY’s SCoP detection and
expanded the detected region to the maximally possible size.

We conducted all experiments on an Intel i5 M520 machine
(2 physical cores, 2.40 GHz) with 4GB RAM. To reduce
fluctuations of our run-time measurements, we ensured (using
the FIFO scheduling class in Linux) that the programs measured
could not be preempted during execution.

1. Deviations

We experienced measurement bias in a few cases, caused
by the introduction of one instrumented program binary per
class. Since every instance required different SCoPs to be
instrumented, we noticed different function-body alignment and
cache effects, which led to minor inconsistencies in the results
for ExecCov (ExecCovgiay > ExecCovpyy). This circumstance
does not affect our conclusions, as we discuss in Section V-B.
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IV. ANALYSIS

All results of our measurements are listed in Table IV (at
the end of the paper). The complete set of experimental data
is available at the project’s Web site.

A. Descriptive Statistics

Figure 4 shows the distributions of execution coverage of the
two classes Static and Dynamic; Table V lists the corresponding
values of mean, variance, and standard deviation.

TABLE V: Mean (), standard deviation (s), variance (s?) and median
(m) for both classes.

Class o s 52 m

Static 10 14 190 5.1
Dynamic 29 26 680 24

Looking at Table V, the execution coverage of Static is
lower than that of Dynamic, but the variance of Dynamic is
considerably higher than that of Srtatic. We discuss this in
Section V.
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Fig. 4: Distributions of ExecCov for Static and Dynamic as violin
plots [19] (combination of box plots and kernel density plots). The
low end of the box represents the lower quartile (25 percentile), the
top end the upper quartile (75 percentile). The bottom/top whiskers
mark the lowest/highest datum in the 1.5 interquartile range of the
lower/upper quartile. The band inside the box denotes the median.
The violin shape around the box describes the estimated probability
density of the data at different points. The grey violin shapes for
Static and Dynamic cover the same area.

The violin shapes in Figure 4 describe the estimated probabil-
ity density of the data at different execution coverages for Static
and Dynamic. As a rule of thumb, the larger the area of the
violin shape toward the top of the diagram (i.e., larger ExecCov
values), the more we gain from polyhedral optimization. Inside
the violin shape, there is a standard box plot, including median
(horizontal line within the box), 25 and 75 percentile (bottom
and top of the box).

Class Static has one large area of high density at the
bottom, close to the median. This indicates that our subject set

contains many programs with low ExecCov values for Static.
Using run-time information in class Dynamic, the violin shape
changes; the area at higher execution coverages become larger,
indicating more programs with higher ExecCov values than with
Static. Notice also the difference in the medians for Static and
Dynamic. We discuss these distributions further in Section V.
Table VI lists the average execution coverages as well as the
relative differences between the two classes on a per-domain
basis. An immediate observation is that the coverages and
their relative differences vary considerably between individual
domains, for example, Scientific (+37%) compared to Database
(+3%), which we discuss in Section V.

TABLE VI: Mean (u) dynamic coverage and difference between
domains (in %): A denotes the benefit between the left and right
column.

Domain HStat A HDyn
Compilation 6.8 14 21
Compression 9.3 5.1 14
Database 9.6 3.2 13
Encryption 11 17 28
Multimedia 18 18 35
Scientific 4.2 37 41
Simulation 30 6.2 36
Verification 5.0 0.85 5.9

B. Hypothesis Testing

Let us comment on the significance of our measurements.
Our case study consists of two independent data sets (Class).
A Shapiro-Wilk Test [20] on the execution SCoP coverage
(ExecCov) data of the classes Static (p < 0.05) and Dynamic
(p < 0.05) reveals that none of the two data sets is distributed
normally. So we use a Mann-Whitney-U Test [21].

Concerning H;, a Mann-Whitney-U Test reveals that
ExecCovpy, is significantly greater than ExecCovgiat
(p < 0.05).

Concerning H,, a Kruskal-Wallis Test [22] reveals that
the benefit of Dynamic (ExecCovpy, — ExecCovsiyay) differs
significantly across different domains (p < 0.05). This is
also shown in Table VI (e.g., consider the average benefit
of Scientific (37 %) vs. the average benefit of Verification
(0.85%)). In summary, we can accept both of our hypotheses.

With regard to our research question R, we found that
the increase in execution coverage induced by using run-
time information is not only statistically significant but also
practically relevant. Across all domains, the execution coverage
of class Dynamic is 19% higher, on average, up to 37% for
particular domains, than the execution coverage of class Static.

V. DISCUSSION

Next, we discuss the consequences of our results for poly-
hedral analysis and optimization in detail.

A. Results

We begin with the potential of compile-time polyhedral
analysis (class Static). In our experiments, polyhedral analysis
at compile time is able to optimize 0.79-15.1 % (as shown
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in Figure 4) of a program’s total run time. Exceptions are
SHAS512, LULESH-OMP (the two shapes at the top of Static’s
violin plot in Figure 4). SHAS512 is a very short-running
benchmark (Tsat = 0.024s), which increases the influence
of a detected SCoP; LULESH-OMP is hand-optimized code
for OPENMP parallelization, which increases the chances
of compatible loops due to the regular nature of OPENMP
codes; only POSTGRES showed unexpected results: we did
not expect a database management system to achieve such a
high coverage (ExecCovsiay = 24%). While these examples
illustrate that compile-time polyhedral optimization may be
selectively highly beneficial, the overall picture is that, in many
cases, it could not play to its strengths and is practically limited.

As soon as run-time information is available to the poly-
hedral analysis (class Dynamic), ExecCov rises to 5-50 % (as
shown in Figure 4); this increase is significant (H1).

A notable observation is that the descriptive variance
(s> = 680) of ExecCovpyy, is significantly greater (p < 0.05)
than ExecCovgiay (s> = 190). According to hypothesis Ho,
ExecCovpyy, differs significantly from ExecCovgias across
different domains. This suggests that the high variance is
caused by a considerable difference between individual do-
mains. Table VI reveals that the domains Multimedia (418 %)
and Scientific (+37 %) gain the most when applying the
polyhedron model at run time, confirming the common belief
that these domains are well-suited for polyhedral optimization.
The smallest benefit was achieved in the domains Verification
(+0.85 %) and Database (+3.2%). This complies with the
common expectation that these domains are not well-suited for
polyhedral optimization.

So, our study demonstrates that the use of run-time informa-
tion in polyhedral optimizations is of practical relevance.

B. Threats to Validity

Construct validity: Our measurement method is based
on different instrumentations per binary per class. This cir-
cumstance has an influence on the run-time fraction of SCoPs
measured. The differing instrumentations are necessary because
we have to detect the SCoPs based on the testing class and
instrument each detected SCoP. For each program of each
class, we compared the difference between instrumented and
uninstrumented run time to the expected overhead caused by
our instrumentation. We found that our instrumentation does
not have a negative influence on the run time of any individual
SCoP in the program.

As mentioned in Section III-H, we measured virtual time
with high-precision timers provided by the operating system.
It is obvious that instrumentation causes a higher run-time
overhead than sampling. Mainly, this overhead is generated due
to the instrumented calls necessary to obtain timing information.
However, it is possible that the instrumented code suffers from
other negative side effects, e.g., cache effects or ineffective
function body alignment. Note that our instrumentation is
bound to the entry and exit of a SCoP. Thus, it could possibly
slow down a SCoP more than other program parts, which
would increase ExecCov. We verified that this did not cause

problems during our experiments by comparing the calibrated
average run-time (CART) of one instrumentation call with the
total run-time difference between the instrumented program
and the uninstrumented program divided by the number of
instrumentation calls executed (actual average run time of one
instrumentation call (RART)). CART and RART are of the same
order of magnitude, so significant slow-downs caused by our
instrumentation are unlikely.

Internal validity: Our experiments relied on the quality
of our input data, because we measured run time. We have
addressed this threat to validity by choosing the developer’s
own benchmark sets or by using the known default benchmark
of the according domain, such as SUNSPIDER [23] for a
JavaScript engine. This does not remove the dependence on
Input, but we assume that the developers’ own test cases cover
the important code paths and the default benchmarks of a
domain cover the most common use cases.

External validity: As with any other comparable study,
the selection of sample systems threatens the generalizabilty of
our results. We controlled this threat reasonably by selecting
a large and diverse number of subject systems randomly.

C. Perspectives

In our experiments, polyhedral optimization does not show
great potential when applied at compile time, but this does
not necessarily imply that the polyhedron model, in general,
is not suited for application at compile time. The tools we
use for determining the coverage data (LLVM, POLLY) are
practical tools that implement only a subset of the polyhedron
model yet. Extensions proposed in academia may flow into
these tools and improve the situation (e.g., correct handling of
integer wrapping and multi-dimensional arrays in LLV M).

Having said this, our study demonstrates for the first time
the potential of applying polyhedral optimizations at run time.
Using run-time information increased the dynamic coverage
substantially (up to 29% on average). We consider this obser-
vation a major result and an encouragement for the community
to follow this path, both in terms of refining and extending the
model and by extending practical tools accordingly.

Giving up the restriction to affine linearity would unfold the
full potential of polyhedral optimization that is theoretically
possible and in reach of the polyhedron model. Therefore, it
is interesting to quantify the extensibility of the polyhedron
model with respect to execution SCoP coverage. In a series of
further experiments, we considered an additional SCoP class,
which only required static knowledge of the control flow, called
Extended, to investigate all possibilities of applying polyhedral
optimization at both compile time and run time.

The experiments and a detailed discussion of class Extended
can be found elsewhere [24]. In a nutshell, we found that
Extended increases the benefit of polyhedral optimization
significantly (p < 0.05) further by another 10%, on average.
Although this average increase seems low, it is important to note
that it is significantly (p < 0.05) higher in domains that did not
benefit from run-time information available in class Dynamic.
This shows that there is still a lot of room for techniques
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that extend the polyhedron model beyond linear affinity, for
example, dealing with polynomial loop bounds [5].

VI.

Let us review other studies, extensions of the polyhedron
model, and alternative technologies related to our work. The
extensions we discuss here have the potential to enable access
to SCoPs of classes Dynamic and Extended.

RELATED WORK

A. Alternative Studies

Alnaeli et. al. [25] conducted an empirical study on the
parallelizability of open-source systems. They studied the
evolution of parallelization opportunities for 11 open-source
software systems. They conclude that the main problem with

the programs tested are function calls inside the loop bodies.

Therefore, future research should focus more on dealing with
side effects in function calls. In contrast to our work, they did

not investigate the run-time fraction of the parallel loops found.

B. Alternative Extensions

The following extensions focus on transcending affine
linearity at compile time.

Benabderrahmane et al. [26] model arbitrary, non-recursive,
control flow within a SCoP at compile time, converting control
dependences to data dependences if necessary. The same

approach can be used to deal with while loops in SCoPs.

A while loop is transformed to an unbounded for loop, and
an exit conditional is introduced in the body in form of a
write access [27]. Every existing statement depends on this
exit conditional, thus terminating the loop execution if the
condition is violated. These capabilities come at the cost
of a loss of precision of the whole analysis. In particular,
the dependence introduced to the exit conditional forces the
scheduler to generate a sequential schedule.

In contrast to stretching the modeling capabilities by giving
up precision, there are a few extensions to the polyhedron model
that cope with non-linearity by using new algebraic methods,
without giving up precision. First, it is possible to deal with
multiplicative parameters throughout modeling, transformation
and code generation at compile time by using real quantifier
elimination [5]. Second, cylindrical algebraic decomposition
can be used to provide support for input programs that feature
more complicated non-linearity, such as polynomials in the
index variables [5]. However, both approaches suffer from
significant performance penalties during code synthesis as well
as in the generated code itself.

C. Alternative Technologies

Beside the LLVM framework, there are several other
compiler frameworks that support the polyhedron model.

Most earlier and some current systems extract SCoPs directly
from the program source code. This requires a syntactic markup
of SCoPs. LooPo [28] was the first such system. A recent
system is POCC [29], which implements a full compiler
tool chain for automatic polyhedral optimization. It supports
two polyhedral transformation tools: PLUTO [30], [31] and

LETSEE [32], [33]. The PLUTO scheduling algorithm
implements a transformation that optimizes data locality on
shared-memory systems. Rather than generating the optimal
solution, LETSEE tries to converge on it iteratively by
exploring the legal transformation space.

Recent implementations of the polyhedron model work on a
compiler’s intermediate representation (IR), e.g., POLLY. The
main advantage is that, unlike with tools that work on source
code, SCoPs need not be written in a fixed syntactic form, since
the loop structure and array accesses are obtained from a loop
and pointer analysis on the IR. A project similar to POLLY is
GCC’s GRAPHITE [8]. Other implementations working on
the IR include WRAP-IT [34] (based on OPEN64) and the
IBM XL compiler [35].

Research on the field of run-time polyhedral optimization has
started to emerge. The latest contribution by Jimborean [36]
merges speculative techniques, such as the LRPD test [37], and
adaptive compilation with polyhedral optimization. However,
most of the polyhedral optimization is still performed at
compile time.

VII.

The polyhedron model is a well-studied and promising
approach to automatic program optimization. By means of
an empirical study of the potential of polyhedral optimization
—the first study of its kind— we have demonstrated that current
practical implementations of the polyhedron model do not
achieve practically relevant execution coverages, when applied
to real-world programs at compile time (10 %). However, we
found that a polyhedral analysis benefits significantly from
the available amount of information when applied at run time
(the code regions that can be covered increase from 10 % to
29 % on average). Our study suggests that the time is ripe for
researchers and tool builders to tap into this potential. Whether
it will be sufficient to outweigh the run-time overhead spent
on performing the optimizations at run time must be answered
by future studies. Furthermore, overcoming the limits of affine
linearity can increase the dynamic coverage, which encourages
to push the boundaries of the polyhedron model further toward
practical application.

Beside the material and results of our empirical study, we con-
tribute our polyhedral analysis engine to help other researchers
to conduct empirical studies on polyhedral optimization. Our
set of subject programs and benchmarks is a good start for a
community effort to coordinate work on improving polyhedral
optimization.

CONCLUSIONS AND FUTURE WORK
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TABLE IV: Execution SCoP coverage of the analysis classes Static and Dynamic (in %). Values for class Extended are shown on the rightmost
side (see Section V-C). The column Tgraw shows the run time of the program without instrumentation. The columns Tstat,Tpyn, TExt show
the run time in the respective class (in s).

Name Stat Tstat Dyn Toyn TRaw M Stat | 0 Dyn | Ext TExt
Compilation
PYTHON 0 0 0 0 0 [ Il o 0
RUBY 27 770 68 450 330 0 N I 1 S 1500
spcc 4.6 37 13 45 34 I || 27 67
N 0.31 6.1 21 11 59 | [ || 38 26
TCC 1.7 1.0 1.9 1.0 078 || 19 1.6
Compression
TZA 17 88 17 87 58 [ I | T 180
BZIP2 5.1 18 18 23 16 T 1|48 150
GZIP 2.6 12 3.8 12 13 1] || 36 38
XZ 12 170 19 200 120 BT J|| 38 440
Database
LEVELDB 1.4 0.058 1.7 0.077 59 I Il o 0.076
POSTGRES 24 270 26 290 0 [ | || W7 420
SQLITE3 3.4 210 11 250 130 M1 || 43 1200
Encryption
CCRYPT 0.34 0.12 14 0.16 0 [T || 45 0.94
MCRYPT-AES 0.99 0.000 61 1.0 0.00077 0 [ I|| 4.8 0.0010
MCRYPT-CIPHERS 12 0.052 13 0.054 0.020 [ || 38 0.14
BLOWFISH 0. 0.0030 0.85 0.0031 0 [ 1| 0.94 0.0031
BN 17 1.4 42 2.7 20 M T |50 13
CAST 23 1.8 24 1.8 22 M ||s52 2.6
DES 1.1 0.00037 1.1 0.00035 0 [ || 36 0.0013
DSA 15 0.066 32 0.13 o12 BT |45 0.41
ECDSA 0.60 1.5 30 3.7 3 [ [ || 49 35
HMAC 5.6 0.00025 11 0.00011 0 0 || 12 0.000 14
MDS5 1.3 0.000 38 5.7 0.000 14 0 (Il I|| 4.2 0.000 14
rRC4 0 6.4x107% 0 6.6 x 1072 0 [ I[| 0 6.4 x 1072
RSA 25 0.98 28 1.1 12 DT {45 5.4
SHA1 0.066 0.0046 89 0.0048 0 [ || 88 0.0049
SHA256 0.042 0.024 70 0.036 0.020 | [ || 71 0.036
SHAS12 71 0.023 88 0.028 0.010 (NN T (|88 0.030
Multimedia
AVCONV 33 390 46 950 160 N T j|s0 2200
POVRAY 15 450 28 630 310 BT i 780
X264 4.6 25 33 55 22 8] [ || 40 81
Scientific
XEIGTSTC 6.6 16 52 54 14 [ [ || 53 65
XEIGTSTD 9.6 15 50 61 12 [ [ || 51 74
XEIGTSTS 11 13 52 58 10 ] [ || 52 69
XEIGTSTZ 4.8 20 51 61 18 o [ || 51 73
XLINTSTC 0 0 0 0 15 [ I[| 0 0
XLINTSTD 0 0 0 0 85 | Il o 0
XLINTSTDS 5.4 2.3 64 9.3 23 [N [ || 65 9.8
XLINTSTRFC 2.1 6.7 50 19 6 [ [ 1| 51 21
XLINTSTRFD 6.9 2.8 55 15 25 M [ || 55 16
XLINTSTRFS 6.0 2.8 55 15 25 [ \ || 55 16
XLINTSTS 0 0 0 0 79 | Il o 0
XLINTSTZ 0 0 0 0 17 [ I[| 0 0
XLINTSTZC 0.45 3.5 65 8.7 3.4 | [ || 66 8.9
LINPACK 5.8 16 85 17 34 H || 85 17
Simulation
CRAFTY 33 150 36 180 50 S | | 7T 760
LAMMPS 24 570 42 1600 300 B T j|s0 2700
LULESH 20 360 21 360 220 [0 I | ¥ 560
LULESH-OMP 44 1300 47 1700 280 T (48 1900
Verification
CROCOPAT 3.5 230 5.2 230 150 il || 20 340
MINIS AT 6.6 2700 6.6 2700 2300 N || 10.0 2900
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