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Abstract—Reducing energy consumption of IT-systems is fundamentally important for saving
cost and reducing CO2 emissions. A largely untapped potential arises from the configuration
options a software system provides to adapt it to the application scenario, workload, and
underlying hardware. As applying methods from artificial intelligence (AI) and machine learning
(ML) has been a success story for performance optimization, it is tempting to expect similar
benefits for energy.
We review proposed and potential techniques from AI for reducing energy consumption and
discuss why energy, unlike performance, requires an approach that is closely intertwined with
other software-engineering (SE) methods. We explain the limits of pure AI/ML methods when
focusing on the source code and outline a conceptual framework for combining SE methods and
ML to build white-box energy models. This way, researchers and practitioners are guided
towards promising techniques, including explicit modelling of uncertainty of energy estimates
and identification of causal relationships of configuration options to energy leaks.

REDUCING ENERGY CONSUMPTION of IT
systems is of paramount importance for our
economy and society as it reduces CO2 emis-
sions, saves energy cost, and often comes also
with performance improvements. A significant
optimization potential for reducing energy con-

sumption that has not been fully tapped arises
from software configurability. Almost all non-
trivial software systems today are configurable,
including operating systems, database systems,
video encoders, compression and data-science
libraries. Typically, these systems provide a mul-
titude of tuning knobs (configuration options or
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parameters) to tailor their functional and non-
functional behavior. From a user perspective,
one can use configuration options to adapt the
system to its hardware platform, workload, and
usage scenario, enabling potentially huge energy
savings, as has been confirmed already in sev-
eral studies [1]. From a developer perspective,
developers of software systems are more and
more concerned with the energy consumption of
different parts of the system [2]. A key challenge
for energy-efficient configuration concluded in a
recent literature study is: “(i) to locate portions
of source code that can be optimized [developer
perspective] and (ii) choose suitable parameters
and configurations to reduce energy consumption
[user perspective]” [3]. Empirical studies have
found that 59 % of performance issues are related
to configuration errors, 88 % of these issues re-
quire fixing the code [4].

In a long-term endeavor, we have investigated
how methods from subsymbolic artificial intell-
gience (AI), specifically machine learning (ML),
can help users find energy-optimized configura-
tion and developers identify configuration-related
code regions for energy debugging. In this article,
we discuss different kinds of ML techniques and
how they can be applied to different use cases
in energy optimization of configurable software
systems. We highlight the need for techniques
that explicitly address the inherent uncertainty
of energy measurement and modelling. We argue
that ML alone is insufficient answering the ques-
tions of developers, especially when causal rela-
tionships need to be revealed (e.g., energy leaks
caused by specific configuration options). Only
when multiple information sources are combined,
including program analysis, benchmark design,
and system modelling techniques, we can provide
accurate energy estimates of software configu-
rations and point developers to configuration-
dependent code regions of causal interest.

An important lesson that we learned and want
to share is that special measures need to be
taken into account when dealing with energy con-
sumption of software. Simply transferring folk-
lore wisdom from performance engineering is
not sufficient. Energy consumption is a viscous
property. It cannot be instantaneously traced from
a code statement to a power draw. It is prone to
multiple indirections, depending on the hardware,

operating system, and the environment. In gen-
eral, energy consumption is difficult to measure:
The measurement must be either conducted at the
level of individual hardware components, which
imposes challenges of synchronization, or for the
system as a whole, which is often inaccurate and
imprecise. All these aspects have severe conse-
quences on the choice of the ML technique, on
the applicability of ML in different use cases, and
on the need of additional software-engineering
(SE) methods to be combined with ML. Here,
we focus on the software side, keeping other
influential factors, such as the operating system,
hardware components, and workloads controlled.
However, as we will show later, techniques from
transfer learning are in reach to transfer energy
models to a different context.

To summarize, we provide:

• An overview of different ML techniques for
estimating energy consumption for different
use cases in the area of configurable software
systems (user and developer perspective);

• Results of applying a range of learning al-
gorithms demonstrating the need to handle
uncertainty and causality;

• Open research challenges for which ML alone
is not able to solve the problems of software
engineers in reducing energy consumption.

What is already possible with ML?
As said previously, we can approach energy

reduction of software systems from two perspec-
tives: (i) what the user can gain from an optimal
system configuration, and (ii) what the developer
can achieve with an energy-aware development
of configurable code. Figure 1 illustrates the two
perspectives. To provide quantitative statements
about the configuration space, such as “What
is the most energy-efficient configuration?”, re-
quire an accurate estimate of a configuration’s
energy consumption. Here, pure methods from
ML, which take a black-box perspective, are
sufficient and cost-effective. However, to provide
qualitative statements, we need to know which
code regions are affected by configuration options
and how strong the effect is with respect to
energy consumption. Finding the configuration-
related code regions requires advanced methods
from software engineering, such as static and
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Pure AI / ML AI / ML + SE
Black-box models White-box modelsUser perspective Developer perspective

“What energy will this configuration consume?”

“What is the most energy-efficient configuration?”

“Which code is responsible for this energy leak?”

“Will this code change cause more energy consumption?”

Figure 1. Different perspectives on configuration lead to different questions. Quantitative statements are best
given by black-box models learned with pure ML. Qualitative statements require inner knowledge of the system,
ultimately combining software engineering and ML methods to provide white-box energy models.

dynamic data-flow analysis. Only once we know
the relevant code regions, we can again resort
to ML to learn energy models for the individ-
ual regions. Only then it is possible to answer
questions like “Where in the code and under
which configuration do I lose energy?”. In what
follows, we go through the two perspectives in
more detail.

User Perspective: ML for Energy Optimization
Many software systems, libraries, and frame-

works offer a wide range of configuration options,
enabling the user to improve the system’s effi-
ciency towards performance and energy consump-
tion. However, the often large number of configu-
ration options (ranging from dozens to thousands)
tends to be mostly ignored by users, leaving
significant optimization potential untapped [5].
The main issue is that users typically are not
aware of the implications of configuration options
on energy consumption or what the best config-
uration to minimize energy consumption is. The
main reason is that, from the user perspective, the
software system is a black box. Fortunately, ML
can come to the rescue.

Accuracy is the key:
Estimating energy consumption of software con-
figurations and finding optimal configurations
have been extensively studied in recent years. It
has been shown that the most accurate models are
classification and regression trees, random forests
(as ensemble method), and neural networks [6],
[7]. The rationale behind these methods is that
energy consumption behaves non-monotonically
with respect to the configuration space. That
is, small changes in configurations can have an
abrupt change in energy consumption. Formally,
a configuration is a set of assignments to all

Figure 2. Energy stairs observed when ordering the
configurations of four software systems according to
their energy consumption. Similar stairs have been
identified for performance earlier [8].

available configuration options from a certain
domain (e.g., binary or numeric), that is c =
{o1, o2, . . . , on}, where n is the number of op-
tions and oi is the value assigned to the i-th
option. Figure 2 illustrates the non-monotonic
energy consumption behavior for four real-world
software systems: 7Z (file compression), APACHE

(Web server), MONGODB (database system), and
NGINX (reverse proxy). Energy has been mea-
sured using a power distribution unit. When or-
dering software configurations according their en-
ergy consumption, we observe several stairs. Such
stairs have been found earlier for performance by
Oh et al. [8]. They explain why learning tech-
niques that mathematically support step functions
are able to model energy consumption better than
techniques that rely on smooth linear functions.

Having a model that can estimate the energy
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consumption of every individual configuration is
the first step towards optimization. Such a model
allows a user to ask whether a configuration is
’better’ than another and to what extent. However,
to identify an optimal configuration or one that
is close, we can either use the stairs to guide
an iterative optimization process [8] or employ
computationally expensive optimization methods,
such as genetic optimization [9], on top of these
(surrogate) models. Although such methods can
lead to configurations with estimated low energy
consumption, the correctness of this estimate is
unclear. In other words, while we may be correct
for 90 % of the estimates, we may be totally
off in the remaining ones, causing a dilemma
for the user: a switch to an supposedly better
configuration from an already good configuration
comes with the risk of being totally wrong. As
these methods provide no means of risk assess-
ment and no measure of uncertainty for their esti-
mates, recent research has turned to the Bayesian
world [10], [11], [12].

Uncertainty is the key for decision making:
A Bayesian model provides a measure of un-
certainty along with an estimate. Applied to
performance, Bayesian approaches are able to
model uncertainty as first class citizen, paving the
way to uncertainty-aware optimization [10]. They
provide guarantees, for instance, to self-adapt to a
faster configuration [12]. Applied to energy con-
sumption, we developed the tool P4 (performance
prediction via probabilistic programming) to
model an option’s influence on energy consump-
tion (and performance) as a probability density
function describing the probability of an option
having a specific influence on the system’s en-
ergy consumption [11]. A configuration’s energy
consumption is, therefore, the combination of all
probability density functions of selected config-
uration options, and itself a (joint) probability
density function.

Figure 3 shows an example of how P4 models
the energy consumption behavior of the Apache
Web server. With such a model, it is now possible
to obtain confidence intervals to provide proba-
bilistic guarantees. For instance, we may be able
to state that, with a confidence of 95 %, the energy
consumption of a certain configuration is in an
estimated range.

Core
ECDSA

TLS
CLvl9 & ECDSA

CLvl9 & TLS

5000 15000 25000
Energy consumption in Ws

PREDICTION 95%

Figure 3. Illustration of P4’s prediction for a given
configuration of Apache. P4’s prediction is shown
on the bottom line. Its uncertainty distribution results
from the uncertainty distributions of options and inter-
actions that are active in the given configuration.

While Bayesian methods can be an effective
tool for users when deploying an energy model
alongside the software system, we have not con-
sidered the software itself yet. As we will show
next, here is the point where AI/ML alone is
insufficient to contribute enough information to
developers to improve energy consumption.

Developer Perspective: ML for Energy
Root-Cause Analysis

Software systems may contain bugs or may
have inefficient implementations causing extraor-
dinary energy consumption or energy leaks, es-
pecially in the context of configuration [4]. Even
in the absence of energy leaks, the understanding
of the configuration-related system’s energy be-
havior (i.e., which code regions consume what
energy under which configuration) is a neces-
sary precondition for software maintenance and
code optimization. This is where the black-box
perspective reaches its limits. It is not possible
to detect energy leaks by just estimating energy
consumption at the level of configurations, since
every model assumes that the same statistical
properties hold for any configuration as seen for
the sampled training set. In fact, a configuration-
dependent bug is an outlier and would need to be
explicitly observed (i.e., sampled and measured).
Moreover, a black-box model cannot make any
statements about where in the code an option
triggers the consumption of energy and to what
extent. As it turns out, this is where ML alone
is insufficient, and new information sources from
program analysis, system modelling, and bench-
mark design need to be brought in.
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Intermezzo: White-box performance models:
Before diving into white-box energy models,
we will shortly review recent advances in the
area of white-box performance modelling, since
there are similar challenges: First, any white-
box tool or analysis needs to establish a tracing
from configuration options to code regions, in
which the options take an effect either by directly
controlling functionality and control flow or by
indirectly influencing the data flow. Second, the
corresponding code regions needs to be measured
to be able to attribute the change in execution time
to individual options and their interactions.

There are two angles to approach this task:
solely with methods from SE and a combined
approach. Following the pure SE approach, Velez
and others employ static [13] and dynamic [14]
control-flow and data-flow analysis to track code
regions that depend on configuration options.
They instrumented the identified code regions
with precise time measurements construct a per-
formance model without ML. The key here is that
learning becomes obsolete if measurements are
conducted in a highly precise and controlled way.
Although very accurate, this approach comes with
its own cost: Precise data-flow analysis is time-
and resource-demanding and often requires the
code to be prepared. That is, one may need to
rewrite parts of the code, introduce measurement
bias due to instrumentation, cannot account for
further energy-influencing factors as there is no
learning process, and faces an inherent measure-
ment imprecision as energy is usually not im-
mediately consumed, but indirectly via hardware.
A pure SE approach might not be applicable for
energy consumption. To address these limitations,
we can add a pinch of ML.

The problem that needs to be solved is to
avoid costly data-flow analysis and imprecise
code instrumentation while still establishing a
tracing from configuration options to code re-
gions. As the first to combine both words for
white-box performance models, our key idea is
to apply sampling and ML with method-level
profiling. Again, we execute the software system
under different configurations. Now, we profile
each method and record its execution time. With
these data, we learn a performance model per
method and can infer, this way, which options
influence which methods by which amount [15].

Performance as a proxy for energy consumption?
Having white-box performance models at hand,
can we just use these models as a proxy for
energy consumption? The argument is: the longer
the execution, the more energy it consumes. In
theory, method-level performance models may be
a way to also build method-level energy models.
However, this whole argument rests on the as-
sumption that performance correlates with energy
consumption. That is, performance can act only
as a proxy if, for instance, a longer method
execution time also results in a total higher energy
consumption of that method. Unfortunately, this
is not always true, since caching, different hard-
ware usage, and energy drain due to high tem-
peratures for high CPU load can easily break the
correlation. In fact, when analyzing the existing
literature for performance–energy correlation, we
find papers with a positive correlation [16], a neg-
ative correlation [17], or no correlation at all [18].
Hao et al. even state in their analysis of 6 Android
apps: “The Pearson coefficients (r in Table I)
are nearly zero across all applications, indicating
that there is almost no linear correlation between
execution time and energy usage.” [18]. These
inconsistent findings point to a research gap.
How do programming mechanisms (e.g., data
structures, architectures, data-flow patterns, etc.)
influence the performance–energy correlation. In
the case we find such influences, at least, for
a subset of programming mechanisms, we can
use techniques from transfer learning to convert
white-box performance models to their energy
counterparts. Jamshidi and others have already
shown the practicality of transfer learning for
black-box models when the context of a con-
figurable software system changes (e.g., different
hardware, workload, or version) [19]. Combining
transfer learning with method-level performance-
influence models [15] and a correlation analy-
sis, white-box energy models might be possible.
Moreover, extending a once learned white-box
model to other hardware systems, environment
settings, and workloads might be achievable like
for performance once the changes in their distri-
bution profiles and characteristics are known.

Putting these ideas together, a reasonable path
for white-box energy models is to follow the
recent advances in white-box performance mod-
elling and combine them with energy measure-
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Figure 4. Combining SE methods and ML to enable
white-box energy models.

ments to adjust and transfer the performance
observations to approximate energy observations.
Figure 4 outlines this path. It is important to
note that all the necessary ingredients for this
vision have been made available only recently.
The upcoming research challenge is to put all
pieces efficiently and reliably together and find
effective ways to tune and validate the whole
framework.

The Limit of AI: Energy Peculiarities
The path for achieving white-box energy mod-

els rests on rather strong assumptions, and it
is unclear whether it works in most cases. The
question is: Why can’t we construct a white-box
energy model directly with ML?

To answer this question, let us take a step
back and review what is needed to build a white-
box energy model. First, we need fine-grained
energy measurements in space and time. That is,
the measurements must be able to be traced back
to individual code regions just like performance
profiling or logging of individual methods. So,
when entering a method or when sampling the
method’s call stack, we need to determine the
current power drain and not just the drain of half
a second ago. However, the frequency of sam-
pling of the current power drain is below 100 Hz
even for advanced measurement devices. Cost-
intensive tailor-made solutions require specific
hardware setups, such as in high-performance
computing. Measurement lag makes locating the
cause of energy consumption even at the method
level difficult. Second, we need highly accurate
power measurements within a milli-Watt range to
build models at statement or method level. For
performance, we can measure up to a nanosecond
resolution or even count CPU cycles. For power

drain, this resolution is often not available due to
technical challenges. That is, there is an inherent
uncertainty in the measurements we obtain. Third,
we need a direct observable effect from code
execution to power drain. However, energy might
not be immediately consumed when executing a
certain code statement. Often, there is a delay
between a statement causing a certain power drain
and when it becomes effective. This occurs, for
instance, when electrical energy is transformed
into heat due to heavy CPU load, or when hard-
ware components act with a small time delay, or
just due to caching effects. Naturally, this can
get even worse when these effects overlap with
measurement lag.

All these aspects clearly show that a direct
application of ML methods will lead to inaccurate
measurements, at best, or to misleading results, at
worst. What we really need is to combine multi-
ple methods from ML with knowledge about the
software internals gained from software analyses.
Specifically, it becomes clear that any approach
to be successful must (i) explicitly account for
uncertainty in the data and the measurement pro-
cess, which points to Bayesian methods, and (ii)
be able to locate the cause of an energy draining,
which points to causal modelling [20].

Figure 5 exemplifies a causal model involving
configuration options as independent variables
activating the execution of different code paths,
which cause the activation of hardware com-
ponents and may interact with each other, all
possibly causing a power drain. Obtaining such
a model requires feature localization techniques
using control-flow and data-flow analysis, from
which we can obtain information what code re-
gion is affected by what (combination of) op-
tion(s). Moreover, we require an analysis of soft-
ware patterns and architectures, since the usage of
data structures, caching, and other resources have
a profound influence not only on performance but
also on energy consumption. Finally, being aware
of the chain of causalities enables developers to
ask questions of a new quality, such as whether
changing my configuration causes an increased
energy consumption and why is it so? This would
enter a new stage of causal software configura-
tion.
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This has severe implications on benchmark design (How to be representative in two dimensions?),
performance modelling (How can we compare performance measurements when the input changes
over time?), and learning (How to learn comprehensive models in the high dimensional space?). In
phase two, we will tackle these questions using the aforementioned scalable and integrated black-box
and white-box analyses.

Objectives:
• Select a small and representative set of workloads by using domain knowledge and code coverage

tools.
• Refine this set of workloads using white-box information.
• Adapt benchmark design, performance modelling, and learning to the three dimensions

Root cause analysis of performance regressions In in the first phase of PERVOLUTION, we mainly
focused on evolutionary patterns and techniques to find them. However, we still miss actionables
such that developers can proactively make use of the information by, for example, focusing the
development on specific features or acting on the root cause of a configuration-related performance
bug. Understanding causal relationships between configuration options and observable behavior is
key for performance debugging and to safely adapt configuration options without introducing, direct or
indirect, performance regressions. To detect root causes of performance regressions, we need causal
information about connections between configuration options, internal behavior (e.g., cache states),
information flow, and observable performance behavior. Purely correlational information might be
misleading, e.g., cache misses might correlate with a worse run-time but in combination with branch
miss predictions, it might lead to better overall performance.

In the second phase of PERVOLUTION, we want to enable developers to ask questions, such as
"‘What if I change this feature code, does the performance improve for the next revision?"’, "‘What if
I turn these two options on, has this caused the observed performance bug?"’, or "‘What if I revert
this commit, does this also revert the performance regression?"’. Answering these questions requires
a causal model of the system that incorporates information of white-box analyses to causal express
causal chains from independent (i.e., configuration options) over observable (i.e., counters, data
structures, etc.) to dependent variables (i.e., performance). Figure 7 shows an exemplary causal graph.
Here, independent variables contain all kinds of variables that serve as input to the system, including
configuration options, workload, and hardware properties. As an input to the system, independent
variables cannot be influenced by, or depend on, other variables in the system. Observable variables
can be measured with our white-box analyses, such as cache misses or optimization order. Dependent
variables represent measurable, external properties of the software system, such as runtime or CPU
load.

Independent Observable Dependent

...
...

...

Feature1

Featurei

Featuren

... Cache misses

... Optimization order

Cpu load

Binary size

Runtime

Energy

Figure 7: A simplified version of a causal graph for a highly-configurable software system

Optimizing a single configuration of the configurable system with regard to memory usage or runtime
might also influence other configurations of the same system. These, possibly indirect, influences (e.g.,
through configuration option interactions) are only predictable with a causal model, although after

Figure 5. Causal graph showing energy consumption
and performance.

Conclusion
We raised the question of whether methods

from AI / ML can help reducing the energy
consumption of configurable software systems.
The current answer is that, only for cases of
quantitative nature that require no deep insights,
we can find more energy-efficient software con-
figurations with ML techniques. As soon as we
want to optimize the software itself, ML alone is
insufficient. For this purpose, we need to estab-
lish traces from energy consumption behavior to
individual code regions affected by configuration
options, this way, being able to detect energy
leaks and inefficient code. Establishing and main-
taining traces requires fine-grained knowledge on
where in the code specific configuration options
are effective and how they influence energy con-
sumption. Due to the low resolution and lag of
energy measurements, as well as complex causal
chains of energy consumption (e.g., software con-
trols hardware which consumes energy), there are
unsolved (possibly inherent) challenges to collect
accurate data sets to be solely used by ML. Only
when combining multiple sources of informa-
tion, such as data-flow and control-flow analy-
sis for building a white-box performance model
and black-box energy models, ML methods can
support developers. For these methods, reporting
uncertainty of data and the model as well as
uncovering causal chains are the key ingredients
for obtaining insights on how to reduce energy
consumption of a software system.
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and C. Kästner, “ConfigCrusher: White-box perfor-

mance analysis for configurable systems,” Automated

Software Engineering Journal, vol. 27, pp. 265–300,

2020.

14. M. Velez, P. Jamshidi, N. Siegmund, S. Apel, and
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