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Abstract

Many software systems today are configurable. Analyzing configurable systems is
challenging, especially as (1) the number of system variants may grow exponentially
with the number of configuration options, and (2) often existing analysis tools cannot
be used for configurable systems. Recent work proposes to automatically transform
compile-time variability into load-time variability—called variability encoding—with
the goal of reusing existing analysis tools for analyzing configurable systems and im-
proving analysis performance compared to analyzing all system variants in a brute-
force manner. However, it is not clear whether one can automatically find an efficiently
analyzable load-time configurable system for any given compile-time configurable sys-
tem. Also, for many analyses, we need guarantees that the load-time configurable sys-
tem precisely encodes the behavior of all system variants that can be statically derived.
We address both issues (1) by developing a formal model of variability encoding based
on FEATHERWEIGHT JAVA, (2) by proving that variability encoding preserves variant
behavior with respect to a core set of language mechanisms, (3) by discussing how
our work extends to more complex language mechanisms that elude our formal model,
and (4) by sharing our experience with implementing and using variability encoding in
real-world applications.
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1. Introduction

Many software systems today provide a rich set of configuration options. Users
can derive a custom system variant by selecting configuration options according to
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their requirements. Variability is a major success factor in software engineering, but
also a source of complexity. Configuration can take place at different points in time,
including at compile, load, and run time. While compile-time configuration is most
resource efficient and safe in that unnecessary and possibly vulnerable functionality is
excluded from the compiled system variants, load-time and run-time configuration are
more flexible in that systems are configurable in later stages of the deployment process.

Analyzing configurable systems is challenging. With only few configuration op-
tions, one can typically derive myriads of different system variants. This exponential
explosion rules out exhaustive analysis approaches that derive and analyze all sys-
tem variants individually. While considering only a small subset of variants is viable
(cf. sample-based analysis [45]), the statements one can make about the configurable
system as a whole are necessarily limited to the subset and are therefore incomplete
with respect to the entire configurable system. For example, it is certainly desirable to
know for the developers of a crypto library, such as OPENSSL with 589 compile-time
configuration options [34], whether it leaks confidential information in any of its vari-
ants. For example, the heartbleed bug of OPENSSL, discovered in April 2014, occurs
only if a certain configuration option is enabled.

Recently, researchers have developed dedicated variability-aware analysis tools
that operate directly on the code of the configurable system, not on the code of the
generated system variants [45]. The key idea is to represent the configurable system
including all variability in a single representation, for example, an abstract syntax tree
or a control-flow graph that covers all system variants. Analyzing such a representation
requires to make the analysis method and the corresponding tool variability-aware [26].
While designing variability-aware analyses has been successful for a number of anal-
ysis problems [45], including type checking [2, 16, 28], static analysis [9, 10, 34],
testing [30, 38], and model checking [12, 31], their implementation is tedious and error
prone.

As an alternative to making the analysis tools variability-aware, one can lift compile-
time variability to load-time variability. The key idea is to generate, for a given compile-
time configurable system, a corresponding variant simulator (a.k.a. product simula-
tor [5] or metaproduct [46]), which simulates the behavior of every individual system
variant, based on configuration parameters set at load time. The resulting simulator
is solely implemented in the host language and incorporates all variability. It can be
analyzed as a whole, considering all variability and configuration knowledge. Existing
tools that can handle variability (or non-determinism) at run time can be used to ana-
lyze behavioral properties of variant simulators and project the results on the expected
behavior of the individual system variants. The overall transformation process is called
variability encoding [4] (or configuration lifting [41]).

A number of recent analysis approaches take advantage of variability encoding to
simultaneously explore all possible execution paths induced by the variability of the
corresponding configurable system [4, 5, 13, 30, 41, 45, 46, 47]. These approaches
require that the behavior of the variant simulator captures the behavior of the variants as
accurately as possible. So far, it has only been discussed informally whether variability
encoding guarantees behavior preservation. We close this gap by defining a behavior-
preservation property, which states that, for each valid execution path of a system
variant, a path with the same observable behavior exists in the variant simulator, and
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vice versa. We prove this property for variability encoding of a simple, formal JAVA-
like language.

In general, it is always possible to create a corresponding variant simulator for
every configurable system. A trivial way is to generate all system variants, and to cre-
ate a wrapper that dispatches among them based on given command-line parameters.
However, this is certainly not desirable. The goal is that the variant simulator, while
accurately capturing the behavior of the individual system variants, still avoids repli-
cating code that is reused among different variants. It is exactly this kind of sharing
that makes variability-aware analysis efficient [26], but that makes variability encoding
also challenging to implement [46].

Although being used successfully in the analysis of configurable systems [45], there
is no evidence that variability encoding can be implemented sound and complete while
still creating a variant simulator with a high degree of sharing for a given configurable
system. We develop a formal model of variability encoding based on FEATHERWEIGHT
JAVA (FJ) [24] and show that behavior preservation of variant simulators is ensured. To
model compile-time variability, we use COLORED FEATHERWEIGHT JAVA (CFJ) [28],
an extension of FJ with support for presence conditions on program elements that con-
trol the elements’ inclusion or exclusion at compile time. By using CFJ, we abstract
from actual compile-time configuration mechanisms including feature modules and
conditional inclusion with preprocessors, because they can be seamlessly translated
to this canonical representation [27, 29]. To model load-time variability and config-
uration, we introduce FEATHERWEIGHT SIMULATION JAVA (FJSIM), which extends
FJ by a conditional construct that dispatches at run time between different execution
paths based on configuration options set at load time. We define a transformation that
translates a given CFJ program (compile-time variability) to a corresponding FJSIM
program (load-time variability), and show that this transformation preserves the behav-
ior of all system variants. In particular, we use a trace semantics and weak bisimulation
to prove behavior preservation.

Proving behavioral correctness of variability encoding for full-fledged languages
such as JAVA is certainly elusive. That is why we formalize and prove variability en-
coding for a core language. Based on this core model, we discuss extensions of our
model and proof for further language mechanisms. Finally, we report on our experi-
ence with implementing and applying variability encoding to real-world systems.

In summary, we make the following contributions:
• A formal model of variability encoding capturing the transformation of the code

base of a configurable program (CFJ) into a variant simulator (FJSIM).
• A proof based on a trace semantics and weak bisimulation showing that every

variant simulator in FJSIM models the behavior of all variants of the correspond-
ing configurable system in CFJ.

• A discussion of the implementation and correctness of variability encoding in
the presence of language constructs common in mainstream programming lan-
guages.

• A report of our experience with generating variant simulators for practical appli-
cations.
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Feature module BasicPrinter1 class Printer {
2 void print(Page p) {
3 ... // basic printing
4 }
5 void print(Page front, Page back) {
6 printMulti(front, back);
7 }
8 void printMulti(Page front, Page back) {
9 ... // print both pages on one sheet

10 }
11 }

Feature module Duplex12 class Printer {
13 void print(Page front, Page back) {
14 printDuplex(front, back);
15 }
16 void printDuplex (Page front, Page back) {
17 ... // duplex printing
18 }
19 }

Feature module Color20 class Printer {
21 void print(Page p) {
22 if (p.isColored()) {
23 ... // color printing
24 } else { original(p); }
25 }
26 }

(a) Using feature modules

1 class Printer {
2 void print(Page p) {
3 #if (Color)
4 if (p.isColored()) {
5 ... // color printing
6 }
7 #else
8 ... // basic printing
9 #endif

10 }
11 void printMulti(Page front, Page back) {
12 ... // print both pages on one sheet
13 }
14 #if (Duplex)
15 void printDuplex(Page front, Page back) {
16 ... // duplex printing
17 }
18 #endif
19 void print(Page front, Page back) {
20 #if (Duplex)
21 printDuplex(front, back);
22 #else
23 printMulti(front, back);
24 #endif
25 }
26 }

(b) Using preprocessor directives

Figure 1: Two implementations of the printer driver with compile-time variability

2. Background

In this section, we provide the necessary background on compile-time and load-
time variability as well as on variability encoding.

2.1. Compile-Time Variability

There are different mechanisms to implement compile-time variability (for an over-
view, we refer the reader elsewhere [1, 15, 43]). We illustrate two prominent mecha-
nisms for compile-time variability and describe a canonical representation into which
both mechanisms can be translated. Our model of variability encoding is based on this
canonical representation.

Let us introduce a running example: a configurable printer driver with the three
features BasicPrinter, Duplex, and Color. In this example, features are implemented
in dedicated feature modules, as shown in Figure 1a. Selected feature modules are
composed in a given order to get a system variant [3]. Feature module BasicPrinter
implements single-page printing as well as printing of two pages side-by-side. This
basic implementation can be extended by selecting the optional features Duplex and
Color, which add automatic duplex printing and color printing, respectively. When a
feature module re-defines a method that an earlier feature module already introduced,
the original method is extended, which is called method refinement [1, 7]. In our exam-
ple, method print(Page) of Color (Line 21) extends method print(Page) of BasicPrinter
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(Line 2). To invoke the original method (print(Page) of BasicPrinter), we use the key-
word original in the refining method (Line 24). This allows to build method refinement
chains in which each feature module adds functionality to a method and invokes the
original implementation.

In Figure 1b, we show an alternative implementation of the configurable printer
driver using C-preprocessor directives. We use #if directives of the C preprocessor to
specify under which conditions (i.e., feature selections) parts of the code should be
included in a variant. Before preprocessing, we can define values for the #if variables
Color and Duplex. Then, during preprocessing, #if conditions are evaluated, and the en-
closed code is either included or excluded in the variant. With preprocessor directives,
we can express variability at a fine-grained level, for example, at the level of method
bodies (Lines 3–9), which is difficult with feature modules [27].

Feature modules and preprocessor directives are compile-time variability mech-
anisms, which are similar in that the statements of the program are re-arranged at
compile-time based on a given configuration. A canonical representation of this static
variability is an abstract syntax tree, in which each node is annotated with a presence
condition [49, 29]. A presence condition φ is a predicate over features that deter-
mines whether the annotated code is present in a given configuration [14]. We base our
approach on annotated abstract syntax trees to abstract from the specifics of different
implementation techniques for compile-time variability. In our formal model, we focus
on variability in method bodies and on optional methods. This is not a severe limitation,
because variability in other language elements—even undisciplined annotations—can
always be converted accordingly using code duplication [29, 33], as we show in Sec-
tion 5. Furthermore, we require that alternative implementations of methods have the
same return type and discuss variable types in Section 5.

An important asset of a configurable system is its variability model (a.k.a. feature
model [1]). It defines which configuration options are compatible to form valid vari-
ants, and which options are not. In our example, BasicPrinter is mandatory, and Duplex
and Color are optional. We encode the variability model Φ̂ as a propositional formula
over the set of options of a given configurable system. Each satisfying assignment of
the formula is a valid selection of options, which can be used for the derivation of a
system variant. Configurations, denoted with Φ, and presence conditions, denoted with
φ , are also propositional formulas over options. For example, φ1 = Color∨Duplex is
a presence condition. Each valid configuration has exactly one satisfying assignment
(i.e., each configuration option is either selected or deselected). As Φ̂ is a propositional
formula that captures only the constraints among configuration options, not all config-
uration options of a system need to appear in this formula. For example, the variability
model of the printer driver is the trivial propositional formula BasicPrinter, because
there are no constraints on Color and Duplex. We use function sat to denote satisfia-
bility of propositional formulas. Function sat(φ ∧ Φ̂) returns true iff there is a variable
assignment A under which φ and Φ̂ hold (i.e., ∃A :A |= φ ∧ Φ̂). In terms of configu-
rations, this means that there exists a configuration that is valid under the constraints φ

and Φ̂.
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2.2. Variant Simulators

A variant simulator (a.k.a. product simulator [5] or metaproduct [46]) is a system
that contains the code of all variants of a corresponding configurable system (even of
mutually exclusive configuration options), and that is able to simulate the behavior of
all valid system variants based on load-time parameters (e.g., global variables set by
command-line parameters).

Variant Simulator1 class Options {
2 static boolean Duplex, Color;
3 }
4 class Printer {
5 void print(Page p) {
6 if (Options.Color) {
7 if (p.isColored()) { ... // color printing
8 } else { ... } // basic printing
9 } else { ... } // basic printing

10 }
11 void print(Page front, Page back) {
12 if (Options.Duplex) {
13 printDuplex(front, back);
14 } else {
15 printMulti(front, back);
16 }
17 }
18 }

Figure 2: Excerpt of a variant simulator of the printer-
driver example

Figure 2 shows a variant simulator of
our running example. The variant simu-
lator contains all classes and methods of
all features modules of Figure 1a. Ad-
ditionally, it contains a feature variable
for each configuration option (Line 2).
For each method refinement, there is a
feature choice (i.e., a conditional state-
ment) that dispatches between the re-
fined and the original method implemen-
tation. The functionality of the features
Duplex and Color can be activated or de-
activated with the newly introduced fea-
ture variables Options.Duplex and Op-
tions.Color in Figure 2. In this gener-
ated variant simulator, most of the code
is shared among multiple program vari-
ants. The code of duplex printing is shared between the two variants that have Duplex
enabled (Line 13). The code for basic printing has been duplicated (Lines 8 and 9).
To further improve sharing, we could restructure the method to avoid duplication (if
statement for condition !Options.Color || !p.isColored).

2.3. Analysis Speedup with Variant Simulators

Variant simulators are useful to efficiently analyze the entire variant space of a
configurable program. For this simulator-based analysis, one can use, for example a
model checker that chooses partial configurations when reaching a feature choice and
backtracks to explore other choices when the chosen path terminates. Using a naive
variant-based (a.k.a. product-based) approach [45, 48] instead, we would have to an-
alyze each valid variant separately, which is often infeasible in practice [34]. If we
analyze the variant simulator of Figure 2, we can find defects using only one analysis
run, compared to four runs for analyzing all variants individually. In a series of experi-
ments with variability-aware model checking based on variant simulators, we observed
speedups of up to 30 compared to the sequential analysis of all variants [5].

A closer look at our experiments revealed that the observed speedup was due to
the effects of late splitting and early joining in simulator-based analysis [5]. Model
checking is basically an exploration of execution traces through the space of possible
states that a program can assume at run time. Late splitting means that a common prefix
of execution traces of different variants is explored only once for all or a subset of all
system variants. A longer common prefix (i.e., later splitting) means that less states
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Figure 3: Comparison of the state spaces of two variants and a corresponding simulator.

must be explored in total, which often results in a speedup. Figure 3a illustrates that
exploration of individual variants is not able to share any parts of traces even though
some states are equal. Figure 3b illustrates that, in the corresponding variant simulator,
the traces are split only when necessary (after ProgramState1). Early joining merges
the traces as soon as they reach equal states (ProgramState3), thereby reducing the
number of states to be explored. These effects and observations are documented in
more detail elsewhere [5, 34].

2.4. The Need for a Formal Correctness Proof

Variability encoding has been used in several research projects and achieved con-
siderable speedup compared to variant-based analysis [4, 5, 44]. In these projects, the
subject systems used only relatively simple language features, so it was reasonable to
assume that the implementation of variability encoding worked as expected and that
the results were valid.

However, in discussions we were often asked if variability encoding is correct in
the presence of other language features, such as inheritance, overriding, or switch state-
ments. Implementations of variability encoding mainly deal with such language fea-
tures separately and regularly miss interactions among them. We chose to approach this
problem formally. We define variability encoding based on a small, formal language
that already contains many language features that we deem problematic (e.g., method
overriding), and we prove behavior preservation in this setting. Then, we discuss how
other language features can be dealt with (e.g., switch case statements).

3. A Formal Model of Variability Encoding

In this section, we develop a formal model of variability encoding. We illustrate
the process of variability encoding as well as the property of behavior preservation
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CFJ program p
(compile-time variability)

with
variability model Φ̂

and code base ∆

πΦ

FJ program
(single variant,
no variability)

σ

FJSIM program
(variant simulator,

load-time variability)

exec(πΦ)

exec(σ |Φ)

Equivalent functional behavior
for all valid configurations Φ?

πΦ := derive(∆,Φ)

σ := encode(∆,Φ̂)
Φ

Figure 4: Variability encoding and behavior preservation

between variants and the corresponding variant simulator in Figure 4. Given a config-
urable program p with variability model Φ̂ and code base ∆, we use weak bisimulation
to prove that the execution of any variant πΦ (generated with configuration Φ) and the
variant simulator σ , restricted to Φ, yields the same observable behavior (Section 4).
This proof shows the soundness and completeness of variability encoding. In partic-
ular, we derive the variant πΦ with derive(∆,Φ) and encode the variant simulator σ

with encode(∆,Φ̂) (both functions are defined in Section 3.4). With exec(πΦ) and
exec(σ |Φ) we denote the execution of variant and variant simulator assuming configu-
ration Φ, respectively.

Our model supports all language constructs of FJ, including classes, methods,
fields, inheritance, dynamic typecasts, and method overriding. Note that FJ does not
support method overloading. If a method m has a certain signature, all other meth-
ods named m in the inheritance hierarchy must have exactly the same signature [39,
p. 257, Valid method overiding]. In Section 5, we discuss how allowing overloading
as in JAVA would affect variability encoding. Essentially, in our model a configurable
program can have optional methods (either included or excluded from the code) and
variable method bodies (alternatives for the default method body).

In Section 3.1, we give an overview of FJ, which is the basis language for our
formal model. Next, we describe CFJ [28], which we use to represent compile-time
configurable programs (Section 3.2). Then, we introduce the language FJSIM, which
we use to represent variant simulators (Section 3.3). Finally, we define how variants
and variant simulators are derived from CFJ programs (Section 3.4).

3.1. Featherweight Java (FJ)
FJ is a functional subset of JAVA with a precise syntax definition, a sound type

system, and evaluation rules [39]. We focus on the definitions relevant to our model.
In the following description, we use a short notation for lists: a denotes a list of syntax
elements. Sequences of field declarations, parameter names, and method declarations
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P ::= (L, t) program t ::= terms:
L ::= class C extends C { C f; K M } class decl. x variable
K ::= C (C x) { super(x); this.f=f; } constr. decl. t.f field access
M ::= C m (C x) { return t; } method decl. t.m(t) method inv.
v ::= values: new C(t) obj. creation

new C(v) obj. creation (C)t cast

Figure 5: The syntax of FJ [39]

are assumed to contain no duplicate names. For example, the parameter list of a method
definition is denoted as (C x), which expands to (C1 x1, . . . , Cn xn) .

Figure 5 shows the syntax rules of FJ, a subset of the syntax of JAVA, including
rules for class and method declarations and terms, such as field accesses and method
invocations. The syntax does not include an assignment operator; fields are only as-
signed once in the constructor. It also does not contain conditional (e.g., if) or loop
constructs (e.g., while). A method body consists of only a single return statement with
a term that may contain other nested terms. FJ supports the keyword super only as first
statement in constructor bodies. Despite its limitations, FJ is Turing complete, as one
can encode the lambda calculus in FJ [39].

An FJ program consists of a class table CT and a start term init. The evaluation of
a program begins with the start term, which is similar to the main method in JAVA. We
assume that there is a special variable this, but that this is never used as the name of
an argument for a method call. It is considered to be implicitly bound in every method
declaration. During evaluation this is substituted with an appropriate object (Figure 6,
E-INVKNEW).

fields(C) = C f

(new C(v)).fi→ vi
(E-PROJNEW)

C <: D

(D)(new C(v))→ new C(v)
(E-CASTNEW)

mbody(m,C) = (x, t0)

(new C(v)).m(u)→
[x 7→u, this 7→ new C(v)] t0

(E-INVKNEW)

congruence rules are omitted

Figure 6: Evaluation rules of FJ [39]

Figure 6 gives the small-step oper-
ational semantics of FJ. The evaluation
rules are designed to be conform as much
as possible with JAVA. For example,
the rule E-INVKNEW defines method-
call resolution. During evaluation, a start
term (new C(v)).m(u) is evaluated using
E-INVKNEW. This rule applies alpha-
equivialent substitution ([x 7→ y]t0) re-
placing occurences of x in t0 with y. The
term (new C(v)).m(u) is evaluated to the
body t0 of method m with substitutions
of the keyword this and of uses of formal
parameters. The result of this evaluation
step is a new term. The term is a fully evaluated value (new C(v)), or further evaluation
steps can be applied to the term. A class inheritance relation, in which class C extends
class D, induces a subtype relation C <: D.

3.2. Colored Featherweight Java (CFJ)

As the source language for variability encoding, we use CFJ [28], which extends
FJ with support for compile-time variability using presence conditions attached to pro-
gram elements. A CFJ program is, in fact, a nested term structure with presence con-
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ditions on some terms. This structure is isomorphic to a variable abstract syntax tree,
which is a canonical representation of compile-time variability [27, 29]. Given a con-
figuration Φ, we can derive a variant (an FJ program) from a CFJ program. This
derivation is, basically, done by checking for all program elements e whether their
presence conditions φe are satisfied (sat(φe ∧Φ)) and removing all elements with un-
satisfied conditions. The function derive is formally defined in Section 3.4.

We restrict variability in CFJ such that only complete methods and method bod-
ies can be variable. Also, a method name can be used only once per class. Alternative
method implementations can be expressed as alternative expressions in the return state-
ment. This restriction significantly improves the readability of the definitions and the
behavior-preservation proof. The described restrictions are no severe limitations to the
applicability of our approach as one can always transform more fine-grained variabil-
ity, such as optional parameters, to our restricted version of CFJ [29, 33]. To prove
behavior correctness for a language with more fine-grained variability, one would need
to prove either that the translation from this language to our model preserves behavior
or that variability encoding works correctly on the language with fine-grained variabil-
ity. Both is well beyond the scope of this paper, however, we discuss informally how
to handle fine-grained variability in some program elements (e.g., optional program
variables) in Section 5.

A CFJ program consists of a code base (CT,AT,MT, init) and a variability model
Φ̂. The code base consists of a class table CT , an annotation table AT , a metaexpression
table MT , and a start term init. The class table and start term are structures as in FJ
(Section 3.1).

The variability information of a CFJ program is defined in terms of an annotation
table AT and a metaexpression table MT . The annotation table AT contains a pres-
ence condition for each program element defining in which configurations (i.e., system
variants) the program element is present. The metaexpression table MT contains for
each variable program element a either an alternative program element a1 or the empty
program element • (denoting that there is no alternative). Correspondingly, AT con-
tains a presence condition for each alternative program element. Alternatives such as
a1 = MT(a) can again have alternatives a2 = MT(a1). During variant derivation, for
each program element a, MT is used to recursively search an alternative ai for which
AT(ai) is satisfied by the configuration of the derived variant. If such an alternative
is found, it substitutes a. We formally define how variants are generated from CFJ
programs in Section 3.4. References in AT and MT to program elements are always
unambiguous. Figure 7 illustrates how the printer driver can be represented in CFJ.
References are illustrated with arrows. Expression printMulti(f,b) in Line 3 is replaced
by printDuplex(f, b) iff feature Duplex is selected. In this case, the declaration of method
printDuplex is included during program generation, too (its AT entry is Duplex). For
more information on CFJ, we refer to Kästner et al. [28].

3.3. Featherweight Simulation Java (FJSIM)
We propose FJSIM as the target language of our model of variability encoding.

FJSIM does not support compile-time variability, but load-time variability. FJSIM also
supports access of superclass methods with the super keyword as in JAVA. Keyword
super is necessary to correctly implement method-call resolution in the presence of
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1 class Printer {
2 void print(Page f, Page b) {
3 return printMulti(f, b);
4 }
5 void printDuplex(Page f, Page b) { ... }
6 // other methods omitted
7 }

MT(printMulti(f, b)) = printDuplex(f,b)

AT(printDuplex(f, b)) = Duplex

AT(void printDuplex(...){...}) = Duplex

Figure 7: CFJ program for method print(f,b) of the printer driver; AT entries with condition true are omitted;
arrows illustrate the relation between the code and corresponding entries in AT and MT .

Syntax

t ::= . . . terms:
(φ ? t : t) feature choice
t.@C.m(t) method-lookup annotation

Figure 8: The syntax FJSIM adds to FJ. φ denotes a presence condition.

optional methods. Keyword super and the capability for load-time variability is only
used in variant simulators (not in configurable programs or in variants).

An FJSIM program consists of a code base (CT, init) and a configuration Φ. The
configuration is set at load time to simulate only a certain variant. Figure 8 shows
the syntax of FJSIM. Similar to keyword this in FJ, we assume that there is a special
variable named super that it is never used as the name of an argument to a method. It
is considered to be implicitly bound in every method declaration. During evaluation,
super is substituted with a method-lookup-annotation term that states in which class
the lookup for the super method should start.

FJSIM provides a conditional-execution construct called feature choice. The feature-
choice construct uses a presence condition over feature variables to select one of two
alternative terms at run time. The selection is made depending on configuration Φ

which has been fixed at load time.

Syntax. At the syntax level, we make two extensions. First, we introduce the ternary
operator presence condition ? then : else with a similar semantics as in JAVA. During
evaluation of a ternary operator, its presence condition φ is evaluated with respect
to the given configuration Φ (i.e., sat(φ ∧Φ) means that the presence condition is
satisfiable in configuration Φ). Second, we introduce the syntax construct t.@C.m(t)
which denotes that the lookup for method m is started in class C (and may continue in
superclasses of C). When the method is executed, t is used as this. We use the syntax
extension to model the method-lookup strategy as known from super in JAVA. In the
variant simulator, super provides support for accessing overridden methods in subject
programs. The syntax extension t.@C.m(t) is necessary as a term starting with super
does not contain information on which class it is embedded in (and where method
lookup should start) [39].

Typing. Figure 9 shows the typing rules, auxillary functions and evaluation rules we
introduce for FJSIM. The upper part of the figure shows typing rules for typing feature
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Typing

Γ ` t0 : C Γ ` t1 : C

Γ ` (φ ? t0 : t1) : C
(T-VARENC)

CT(E) = classE . . .{. . .Fm(G f){. . .}}
D <: E Γ ` t : C C <: D Γ ` a : H H <: G

Γ ` t.@D.m(a) : F
(T-SUPERREF)

x : C, this : C0,super : D ` t0 : E1 E1 <: C1
CT(C0) = classCextendsD{. . .}

override(m,D,C→ C1)

Γ ` C1 m(C x){return t0;} OK in C0
(METHOD TYPING replaces rule from [39])

Auxillary functions

CT(C0) = classC0 extendsD{C f; KM}
Bm(B x){return t;} ∈M

mbody(m,C0) = (x, [super 7→ this.@D] t)

CT(D) = classDextendsE{C f; KM}
C <: D C 6= D m ∈M

hasSuperImpl(C,m)

Evaluation

sat(φ ∧Φ)

(φ ? t0 : t1)→ t0
(E-VARENC-EN)

sat(¬φ ∧Φ)

(φ ? t0 : t1)→ t1
(E-VARENC-DIS)

mbody(m,D) = (x, t0)

(newC(v)).@D.m(u) →
[x 7→ u, this 7→ newC(v)] t0

(E-INVKNEWSUPER)

Figure 9: The typing rules, auxillary functions, and evaluation rules FJSIM adds to FJ; φ denotes a presence
condition, Φ a configuration.

choices, as well as rules for typing the superclass lookup. The expression Γ ` t : C
denotes that the term t is of type C in context Γ, which maps bound variables to types.
T-VARENC enforces that the terms in the then and else branches of a feature choice
have the same type. T-SUPERREF enforces that one of the superclasses actually imple-
ments the method referred to in a call with lookup annotation. All other typing rules
are identical to the rules of FJ [39] and omitted for brevity.

Evaluation. The lower part of Figure 9 shows the evaluation rules that FJSIM adds to
FJ. The evaluation rule E-INVKNEWSUPER resolves references to superclasses ((new
C(. . . )).@D) and searches for a method implementation in the superclass D. Keyword
super itself is already handled earlier, during the call to the auxillary function mbody,
which we redefined in Figure 9 compared to FJ. The redefined mbody function re-
places super used in a class C with this.@D where D is the superclass of C. A method
call (new C(. . . )).@D.m(. . . ) executes the method m from class D on the object new
C(. . . ). Figure 10 shows an example evaluation of super and motivates why we need the
@D notation to correctly evaluate super. In Figure 10b, the initial term (new C()).m() is
evaluated using the standard rule E-INVKNEW [39] and mbody(m,C) = this.@D.m(). It
substitutes this with new C() resulting in the term (new C ()).@D.m(), which is then eval-

12



classXextendsObject {
D d; X(D d){this.d=d;}}

classEextendsObject {
X m(){ return new X(this) ; } }

classDextendsE{
X m(){ return super.m() ; } }

classCextendsD{
X m(){ return super.m() ; } }

(a) Program

new X (new C())

(new C ()).@E.m()

(new C ()).@D.m()

(new C()).m()

(b) Evaluation with
method-lookup annotation

E-INVKNEWSUPER
with mbody(m,E)

E-INVKNEWSUPER
with mbody(m,D)

E-INVKNEW[39]
with mbody(m,C)

(new C ()).super.m()

(new C()).m()

(c) Incorrect evaluation without
method-lookup annotation

E-INVKNEW[39]
with (naive) super
handling and
mbody(m,D)

E-INVKNEW[39]
with mbody(m,C)

Figure 10: An example of correct evaluation of super references in FJSIM (b) and incorrect evaluation in
FJSIM without method-lookup annotations (c)

uated with E-INVKNEWSUPER; this in new X(this) is again substitued with new C().
The resulting term (new C ()).@E.m() is then evaluated to (new X ((new C ()))). If we
would not insert the @D annotation, we could not know in which superclass to start
searching for implementations of method m. In this case, we might select the imple-
mentation from D (the superclass of the this object) again and generate an (incorrect)
endless loop (cf. Figure 10c).

The evaluation rules E-VARENC-EN and E-VARENC-DIS define how feature choices
are evaluated. The evaluation of an FJSIM program is deterministic, as the config-
uration Φ used for evaluation of the feature choices has only one satisfying assign-
ment. This way, in each step evaluating a feature choice, either E-VARENC-EN or
E-VARENC-DIS is applied. As stated earlier, our model of load-time variability guar-
antees that each configuration has only one satisfying assignment, so no variability re-
mains (Section 2.1). If we would not enforce this property, both evaluation rules might
be applicable to the same term (the presence condition φ and its negation ¬φ would be
satisfiable) and the program behavior would be non-deterministic. When variant sim-
ulators are analyzed, this non-determinism helps to explore identical execution paths
from many variants simultaneously as we discuss in Section 6.

3.4. Generation of Variants and Variant Simulators

Generation of variants. Variant generation derives an FJ program from an CFJ pro-
gram based on a given configuration Φ. Kästner et al. [28] formalized the generation
of variants. In Figure 11 we show the relevant subset of these rules. Function derive
takes a CFJ program (CT,AT,MT, init,Φ̂) and a valid configuration Φ. It returns a cor-
responding variant implemented in FJ (the program is also an FJSIM program without
feature choices and super calls). It uses the auxillary functions 444 ·<<<,��� ·���, and [[[[[[·]]]]]].
These functions transform a single CFJ syntax element (class, method, term) into an FJ
syntax element. Function 444 ·<<< traverses the elements of the program recursively and
invokes the derivation of term variants. Function ��� ·��� chooses between alternative
program elements according to the given configuration Φ by iterating alternatives de-
fined in MT . For example, ���MT (printMulti(f,b)), printDuplex(f,b)��� selects between
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derive : (CFJ program,Configuration) → FJ program
derive((CT,AT,MT, init,Φ̂),Φ) = (444(range(CT ), init)<<<)

444<<< : CFJ term → FJSIM term
444v<<< = v (G.1)
444t.f<<< = 444t<<<.f (G.2)

444t.m(t)<<< = 444t<<<.m(444t<<<) (G.3)
444new C(t)<<< = new C(444t<<<) (G.4)

444C m(C x){ return t; }<<< = C m(C x) { return ���MT(t), t��� ; } (G.5)
444class C extends D { C f; K M }<<< = class C extends D { C f; K444[[[[[[M]]]]]]<<<} (G.6)

444(L, t)<<< = (444L<<<, t) (G.7)

������ : CFJ term×CFJ term→ FJSIM term

��� t1, t2��� =


444t1<<< t1 6= •, sat(Φ∧AT(t1))
���MT(t1), t2��� t1 6= •, ¬sat(Φ∧AT(t1))
444t2<<< t1 = •(otherwise)

[[[[[[]]]]]] : CFJ term→ FJSIM term

[[[[[[a]]]]]] =

{
a sat(Φ∧AT(a))
• otherwise

Figure 11: Variant generation rules, adopted from Kästner et al. [28]; lists are processed element-wise,
e.g., [[[[[[t1, t2, . . . , tn]]]]]] = [[[[[[t1]]]]]], [[[[[[t2]]]]]], . . . , [[[[[[tn]]]]]]; • denotes the empty program element and 444•<<< = • ; range(CT)
denotes all class definitions in class table CT .

printMulti(f,b) and its alternative printDuplex(f,b) in Figure 7. Function [[[[[[·]]]]]] removes pro-
gram elements if their presence condition is not satisfied. For example, the method
definition of printDuplex is eliminated in [[[[[[void printDuplex(Page f, Page b) {...}]]]]]] iff its
presence condition in AT is not satisfied.

Variant-simulator generation. The generation of variant simulators is similar to the
generation of variants. The main differences are that, the target language is FJSIM
and that instead of removing optional program elements, we encode this variability by
means of feature choices. For example, the expression printMulti(f,b) and its alternative
printDuplex(f,b) in Figure 7 are encoded as (Duplex ? printDuplex(f,b): printMulti(f,b)) in
FJSIM. Figure 12 shows the definition of function encode. Function encode generates
a variant simulator in FJSIM for a given CFJ program (CT,AT,MT, init,Φ̂). Function
encode uses the auxillary functions 444 ·<<< and��� ·���, which we redefine in Figure 12.
The figure also defines function [[[[[[t]]]]]]C where C denotes the class containing the term t.
The omitted cases of 444 ·<<< are the same as in Figure 11. Function��� t1, t2��� iterates
through all alternatives of term t1, introducing feature choices. It uses the default term
t2 as innermost else case. All functions employ the variability model Φ̂ instead of a
configuration Φ, so that variable parts are only dropped if their presence condition is
not satisfiable in Φ̂. Function [[[[[[·]]]]]]C handles optional methods. The function introduces
a call to the same method in a superclass of C if there exists a variant in which the
currently generated method is not present. In this case, a call to the current method will
execute the superclass method in the variant. We model this behavior in the variant
simulator using the keyword super.

14



encode : CFJ program → FJSIM program
encode(CT,AT,MT, init,Φ̂) = (444(range(CT), init)<<<,Φ̂)

444<<< : CFJ term → FJSIM term
. . .

444class C extends D { C f; K M }<<< = class C extends D { C f; K444[[[[[[M]]]]]]C<<<} (G.6)
. . .

������ : CFJ term×CFJ term→ FJSIM term

��� t1, t2��� =


AT(t1)?444t1<<< :���MT(t1), t2��� t1 6= •∧ sat(Φ̂∧AT(t1))
���MT(t1), t2��� t1 6= •∧¬sat(Φ̂∧AT(t1))
444t2<<< t1 = •(otherwise)

[[[[[[]]]]]]C : CFJ method definition→ FJSIM method definition

[[[[[[a]]]]]]C =



D m(C x) { return (AT (a) ?444t<<< : super.m(C x)); } a = D m(C x) { return t; }

sat(Φ̂∧AT(a)) hasSuperImpl(C,m)

D m(C x) { return super.m(C x); } a = D m(C x) { return t; }

¬sat(Φ̂∧AT(a)) hasSuperImpl(C,m)

D m(C x) { return444t<<<; } a = D m(C x) { return t; }

sat(Φ̂∧AT(a)) ¬hasSuperImpl(C,m)

a otherwise

Figure 12: Variant-simulator generation rules. ��� ·��� introduces feature choices, if multiple terms are
feasible. For brevity, we omit the propagation of AT , MT , and Φ̂.

4. Behavior Preservation

Many applications that use variability encoding depend on the fact that variability
encoding preserves the behavior of the simulated variants. This includes, in particular,
all control-flow sensitive applications such as verification [4, 5, 46] or testing [30]. In
this section, we prove the behavior-preservation property for variability encoding based
on our model of Section 3. As the key result of this article, our proof guarantees that
a variant simulator can be used for behavioral analysis of the variants it simulates. It
shows that the execution of a variant simulator and the corresponding variants exhibit
the same observable behavior, as illustrated in Figure 4.

In particular, we prove that the behavior of each variant of a configurable system is
weakly bisimilar to the variant simulator, if the variant simulator is executed with the
variant’s configuration. We use weak bisimulation [37] as proof technique to show that
each execution trace in a variant is represented by a trace in the variant simulator with
the configuration that corresponds to the variant. We use the weak form of bisimulation
to allow the occurence of additional feature-choice transitions in the simulator. Next,
we define a trace semantics for FJSIM programs in Section 4.1, which we use to prove
behavior preservation in Section 4.2.

4.1. A Trace Semantics for FJSIM Programs

We introduce a trace semantics for FJSIM that encodes the run-time semantics de-
fined by the evaluation rules (Figures 6 and 9). This way, the behavior of a program
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genTS : (FJSIM CT,FJSIM term)→Transition system(States, Transitions, Presence conditions)

genTS(CT, t) =



TERMINATION CASE (if t is a value)
({v}, /0, /0) t = v

TS-PROJNEW t = ((new C(v)).fj) and
({t,v j},{(t, true,v j)},{true}) fj ∈ fields(C) and v j ∈ v

TS-CASTNEW

({t, t′},{(t, true, t′)},{true})dgenTS(CT, t′) t = (D)(new C(v)) and
with t′ = new C(v) C <: D

TS-INVKNEWSUPER

({t, t′},{(t, true, t′)},{true})dgenTS(CT, t′) t = (newC(v)).@D.m(u) and
with t′ = [x 7→u, this 7→ new C(v)] t0 mbody(m,D) = (x, t0)

TS-INVKNEW

({t, t′},{(t, true, t′)},{true})dgenTS(CT, t′) t = ((new C(v)).m(u)) and
with t′ = [x 7→u, this 7→ new C(v)] t0 mbody(m,C) = (x, t0)

TS-VARENC-EN and TS-VARENC-DIS

({t, t0},{(t,φ , t0)},{φ})d t = (φ ? t0 : t1)

({t, t1},{(t,¬φ , t1)},{¬φ})d
genTS(CT, t0)dgenTS(CT, t1)

Cases for congruence rules are omitted

Figure 13: Definition of function genTS for the generation of a transition system
(States, Transitions, Presence Conditions) from an FJSIM program. For legibility, we define the join
operation d on transition systems (S,T,PC) and (S′,T ′,PC′) as follows: (S,T,PC) d (S′,T ′,PC′) =
(S∪S′,T ∪T ′,PC∪PC′).

is represented as a transition system, which is better suited for our bisimulation proof
than the source code representation. In particular, we model the run-time behavior of
a variant πΦ and a variant simulator σ . Using function genTS(CT, t) of Figure 13, we
define the transition system of a program p = (CT, init,Φ) as genTS(CT, init). The gen-
erated system is a labeled transition system (S,T,PC), where S is the set of states, T is
the set of transitions (T ⊆ S×PC×S), and PC is the set of presence conditions. States
in the transition system represent FJSIM terms, and transitions represent evaluation
steps that rewrite one term into another. Presence conditions are propositional formuls
over variables in the set of configuration options. Transitions are labeled with presence
conditions that have to hold during evaluation in order to proceed with the respective
evaluation step. A trace is a sequence of states of the transition system starting in the
initial state (term init). Each trace represents an execution path in the corresponding
FJSIM program. Function genTS recursively processes all terms of an FJSIM program,
and adds states and transitions for each term to the transition system. The generation
for transition systems for FJ programs (system variants) is defined analogous.

4.2. Proof of Behavior Preservation

We assume that all valid variants of a given CFJ program with code base ∆ are
well typed with respect to the variability model Φ̂ [28], as the behavior of ill-typed
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pi

sΦ sσ

s′Φ s′σ

∗

(sΦ,sσ ) ∈ RID

(s′Φ,s
′
σ ) ∈ RID

pii

sΦ sσ

s′Φ s′σ

∗

(sΦ,sσ ) ∈ RID

(s′Φ,s
′
σ ) ∈ RID

Figure 14: The weak bisimulation property has two sub-properties pi and pii. The sub-properties prove the
existence of dashed relations and states assuming solid ones.

variants is undefined [39]. To prove that the behavior of all variants is preserved by
the corresponding variant simulators (i.e., that variability encoding is sound), we cre-
ate a variant πΦ with function derive(∆,Φ) for every configuration Φ. The generated
variant πΦ = (CTΦ, init, true) has a class table CTΦ, which is constructed with the
function encode of Figure 11 and a start term init. The corresponding variant simulator
σ =(CTσ , init,Φ̂) is generated using function encode(∆,Φ̂) of Figure 11 and Figure 12.
Hence, the variant simulator σ and the variant πΦ are constructed from the same con-
figurable code base ∆, and the execution of both programs, σ and πΦ, starts with the
term init.

We generate the transition systems for the variant πΦ and the variant simulator
σ as defined in Section 4.1. The transition system for variant πΦ is denoted with
(SΦ,→Φ,PC) and derived by genTS(CTΦ, init), where SΦ is the set of states of the
system, PC is the set of labels (i.e. presence conditions) on the transitions, and→Φ is
the set of transitions (→Φ ⊆ SΦ×PC×SΦ).

The transition system for variant simulator σ is denoted with (Sσ ,→σ ,PC) and
derived by genTS(CTσ , init). When we execute the simulator σ with configuration Φ,
we use the corresponding projection of the transitions from→σ : →σ |Φ = {(s,pc,s′) ∈
→σ |sat(Φ∧AT(pc))}. This corresponds to execution of a simulator in a real execution
environment that evaluates the presence conditions of feature choices with respect to a
configuration. For clarity, we denote states from the variant transition system with sΦ

and s′Φ, and states from the variant-simulator transition system with sσ and s′σ . If it is
clear from the context, we omit the subscripts in the transition relations→Φ and→σ |Φ.

Based on these definitions, Figure 14 illustrates the weak bisimulation property
we want to prove 1. RID is the simulation relation, which relates states of the variant
transition system to states of the variant-simulator transition system. In our proof, we
use the syntactic equality of terms in FJSIM as simulation relation. For two states
sΦ and sσ , (sΦ,sσ ) ∈ RID holds, iff the terms represented by sΦ and sσ are equal.

1 We choose the weak bisimulation property over the often weaker weak-trace-equivialence property
because both properties are equal in our case. Bisimulation and trace equivialence are different iff a state
can have two equally-labeled outgoing edges leading to different states. Such behavior often occurs in the
context of concurrent execution. In our transition system, an FJSIM term is always evaluated with a specific
evaluation rule yielding exactly one term (assuming a configuration Φ).
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classXextendsObject {}
classEextendsObject { X m() { return φ4 ? new X() : . . . ; } }

classDextendsE{ X m() { return φ3 ? . . . : super.m() ; } }

classCextendsD{ X m() { return φ1 ? . . . :( φ2 ? . . . : super.m()) ; } }

new C().m()

Figure 15: Proof concept in presence of overriding methods

This is possible because each FJ term is by definition also an FJSIM term. The weak
bisimulation property has two sub-properties (pi and pii), which must both be proved.
Property pi states that, for each direct successor state s′Φ of sΦ, there exists a state s′σ
in the variant-simulator transition system that is related to the state s′Φ of the variant
transition system with (s′Φ,s

′
σ ) ∈ RID, and that s′σ is a successor state of sσ . Property

pii states that, for each successor state s′σ of sσ , there exists a state s′Φ in the variant-
simulator transition system that is related to the state s′σ of the variant transition system,
with (s′Φ,s

′
σ ) ∈ RID, and that s′Φ is a successor state of sΦ. In weak bisimulation, s′σ

does not need to be a direct successor to sσ ; in our case there may be a number of
auxillary states in between that evaluate feature choices. We denote such a sequence of
states linked by consecutive transitions with sσ

∗→s′σ . A sσ

∗→s′σ sequence starts with an
evaluation rule from normal FJ and continues with zero or more applications of the new
FJSIM evaluation rules (E-VARENC-EN, E-VARENC-DIS, or E-INVKNEWSUPER).

A particularly interesting part of the proof is how we prove correctness in the pres-
ence of overriding methods. We moved a corresponding part of the proof to Lemma 1,
to simplify understanding. Figure 15 shows an example for how the lemma is used.
It shows four classes of a variant simulator and a term (new C()).m() that is evaluated.
The classes C, D, and E implement method m. The term (new C()).m() is evaluated as
shown in the figure if the presence conditions φ1, φ2, and φ3 are not satisfiable, and
φ4 is satisfiable in a configuration Φ. In this case, term (new C()).m() evaluates to term
new X(), defined in E. As a consequence, the transition system of the variant simulator
must contain a path from (new C()).m() to new X(), which may contain auxillary states.
We prove the existence of this path in two steps. First, Lemma 1 proves that the intra-
method dispatch among alternative implementations is resolved correctly (solid arrows
in Figure 15). Second, Case 3 in the proof of Theorem 1 shows that the steps from
overriding to overridden methods are evaluated correctly (dashed arrows in Figure 15).

Lemma 1. Given (1) a configuration Φ, (2) the method body return t; of a method m(x)
in class C, and (3) that a call (new C(v)).m(u) is type correct in Φ, there exists a chain
of consecutive states t

∗→ . . . that either evaluate t (i) to a term tΦ that has a presence
condition satisfied by Φ and is one of m’s alternative implementations in C, or (ii) to
(newC(v)).@D.m(u) if no such term tΦ exists and a superclass of C implements m.
This evaluation sequence uses only the rules TS-VARENC-EN and TS-VARENC-DIS.

18



Proof. We use induction over the number of feature choices n in term t to prove
Lemma 1. The induction hypothesis is that each subterm of t evaluates to tΦ (Case i) or
to (newC(v))@D.m(u) (Case ii) if it is annotated with a presence condition satisfied in
Φ and has n or less feature choices . In both cases, the resulting term does not contain
the keyword super. In Case (i), the term is a part of the CFJ program and as such can-
not use super. In Case (ii), super has been substituted with a super reference (this.@..)
when the method body was loaded with mbody.

There are two base cases (n= 0) which correspond to cases (i) and (ii) in Lemma 1.
In Base Case (i), t is one of the alternative implementations of m. In this case, the pres-
ence condition AT(t) must be satisfied by Φ, otherwise a call to m is not well typed. In
Base Case (ii), t is an invocation of m in the direct superclass of C. Therefore, t equals
(newC(v))@D.m(u), and there exists an implementation of m in some superclass of C,
because the call is well typed. The base cases are exclusive; a given term can satisfy
either (i) or (ii).

In the inductive step n→ n+1, t′1 is a feature choice t′1= (φ ?tφ : t¬φ ). The subterms
tφ and t¬φ have n or less feature-choice terms. From the definition of genTS (Fig-
ure 13, TS-VARENC-EN and TS-VARENC-DIS), we know that the variant-simulator
transition system contains the transitions tr from t′1 to tφ and tr′ from t′1 to t¬φ (with
the presence conditions φ and ¬φ , respectively). Either φ is satisfied by configuration
Φ (i.e., sat(φ ∧Φ)) or the negation ¬φ is satisfied by Φ. Exactly one of φ or ¬φ is
satisfied, because Φ is a configuration, and as such has a fixed value for each config-
uration option. The code that is invoked if φ is satisfied is encoded in tφ and the code
that is invoked if ¬φ is satisfied is encoded in t¬φ (function��� ·���, Figure 12). First,
we consider the case where φ is satisfied under configuration Φ. Our version of CFJ
enforces that feature choices can only occur as the outermost terms in return statements
(alternatives are only allowed for method bodies, cf. Section 3.2). Thus, if the result of
this evaluation step tφ is not a feature choice, it does not contain any further variability
and one of the base cases applies. Otherwise, the resulting term tφ is a feature choice.
This means, tφ has the same syntactic form as t′1 in the beginning of the induction step
and it is shorter than t′1 (has one feature choice less). Therefore, we can apply the in-
duction hypothesis. If ¬φ is satisfied under configuration Φ the proof is analogous. In
each step of the evaluation E-VARENC-EN or E-VARENC-DIS is applied.

The induction shows that there is a sequence of consecutive states (t, t2, . . . , tn) in
the variant-simulator transition system that evaluate t to a non-feature-choice term tn
with tn either being a term with a satisfied presence condition (Case (i)) or a call to an
implementation of m in a superclass (Case (ii)). The chain is finite because the term
becomes smaller in each iteration as long as the evaluated term is a feature choice.
Therefore, the induction hypothesis and the lemma holds.

Theorem 1. Given a CFJ code base ∆ with a variability model Φ̂ and a start term
init, a configuration Φ, the simulation relation RID (term equality), a variant πΦ =
(CTΦ, init, true) = derive(∆,Φ), a variant simulator σ = (CTσ , init,Φ̂) = encode(∆,Φ̂),
which is executed with Φ, and the corresponding transition systems (SΦ,→,PCΦ) =
genTS(CTΦ, init) and (Sσ ,→,PCσ ) = genTS(CTσ , init) , then the weak bisimulation
property holds:
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∀sΦ ∈ SΦ,∀sσ ∈ Sσ with (sΦ,sσ ) ∈ RID :
(pi) ∀s′Φ with sΦ→s′Φ : ∃s′σ ∈ Sσ such that (sσ

∗→s′σ and (s′Φ,s
′
σ ) ∈ RID) and

(pii) ∀s′σ with sσ

∗→s′σ : ∃s′Φ ∈ SΦ such that (sΦ→s′Φ and (s′Φ,s
′
σ ) ∈ RID)

Proof. We prove the two properties of bisimulation (pi and pii) seperately.
Property pi. We prove pi with a case distinction over the construction rules used to

generate the transition (sΦ→s′Φ), according to the definition of the transition systems
(Figure 13). Overall, there are eleven cases. However, we omit cases handling congru-
ence rules and focus on the cases of the six evaluation rules shown in Figures 6 and 9.
The omitted cases are very similar to Case 1 shown below. For a complete proof, we
refer to the supplementary material.

Case 1 (TS-PROJNEW): As the transition (sΦ, true,s′Φ) has been generated with
TS-PROJNEW (Figure 13), f j is a field in class C of variant πΦ (f j ∈ fields(πΦ,C)).
Thus, there is a valid configuration Φ, in which the field is present in the program. The
variant simulator generation rules, in particular G.2 (Figure 11 and Figure 12), ensure
that the field is also present in the variant simulator: f j ∈ fields(σ ,C). The definition
of genTS (Figure 13, TS-PROJNEW) ensures that there is a transition (sσ→s′σ ) with
s′σ = f j. Therefore, s′Φ and s′σ represent the same terms and (s′Φ,s

′
σ ) ∈ RID holds.

Case 3 (TS-INVKNEW): Let sΦ = (new C(v)).m(u). Method m in πΦ must have been
generated with variant generation rule G.5 of Figure 11. It is important to note that v
and u are lists of values (values cannot be evaluated any further). Let t0 be the body
of method m in the variant πΦ. As the method body is included in πΦ with Rule G.5,
we can conclude that the configuration Φ implies the presence condition AT(t0) and
s′Φ = t0. As sΦ is in simulation relation to sσ , we know that sσ = (new C(v)).m(u). From
the definition of genTS (Figure 13, TS-INVKNEW), we infer (1) that→σ |Φ contains a
transition tr1 = (sσ→([x 7→u, this 7→ new C(v)]t′1)) with mbody(σ ,m,C) = t′1 and (2)
that tr1 has the presence condition true.

We use induction over the number of superclasses of C in simulator σ to prove
that sΦ and sσ evaluate to the same term. In the base case, class C is a direct sub-
class of Object. Object does not implement any methods [39]. Because each variant
is well typed, term sΦ is also well typed, and we can apply Lemma 1 with configu-
ration Φ. The application of Lemma 1 shows that there exists a list of consecutive
states (sσ , t2, . . . , tn) in the variant-simulator transition system that evaluate sσ to either
a term tn with a presence condition satisfied by Φ or to a call of m in a superclass.
As C does not have superclasses (other than Object), we know that sσ evaluates to tn
with tn = s′σ and (s′Φ,s

′
σ ) ∈ RID. The evaluation step sσ → t2 applies evaluation rule

E-INVKNEWSUPER. All subsequent evaluation steps, until tn is reached, apply rules
TS-VARENC-EN or TS-VARENC-DIS which concludes the base case of the induction.

In the inductive step, C has n + 1 superclasses, including Object. The term sΦ

is an invocation of method m on class C and the invocation is well typed in variant
πΦ, because either C has an implementation of m in the variant πΦ or the method
invocation is dispatched to an implementation of m in a superclass. If C itself has an
implementation, Lemma 1 shows that there is a chain of states in σ from sσ to s′σ .
As s′σ is the first alternative implementation of m that satisfies the configuration Φ,
s′σ is in simulation relation to s′πΦ

. If C does not have an implementation of m in the
variant πΦ, Lemma 1 shows that there is a chain of states in simulator σ from sσ to
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(newC(v))@D.m(u). This chain uses only TS-VARENC-DIS. This new expression
invokes method m in the direct superclass D of C. Because v and u are values, the next
evaluation rule must be TS-INVKNEWSUPER. D has n superclasses, so we can apply
the induction hypothesis, which states that the call of m on D evaluates to the same
term as sπΦ

in variant πΦ.
Therefore, s′Φ = t0, s′σ = tn, and (s′Φ,s

′
σ ) ∈ RID. So, there exists a state s′σ ∈ Sσ ,

such that (s′Φ,s
′
σ ) ∈ RID and a sequence of transitions (sσ

∗→s′σ ). The sequence starts
with TS-INVKNEW followed by applications of TS-VARENC-EN, TS-VARENC-DIS,
and TS-INVKNEWSUPER, which concludes Case 3.

Case 4 and Case 5 (TS-VARENC-EN and TS-VARENC-DIS): None of the rules for
variant generation (Figure 11, G.1–G.8) can generate a feature choice. Therefore, the
variant πΦ cannot contain terms to which rules TS-VARENC-EN and TS-VARENC-DIS
may apply. Therefore, Case 4 and Case 5 cannot occur.

Case 6 (TS-INVKNEWSUPER): None of the rules for variant generation (Figure 11,
G.1–G.8) can generate a super term. Therefore, the variant πΦ cannot contain terms to
which rule TS-INVKNEWSUPER applies and thus Case 6 cannot occur. This concludes
the proof of property pi of the bisimulation property.

Property pii. To prove the second sub-property of bisimulation (property pii), we
have to do a similar case distinction as for the first property (pi). Case 1 ((TS-PROJNEW)
can be proven analogous to pi. We focus on Cases 4, 5, and 6. All other cases can be
proven analogous to the the cases for pi given in the supplementary material.

Case 3 (TS-INVKNEW) is interesting because we have to show that the simula-
tor can not evaluate to any states that are not present in a variant, except for states
with ternary operators or the @D annotation. Given a term sΦ = (new C(v)).m(u) with
(sΦ,sσ ) ∈ RID and a state s′σ with (sσ

∗→s′σ ), we must show that the variant contains a
state s′Φ with (s′Φ,s

′
σ )∈ RID. Interestingly, s′σ is the only state in the sequence (sσ

∗→s′σ )
that can be present in SΦ. All intermediary states between sσ and s′σ are evaluated with
the rules TS-VARENC-EN, TS-VARENC-DIS, or TS-INVKNEWSUPER and, there-
fore, contain ternary operators or the @D annotation, which can not occur in a variant.
As a result, evaluation in the simulator deviates exactly as far from the variant evalua-
tion as necessary to simulate the correct variant behavior. sσ evaluates to s′σ assuming
configuration φ , and the argumentation of Case 3 in the proof of property pi shows that
s′σ is equal to the state that sΦ evaluates to in the variant. Therefore, variant πΦ has a
state s′Φ with (s′Φ,s

′
σ ) ∈ RID and a transition (sΦ→ s′Φ), which concludes Case 3.

Cases 4, 5 and 6 (TS-VARENC-EN, TS-VARENC-DIS, and TS-INVKNEWSUPER)
are not relevant, as the given states sΦ and sσ are in simulation relation RID and sΦ

cannot contain ternary operators or the @D annotation. This concludes property pii
and the bisimulation proof.

5. Variability Encoding Beyond Featherweight Java

For the purpose of developing a formal proof, we limited our model of variability
encoding as well as the considered languages to a small subset of JAVA. However,
variability encoding is meant to be performed on real programs written in languages
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such as JAVA or C. Even for such complex languages it is always possible to build
variant simulators trivially using duplication. One can just build every valid program
variant and, at program start, dispatch between these variants. However, analysis of
such variant simulators is inefficient because similarities among variants cannot be
exploited (see Section 6). So, the question raises how additional language concepts of
JAVA and C affect our model (which enables sharing among variants) and our proof of
behavior preservation of variant simulators.

As modelling the full power of JAVA or C is elusive, we discuss a selection of
interesting language constructs that are problematic for variability encoding, and we
discuss how to deal with them in concrete examples. We express the variability in
the examples using #if directives, because they facilitate a compact notation with fine-
grained variability. In most examples, we have to resort to local code duplication as a
workaround to solve the variability-encoding problems. This results in code fragments
that are not shared among variants any more. However, in our experience with real
applications, the blowup introduced by these duplications can be kept locally and the
majority of the code is still shared, as we discuss in Section 6. In some cases the
variability-encoding problems and solutions may seem trivial, but it is important to
discuss these basic situations before attempting to implement variability encoding in a
more complex language. The overarching goal is still that a variant simulator weakly
bisimulates all variants. That is, it executes only feature switches and statements that
are equivalent to statements of the variant that is currently simulated.

Method overloading. JAVA allows programmers to define multiple methods with the
same name in a class hierarchy iff the signatures of the methods differ. Such methods
can even have the same number of parameters, iff the parameter types are different.
Method overloading is not supported in FJ, and thus neither in CFJ and FJSIM. Adding
method overloading to CFJ leads to two problems for variability encoding, which we
discuss separately in the following paragraphs:

1. In combination with inheritance, methods may overload methods defined in other
classes of the inheritance hierarchy. If the overloading method is optional, a sim-
ulator generated with the rules of Section 3.4 could execute the wrong method.

2. Alternative methods in one class can have identical signatures in the simulator
if we allow annotation of single parameters with presence conditions. If this
situation is not handled, variability encoding can generate simulators that are not
well typed.

Figure 16a shows a situation where method overloading and inheritance is com-
bined. Class Y implements method m(B) and inherits an implementation of m(A) from
class X. This is a case of overloading because both methods are callable on objects of
type Y. The JAVA run-time environment decides which method to choose depending
on the type of the given parameter. The given situation is even more complex because
the method implemented in Y is optional and B is a subclass of A. This means that
(new Y()).m(new B()) resolves to the implementation of m in Y if Opt1 is satisfiable and
to the implementation in X otherwise. We have to model this behavior when design-
ing the variant simulator. One crude approach would be to apply method renaming and
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1 class A {}
2 class B extends A {}
3 class X { A m(A a) {...} }
4 class Y extends X {
5 #if (Opt1)
6 A m(B b) {return new A();}
7 #endif
8 }
9

10 (new Y()).m(new B());

(a) Problem: Optional method over-
loading with inheritance

1 class A {}
2 class B extends A {}
3 class X { A m(A a) {...} }
4 class Y extends X {
5 A m(B b) {
6 return Opt1 ? new A() : super.m(b);
7 }
8 }

(b) Solution: Introduce super also for over-
loaded methods.

Figure 16: Optional method overloading with inheritance in JAVA

1 class A {
2 int x = 0;
3 #if (Opt1 && Opt2)
4 int m() {return 0;}
5 #endif
6 int m(
7 #if (Opt1)
8 int x
9 #endif

10 ) { return x+1; }
11 }

(a) Problem: Method overloading with
optional parameters

1 class A {
2 int x=0;
3 int m() { return Opt1 && Opt2 ? 0 :
4 (Opt1 ? x+1 : intErr()); }
5 int m (int x) {
6 return Opt1 ? x+1 : intErr();
7 }
8 int intErr() { throw new Error(); }
9 }

(b) Solution: Duplication of the expression
Opt1? x+1 : intErr()

Figure 17: Method overloading with optional parameters in JAVA

generate feature switches at all call sites. However, using super, we have a more elegant
solution for this example. Figure 16b shows a simulator where we alternatively execute
the code from Y or use super to call the method from X. This solution can be imple-
mented in our formalism by altering the premise m∈M in the hasSuperImpl(C, m) rule
from Figure 9 such that it also considers methods that overload m.

If we allow overloading and optional parameters, as shown in Figure 17a (Line 8),
signatures are not unique any more, even within a single class. The code in Figure 17a
contains two implementations of method m. The first method implementation (Line 4)
is present only if the options Opt1 and Opt2 are selected. The second method imple-
mentation (Lines 6–10) is always present, but has two alternative variants. In one of the
variants, an optional parameter is present; in the other variant, the parameter is missing.
So, there is a variant of the second method definition in which it has the same signa-
ture as the first method. All configurations of the configurable program are well typed,
and all variants of the method are used in some configurations, so we must include both
methods in the variant simulator. However, as the methods have the same signature, we
have a signature conflict if we just copy them to the simulator. To solve this signature
conflict, we duplicate the code of the second method and insert it into both methods
where it might be needed at run time (Figure 17b). Both locations are guarded with
corresponding presence conditions. Although this solution leads to duplicated code
fragments, we avoid modification of all call sites of the methods. Alternatively, we
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1 struct str {
2 int x;
3 #if (Opt1)
4 int y;
5 #endif
6 } str;
7 int f() {
8 return sizeof (str);
9 }

(a) Problem: Run-time system

1 struct str_noOpt1 {
2 int x;
3 } str_noOpt1;
4 struct str_Opt1 {
5 int x;
6 int y;
7 } str_Opt1;
8 int f() {
9 return Opt1 ? sizeof (str_Opt1) : sizeof (str_noOpt1);

10 }

(b) Solution: Duplication of the struct str

Figure 18: Interaction of variability encoding and environment functions in C

could introduce new methods encapsulating these fragments and rewrite all call sites.

Alternative types. We do not allow static variability of return types of functions or
types of variables or parameters. However, this is possible in languages such as JAVA
or C, with #if annotations. We can, for example, declare a variable with alternative
types, such as #if (Opt1) int #else double #endif x;. The variable x is either of type
integer or of type double. Depending on how the variable is used in the program, all
valid variants of the configurable program can be well typed [2].

When building a variant simulator, we cannot statically determine the type of the
variable. As the different types may not have a common supertype, we have to include
both possibilities in the variant simulator. Therefore, we have to duplicate the vari-
able declaration. Each location, at which the variable is used, must be modified such
that the used variable variant depends on the selected configuration option. In extreme
cases, if each variant has a different type for the variable, we have to introduce a vari-
able for each configuration. However, according to our experience, this situation is
very unlikely. Similar problems occur at other program locations where signatures are
variable (for example optional modifiers) and no conditional statements are allowed.
Examples are struct or enum definitions in C and generics, annotations, exceptions in
method declarations, and class declarations (e.g., variable inheritance with alternative
extends clauses) in JAVA.

Optional program variables. We do not support optional fields in our model. How-
ever, program variables (fields and local variables) may be optional in real-world ap-
plications.

Figure 18a shows a program that contains a struct with one or two integer vari-
ables, depending on the configuration. We need to include both variables in the variant
simulator, because both are used in at least one configuration. The program also con-
tains a function that returns the size of this struct. In one configuration (where Opt1
is not selected), the function returns the size of one integer; in the other configuration
(where Opt1 is selected), it returns the size of two integers. However, as we have to in-
clude both integers in the variant simulator, the function always returns the size of two
integers and, therefore the simulator may not preserve the behavior in some variants.

There are two possible solutions of this problem. One solution (shown in Fig-
ure 18b) is to rename and duplicate the struct definition. We also have to modify

24



1 int m() {
2 int x = 0;
3 for (int i = 0; i < 10; i++) {
4 #if Opt1
5 int x = 1;
6 #endif
7 x++;
8 }
9 return x;

10 }

(a) Problem: Field shadowing

1 int m() {
2 int x = 0;
3 for (int i = 0; i < 10; i++) {
4 int y = 1;
5 (Opt1 ? y++ : x++);
6 }
7 return x;
8 }

(b) Solution: Variable renaming

Figure 19: Optional field shadowing in C

references to the struct and add feature choices, such that the use always refers to
the correct struct implementation. For more complex instances of the problem, this
leads to an exponential blowup and complex variant simulators. An alternative solu-
tion is to transform all expressions that are affected by system functions that cannot be
changed (such as sizeof). The transformed sizeof expression for our example would be
(Opt1 ? 2∗sizeof(int) : sizeof(int)). In complex scenarios, the transformed expression
may grow exponentially, similar to the previous solution. Both presented solutions
(struct duplication and transformation of struct usages) have limitations in practice
have to be applied depending on the case at hand. The same problem occurs with di-
rect memory access in C via pointer arithmetic and with reflection in JAVA. In both
cases, either a case-specific solution has to be found or code has to be duplicated.

Field shadowing. A further problem with optional program variables is shadowing [46].
As an example, assume that we define two local variables in different scopes with the
same name, but one of the variables is optional depending on configuration option Opt1
(Figure 19a). Consequently, Opt1 influences to which program variable an identifier in
the inner scope refers to. In our example, method m either returns 0 or 11. Hence, op-
tional shadowing needs to be handled in variability encoding; one solution is to rename
one of the program variables and duplicate all statements that contain the identifier
(see Figure 19b). Shadowing may also co-occur with other language constructs such
as inner classes. Instead of renaming, we can consider all these cases (other than vari-
able shadowing) as code smells and suggest to forbid them, because code with optional
shadowing may be hard-to-understand and may cause faults in configurable programs
anyway.

Concurrency. In our model of variability encoding, we ensure that each statement and
therefore each access to potentially shared data of the configurable program is either
guarded with presence conditions or duplicated. There are two problems that occur
in variability encoding of concurrent programs: (1) code executed during class initial-
ization can sometimes not be enclosed in if statements (e.g., field initializations) and
(2) feature-choice statements might slow down threads with much variable code more
than others. To handle the first problem, we move code that initializes optional data
structures (e.g., fields) to constructors and guard them with presence conditions there.
This way, only code of one variant (and feature choices) is executed and other vari-
ants cannot interfere. The configuration of all feature variables is selected and fixed
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from the beginning of the execution of the variant simulator. All threads are executed
with the same configuration and execute the behavior of the variant, including possi-
ble interactions between the threads. These interactions also include synchronizations
on shared variables. The second problem can be solved by using an execution engine
that explores all possible thread interleavings such as a model checker for concurrent
programs. If multiple variants in a variant simulator with concurrency are analyzed at
the same time (e.g., with a model checker), the analysis tool has to ensure that pro-
gram states from different variants do not get mixed up and produce formerly unreach-
able states. Other common pitfalls of concurrent programs, such as breaking atomicity,
shared mutable states, transactions, livelocks, and deadlocks, can be dismissed because
a thread execution path in a simulator accesses the same variables (in the same order)
as the corresponding path in the variant plus immutable feature variables.

Non-functional properties. Concerning non-functional properties (e.g., performance,
memory consumption, or response time), a variant simulator behaves differently than a
variant. The implementation of variability encoding ensures that the variant simulator
executes statements that would be executed in the variant and additionally executes
guard statements. Therefore, in theory, the only difference in executed statements
should be the evaluation of presence conditions and the loading of classes which do
not occur in the variant but are necessary in the simulator. Code for the instantiation of
such classes can also be guarded. Depending on the system and its granularity, there
may be many feature choices and the evaluation of presence conditions may also be ex-
pensive. The code overhead of variant simulators naturally influences aspects such as
binary size and time for program setup. In the end, one has to take such differences into
account when analyzing the non-functional performance of the variant simulator [44].

6. Experience with Variability Encoding

In recent years, variability encoding has been used in several projects for analyzing
configurable systems. In this section, we give an overview of our attempts in this di-
rection, and we summarize our experience with implementing variability encoding for
real languages and systems2. Our formal proof of behavior preservation strengthens the
results of these projects. It raises confidence that the implementations of variability en-
coding used in these projects also preserve behavior (even though the implementations
are much more complex).

Variability encoding in JAVA. Variability encoding has been used for testing, verifica-
tion, and performance modeling of configurable JAVA programs.

First, variability encoding was used for model checking configurable systems by
Apel et al. [4, 5]. For the experiments, we selected three configurable JAVA programs
that served as benchmarks for the community before and that provide functional speci-
fications violated by some variants. To identify the violations, we constructed a variant

2When referring to "our" work, this means that at least one of the authors was involved in the respective
project.
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simulator per configurable program using FEATUREHOUSE [3] and verified the vari-
ant simulator using the software model checker JAVA PATHFINDER. The experiments
showed that analyzing the variant simulator is substantially faster than checking all
variants individually [5]. Also, analyzing the variant simulator was as precise for cor-
rectness checking as analysis of all variants.

Second, for testing of configurable systems, Kästner et al. [30] built an interpreter
for JAVA-based systems with #ifdef variability on top of the tool TYPECHEF [29]. The
idea is to parse the #ifdef variability as if it was run-time variability (similar to variant
simulators). Then the program is executed with a fixed test input, but without fixing
the feature variables; once a feature choice is reached, the interpreter executes both
branches. The interpreter aims at visiting execution paths as few times as possible, still
covering the executions of all variants, which can reduce testing time substantially.

Third, in a work on deductive verification of configurable programs, Thüm et al. [46,
47] applied variability encoding not only to the configurable JAVA code, but also to the
corresponding specifications, which have been written in an extension of the JAVA
MODELING LANGUAGE (JML). Much like for programs, a configurable JML spec-
ification may give rise to different variants, depending on the configuration, which
needs to be taken into account during verification. Technically, we transform a con-
figurable JML specification to a corresponding specification simulator (a.k.a. meta-
specification [46]), which is similar to creating a variant simulator for a configurable
JAVA program. Verifying the variant simulator using the theorem prover KEY, we
observed considerable speedups compared to the verification of all variants, and the
resulting proofs for the variant simulator have a similar complexity as the proofs for
variants [46].

Fourth, an interesting property of variant simulators is that existing verifiers for
run-time variability can be reused as-is for compile-time variability. We exploited this
property by verifying compile-time configurable programs with the theorem-prover
KEY and the software model checker JAVA PATHFINDER. We found that the combina-
tion imporves efficiency and effectiveness at the same time [47].

Finally, Siegmund et al. [44] used variability encoding to quantify the effects of
individual features on the run time of the variants of a configurable program. Using
FEATUREHOUSE, the authors constructed variant simulators for a set of configurable
JAVA programs, with (non-variable) test cases. Based on these tests, they executed
the variant simulators with a normal JAVA run-time environment, and they measured
how much time was spent in each method and in which context the method was called.
Using this information, they built a performance model per configurable program that
allowed them to estimate the performance contribution of individual features and fea-
ture interactions, without creating and measuring each program variant individually.

In all of these approaches, variability encoding plays a central role in reducing
analysis or measurement effort. As in all cases variability has been implemented with
feature modules, most of the variability stems from method refinements resulting in
alternative method bodies, which are easy to encode in variant simulators. Notably,
none of the problems discussed in Section 5 occurred in the respective case studies,
which suggests that coarse-grained variability mechanisms, such as feature modules,
sufficiently facilitate variability encoding.
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Variability Encoding in C. In a parallel line of research, we extended the tool TYPE-
CHEF with functionality for variability encoding of large-scale configurable C pro-
grams that use the C preprocessor to implement compile-time variability. Due to the
ability to express variability at a very fine grain, the process of constructing variant
simulators for C programs with preprocessor directives is much more challenging than
for feature modules in JAVA. Preprocessor-induced variability in C programs occurs
frequently at the level of statements and expressions [32, 33]. Since variability at this
granularity level cannot be expressed in C directly, one has to duplicate statements
and expressions and embed them into conditional statements (i.e., feature choices), as
we have illustrated in various examples in Section 5. As a further challenge, C does
not support method overloading, so a variant simulator for a C program, similar to the
example in Figure 17a, requires more code duplication to represent all configurations
!Opt1, Opt1 && !Opt2, and Opt1 && Opt2. As a result, one has to introduce new method
names for each duplicate and modify all calls to the method correspondingly. Fur-
thermore, since the C preprocessor is often used to implement portable code (e.g., for
different hardware architectures or operating systems), #if directives often implement
variability at the level of type definitions (e.g., choosing between types u32 and u64).
Similar to the handling of alternative method types (Section 5), one has to create mul-
tiple variants of type definitions that are included in different configurations. All other
variability patterns that we encountered in our work could also be encoded by using
code duplication.

1 char params[] = "−a\0" + "−o\0"
2 #if (FIND_NOT)
3 "!\0"
4 #endif
5 #if (DESKTOP)
6 "−and\0"+ "−or\0"
7 #if (FIND_NOT)
8 "−not\0"
9 #endif

10 #endif
11 "−print\0"
12 #if (FIND_PRINT0)
13 "−print0\0"
14 #endif
15 ... // 49 additonal lines of
16 ... // code with string literals
17 ;

(a) Exponential explosion in
BUSYBOX

Before
Variability Encoding Overhead

Typedefs 128 617 0
Structs/Unions 85 096 612
Enums 24 891 0
Global Variables 29 614 101
Methods 14 825 548
Forward Declarations 726 115 2 120

(b) Statistics of variability encoding in BUSYBOX; pro-
gram elements before variability encoding and overhead
introduced by duplications; summarized over all files

Figure 20: Variability encoding in C: example and statistics

Apart from the abstract patterns discussed in Section 5, we would like to illustrate
an extreme variability pattern that we encountered in systems such as the LINUX kernel
and the BUSYBOX tool suite [34]. In Figure 20a, we show a variable declaration (taken
from BUSYBOX) storing a string for the evaluation of command-line parameters. The
string itself is variable, as its substrings are annotated with 21 features. In the worst
case, this implementation requires the generation of 221 different string variants to be
included in the corresponding variant simulator, which is infeasible in practice. The
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only way to solve this problem is to compute the desired string variant at run or load
time using a function that resembles the compile-time computation for generating the
string variants. However, this extreme pattern occurs infrequently compared to other
patterns that can be handled without duplication by variability encoding.

Overall, we found that variability encoding is feasible for real-world C programs.
The relatively low amount of code duplication indicates the feasibility of the overall
approach, because a variant simulator without sharing cannot be analyzed faster than
analyzing all of its variants. To give an impression, we measured how often code dupli-
cation is necessary when building variant simulators for BUSYBOX. In particular, we
measured the number of program elements before variability encoding and how many
additional program elements (overhead) arise from expressing this variability in the
variant simulator, as shown in Figure 20b. The statistic represents 518 C files and the
included header files.3 5 of the 518 transformed files still contain patterns of extreme
variability such as the one shown in Figure 20a which need to be handled manually. As
a key result, we found that the number of additional elements that we need to generate
in code duplications is always below 4%. Hence, the generated overhead is negligible.

7. Related Work

The importance of formal foundations for configurable programs has been recog-
nized before [23, 42, 45]. There are several publications that define and refine formal
definitions of systems with variability [6, 17, 19, 22, 25] and also prove behavioral
equivialence [20, 35] between different configurable program representations. How-
ever, to the best of our knowledge, we are the first to define variability encoding based
on a canonical representation of the syntax of the configurable program, and not start-
ing from abstract representations such as transition systems. This is an important aspect
because, in practice, configurable programs are not implemented with transition sys-
tems or state machines, but in programming languages, such as C using #if directives.
Therefore, it is important to investigate the effect of different language constructs on
the correctness of variability encoding.

There are several publications in which formal representations for configurable pro-
grams are defined and discussed. Gruler et al. [22] propose PL-CCS based on the
process algebra CCS. Kapsus [25] proposes the language TLA+ based on featured
transition systems [12]. Fischbein et al. [20], Asirelli et al. [6], and Fantechi et al. [19]
discuss formal languages based on modal transition systems. These formalisms (es-
pecially the modal transition systems) are similar to the transition systems we used
in Section 4.1. Fischbein et al. [20] also use a variant of bisimulation to prove that
their modal transition system correctly models the behavior of the system variants.
In contrast to our work, all these formalisms rely on a graph-based representation of
configurable programs, and they do not discuss programming language constructs.

Gnesi and Petrocchi [21] define the Conrolled Language for configurable programs
(CL4SPL). It is designed to be used by engineers of configurable programs and to
be translated to executable languages for automated verification. This work is similar

3We skipped 1 C-file due to type errors in the transformation result.
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to ours in that they offer a language in which developers can express variability and
verify that the implementation satisfies its specifications. However, this language is
quite far from common programming languages and no proof for the correctness of the
transformation is given.

Erwig and Walkingshaw propose the choice calculus [18] as fundamental represen-
tation of software variation, which has been extended and used for various scenarios
such as type inference [11]. In our work, we depend on formal rules that model the
behavior of JAVA. Unlike CFJ, the choice calculus is not bound to any mainstream
language, and therefore does not encode variability in the host language, as we do.

Mitgaard et al. [36] developed a formal framework to derive variability-aware static
analyses from standard static analyses. They prove that the variability-aware part of
analyses adapted with their framework is correct by construction. The overall goal of
their research is the same as ours, but our proof for variability encoding enables the
reuse of existing analyses without further adaption.

There are several other publications [2, 8, 16] in which researchers define frame-
works for compile-time variability and variant generation based on JAVA. They for-
mally define syntax and typing rules as well as how variants are derived from a config-
urable program. They also show that the derivation process preserves type correctness.
However, they do not use variability encoding or other load-time variability mecha-
nisms. As type correctness is a requirement for behavioral analysis, we see this work
on type checking and others (e.g., [28]) as premise to variability encoding.

Classen et al. [13] and Post and Sinz [41] used approaches that are similar to vari-
ability encoding. Classen et al. developed a verification engine based on featured
transition systems (FTS), which represent control-flow graphs with presence condi-
tions on edges. As input language, they use the language fSMV [40], which is based
on PROMELA, and encodes variability with the conditional language constructs of
PROMELA. fSMV programs are automatically loaded as FTS and verified. Post and
Sinz manually encoded variable statements of LINUX device drivers with guarding
conditional statements and verified the resulting variant simulator. Both approaches
rely on manual encoding of variability; correctness proofs are not available.

8. Conclusion

Variant simulators for configurable programs have various applications. However,
the details and properties of variability encoding have not been defined and reasoned
about formally so far. Specifically, there was no formal evidence as to whether efficient
variant simulators exactly simulate the behavior of all valid variants of the configurable
program or not. To fill this gap, we formally define the process of variability encoding,
which starts from the code base of the configurable program and generates a variant
simulator. We formally define syntax, typing rules, and evaluation rules of variants and
of the variant simulator. We prove that the variant simulator subsumes the behavior of
all valid variants of the configurable program and that the simulator does not simulate
more than the valid variants. Due to the complexity of formally reasoning on main-
stream programming languages, we base our model and proof on FEATHERWEIGHT
JAVA (FJ), a subset of JAVA. We also discuss implications of common programming
language constructs that were not included in the formalism.
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As a key result, the proof of behavior preservation of variability encoding strength-
ens the validity of several projects that rely on variability encoding. It also promotes the
use of variability encoding for future research projects on configurable programs im-
plemented in mainstream programming languages. Our model of variability encoding
can be used for future work by adding new language constructs, such as variability in
method parameters. Another interesting avenue of future work would be to replace the
simulation relation with a more sophisticated relation that models additional run-time
properties such as memory assignment in an extended version of FJ.
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