
Combining Feature-Oriented and
Aspect-Oriented Programming to Support

Software Evolution

Sven Apel, Thomas Leich, Marko Rosenmüller, and Gunter Saake

Department of Computer Science
University of Magdeburg, Germany

email: {apel,leich,rosenmue,saake}@iti.cs.uni-magdeburg.de

Abstract. Starting from the advantages of using Feature-Oriented Pro-
gramming (FOP) and program families to support software evolution,
this paper discusses the drawbacks of current FOP techniques. In partic-
ular we address the insufficient crosscutting modularity that complicates
software evolution. To overcome this tension we propose the integration
of concepts of Aspect-Oriented Programming (AOP) into existing FOP
solutions. As study object we utilize FeatureC++, a proprietary ex-
tension to C++ that supports FOP. After a short introduction to basic
language features of FeatureC++, we summarize the problems regard-
ing the crosscutting modularity. In doing so, we point to the strengths
of AOP that can help. Thereupon, we introduce three approaches that
combine FOP and AOP concepts: Multi Mixins, Aspectual Mixins, and
Aspectual Mixin Layers. Furthermore, we discuss their benefits for soft-
ware evolution.

1 Introduction

Nowadays software is subject to frequent changes in order to react to altering
and evolving requirements. The process of continuous adaptation, extension, and
customization is known as software evolution. This article focuses on the evolu-
tion of the design and the implementation base. The idealized goal of software
engineers is to reuse as much as possible code from previous development stages
to build a new version of the software. To achieve this, software must be de-
signed reusable, extensible, and customizable. A heavily discussed approach to
implement software with such virtues to support software evolution are program
families [18]. Program families group programs with similar functionalities in
families. The key idea is to arrange the design and implementation as a lay-
ered stack of functionalities. Different programs consist of different layers. Thus,
implemented layers can be reused in multiple programs. A fine-grained layered
architecture leads to reusable, extensible, and customizable software [18]. Rep-
resentative studies in the domains of databases [4], middleware [1], avionics [3],
and network protocols [4] show that Feature-Oriented Programming (FOP) [5]

and Mixin Layers [21] are appropriate to implement such layered, step-wise re-
fined architectures. However, FOP1 yields some problems in expressing features
and evolving software:

1. FOP lacks adequate crosscutting modularity. During the evolution, software
have to be adapted to fit unanticipated requirements and circumstances.
This results in modifications and extensions that crosscut many existing
implementation units in numerous ways [13].

2. Currently FOP is still an academic concept that is not widely accepted in the
industry. We argue that is because of the focus on Java that is not acceptable
in many domains, e.g. operating systems, databases, middleware, realtime
embedded systems, etc. Even these domains demand for appropriate support
of software evolution. Currently, C++-based solutions are too complex and
hard to use [21, 19]. Moreover, an adequate tool support is missing.

Consequently, our contribution is to solve both problems, supporting cross-
cutting modularity and using C++ as base language. We have developed Fea-
tureC++2, an extension to C++ that supports FOP [2]. This article focuses
primarily on the first problem and presents our investigations in solving the prob-
lem of insufficient crosscutting modularity. FeatureC++ serves as study object
and representative FOP language. A detailed introduction to FeatureC++ is
given in [2]. Our approach to improve the crosscutting modularity is to com-
bine traditional FOP concepts with concepts of Aspect-Oriented Programming
(AOP) [13]. AOP focuses on the separation and modularization of crosscutting
concerns and is therefore best qualified to improve FOP. We have elaborated
three ways to integrate AOP concepts into FOP: Multi Mixins, Aspectual Mix-
ins, Aspectual Mixin Layers. This article introduces and compares them, as well
as discusses their pros and cons with regard to software evolution.

The remaining article is structured as follows: Section 2 gives some back-
ground information about FOP and AOP. Section 3 introduces the basic lan-
guage concepts of FeatureC++. Thereupon, Section 4 reviews the problems
of FOP in modularizing crosscutting concerns. In this regard, we point to the
advantages of AOP to solve these problems. Section 5 introduces our three ap-
proaches to combine AOP and FOP, and discusses theirs pros and cons. After-
wards, Section 6 reviews a selection of related work. Finally, Section 7 gives a
conclusion.

2 Background

Pioneer work on software modularity was made by Dijkstra [11] and Parnas [18].
They have proposed the principle of separation of concerns. The idea is to sepa-
rate each concern of a software system in a separate modular unit. They argue
1 In the remaining article we presume that Mixin Layers are used to implement feature-

oriented programs.
2 http://wwwiti.cs.uni-magdeburg.de/iti db/fcc/

that this lead to maintainable, comprehensible software, which can be easily
reused, customized, and evolved.

AOP was introduced by Kiczales et al. [13]. The aim of AOP is to separate
crosscutting concerns. Common object-oriented methods fail in this context [13,
10]. The idea behind AOP is to implement so called orthogonal features as
Aspects. This prevents the known phenomena of code tangling and scattering.
The core features are implemented as components, as with common design and
implementation methods. Using join point specifications (pointcuts), an aspect
weaver brings aspects and components together. Due to the ability to implement
unanticipated features in a modular way AOP is an important technique to
ease software evolution [12]. AspectJ 3 and AspectC++4 are prominent AOP
extensions to Java and C++.

FOP studies feature modularity in program families [5]. The idea of FOP is
to build software by composing features. Features are basic building blocks that
satisfy intuitive user-formulated requirements on the software system. Features
refine other features incrementally. This step-wise refinement leads to a lay-
ered stack of features. Mixin Layers are one appropriate technique to implement
features and layered designs [21]. The basic idea is that features are often im-
plemented by a collaboration of class fragments (a.k.a. roles). A Mixin Layer is
a static component encapsulating fragments of several different classes (Mixins)
so that all fragments are composed consistently. Advantages are the high degree
of modularity and the easy composition [21]. AHEAD is an architectural model
for FOP and a basis for large-scale compositional programming [5]. It extends
the concept of FOP to all software artifacts, e.g. UML diagrams, documentation,
etc. It makes a broad consistent software evolution possible. The AHEAD Tool
Suite (ATS)5, including the Jak language, implements AHEAD for Java.

3 Overview of FeatureC++

This section gives a short overview of FeatureC++. For a more detailed in-
troduction we refer to [2].

3.1 Introduction to Basic Concepts

In order to implement FeatureC++, we have adopted the basic concepts of
the ATS: Features are implemented by Mixin Layers. A Mixin Layer consists
of a set of collaborating Mixins (which implement class fragments). Figure 1
depicts a stack of three Mixin Layers (1− 3) in top down order. The Mixin Lay-
ers crosscut multiple classes (A− C). The rounded boxes represent the Mixins.
These Mixins that belong to and constitute together a complete class are called
refinement chain. Solid lines represent refinement relationships and connect re-
finement chains (Fig. 1). Roots of a refinement chain are called constants; All
3 http://eclipse.org/aspectj/
4 http://www.aspectc.org/
5 http://www.cs.utexas.edu/users/schwartz/Hello.html

class A class B class C

layer 1

layer 2

layer 3

Fig. 1. Stack of Mixin Layers.

other Mixins are called refinements. A Mixin A that is refined by Mixin B is
called parent Mixin or parent class of Mixin B. Consequently, Mixin B is the
child class or child Mixin of A. Similarly, we speak of parent and child Mixin
Layers. In FeatureC++ Mixin Layers are represented by file system directo-
ries. Therefore, FeatureC++ represents them not explicitly (this follows the
principle of AHEAD). Those Mixins, found inside the directories are assigned to
be the members of the enclosing Mixin Layer.

3.2 Syntax of Basic Language Features

FeatureC++ adopts the syntax of the Jak language [5]. The following para-
graphs introduce the most important language features by example, a buffer that
serializes and stores objects.

Constants and Refinements. Each constant and refinement is implemented as
a Mixin inside exactly one source file. Each constant is the root of a chain of
refinements (see Fig. 2).

1 class Buffer {
2 char *buf;
3 void put(char *s) { /∗ . . . ∗/ }
4 };

Fig. 2. Defining a basic buffer.

1 refines class Buffer {
2 int length;
3 int getLength () { /∗ . . . ∗/ }
4 };

Fig. 3. Adding a length attribute and an access method.

1 refines class Buffer {
2 void put(char *s) {
3 i f (strlen(s) + getLength () < MAX_LEN)
4 super::put(s);
5 }
6 };

Fig. 4. Limiting the buffer length.

Refinements refine constants as well as other refinements. They are declared
by the keyword refines (see Fig. 3). Usually, they introduce new members at-
tributes and methods (Lines 2-3).

Extending Methods. Refinements can extend6 methods of their parent classes
(see Fig. 4). To access the extended method the super keyword is used (Line 4).
Super refers to the type of the parent Mixin. It has a similar semantic to the Java
super keyword and is related to the proceed keyword of AspectJ and AspectC++.

Further Language Features. Due to the space limitations, we omit a discussion
of the below listed language feature of FeatureC++. A detailed introduction
can be found in [2].

– FeatureC++ supports multiple inheritance, templates for generic pro-
gramming, accessing overloaded methods from extern, as well as refinements
of static methods, structs, and destructors.

– FeatureC++ solves several problems regarding class hierarchy extensions
that are caused by the divergence of variations and extensions.

– FeatureC++ solves the constructor problem that occurs in incremental
designs and results in unnecessary constructor redefinitions (cf. [20]).

4 Problems of FOP and how AOP could help

This section reviews problems of FOP regarding crosscutting modularity and
software evolution. The purpose of FOP is to implement program families. Com-
monly, their design and implementation is well planned. FOP yields promising
results in this respect (see [4, 3, 6, 7]). However, problems occur in implement-
ing unanticipated features: We argue that the frequently needed, unanticipated
modifications and extensions of evolving software cause code tangling and code
scattering. Mostly these new features are crosscutting concerns, and FOP is not
able to modularize them all appropriately (as we will see soon). From this point
of view we perceive the solution to the problem of insufficient crosscutting mod-
ularity as an improvement for software evolvability. The following paragraphs
introduce the key problems and point to strengths of AOP in these respects.
The discussion of the problems extends [17, 2].
6 With ’extend’ we refer to overriding and to call the overridden method.

Homogeneous vs. Heterogeneous Crosscuts. Homogeneous crosscutting concerns
are distributed over several join points but apply every time the same code,
e.g. logging; Heterogeneous crosscuts apply varying code, e.g. authentication [8].
Common AOP languages focus on homogeneous concerns whereas FOP lan-
guages deal with heterogeneous concerns. Indeed, both language paradigms can
deal with both types of concerns but often this results in complicated code,
code redundancy, and inelegant workarounds. However, both are important for
software evolution. Consequently, our objective is to enhance FOP with the op-
portunity to handle homogeneous concerns in an adequate way.

Static vs. Dynamic Crosscutting. Both FOP and AOP deal with dynamic cross-
cutting7. Dynamic crosscutting affects the runtime behavior and depends on the
control flow. Static crosscutting affects the static structure of a base feature.
We argue, however, that the way AOP deals with dynamic crosscutting, namely
by using pointcut expressions and advices, is more expressive. Feature binding
specifications as ”bind feature A to all calls to method m that are in the control
flow of method c and only if expression e is true” are difficult to express in FOP
languages. With regard to software evolution, we argue the more complex a soft-
ware becomes (as this is the case of evolving software) the more the programmer
needs to specify such complex feature bindings.

Hierarchy-Conforming Refinements. Using FOP, feature refinements depend on
the structure of parent features. Usually, a feature refines a set of classes and
extends methods. For each implementation unit we want to refine, we have to in-
troduce a new unit. In fact, the programmer is forced to express new features in
terms of structural elements of the existing features. This becomes problematic
if new features are implemented at a different abstraction level. AOP is able to
implement non-hierarchy-conforming refinements by using wildcards in pointcut
expressions [17]. The problem of a raising abstraction level is serious to evolv-
ing software because at the beginning of building software the abstraction of
subsequent development phases cannot be foreseen. If the programmer is forced
to express new features using abstractions of former features the code becomes
unnecessary complicated, bloated, and difficult to understand.

We clarify this by an example (adopted from [17]). As basic feature we con-
sider a stock information broker. This feature should be refined by a pricing
feature. Whereas the broker is expressed in terms of stock information, requests,
brokers, clients and database connections, the pricing feature is expressed us-
ing the intuitive product-consumer-pattern. FOP is not able to change the ab-
straction level accordingly. Instead, AOP is able to implement non-hierarchy-
conforming refinements by using wildcards in pointcut expressions [17].

Excessive Method Extensions. The problem of excessive method extensions oc-
curs (1) if a feature crosscuts a large fraction of existing implementation units
and (2) if it is a homogeneous concern. For instance, if a feature wants to add

7 Note that dynamic crosscutting is not dynamic weaving.

multi-threading support, it has to extend lots of methods, and adds synchroniza-
tion code. This code is in almost all methods the same and therefore redundant,
e.g. setting lock variables. AOP deals with this problem by using wildcards in
pointcut expressions to specify a set of target methods (join points). This pre-
vents code redundancies and eases software evolution.

Method Interface Extensions. The problem of method interface extensions fre-
quently occurs in incremental designs. As an extended interface we understand
an extended argument list. This problem occurs if refinements require additional
parameters, e.g. an additional session id or a reference to a locking variable. In-
deed, using some workaround this problem could be avoided. But AOP with its
pointcut mechanism is much more elegant [17].

Unpredictable Aspect Composition. This problem regards AOP languages only.
Nevertheless it is of importance because we want to integrate AOP mechanisms
into FOP. The problem of current AOP languages is that the binding of as-
pects is independent of the current development stage. That means an aspect
may affect subsequent integrated features. This can lead to unpredicted effects,
e.g. an aspect is unintentionally bound to new features. In [15] an alternative
composition mechanism is proposed. They argue that with regard to software
(program family) evolution, features should only affect features of prior devel-
opment stages. Current AOP languages, e.g. AspectJ and AspectC++, do not
follow this principle. This decreases aspect reuse and complicates incremental
design. Consequently, our approaches satisfy this principle.

5 Enhancing FOP with AOP concepts

This section presents our first results in integrating AOP concepts into FOP in
order to support software evolution. The presented approaches show that there
are numerous ways to implement that symbiosis.

5.1 Multi Mixins

Our first idea to prevent a programmer from excessive method extensions, hierar-
chy-conforming refinements, and to support homogeneous crosscuts were Multi
Mixins. The key idea, instead of refining one Mixin by another one Mixin only,
is to refine a whole set of parent Mixins. Such sets are specified by wildcards
(’%’) adopted from AspectC++. Both Multi Mixins, depicted in Figure 5, use
wildcards to specify the Mixins and methods they refine. The first refines all
classes that start with ”Buffer” (Line 1). The second refines all methods of Buffer
that start with ”put” (Line 3-5). The meaning of the first type of refinement is
straight forward: The wildcard Buffer% has the same effect as one creates a set of
new refinements for each found Mixin that matches the pattern (Buffer%). This
type of Multi Mixin eases the implementation of static homogeneous features in
FOP.

1 refines class Buffer% { /∗ . . . ∗/ };
2
3 refines class Buffer {
4 void put %(...) { /∗ . . . ∗/ }
5 };

Fig. 5. Two Multi Mixins that refine sets of Mixins and methods.

The second type of Multi Mixins, which refines methods, eases the expression
of dynamic homogeneous features. Similar to pointcuts and advices in AOP
languages, one code fragment can be assigned to multiple methods. However,
with Multi Mixins it is not possible to implement execution or cflow pointcuts.

5.2 Aspectual Mixin Layers

The idea behind Aspectual Mixin Layers is to embed aspects into Mixin Layers.
Each Mixin Layer contains a set of Mixins and a set of aspects. Hence, Mixins
implement heterogeneous and hierarchy-conforming crosscutting, whereas as-
pects express homogeneous and non-hierarchy-conforming crosscutting. In other
words, Mixins refine other Mixins and depend, therefore, on the structure of the
parent layer. These refinements follow the static structure of the parent features
and encapsulate heterogeneous crosscuts. Aspects refine a set of parent Mix-
ins by intercepting method calls and executions as well as attribute accesses.
Therefore, aspects encapsulate homogeneous and non-hierarchy-conforming re-
finements. Furthermore, they support advanced dynamic crosscutting.

Figure 6 shows a stack of Mixin Layers that implement some buffer function-
ality, in particular, a basic buffer with iterator, a separated allocator, synchro-
nization, and logging support.

Buffer Iterator Allocator Lock

Allocator

Buffer Iterator

LogConsole LogAspect

Buffer

Log

Sync

Base

Alloc

Fig. 6. Implementing a logging feature using Aspectual Mixin Layers.

Whereas the first three features are implemented as common Mixin Layers,
the Logging feature is implemented as an Aspectual Mixin Layer. It consists
of a logging aspect and a logging console. The logging console prints out the
logging stream and is implemented using a common Mixin. The logging aspect
captures a set of methods that will be refined with logging code (dashed arrows).

Buffer Iterator Allocator Lock

Allocator

Buffer Iterator

LogConsole

LogConsole

LogAspect

LogAspect

Buffer

ExtLog

Log

Sync

Base

Alloc

Fig. 7. Refining an Aspectual Mixin Layer.

1 refines aspect LogAspect {
2 void print () {
3 changeFormat ();
4 super:: print ();
5 }
6 pointcut log() = call ("% %::get()") || super::log();
7 };

Fig. 8. An aspect embedded into a Mixin Layer.

This refinement is homogeneous, non-hierarchy-conforming, and depends on the
runtime control flow (dynamic crosscutting). Moreover, the use of wildcards
prevents the programmer of excessive method extensions. Without Aspectual
Mixin Layers the programmer has to extend all target methods manually.

A further highlight of Aspectual Mixin Layers is that aspects can refine other
aspects. Figure 7 shows an Aspectual Mixin Layer that refines the logging aspect
by additional join points to extend the set of intercepted methods. Additionally,
the logging console is refined by additional functionality, e.g. a modified output
format.

Aspects can refine the methods of parents aspect as well as the parent point-
cuts. This allows to easily reuse and extend of existing join point specifications
(as in the logging example). Note that refining/extending aspects is conceptually
different than applying aspects themselves. Whereas the former case results in a
transformation of the aspect code before applying them to the target program,
the latter case applies the aspects in two steps which leads to two independent
aspect instances.

To express aspects in Aspectual Mixin Layers we adopt the syntax of As-
pectC++. Figure 8 depicts an aspect refinement that extends a logging feature
including a logging aspect. It overrides a parent method in order to adjust the
output format (Line 2-5) and refines a parent pointcut to extend the set of target
join points (Line 6). Both is done using the super keyword.

1 refines class Buffer {
2 int length () { /∗ . . . ∗/ }
3 pointcut log() = call ("% Buffer ::%(...)");
4 };

Fig. 9. Combining Mixins and AOP elements.

5.3 Aspectual Mixins

The idea of Aspectual Mixins is to apply AOP language concepts directly to
Mixins. In this approach, Mixins refine other Mixins as with common Fea-
tureC++ but also define pointcuts and advices (see Fig. 9). In other words,
Aspectual Mixins are similar to Aspectual Mixin Layers but integrate pointcuts
and advices directly into its Mixin definition. In the following, we discuss only
the important differences:

The set of pointcuts, advices, and aspect-specific attributes and methods is
called aspectual subset of the overall Mixin. This mixture of AOP concepts and
Mixins reveals some interesting issues: Using Aspectual Mixins the instantia-
tion of aspects is triggered by the overall Mixin instances. Regarding the above
presented example, the buffer Mixin (Fig. 9, Lines 1-4) and its aspectual sub-
set (Line 3) are instantiated as many times as the buffer. This corresponds to the
perObject qualifier of AspectJ. However, in many cases only one aspect instance
is needed. To overcome this problem, we think of introducing a perObject and
perClass qualifier to distinguish these cases. This introduces a second problem:
If an aspect, part of an Aspectual Mixin, uses non-static members of the overall
Mixin it depends on the Mixin instance. In this case, it is forbidden to use the
perClass qualifier. FeatureC++ must guarantee that perClass Aspectual Mix-
ins, especially their aspectual subset, only access static members of the overall
Mixin instance. In case of perObject Aspectual Mixins this is not necessary.

5.4 Discussion

All three approaches provide solutions for problems of FOP with crosscutting
modularity discussed in Section 4:

– support homogeneous and heterogeneous crosscuts (1)
– extended dynamic crosscutting (pointcuts, etc.) (2)
– non-hierarchy-conforming refinements (3)
– prevent excessive method extensions (4)
– handling method interface extensions (5)

Table 1 summarizes the improvements to FOP with respect to the above pre-
sented problems.

approach (1) (2) (3) (4) (5)

Multi Mixins
√

–
√ √

(
√

)

Aspectual Mixin Layers
√ √ √ √ √

Aspectual Mixins
√ √ √ √ √

Table 1. Evaluation of approaches.

5.5 Bounding Quantification.

A further highlight of all three AOP extensions is a specific bounding mechanism
that supports a better incremental design and that prevents unpredictable aspect
composition (cf. Sec. 4). This mechanism bounds aspects and their effects on the
target program. To implement this bounding mechanism the user-declared join
point specifications must be restructured: Type names in wildcards are trans-
lated in order to match only these types that are declared by the current and
the parent layers. Each wildcard expression that contains a type name is trans-
lated into a set of new expressions that refer to all type names of the parent
classes. Figure 10 shows a synchronization aspect that is part of an Aspectual
Mixin Layer. It has two parent layers (Base, Log) and several child layers. Using
this novel bounding mechanism, FeatureC++ transforms the aspect and the
pointcut as depicted in Figure 11. This transformation works similar for Aspec-
tual Mixins. In case of Multi Mixins we have to add a mechanism for combining
wildcard expression logically.

1 aspect SyncAspect {
2 pointcut sync() : call ("% Buffer ::put (...)");
3 };

Fig. 10. A synchronization aspect with a simple pointcut expression.

1 aspect SyncAspect_Sync {
2 pointcut sync() : call ("% Buffer_Sync ::put (...)")
3 || call ("% Buffer_Log ::put (...)")
4 || call ("% Buffer_Base ::put (...)");
5 };

Fig. 11. Bounding quantification by transforming pointcuts.

Finally, we want to emphasize that all three approaches are not specific to
FeatureC++. All concepts can be applied to other AOP/FOP languages.

6 Related Work

Several approaches aim to combine AOP and FOP. Mezini et al. argue that
using AOP as well as FOP standalone lacks feature modularity [17]. They pro-
pose Caesar as combined approach. Similar to FeatureC++, Caesar supports
dynamic crosscutting using pointcuts. Instead of FeatureC++, the focus of
Caesar is on aspect reuse and on-demand remodularization. Aspectual Collab-
orations proposed by Lieberherr et al. [14] encapsulate aspects into modules,
with expected and provided interfaces. The rationales behind this approach are
similar to Caesar. Colyer et al. propose the principle of dependency alignment : a
set of guidelines for structuring features in modules and aspects with regard to
program families [9]. They distinguish between orthogonal and weak-orthogonal
features/concerns. Loughran et al. support the evolution of program families
with Framed Aspects [16]. They combine the advantages of frames and AOP, to
serve unanticipated requirements.

7 Conclusion

In this paper we argued that common FOP techniques are important for soft-
ware evolution and appropriate for implementing program families. However, we
discussed the drawbacks regarding crosscutting modularity and the missing sup-
port of C++. We stated that the shortcomings in the crosscutting modularity
cause problems in implementing unanticipated features. Often, these features
are wide-spread crosscutting concerns. The discussed problems of FOP in these
regards complicate the evolution of software. Consequently, we have presented
our approach: FeatureC++ supports FOP in C++ and solves several prob-
lems regarding the lacking crosscutting modularity by adopting AOP concepts.
In this paper, we have focused on solutions to these problems to ease evolv-
ability of software. We have summarized the problems of FOP, advantages of
AOP in these respects, and presented three approaches to solve these problems:
Multi Mixins, Aspectual Mixins and Aspectual Mixin Layers. Whereas, the first
two approaches are only of conceptual nature, we have implemented the third
approach and enhanced FeatureC++ with the ability to express Aspectual
Mixin Layers. A first prototype can be found at the FeatureC++ web site8.
In ongoing work we will apply all three approaches to real-world case studies.

References

1. S. Apel and K. Böhm. Towards the Development of Ubiquitous Middleware Prod-
uct Lines. In Proceedings of the ASE Workshop on Software Engineering and
Middleware (SEM), volume 3437 of Lecture Notes on Computer Science. Springer,
2005.

8 http://wwwiti.cs.uni-magdeburg.de/iti db/fcc/

2. S. Apel et al. FeatureC++: Feature-Oriented and Aspect-Oriented Programming
in C++. Technical report, Deptartment of Computer Science, Otto-von-Guericke
University, Magdeburg, Germany, 2005.

3. D. Batory et al. Creating Reference Architectures: An Example from Avionics. In
Proceedings of the Symposium on Software Reusability (SSR), 1995.

4. D. Batory and S. O’Malley. The Design and Implementation of Hierarchical Soft-
ware Systems with Reusable Components. ACM Transactions on Software Engi-
neering and Methodology (TOSEM), 1(4), 1992.

5. D. Batory, J. N. Sarvela, and A. Rauschmayer. Scaling Step-Wise Refinement.
IEEE Transactions on Software Engineering (TSE), 30(6), 2004.

6. D. Batory and J. Thomas. P2: A Lightweight DBMS Generator. Journal of
Intelligent Information Systems, 9(2), 1997.

7. R. Cardone et al. Using Mixins to Build Flexible Widgets. In Proceedings of
the International Conference on Aspect-Oriented Software Development (AOSD),
2002.

8. A. Colyer and A. Clement. Large-Scale AOSD for Middleware. In Proceedings of
the International Conference on Aspect-Oriented Software Development (AOSD),
2004.

9. A. Colyer, A. Rashid, and G. Blair. On the Separation of Concerns in Program
Families. Technical Report COMP-001-2004, Computing Department, Lancaster
University, 2004.

10. K. Czarnecki and U. Eisenecker. Generative Programming: Methods, Tools, and
Applications. Addison-Wesley, 2000.

11. E. W. Dijkstra. A Discipline of Programming. Prentice Hall, 1976.
12. R. Filman et al. Aspect-Oriented Software Development. Addison Wesley, 2004.
13. G. Kiczales et al. Aspect-Oriented Programming. In Proceedings of the European

Conference on Object-Oriented Programming (ECOOP), 1997.
14. K. Lieberherr, D. H. Lorenz, and J. Ovlinger. Aspectual Collaborations: Combining

Modules and Aspects. The Computer Journal, 46(5), 2003.
15. R. E. Lopez-Herrejon and D. Batory. Improving Incremental Development in As-

pectJ by Bounding Quantification. In Software Engineering Properties and Lan-
guages for Aspect Technologies, 2005.

16. N. Loughran et al. Supporting Product Line Evolution with Framed Aspects. In
Proceedings of the AOSD Workshop on Aspects, Components, and Patterns for
Infrastructure Software (ACP4IS), 2004.

17. M. Mezini and K. Ostermann. Variability Management with Feature-Oriented
Programming and Aspects. ACM SIGSOFT Foundations of Software Engineering
(FSE), 2004.

18. D. L. Parnas. Designing Software for Ease of Extension and Contraction. IEEE
Transactions on Software Engineering (TSE), SE-5(2), 1979.

19. V. Singhal and D. Batory. P++: A Language for Large-Scale Reusable Software
Components. In Proceedings of the Workshop on Software Reuse, 1993.

20. Y. Smaragdakis and D. Batory. Mixin-Based Programming in C++. In Proceed-
ings of the International Conference on Generative and Component-Based Software
Engineering (GCSE), 2000.

21. Y. Smaragdakis and D. Batory. Mixin Layers: An Object-Oriented Implementation
Technique for Refinements and Collaboration-Based Designs. ACM Transactions
on Software Engineering and Methodology (TOSEM), 11(2), 2002.

