
Software and Systems Modeling manuscript No.
(will be inserted by the editor)

The Shape of Feature Code: An Analysis of Twenty
C-Preprocessor-Based Systems

Rodrigo Queiroz · Leonardo Passos ·
Marco Tulio Valente · Claus Hunsen ·
Sven Apel · Krzysztof Czarnecki

Received: date / Accepted: date

Abstract Feature annotations (e.g., code fragments guarded by #ifdef C-
preprocessor directives) control code extensions related to features. Feature
annotations have long been said to be undesirable. When maintaining fea-
tures that control many annotations, there is a high risk of ripple effects.
Also, excessive use of feature annotations lead to code clutter, hindering pro-
gram comprehension and hardening maintenance. To prevent such problems,
developers should monitor the use of feature annotations, for example, by set-
ting acceptable thresholds. Interestingly, little is known about how to extract
thresholds in practice, and which values are representative for feature-related
metrics. To address this issue, we analyze the statistical distribution of three
feature-related metrics collected from a corpus of 20 well-known and long-
lived C-preprocessor-based systems from different domains. We consider three
metrics: scattering degree of feature constants, tangling degree of feature ex-
pressions, and nesting depth of preprocessor annotations. Our findings show
that feature scattering is highly skewed; in 14 systems (70%), the scattering
distributions match a power law, making averages and standard deviations
unreliable limits. Regarding tangling and nesting, the values tend to follow a
uniform distribution; although outliers exist, they have little impact on the
mean, suggesting that central statistics measures are reliable thresholds for
tangling and nesting. Following our findings, we then propose thresholds from
our benchmark data, as a basis for further investigations.

Rodrigo Queiroz, Marco Tulio Valente
Federal University of Minas Gerais, Brazil
E-mail: {rodrigoqueiroz,mtov}@dcc.ufmg.br

Leonardo Passos, Krzysztof Czarnecki
University of Waterloo, Canada
E-mail: lnrdpss@acm.org, E-mail: kczarnec@gsd.uwaterloo.ca

Claus Hunsen, Sven Apel
University of Passau, Germany
E-mail: {claus.hunsen,apel}@uni-passau.de

2 Rodrigo Queiroz et al.

1 Introduction

Feature annotations, such as ifdefs (#ifdef, #ifndef, #elif, and #if C-
preprocessor directives), are long said to be undesirable in source code [2,3,
8,18,31]. Since annotations are often spread across the entire code base, they
clutter source code, hinder program comprehension, and, consequently, compli-
cate maintenance. Feature annotations relate code fragments to corresponding
features. When maintaining the features of the system, each related extension
is a potential code fragment that has to be maintained, increasing the likeli-
hood of ripple effects. Despite these drawbacks, feature annotations are widely
used in practice [8,17–20,31], in particular, due to limitations of existing pro-
gramming languages (e.g., see the tyranny of the dominant decomposition [32,
16]). In any case, annotations provide a simple way to include new features
into the code base, avoiding the upfront investment of creating modules and
interfaces [15]. Still, to prevent an excessive use of feature annotations, devel-
opers should monitor their use, for example, by setting acceptable limits, or
thresholds.

To reveal how feature annotations are used in source code, metrics quanti-
fying properties, such as scattering, tangling, or nesting, have been proposed in
the literature [19]. However, different from other standard code metrics [1,24],
these feature-annotation metrics have never been studied using rigorous sta-
tistical methods. At best, researchers report averages and standard deviations
over large sets of system, as done by Liebig et al. [19]. Central tendency and
dispersion measures (e.g., mean and standard deviation), however, might not
result in representative values. Recent work [4,21,37], suggests that some code
metrics follow heavy-tailed distributions, often matching a power-law distribu-
tion. In such distributions, the probability that an entity measure deviates
from a typical value (e.g., arithmetic mean) is not negligible. That is, a sig-
nificant fraction of code entities do not follow typical metric values, making
centrality and dispersion statistics unreliable.

In previous work, we analyzed the distribution of feature scattering in five
C-preprocessor-based open-source software systems [28]. For each system, we
measured the scattering degree of each of its features (i.e., the number of
ifdefs that refer to each feature), checking whether the resulting empirical
cumulative distribution function (CDF) follows a power law. We found that,
in four out of five systems, feature scattering follows indeed a power law, so
that scattering was concentrated in few features. In this paper, we extend our
preliminary study to 20 well-known C-preprocessor-based systems, including
small, medium, and large systems from different functional domains. In ad-
dition to scattering, we consider the related metrics tangling degree and the
nesting depth of ifdef annotations. In this extended setting, we found that
feature scattering results in highly skewed distributions. In 14 systems (70%),
these distributions matched a power law. In these cases, reporting metrics in
terms of averages and standard deviations is unreliable, although commonly
done so. Hence, we raise awareness that feature scattering thresholds based on
central measures are not reliable in practice. Regarding tangling degree and

The Shape of Feature Code 3

nesting depth, the extracted metric values tend to follow a uniform distribu-
tion in all systems, with most values equal to one. Although outliers exist,
these distributions are not as skewed as the ones seen in the scattering degree
metric. This result suggests that mean values for tangling degree and nesting
depth are in fact robust. Based on our analysis, we propose thresholds for
the metrics we studied, which are derived such that they respect the statisti-
cal distributions we have observed. These thresholds are meant to be further
evaluated by researchers and practitioners.

The remainder of this paper is organized as follows: In Section 2, we provide
background information on the C preprocessor and on power-law distributions.
Section 3 presents our methodology, including the subject systems, the process
and tools we used to compute the feature-related metrics, and the procedure
we followed in the statistical analysis of the collected data. Section 4 presents
our results, including a discussion on the statistical distributions that describe
our data best. Section 5 discusses implications of our findings, in particular,
regarding the extraction of thresholds for feature-related metrics. Section 6
reports threats to validity, and Section 7 presents related work. Section 8
concludes the paper and points to future work. All datasets, R scripts, and
associated tooling are publicly available on a companion website.1

2 Background

In this section, we provide the necessary background on the C preprocessor
(Section 2.1) and on power-law distributions (Section 2.2).

2.1 The C Preprocessor

The C preprocessor enriches the C language with simple meta-programming
facilities, supporting the implementation of software families [2,19,25,27]. Fea-
tures can be denoted with macro names, which in turn are referenced by
different compilation-guard conditions. There are different types of guard con-
ditions: #ifdef, #ifndef, #elif, and #if. For brevity, we refer to all these
constructs as ifdefs.

Figure 1 and 2 provide examples taken from the python interpreter,
one of our subject systems. In file mmapmodule.c, developers introduce some
extensions conditionally, depending on the choice of the target operating sys-
tem. This conditional code is controlled by the presence or absence of cer-
tain features. Lines 438–449, for instance, depend on the presence of feature
MS WINDOWS, while Lines 453–464 depend on the presence of feature UNIX.
Nested in the code of UNIX feature, there is further variability that depends
on the support of large files. Feature HAVE LARGEFILE SUPPORT implements
this nested variable behavior at Line 460. In Figure 2, there is another use
of feature MS WINDOWS, also taken from python interpreter. In this case,

1 http://rodrigoqueiroz.bitbucket.org/sosym2015.html

4 Rodrigo Queiroz et al.

the presence of either MS WINDOWS or CYGWIN enable the compilation of the
guarded code (Line 428).

434 mmap_size_method(mmap_object *self , PyObject *unused)

435 {

436 CHECK_VALID(NULL);

437 #ifdef MS_WINDOWS

438 if (self ->file_handle != INVALID_HANDLE_VALUE) {

439 DWORD low ,high;

440 PY_LONG_LONG size;

441 low = GetFileSize(self ->file_handle , &high);

442 (...)

443 if (!high && low < LONG_MAX)

444 return PyLong_FromLong ((long)low);

445 size = (((PY_LONG_LONG)high)<<32) + low;

446 return PyLong_FromLongLong(size);

447 } else {

448 return PyLong_FromSsize_t(self ->size);

449 }

450 #endif /* MS_WINDOWS */

451

452 #ifdef UNIX

453 {

454 struct stat buf;

455 if (-1 == fstat(self ->fd, &buf)) {

456 PyErr_SetFromErrno(PyExc_OSError);

457 return NULL;

458 }

459 #ifdef HAVE_LARGEFILE_SUPPORT

460 return PyLong_FromLongLong(buf.st_size);

461 #else

462 return PyLong_FromLong(buf.st_size);

463 #endif

464 }

465 #endif /* UNIX */

466 }

Fig. 1: Feature implementation example using ifdefs (mmapmodule.c file from
the Python interpreter)

427 #if defined(MS_WINDOWS) || defined(__CYGWIN__)

428 _setmode(self ->fd, O_BINARY);

429 #endif

430 (...)

Fig. 2: Tangled feature implementation example using ifdefs (fileio.c from
the Python interpreter)

The Shape of Feature Code 5

0

100

200

300

400

0 100000 200000 300000 400000 500000
Population of US cities

F
re

qu
en

cy

Fig. 3: Histogram of the population of US cities with population of 10 000 or
more (data from the 2000 US Census)

2.2 Power-law Distributions

A distribution is said to be a power-law distribution when the probability of
measuring a particular value varies inversely as a power of that value [22]. The
population of towns and cities is a classic example of this type of distribution.
Figure 3 shows a histogram with the distribution of the US city populations,
extracted from the 2000 census,2 as analyzed by Clauset et. al.[5] and Newman
[22]. The histogram is highly right-skewed: While the bulk of the distribution
refers to small-sized cities, a small number of very large cities produces the
heavy-tail to the right of the histogram.

In formal terms, a discrete power-law distribution (which we refer hence-
forth as power-law) is a distribution in which the probability that a discrete
random variable X assumes a value x is proportional to x raised to the negative
power of a positive constant k:

P (X = x) ∝ cx−k where c > 0, k > 0 (1)

A power law, as given by this equation, diverges when x = 0. In fact, it
requires a lower-bound value xmin > 0 to define a cut-off value as starting point
(x > xmin) from which a power-law behavior occurs [5]. As we shall see later in
Section 3, the parameters k and xmin play an important role when performing
a goodness-of-fit analysis. Another important characteristic of a power-law
distribution concerns its visualization: when plotted on a logarithmic scale
in both axes, a power-law function appears as a decreasing line, as shown in
Figure 4.

2 Data available at http://tuvalu.santafe.edu/~aaronc/powerlaws/data.htm

6 Rodrigo Queiroz et al.

●●●
●
●

●
●
●

●
●

●

●

●

●

Population of US cities

10000 50000 500000 5000000

0.
00

05
0.

00
50

0.
05

00
0.

50
00

C
D

F

Fig. 4: Empirical Cumulative Density Function of the populations of US cities
(points) and the fitted power-law function in red, both in logarithmic scale
(data from the 2000 US Census)

In addition to city populations, power-law distributions appear in a di-
verse range of phenomena, including the size of earthquakes, solar flares, moon
craters, wars, peoples personal fortunes [5,22]. In software engineering, differ-
ent researchers report that the distribution of different source-code metrics
follow a power-law distribution [4,21,24,37]. However, it has not been investi-
gated whether the same holds for feature-related metrics.

3 Methodology

In this section, we discuss the selection of subject systems (Section 3.1), the
process and tools to compute feature-related metrics (Section 3.2), and the
statistical analysis of the data we collect (Section 3.3).

3.1 Selection of Subject Systems

To analyze the statistical distributions describing feature-related metrics, we
selected 20 open-source software systems that use C preprocessor directives to
annotate feature code; Table 1 provides information on all subject systems.

Three criteria guided the selection of our subjects: First, we aimed at cov-
ering multiple application domains, therefore avoiding bias towards an specific
domain. In Table 1, the 20 systems are distributed across 12 different domains.
Second, each system has substantial history of development and use, as given

The Shape of Feature Code 7

Table 1: Subject systems

System Version Year Domain Since SLOC

vi4 50325 2005 Text editor 2000 22 275
lighttpd 1.4.35 2014 Web server 2003 39 991
xfig 3.2.5c 2013 Graphics editor 1985 74 713
sendmail 8.14.9 2014 Network service 1983 92 204
sylpheed 3.4.2 2014 E-mail client 2000 116 454
git 2.1.0 2014 Version control 2005 152 018
apache 2.4.10 2014 Web server 1995 155 846
libxml2 2.9.1 2014 Programming library 1999 222 009
emacs 24.3 2013 Text editor 1985 249 932
openldap 2.4.39 2014 Network service 1998 291 781
subversion 1.8.10 2014 Version control 2000 328 878
imagemagick 6.8.9-7 2014 Image editor 1987 333 048
python 3.4.1 2014 Program interpreter 1989 353 485
php 5.6.0 2014 Program interpreter 1985 664 259
postgresql 9.3.5 2014 Database system 1995 676 435
gimp 2.8.14 2014 Image editor 1996 703 435
glibc 2.20 2014 Programming library 1987 826 502
mysql 5.6.19 2014 Database system 1995 1 577 874
gcc 4.9.0 2014 Compiler framework 1987 3 209 684
linux kernel 3.15 2014 Operating system 1991 11 964 075

by columns Year (the year of the release of the system under analysis) and
Since (the year of the first release). The rationale is that mature systems are
more likely to have found a practical balance to when and how much to scatter,
tangle, and nest preprocessor annotations than immature systems. Third, the
selection includes systems of different sizes, to avoid bias towards a particular
system size. We measured size using Source Lines of Code (SLOC), which is
the total number of source lines of code of a given system. These numbers
excludes blank lines and comments. Moreover, sequences of multilines (lines
ending with a backslash) are counted as a single line.3 As shown in Table 1,
our set of subjects includes four small systems (< 100 KSLOC), nine medium
sized systems (100 to 400 KSLOC), and seven large software systems (> 400
KSLOC).

3.2 Data Collection and Metrics

To extract feature-related metric values, we first parse the source files (C im-
plementation and header files) of each subject system. Parsing is performed
using the tool src2srcml,5 which creates an XML representation of the code.
The resulting XML files preserve all the code, including preprocessor annota-
tions (src2srcml does not perform any preprocessing). With all annotations

3 Multilines are convenient when spanning a long line across multiple ones; during com-
pilation, sequences of multilines are taken as a single line.

4 The vi system we use is a port of the original vi (late 1970’s) to modern Unix systems.
5 http://www.srcml.org/

8 Rodrigo Queiroz et al.

in place, we run a custom-made tool (fscat) to process the XML files pro-
duced by src2srcml and to compute the following system-level metrics:

1. Number of Feature Constants (NOFC): The total number of macro names
that are referred in, at least, one ifdef.

2. Number of Feature Expressions (NOFE): The total number of conditional
expressions used in ifdef directives to control the inclusion or exclusion of
variable code.

3. Number of Top-level Branches (NOTLB): The total number of top-level
ifdef branches, including #else preprocessor directives. An ifdef branch is
a block of code that is delimited by #ifdef, #ifndef, #if, or #else and
closed by its #endif or followed by a #else or #elif (when applicable). A
top-level ifdef branch is an ifdef or #else that is not inside an enclosing
ifdef branch.

In addition, fscat also computes metrics for each feature constant, feature
expression, and top-level ifdef branch of the system under analysis, as follows:

1. Scattering Degree (SD): This degree is calculated per feature constant of
a system. It counts the number of ifdefs that refer to a given feature con-
stant. For example, considering the examples in Figure 1 and Figure 2, the
scattering degree of MS WINDOWS is 2.

2. Tangling Degree (TD): This degree is calculated per feature expression of
a system. It counts the number of feature constants that occur in a given
feature expression. For example, in Figure 2, the tangling degree of the
feature expression in Line 427 is 2.

3. Nesting Depth (ND): This metric is defined for each top-level ifdef branch
in a system. ND is the depth of the tree of nested annotations in a given top-
level ifdef branch. In this tree, the nodes are ifdefs and #else annotations,
while the edges represent nested relations between such nodes. The root
node is a top-level ifdef or #else, and the children of a node are the
annotations it directly encloses. The depth of a node is the depth of its
parent plus 1. By definition, the depth of the root node is one. The depth
of the tree is the depth of its node with the maximal depth. For example,
in Figure 1, the ND of the top-level #ifdef in Line 437 is 1, and the ND
of the top-level #ifdef in Line 452 is 2.

The proposed metrics are based on the metrics of Liebig et al. [19]. SD is
based on the number of maintenance program locations that one potentially
has to consider to maintain a feature and has been already used in other studies
[13,14,19,26]. Likewise, our definition of TD is also based on Liebig et al.
However, the tool used by Liebig et al. for computing SD and TD (cppstats)
applies transformations on the annotations of the code (e.g., by propagating
the condition of outer ifdefs to inner ones and conjoining each #elif/#else
condition with the condition of preceding branches). These transformations
influence the scattering and tangling values, causing higher values. In contrast,
the tooling we use when collecting these metrics (fscat) does not perform any
transformation on annotations, taking them as explicitly defined in the source

The Shape of Feature Code 9

code. As an example, Figure 5 shows two fragments of the same code. In
the original code (a), as computed by fscat, FEATURE A has SD=1 and
the feature expression at line 3 has TD=1. In the fragment (b), we show the
code after the transformations performed by cppstats. In this case, cppstats
returns that FEATURE A has SD=3, and that the feature expression at line
3 has TD=2.

(a) original code

1 #ifdef FEATURE_A

2 (...)

3 #ifdef FEATURE_B

4 (...)

5 #endif

6 #elif FEATURE_C

7 (...)

8 #endif

(b) code with transformations

1 #ifdef FEATURE_A

2 (...)

3 #ifdef FEATURE_A && FEATURE_B

4 (...)

5 #endif

6 #elif !FEATURE_A && FEATURE_C

7 (...)

8 #endif

Fig. 5: Example of code, as considered by fscat (a) and after the transforma-
tions performed by cppstats (b)

The third metric, however, differs from the ones proposed by Liebig et al.
Originally, Liebig et al. define the Average Nesting Depth (AND) as the av-
erage depth of nested ifdefs. Instead, we propose the metric Nesting Depth
(ND) representing the depth of each top-level ifdef branch. We argue that ND
is more robust than AND, because it is not based on averages. Furthermore,
while performing maintenance tasks, a programmer has to be aware of inner
ifdefs when reasoning about the code. ND supports the developer to estimate
the complexity of the code fragment inside a top-level branch. The AND met-
ric, however, gives only a rough estimation of the complexity of the whole
file. As an example, in Figure 5, AND is the average nesting depth of each
ifdef block in this file (AND = (1 + 2)/2 = 1.5). In contrast, ND captures the
nesting of each top-level branch, e.g., ND of the top-level ifdef branch at lines
1–5 is 2, and the ND of the top-level ifdef branch at lines 6–8 is 1.

3.3 Statistical Analysis

After collecting the metrics, we inspect the histograms and standard descrip-
tive statistics describing the distributions of SD, TD, and ND for each of our 20
subject systems. In addition, we computed the Gini coefficient to measure the
degree of concentration of the metric values inside each distribution. The Gini
coefficient has been proposed as an economic indicator to measure and com-
pare income distributions, but can be adapted to the distribution of software
metrics, providing an aggregated metric that is system-size independent [35,
29,36].

10 Rodrigo Queiroz et al.

In this initial analysis step, we check whether the collected distributions
have characteristics of a power-law distribution. Then, we proceed with a rig-
orous test of the power-law hypothesis. Basically, to decide whether the metric
values follow a power-law distribution we used the poweRlaw package [10]
from the R statistical environment.6 First, we define the two parameters k
and xmin of the best-fit power law (P0) that approximates as close as possible
the empirical CDF (cumulative distribution function) of the distribution (P)
of a system under analysis. When searching for P0, we rely on the maximum-
likelihood estimator method (MLE), while choosing xmin as the value minimiz-
ing the Kolmogorov-Statistic (KS). The KS is given by the maximum distance
|P0(x) − P(x)|, for all x > xmin. For further details, the reader is referred to
elsewhere [5,11,10].

Once we estimated k and xmin, we perform a hypothesis test to verify
whether a power-law distribution is a plausible model for the behavior of
each empirical CDF. Following Clauset et al. [5], we perform a goodness-of-fit
test via a bootstrap procedure following the algorithms and steps outlined by
Gillespie [11]. Simply put, we generate 2 500 datasets from the P0 model and
then try to re-infer a new best-fit power law for each generated dataset. The
p-value of the simulation process corresponds to the fraction of times in which
the KS of the best-fit model of the generated dataset is higher than the one
obtained for P. Our hypotheses are the following:

– Null hypothesis: P0 is a plausible fit for P
– Alternative hypothesis: P0 is not a plausible fit for P

As Clauset et al. argue, if the test reports a p-value larger than 0.1, one shall
accept the null hypothesis. Otherwise, it should be rejected in favor of the
alternative hypothesis. In the latter case, P is unlikely to conform to a power-
law distribution; rather, the empirical CDF function better fits another model,
and may or may not be heavy-tailed.

For each metric of each subject system, the fit is initially done based on
the whole set of metric data. However, when we do not have strong evidence
that the data fits a power law (p-value < 0.1), we verify whether it is possible
to fit, at least, part of the data, wich is valid as we want to prove that the
distribution follows a power law, asymptotically. To this end, we iteratively
crop single data points from the right of the tail, removing at each step the
highest metric value. The iteration continues until we find a fit up to a certain
value xmax. The procedure stops if we remove 1% of the data points and we
still do not find strong evidence for a power law.

A similar procedure has been reported by Baxter et al. [4], when analyzing
standard metrics for Java software.

6 http://www.r-project.org/

The Shape of Feature Code 11

4 Results

In this section, we describe the results of our distribution fitting analysis for
the three metrics: Scattering Degree (Section 4.1), Tangling Degree (Section
4.2), and Nesting Depth (Section 4.3).

4.1 Scattering Degree

To assess the distribution of the feature-scattering degrees, we initially plotted
the histograms of the extracted SD values for each system, shown in (Figure 6).
We can observe that all histograms are right-skewed, meaning that, while
most SD values are small (equal to one, in most cases), we also observe high
and very high SD values, suggesting a heavy-tailed—possibly a power-law—
distribution. Table 2 shows the maximum SD for each system, along with
its mean and 95th percentile value. The scattering degree reaches extreme
values in gcc (max SD=1 867) and in the linux kernel (max SD=2 698),
while other systems have lower degrees, for example, vi (max SD=53) and
lighttpd (max SD=48). Furthermore, the mean SD value is, in all cases, too
far apart from the values in the last 5% of the features. For example, in the
linux kernel, the mean SD is 5.40, and the 95th percentile of SD is 14. This
nicely illustrates that the mean should not be used as a reference or centrality
measure when analyzing SD. For example, in the linux kernel, the mean is
not only very different from the small SD values (equal to 1) that represent the
bulk of the distribution, but it also does not represent the high SD values in the
right part of the histogram (≥ 5.4). Therefore, it is fundamental to know the
statistical distribution describing the collected SD data, before investigating
reference values, thresholds, and similar quantitative guidelines for this metric.

Finally, as presented in Table 2, the SD distribution’s Gini coefficients range
from 0.56 (git) to 0.77 (sylpheed), which suggests a high level of inequality
inside each distribution. All aforementioned characteristics are necessary, yet
not sufficient, to claim that feature scattering follows a power-law distribution.

Following the methodology described in Section 3.3, as a next step we es-
timate the parameters of the power-law model (k and xmin) that best fit our
empirical CDF. In Figure 7, we plot the empirical CDF and the fitted power
law in logarithmic scale, of which the latter appears as a red decreasing line
in each graph of the figure. As we stated in Section 2.2, the resulting line
is a distinct characteristic of power-law distributions. The resulting plot re-
veals that the points approximate the line of the power law, strengthening our
understanding that feature scattering indeed follows a power-law distribution.

To statistically check whether the fitted power laws are plausible models
(null hypothesis), we perform a bootstrapping hypothesis test, following the
methodology discribed in Section 3.3. Table 3 shows the p-values obtained for
each test. In the case of 14 systems, we found statistically significant models
(p-value > 0.1), leading us to accept the null hypothesis—the power-law model
is a plausible explanation model. Similar to the estimation of xmin, in the case

12 Rodrigo Queiroz et al.

0

20

40

60

0 10 20 30 40

SD

F
re

qu
en

cy

(a) vi

0

20

40

60

0 10 20 30 40

SD

F
re

qu
en

cy

(b) lighttpd

0

20

40

60

0 10 20 30 40

SD

F
re

qu
en

cy

(c) xfig

0

100

200

300

400

0 10 20 30 40

SD

F
re

qu
en

cy

(d) sendmail

0

20

40

0 10 20 30 40

SD

F
re

qu
en

cy

(e) sylpheed

0

100

200

0 10 20 30 40

SD

F
re

qu
en

cy

(f) git

0

100

200

300

0 10 20 30 40

SD

F
re

qu
en

cy

(g) apache

0

500

1000

1500

0 10 20 30 40

SD

F
re

qu
en

cy

(h) libxml2

0

500

1000

0 10 20 30 40

SD

F
re

qu
en

cy

(i) emacs

0

100

200

300

400

0 10 20 30 40

SD

F
re

qu
en

cy

(j) openldap

0

30

60

90

120

0 10 20 30 40

SD

F
re

qu
en

cy

(k) subversion

0

100

200

300

0 10 20 30 40

SD

F
re

qu
en

cy

(l) imagemagick

0

500

1000

1500

2000

0 10 20 30 40

SD

F
re

qu
en

cy

(m) python

0

500

1000

0 10 20 30 40

SD

F
re

qu
en

cy

(n) php

0

200

400

600

800

0 10 20 30 40

SD

F
re

qu
en

cy

(o) postgresql

0

100

200

300

0 10 20 30 40

SD

F
re

qu
en

cy

(p) gimp

0

500

1000

1500

2000

0 10 20 30 40

SD

F
re

qu
en

cy

(q) glibc

0

250

500

750

1000

0 10 20 30 40

SD

F
re

qu
en

cy

(r) mysql

0

1000

2000

3000

4000

5000

0 10 20 30 40

SD

F
re

qu
en

cy

(s) gcc

0

2000

4000

6000

0 10 20 30 40

SD

F
re

qu
en

cy

(t) linux kernel

Fig. 6: Histograms of scattering degrees (SD)

The Shape of Feature Code 13

●

●

●

● ●
●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

SD
1 2 5 10 20 50

0.
01

0.
02

0.
05

0.
10

0.
20

0.
50

1.
00

C
D

F

(a) vi

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

SD
1 2 5 10 20 50

0.
00

5
0.

01
0

0.
02

0
0.

05
0

0.
10

0
0.

20
0

0.
50

0
1.

00
0

C
D

F

(b) lighttpd

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

SD
1 2 5 10 20 50

0.
01

0.
02

0.
05

0.
10

0.
20

0.
50

1.
00

C
D

F

(c) xfig

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●●

●
●●●●●●

●
●●

●
●

●

●
●
●

●

●

●

●

●

●

SD
1 2 5 10 20 50 100 200

0.
00

1
0.

00
5

0.
05

0
0.

50
0

C
D

F

(d) sendmail

●

●

●

●
●

●
●

●
●

●
●

●
●

●
●
●

●

●

●

●

●

●

●

●

SD
1 2 5 10 20 50 100 200

0.
01

0.
02

0.
05

0.
10

0.
20

0.
50

1.
00

C
D

F

(e) sylpheed

●

●

●

●

●
●

●
● ●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

SD
1 2 5 10 20 50 100

0.
00

5
0.

02
0

0.
05

0
0.

20
0

0.
50

0

C
D

F

(f) git

●

●

●

●

●

●

●

●
● ●

● ●
●

●
●

●

●
●

●
●

●

●
●

●

●

●

●

●

SD
1 2 5 10 20 50 100

0.
00

2
0.

00
5

0.
02

0
0.

05
0

0.
20

0
0.

50
0

C
D

F

(g) apache

●

●

●
●

●
●

● ● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●

●●●●●●●●● ●●●
●
●
●
●
●

●
●

●

●

●

●

SD
1 2 5 10 20 50 100 200

0.
00

05
0.

00
50

0.
05

00
0.

50
00

C
D

F

(h) libxml2

●

●

●

●

●
●

●
●

●
●

●
●●●●●

●
●
●

●●●●● ●
●

●
● ● ●● ● ●● ● ●

●
●

●
●
●
●
●
●

●

●

●

●

SD
1 2 5 10 20 50 100 200

0.
00

05
0.

00
50

0.
05

00
0.

50
00

C
D

F

(i) emacs

●

●

●

●

●

●
●

●

●
●

●

●
●●

●
●●

● ●
●●●● ●●●●

●
●
●

●
●

●
●

●

●

●

●

●

●

SD
1 2 5 10 20 50 100

0.
00

1
0.

00
5

0.
05

0
0.

50
0

C
D

F

(j) openldap

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

SD
1 2 5 10 20 50 100

0.
00

5
0.

01
0

0.
02

0
0.

05
0

0.
10

0
0.

20
0

0.
50

0
1.

00
0

C
D

F

(k) subversion

●

●

●

●

●
●

●
●

●
●●

●
●

●●
●

●
●
●●●●●

●
●
●
●

●
●
●

●

●

●

●

●

●

SD
1 2 5 10 20 50 100 200 500

0.
00

2
0.

00
5

0.
02

0
0.

05
0

0.
20

0
0.

50
0

C
D

F

(l) imagemagick

●

●

●

●

●

●

●
●

●
●

●●
●

●●
●●●●●●

●
●●

●●●●●
●●

●●●●
●

●
●

●
●
●
●

●

●

●

●

●

SD
1 2 5 10 20 50 100 200

0.
00

05
0.

00
50

0.
05

00
0.

50
00

C
D

F

(m) python

●

●

●

●

●

●

●
●

●
●

●
●

●●●●●●●●●●●
●
●●●●●●●●●●

●●●
●●●● ●

●●●
●●

●●
●●

●
●
●

●
●

●
●

●

●

●

●

SD
1 2 5 10 20 50 100 200 500

0.
00

05
0.

00
50

0.
05

00
0.

50
00

C
D

F

(n) php

●

●

●

●
●

●
●

●

●●●
●●●

●●

●
●●

●● ●●●●●
●●●

●●●●●●●●
●
●

●
●
●

●
●

●

●

●

●

●

SD
1 2 5 10 20 50 100 200 500

0.
00

1
0.

00
5

0.
05

0
0.

50
0

C
D

F

(o) postgresql

●

●

●

●

●

●

●

●

● ●
●

● ●
●●

●●
● ●

●
●●●●

●
●

●
●
●

●
●

●

●

●

●

●

●

SD
1 2 5 10 20 50

0.
00

2
0.

00
5

0.
02

0
0.

05
0

0.
20

0
0.

50
0

C
D

F

(p) gimp

●

●

●

●
●

●
●

●
●

●
●

●
●

●●●●
●●● ●●●●●●●●●●●●●●●●●●

●●
●
●
●
●
●

●
●

●

●

●

●

SD
1 2 5 10 20 50 100 200 500

0.
00

05
0.

00
50

0.
05

00
0.

50
00

C
D

F

(q) glibc

●

●

●

●

●
●

●
●

●
●●●

●
●●●●●

●●●●
●●●●

●●●●●●●●
●●●●● ●●

●● ●●●●●●●●●●●●●●●
●

●
●
●
●

●
●
●

●

●

●

●

SD
1 2 5 10 20 50 100 200 500

0.
00

05
0.

00
50

0.
05

00
0.

50
00

C
D

F

(r) mysql

●

●

●

●
●

●
●

●
●

●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●● ●●
●●

●
●
●
●

●

●

●

●

SD
1 5 10 50 100 500 1000

0.
00

01
0.

00
10

0.
01

00
0.

10
00

1.
00

00

C
D

F

(s) gcc

●

●

●

●
●

●
●

●
●

●
●

●
●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●● ● ●●●●●●
●
●
●

●
●

●

●

●

●

SD
1 5 10 50 100 500 1000

0.
00

01
0.

00
10

0.
01

00
0.

10
00

1.
00

00

C
D

F

(t) linux kernel

Fig. 7: Empirical CDFs of the scattering degrees (points) and the fitted power
law (red line), both in logarithmic scale

14 Rodrigo Queiroz et al.

Table 2: Scattering degree (SD) descriptive measures (NOFC: Number of Fea-
ture Constants)

System NOFC Mean Median 95th Max Mode % Gini

vi 118 4.72 1 27.45 53 1 58.4 0.66
lighttpd 179 4.20 2 14.00 48 1 40.7 0.57
xfig 110 3.87 1 14.10 83 1 54.5 0.64
sendmail 905 3.91 2 11.00 204 1 45.0 0.59
sylpheed 121 8.90 2 35.00 242 1 47.1 0.77
git 383 2.62 1 7.90 92 1 71.2 0.56
apache 606 3.30 1 12.00 114 1 57.2 0.58
libxml2 2 095 4.14 1 13.00 379 1 86.0 0.73
emacs 1 970 3.50 1 9.00 211 1 66.8 0.64
openldap 784 4.10 1 14.00 85 1 50.6 0.62
subversion 217 5.63 1 11.00 339 1 53.4 0.72
imagemagick 636 5.46 1 13.00 429 1 53.9 0.72
python 2 849 2.71 1 7.00 322 1 69.5 0.56
php 2 502 4.37 1 12.00 674 1 56.9 0.67
postgresql 1 264 4.49 1 13.85 569 1 62.7 0.70
gimp 557 4.66 1 18.00 156 1 56.7 0.66
glibc 3 370 4.94 1 14.00 662 1 56.5 0.71
mysql 1 990 6.93 2 18.00 652 1 47.9 0.75
gcc 8 898 4.38 1 13.00 1 867 1 57.1 0.68
linux kernel 12 661 5.40 1 14.00 2 698 1 52.1 0.71

Table 3: Power-law best-fit analysis for scattering degree (SD). Significant
results (p-value > 0.1) are bold.

System k xmin xmax % crop p-value

vi 1.8542 1 53 0 0.2692
lighttpd 2.2239 3 48 0 0.7928
xfig 1.9645 1 83 0 0.1388
sendmail 2.3729 5 204 0 0.7392
sylpheed 1.7286 1 242 0 0.1728
git 2.3003 1 92 0 0.1592
apache 1.9704 1 114 0 0.0632
libxml2 1.9535 14 379 0 0.1880
emacs 2.1288 1 211 0 0.0020
openldap 2.0032 2 85 0 0.0392
subversion 2.4064 4 146 0.46 0.4984
imagemagick 1.8915 1 429 0 0.0220
python 2.2993 4 322 0 0.7960
php 2.1652 4 674 0 0.9636
postgresql 2.0145 1 569 0 0.0292
gimp 2.1997 5 76 0.35 0.1272
glibc 2.0358 7 662 0 0.7840
mysql 2.0255 8 528 0.05 0.1128
gcc 2.0146 2 1867 0 0.0000
linux kernel 2.2216 8 2698 0 0.5516

The Shape of Feature Code 15

of three systems (subversion, gimp, and mysql), the best fit to a power law
requires an upper bound value (xmax). This cropping of a small number of
features (less than 0.5%) in the end of the distribution is necessary when the
power-law behavior seems to fit most of the distribution, but does not hold
for some few higher values. For the remaining six systems, we reject the null
hypothesis in favor of the alternative hypothesis (the power-law model is not
a plausible explanation model). Note that this is not the same as concluding
that the scattering distribution of these six systems is not heavy-tailed. In
fact, Figure 7 suggests a heavy-tailed distribution for all 20 systems, some of
which possibly follow an alternative distribution (e.g., stretched exponential or
log-normal). Table 3 lists the inferred parameters and the resulting p-values.

4.2 Tangling Degree

To analyze the distribution of tangling degrees, we also plotted the histograms
of the extracted TD values for each system, as shown in Figure 8. We observe
that the histograms follow a different pattern from the ones for scattering
(Figure 6). In particular, most TD values are equal to one, and we have very
few feature expressions with higher TD values. Table 4 shows the number of
feature expressions (NOFE) in our subject systems, as well as the mean, me-
dian, 95th percentile, maximal value, the mode value, and its frequency in the
TD distributions of each system. The table provides also the Gini coefficients
computed over the TD values of a system.

Table 4: Tangling degree (TD) descriptive measures (NOFE: Number of Fea-
ture Expressions)

System NOFE Mean Median 95th Max Mode % Gini

vi 554 1.00 1 1 2 1 99.2 0.01
lighttpd 686 1.09 1 2 7 1 93.5 0.08
xfig 378 1.12 1 2 7 1 94.4 0.10
sendmail 3 176 1.11 1 2 7 1 90.5 0.09
sylpheed 986 1.09 1 1 6 1 95.1 0.08
git 885 1.13 1 2 10 1 91.0 0.11
apache 1 788 1.12 1 2 7 1 93.3 0.10
libxml2 8 127 1.06 1 2 8 1 94.8 0.06
emacs 5 565 1.23 1 2 12 1 82.2 0.16
openldap 2 930 1.09 1 2 8 1 91.7 0.08
subversion 1 113 1.09 1 2 6 1 92.5 0.08
imagemagick 2 732 1.27 1 2 5 1 76.3 0.16
python 6 969 1.11 1 2 7 1 91.5 0.09
php 9 373 1.16 1 2 8 1 87.5 0.12
postgresql 4 717 1.20 1 2 11 1 88.5 0.15
gimp 2 118 1.22 1 2 6 1 83.8 0.16
glibc 13 345 1.24 1 2 14 1 80.6 0.16
mysql 12 359 1.11 1 2 8 1 91.0 0.09
gcc 29 842 1.30 1 3 21 1 82.1 0.20
linux kernel 63 482 1.07 1 2 12 1 93.5 0.06

16 Rodrigo Queiroz et al.

0

200

400

0 10 20 30

TD

F
re

qu
en

cy

(a) vi

0

200

400

600

0 10 20 30

TD

F
re

qu
en

cy

(b) lighttpd

0

100

200

300

0 10 20 30

TD

F
re

qu
en

cy

(c) xfig

0

1000

2000

3000

0 10 20 30

TD

F
re

qu
en

cy

(d) sendmail

0

250

500

750

0 10 20 30

TD

F
re

qu
en

cy

(e) sylpheed

0

200

400

600

800

0 10 20 30

TD

F
re

qu
en

cy

(f) git

0

500

1000

1500

0 10 20 30

TD

F
re

qu
en

cy

(g) apache

0

2000

4000

6000

8000

0 10 20 30

TD

F
re

qu
en

cy

(h) libxml2

0

1000

2000

3000

4000

0 10 20 30

TD

F
re

qu
en

cy

(i) rmacs

0

1000

2000

0 10 20 30

TD

F
re

qu
en

cy

(j) openldap

0

250

500

750

1000

0 10 20 30

TD

F
re

qu
en

cy

(k) subversion

0

500

1000

1500

2000

0 10 20 30

TD

F
re

qu
en

cy

(l) imagemagick

0

2000

4000

6000

0 10 20 30

TD

F
re

qu
en

cy

(m) python

0

2000

4000

6000

8000

0 10 20 30

TD

F
re

qu
en

cy

(n) php

0

1000

2000

3000

4000

0 10 20 30

TD

F
re

qu
en

cy

(o) postgresql

0

500

1000

1500

0 10 20 30

TD

F
re

qu
en

cy

(p) gimp

0

3000

6000

9000

0 10 20 30

TD

F
re

qu
en

cy

(q) glibc

0

3000

6000

9000

0 10 20 30

TD

F
re

qu
en

cy

(r) mysql

0

5000

10000

15000

20000

25000

0 10 20 30

TD

F
re

qu
en

cy

(s) gcc

0

20000

40000

60000

0 10 20 30

TD

F
re

qu
en

cy

(t) linux kernel

Fig. 8: Histogram of tangling degrees (TD)

The Shape of Feature Code 17

First of all, we can observe that, in all systems, the mean is close to one and
both the median and the mode are equal to one. Second, the 95th percentile
is less or equal to two in 19 systems (only in gcc it is equal to three). In
13 systems, the mode represents, at least, 90% of the measured values. For
example, 99.2% of the feature expressions in vi have a TD value equal to
one. imagemagick is the system with the lowest frequency of TD values
that are equal to one (76.3%). Finally, the Gini coefficients for TD—across all
subjects—are less than 0.21, which shows that tangled degree is nearly equally
distributed. For all systems, we found that a power-law distribution is not a
plausible model for the reported TD values. Although it is possible to fit a
power law to the tail of each TD distribution, the number of data points in
the right of the tail is too small to claim statistical power.

4.3 Nesting Depth

As shown in Figure 9, the histograms of the ND values for each system are
similar to the ones for tangling: most ND values are equal to one, and we have
very few branches with nested ifdefs and #else annotations. Table 5 shows the
number of top-level branches (NOTLB) in the subject systems, as well as the
mean, median, 95th percentile, maximal value, mode value, and its frequency
in the considered ND distributions.

Table 5: Nesting Depth (ND) descriptive measures (NOTLB: Number of Top-
Level Branches)

System NOTLB Mean Median 95th Max Mode % Gini

vi 551 1.14 1 2 5 1 86.9 0.10
lighttpd 780 1.08 1 2 5 1 92.1 0.07
xfig 398 1.09 1 2 7 1 93.4 0.08
sendmail 2 290 1.17 1 2 5 1 86.2 0.13
sylpheed 1 197 1.06 1 2 6 1 94.4 0.05
git 809 1.17 1 2 9 1 86.2 0.12
apache 1 799 1.05 1 2 6 1 94.7 0.05
libxml2 2 585 1.14 1 2 7 1 88.8 0.11
emacs 3 106 1.18 1 2 15 1 87.3 0.14
openldap 2 626 1.12 1 2 5 1 89.5 0.09
subversion 1 277 1.04 1 1 4 1 95.7 0.04
imagemagick 2 139 1.09 1 2 5 1 93.0 0.08
python 6 416 1.12 1 2 9 1 89.8 0.09
php 7 868 1.10 1 2 6 1 90.8 0.09
postgresql 4 044 1.11 1 2 6 1 91.8 0.09
gimp 2 216 1.09 1 2 6 1 92.8 0.08
glibc 12 062 1.14 1 2 6 1 88.0 0.11
mysql 11 850 1.08 1 2 6 1 92.8 0.07
gcc 26 888 1.11 1 2 24 1 90.6 0.09
linux kernel 71 591 1.05 1 2 5 1 94.6 0.05

18 Rodrigo Queiroz et al.

0

100

200

300

400

500

0 10 20 30

ND

F
re

qu
en

cy

(a) vi

0

200

400

600

0 10 20 30

ND

F
re

qu
en

cy

(b) lighttpd

0

100

200

300

0 10 20 30

ND

F
re

qu
en

cy

(c) xfig

0

500

1000

1500

2000

0 10 20 30

ND

F
re

qu
en

cy

(d) sendmail

0

300

600

900

0 10 20 30

ND

F
re

qu
en

cy

(e) sylpheed

0

200

400

600

0 10 20 30

ND

F
re

qu
en

cy

(f) git

0

500

1000

1500

0 10 20 30

ND

F
re

qu
en

cy

(g) apache

0

500

1000

1500

2000

0 10 20 30

ND

F
re

qu
en

cy

(h) libxml2

0

1000

2000

0 10 20 30

ND

F
re

qu
en

cy

(i) emacs

0

500

1000

1500

2000

0 10 20 30

ND

F
re

qu
en

cy

(j) openldap

0

250

500

750

1000

1250

0 10 20 30

ND

F
re

qu
en

cy

(k) subversion

0

500

1000

1500

2000

0 10 20 30

ND

F
re

qu
en

cy

(l) imagemagick

0

2000

4000

6000

0 10 20 30

ND

F
re

qu
en

cy

(m) python

0

2000

4000

6000

0 10 20 30

ND

F
re

qu
en

cy

(n) php

0

1000

2000

3000

0 10 20 30

ND

F
re

qu
en

cy

(o) postgressql

0

500

1000

1500

2000

0 10 20 30

ND

F
re

qu
en

cy

(p) gimp

0

3000

6000

9000

0 10 20 30

ND

F
re

qu
en

cy

(q) glibc

0

3000

6000

9000

0 10 20 30

ND

F
re

qu
en

cy

(r) mysql

0

5000

10000

15000

20000

25000

0 10 20 30

ND

F
re

qu
en

cy

(s) gcc

0

20000

40000

60000

0 10 20 30

ND

F
re

qu
en

cy

(t) linux kernel

Fig. 9: Histogram of Nesting Depth (ND)

The Shape of Feature Code 19

The table provides also the Gini coefficients computed over the ND values
extracted for each system. Similarly to TD, the mode is one in all systems and
it represents, at least, 86% of the measured ND values. For example, 94.7%
of the ifdef branches in apache have ND values equal to one, and git is
the system with the lowest number of branches without nested ifdefs (86.2%).
Much like for TD, the Gini coefficients are quite low, less than 0.15, suggesting
a uniform distribution, even more than the ones observed for tangling. As a
consequence, we found that a power-law distribution is not a plausible model
for the reported ND values. As we concluded for TD, although it is possible to
fit a power law to the tail of each ND distribution, the number of data points
in the right of the tail is too small to claim statistical power.

5 Thresholds for Feature-Related Metrics

Our empirical study shows that feature scattering is highly skewed. In fact, 14
out of 20 systems show strong evidence that feature scattering is heavy-tailed,
and the underlying distributions follow a power-law. Tangling and nesting have
a more uniform distribution for all subject systems, with most values equal to
one. These findings are of great relevance for the extraction of thresholds for
the studied metrics. Most importantly, feature-scattering thresholds should not
be based on centrality statistics measures (e.g., mean and standard deviation).
In contrast, tangling and nesting have only a small number of outliers, which
are not too far apart from the most typical values of these two metrics. Thus,
mean values are robust thresholds for the tangling and nesting metrics.

Based on our statistical analysis, we derive thresholds for feature scatte-
ring, tangling, and nesting in a way that respects the distributions found in
our study. Taking data skew into account, we rely on the notion of relative
thresholds, which we explain next.

5.1 Relative Thresholds

Several code metrics, measuring properties such as size, coupling, cohesion etc,
are well-known following heavy-tailed distributions [4,21,37]. For this reason,
previous work proposed techniques to extract thresholds that do not rely on
the mean or the standard deviation. For example, Oliveira et al. [24] proposed
the notion of relative thresholds for evaluating heavy-tailed metric values,
along with a set of functions that obtain such thresholds from a set of subject
systems (Corpus). Relative thresholds have the following format:

at least p% of the entities should have M ≤ k

where M is a metric calculated for a given source code entity, k is an upper
limit, and p is the minimal percentage of entities that should be below this
upper limit. The goal is to establish upper limits for metric values that should
be followed by most entities, not necessarily all, though. The reason is that,

20 Rodrigo Queiroz et al.

ComplianceRate[p, k] =
| { S ∈ Corpus | p% of the entities in S have M ≤ k} |

| Corpus |

penalty1[p, k] =


90− ComplianceRate[p, k]

90
if ComplianceRate[p, k] < 90

0 otherwise

penalty2[k] =


k −Median90

Median90
if k > Median90

0 otherwise

CompliancePenalty[p, k] = penalty1[p, k] + penalty2[k]

Fig. 10: ComplianceRate and CompliancePenalty functions [24]

in heavy-tailed distributions, the high metric values of the distribution make
it challenging to define thresholds for all entities. Thus, relative thresholds
attempt to balance two forces: (i) on one hand, relative thresholds should
reflect real design rules, followed by most subjects in the target system; (ii) on
the other hand, the prescribed thresholds should not be based on lenient upper
limits. For example, a threshold stating that “95% of the feature constants in
a system should have a scattering degree less than 3K” is probably satisfied
by most systems.

Figure 10 presents the functions introduced by Oliveira et al. to calculate
the parameters p and k that define the relative threshold for a given metric
M . First, function ComplianceRate[p, k] returns the percentage of systems in
the Corpus that follows the relative threshold defined by the pair [p, k]. To
determine the best p and k, ComplianceRate is maximized, while accounting
for a minimal CompliancePenalty. The latter is the sum of penalties introduced
by two functions:

– penalty1[p, k]: a ComplianceRate[p, k] less than 90% receives a penalty pro-
portional to its distance to 90%, This penalty fosters thresholds followed
by, at least, 90% of the systems in the Corpus.

– penalty2[k]: a ComplianceRate[p, k] receives the second penalty propor-
tional to the distance between k and the median of the 90th percentiles of
the values of M in each system in the Corpus, denoted by Median90.

5.2 Thresholds for Scattering Degree

As we found that feature scattering degrees follow a heavy-tailed distribution,
we computed relative thresholds for this metric, using our sample of 20 systems
and the compliance functions described in Section 5.1, obtaining the following
result:

at least, 85% of the feature constants in a system should have SD ≤ 6

The Shape of Feature Code 21

Percentiles (% of features)

Sc
at

te
rin

g
D

eg
re

e
(S

D
)

0.
70

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

0

100

200

300

vi

sylpheed

Fig. 11: Percentile plots of scattering degrees (SD)

In fact, this threshold holds for all systems in our corpus except vi and
sylpheed, which exceed the threshold only marginally. In vi, we observe that
83% of the feature constants have a SD ≤ 6 and, in sylpheed, this percentage
is 82%. However, the proposed relative threshold holds for large and complex
systems, with thousands of ifdefs, such as the linux kernel, gcc, and mysql.
Figure 11 shows the percentile functions for the SD values of each subject sys-
tem. The x-axis represents the percentiles, and the y-axis represents the upper
SD values of the feature constants matching the percentile. The plot nicely il-
lustrates that SD values are heavy-tailed, as already concluded in Section 4.1 .
However, there are two systems whose SD values begin to grow earlier, around
the 85th percentile, which are exactly vi and sylpheed.

These results suggest that, the proposed relative threshold reflects the most
common scattering distributions found in our corpus. Another corpus, how-
ever, may yield a different threshold (e.g., a corpus with systems of a particular
domain). However, assuming that we selected a representative sample of C-
preprocessor-based systems, including small, medium, and large systems, we
expect that different corpora would not produce radically different thresholds.
In other words, not following the thresholds by a small margin—like in vi and
sylpheed—does not necessarily mean a serious design flaw. However, if only
50% of the feature constants in a system have SD ≤ 6, this would certainly
raise more serious concerns on the quality of the feature-implementation struc-
ture. For example, Spencer and Collyer [31] claim that ifdef-based implemen-
tation should follow basic principles of software engineering, including clean

22 Rodrigo Queiroz et al.

interfaces and information hiding. More specifically, ifdefs should be hidden
behind interfaces, making it possible to implement the bulk of the software as
a single version using these interfaces. Code that do not follow the proposed
thresholds for scattering degree might, for example, have many ifdefs that do
not follow this general principle.

5.3 Thresholds for Tangling Degree

Tangling degrees approximate an uniform distribution, allowing to directly de-
fine thresholds. After inspecting the results in Table 4, specifically the mode
and its relative frequency (%), we propose the following threshold:

at least, 80% of the feature expressions in a system should have TD = 1

To define the threshold we assume that the mode of the TD distributions
(which is equal to one in all systems) should correspond to, at least, 80% of the
feature expressions in each system. In other words, we assume that systems
where the mode corresponds to less than 80% of the feature expressions deviate
from an uniform distribution and therefore are outliers. All systems in our
sample follow this threshold, except imagemagick.

5.4 Thresholds for Nesting Depth

After inspecting the measures of Table 5, specially the mode and its frequency,
we propose the following threshold:

at least, 85% of the top-level branches in a system should have ND = 1

To define this threshold we followed the assumptions of the TD threshold.
However, in this case we are requiring the mode of the ND distribution (ND=1)
to correspond to, at least, 85% of the top-level ifdef branches (and not 80%,
as in the TD threshold). The reason is that in our sample, the mode of ND is
one in all systems, and it corresponds to, at least, 86.2% of the top-level ifdef
branches in each system. Therefore, the proposed threshold is followed by all
systems in our sample. The absence of systems not following the proposed
threshold is explained by the fact that the ND distributions are quite similar
across all subject systems.

The Shape of Feature Code 23

5.5 Discussion

The proposed thresholds can be used to check whether a system implemen-
tation includes a complex usage of ifdefs, at least when compared with other
relevant systems (i.e., the systems considered in our Corpus). To illustrate this
usage, we applied our thresholds on xterm (version 3.1.8), the standard ter-
minal emulator for the XWindow system. Existing research shows that xterm
makes a heavy and complex usage of ifdefs. For example, Liebig et al. show
that almost 40% of xterm’s lines of code are enclosed by ifdefs [19]. More-
over, almost 10% of the ifdefs in xterm are undisciplined annotations, i.e.,
they delimit tokens that do not align with the syntactic code structure, e.g.,
with entire statements, functions, and type declarations [20]. Furthermore, we
inspected the description of 318 patches of xterm, from 1996 to 2015.7 We
found that 82 patches (26%) included 110 changes in ifdefs, to correct bugs,
to implement new features, or due to refactorings. We provide three examples
of such changes:

– Patch #315: “fix an ifdef ’ing problem, where –disable-dec-locator would
turn off logic needed for DECIC and DECDC.”

– Patch #275: “adjust ifdef ’s for putenv and unsetenv in case only one of
those is provided on a given platform.”

– Patch #216: “ifdef ’d Sun function-key feature to make it optional, like HP
and SCO.”

Therefore, we hypothesize that xterm should be classified as an outlier
system, according to the thresholds for SD, TD, or ND derived in the previous
sections. To check this hypothesis, we used fscat to compute the distribution
of the SD, TD, and ND values in xterm. These distributions are presented in
Figure 12.

0

100

200

0 10 20 30 40

SD

F
re

qu
en

cy

(a) SD

0

500

1000

1500

2000

0 10 20 30

TD

F
re

qu
en

cy

(b) TD

0

500

1000

1500

0 10 20 30

ND

F
re

qu
en

cy

(c) ND

Fig. 12: Histogram of Scattering Degree (SD), Tangling Degree (TD), and
Nesting Depth (ND) in xterm

7 xterm change log is available at http://invisible-island.net/xterm/xterm.log.html

24 Rodrigo Queiroz et al.

We then checked whether xterm follows the proposed thresholds, with the
following results:

– The threshold derived for SD states that a system should have, at least,
85% of the ifdefs with SD ≤ 6. However, in xterm, only 79% of the ifdefs
have SD ≤ 6. Therefore, xterm is indeed an outlier regarding SD.

– The threshold for TD states that a system should have, at least, 80% of
the ifdefs with TD=1. Indeed, xterm has 91% of the ifdefs with TD=1.
Therefore, it is not an outlier for TD.

– The threshold for ND states that a system should have, at least, 85% of
the ifdefs with ND=1. Indeed, xterm has 89% of the ifdefs with ND=1.
Therefore, it is not an outlier for ND.

To conclude, the derived thresholds indeed indicate that xterm has a complex
usage of ifdefs, which manifests mainly in scattering. Regarding tangling and
nesting, xterm is not different from the systems in our corpus.

6 Threats to Validity

A threat to external validity of our conclusions is the selection of the subject
systems. We acknowledge that the current selection does not support us to
conclude that our findings are applicable to every C-preprocessor-based sys-
tem. Specially, the proposed thresholds for SD, TD, and ND should be used
with caution, as they heavily depend on context, as usual with software met-
rics [38,30]. However, we attempted to increase external validity by carefully
selecting mature systems of different sizes from different application domains.

The mechanisms in which features are implemented also pose threat to ex-
ternal validity. Since features may be implemented in different ways depending
on the programming language, scattering, tangling, and nesting may not have
the same behavior as observed in C-preprocessor-based systems.

Different programming styles used by developers to write ifdefs may affect
the measured degrees, a threat to construct validity. As an example, Figure 13
shows two fragments of ifdef code, with exactly the same behavior. However,
since they have different ifdef structures, the measured metric values are dif-
ferent (in Style 1, FEATURE A has SD=1, but in Style 2, FEATURE A has SD=2).
We attempt to mitigate this threat to validity by analyzing different systems,
from different application domains. This way, we are not favouring one style
over the other.

Another threat to internal validity arises when computing the three met-
rics we considered. When using fscat, we consider all the C source code of
each system, and we do not distinguish files that are automatically generated
(e.g., those produced by parser generators) from those that are not. We also
do not discard unit test files. Thus, our results are, to some extent, subject to
the influence of the file type. We argue, however, that the majority of the files
we take for analysis are not automatically generated (as we confirmed after a
random inspection).

The Shape of Feature Code 25

1 //Style 1:

2

3 #ifdef FEATURE_A

4 //code a

5 #elif FEATURE_B

6 //code b

7 #endif

8

9 //Style 2:

10

11 #ifdef FEATURE_A

12 //code a

13 #endif

14 #if !defined(FEATURE_A) && defined (FEATURE_B)

15 // code b

16 #endif

Fig. 13: Implementing ifdefs with different programming styles

Last, but not least, our results indicate that feature scattering follows a
power-law distribution in 14 out of 20 of our subjects. However, it might be
the case that other distributions different from power laws are in fact a better
fit (e.g., log-normal or stretched exponential). Even if that turns out to be
true, conclusions will be the same (i.e., scattering will still be a heavy-tailed
distribution).

7 Related Work

Liebig et al. [19] analyzed 40 systems written in C showing how developers use
the C preprocessor when implementing features and their associated ifdefs in
source code. The authors consider not only scattering, tangling, and nesting,
but also metrics measuring the granularity of annotations (the syntactic lo-
cation where an ifdef occurs—e.g., at a global level, inside a function, inside
a block, etc.) and the type of annotated code (homogeneous, meaning that a
verbatim copy of the annotated block also appears in other annotated code;
heterogeneous, with distinct extensions; or a mix of the two). The authors re-
port their results using centrality and dispersion statistics, including mean and
standard deviations. However, the properties of the underlying distributions
have not been analyzed (e.g., whether they are symmetric, as in Gaussian dis-
tributions, or whether they are heavy-tailed, as in power-law distributions),
which may turn results not representative of true typical values.

Hunsen et al. [13] used the same metrics and tools, including the trans-
formations on the ifdef conditions, as Liebig et al. to compare metric values
for open-source and industrial systems. While the authors report the met-
rics for the individual systems using centrality and dispersion statistics, they
used distribution-independent statistical tests (i.e., the Mann-Whitney U test)

26 Rodrigo Queiroz et al.

to check their hypotheses regarding the difference between open-source and
closed-source systems.

Eaddy et al. [7] investigated the relation between scattering and bugs, but
do not prescribe a threshold limiting the degree of scattering. Nonetheless,
they provide evidence that simple metrics, such as the scattering degree (a.k.a.
concern diffusion metric), correlate with the number of bugs in a system,
independent of its size.

Passos et al. [26] conducted a longitudinal case study of scattered features
in the Linux kernel focusing on driver features. They analyze their evolution
by analyzing scattering thresholds, linking findings to the kernel architectural
decomposition, and studying how scattered driver features differ from non-
scattered ones.

Outside the feature-oriented and product-line communities, there are differ-
ent pieces of work checking the characteristic distribution of size, coupling, and
cohesion-related metrics. Louridas et al. [21] studied the existence of power-law
distributions in different kinds of software components, including Java classes,
Perl packages, shared Unix Libraries, and Windows dynamic linked libraries
(DLLs). The authors conclude that heavy-tailed distributions, usually power
laws, appear at various levels of abstraction, in many domains, operating sys-
tems, and languages. Concas et al. [6] study ten different properties related
to classes and methods of a large Smalltalk system, consistently finding non-
Gaussian distributions of these properties. The authors then conclude that “the
usual evaluation of systems based on mean and standard deviation of metrics
can be misleading”. Baxter et al. [4] report that some structural properties of
Java software follow power-law distributions, while others do not. They conjec-
ture that metrics measuring local properties that programmers are inherently
aware about (e.g., out-degree distributions or number of method parameters)
tend to follow distributions that are not power-law distributions. In fact, this is
the case for tangling (TD) and nesting (ND) considered here. Finally, Taube-
Shock et al. [33] studied connectivity in 97 open source software systems,
and they found that all these systems exhibit a similar scale-free dependency
structure, with regard to both the overall connectivity and between-module
connectivity. For this reason, they concluded that high coupling is never en-
tirely eliminated from software design and that, in fact, some degree of high
coupling might be quite reasonable. A similar conclusion appears to apply to
scattering in C preprocessor-based systems.

From the observation that source code metrics may follow heavy-tailed
distributions, researchers have recently proposed techniques for extracting re-
liable thresholds for existing metrics [1,23,24,9]. In this paper, we used the
techniques of Oliveira et al. [23,24] for extracting reliable thresholds for the
metrics we evaluated.

The Shape of Feature Code 27

8 Conclusion

In our empirical study, we analyzed the statistical distribution of the scat-
tering, tangling, and nesting degrees in 20 open-source C preprocessor-based
systems. Our study revealed that feature scattering, as measured by the SD
metric, follows a heavy-tailed distribution in all subject systems. In 14 sys-
tems (70%), these heavy-tailed distributions matched a power law. Regarding
tangling and nesting degrees, the metric values in all systems tend to a uni-
form distribution, with most values equal to one for both metrics and a few
occurrences of slighter higher values. Based on these findings, we proposed
thresholds for all three metrics, which are meant to be evaluated in follow-up
studies.

In future work, we plan to extend our analysis to a larger set of systems.
Another direction for future investigation is to assess feature-related metrics in
systems written in languages other than C (e.g., in object-oriented languages)
or using other preprocessor mechanisms, such as visual annotations [15,34].
Furthermore, we plan to explore other techniques for extracting thresholds,
such as the one proposed by Alves et al. [1], or boxplots adjusted to skewed
distributions [12]. Finally, we plan to check whether following (or not following)
the proposed thresholds has an impact on other software properties, such as
bugs, maintenance effort, etc.

Acknowledgements We thank CNPq, CAPES, FAPEMIG, and the German Research
Foundation (AP 206/4, AP 206/5, AP 206/6) for partially funding this project.

References

1. Alves, T.L., Ypma, C., Visser, J.: Deriving Metric Thresholds from Benchmark Data.
In: Proceedings of the International Conference on Software Maintenance, pp. 1–10.
IEEE (2010)

2. Apel, S., Batory, D., Kästner, C., Saake, G.: Feature-Oriented Software Product Lines:
Concepts and Implementation. Springer (2013)

3. Apel, S., Leich, T., Saake, G.: Aspectual Feature Modules. IEEE Transactions on
Software Engineering 34(2), 162–180 (2008)

4. Baxter, G., Frean, M., Noble, J., Rickerby, M., Smith, H., Visser, M., Melton, H., Tem-
pero, E.: Understanding the Shape of Java Software. In: Proceedings of the International
Conference on Object-oriented Programming Systems, Languages, and Applications, pp.
397–412. ACM (2006)

5. Clauset, A., Shalizi, C.R., Newman, M.E.J.: Power-Law Distributions in Empirical Data.
Society for Industrial and Applied Mathematics Review 51(4), 661–703 (2009)

6. Concas, G., Marchesi, M., Pinna, S., Serra, N.: Power-Laws in a Large Object-Oriented
Software System. IEEE Transactions on Software Engineering 33(10), 687–708 (2007)

7. Eaddy, M., Zimmermann, T., Sherwood, K.D., Garg, V., Murphy, G.C., Nagappan, N.,
Aho, A.V.: Do Crosscutting Concerns Cause Defects? IEEE Transactions on Software
Engineering 34(4), 497–515 (2008)

8. Favre, J.M.: Preprocessors from an Abstract Point of View. In: Proceedings of the
International Conference on Software Maintenance, pp. 287–296. IEEE (1996)

9. Ferreira, K., Bigonha, M., Bigonha, R., Mendes, L., Almeida, H.: Identifying Thresholds
for Object-Oriented Software Metrics. Journal of Systems and Software 85(2), 244–257
(2011)

28 Rodrigo Queiroz et al.

10. Gillespie, C.S.: Fitting Heavy-Tailed Distributions: The poweRlaw Package (2014). R
package version 0.20.5

11. Gillespie, C.S.: The poweRlaw Package: A General Overview (2014)
12. Hubert, M., Vandervieren, E.: An Adjusted Boxplot for Skewed Distributions. Compu-

tational Statistics & Data Analysis 52(12), 5186–5201 (2008)
13. Hunsen, C., Zhang, B., Siegmund, J., Kästner, C., Leßenich, O., Becker, M., Apel, S.:

Preprocessor-Based Variability in Open-Source and Industrial Software Systems: An
Empirical Study. Empirical Software Engineering pp. 1–34 (2015). To appear

14. Jbara, A., Feitelson, D.: Characterization and Assessment of the Linux Configuration
Complexity. In: International Working Conference on Source Code Analysis and Ma-
nipulation, pp. 11–20. IEEE (2013)

15. Kästner, C., Apel, S., Kuhlemann, M.: Granularity in Software Product Lines. In:
Proceedings of the International Conference on Software Engineering, pp. 311–320. ACM
(2008)

16. Kästner, C., Apel, S., Ostermann, K.: The Road to Feature Modularity? In: Proceedings
of the International Workshop on Feature-Oriented Software Development, pp. 1–8.
ACM (2011)

17. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J.M., Irwin,
J.: Aspect-Oriented Programming. In: Proceedings of the European Conference on
Object-Oriented Programming, pp. 220–242. Springer (1997)

18. Krone M.; Snelting, G.: On the Inference of Configuration Structures from Source Code.
In: Proceedings of the International Conference on Software Engineering, pp. 49–57.
IEEE (1994)

19. Liebig, J., Apel, S., Lengauer, C., Kästner, C., Schulze, M.: An Analysis of the Vari-
ability in Forty Preprocessor-Based Software Product Lines. In: Proceedings of the
International Conference on Software Engineering, pp. 105–114. ACM (2010)

20. Liebig, J., Kästner, C., Apel, S.: Analyzing the Discipline of Preprocessor Annotations
in 30 Million Lines of C Code. In: Proceedings of the International Conference on
Aspect-Oriented Software Development, pp. 191–202. ACM (2011)

21. Louridas, P., Spinellis, D., Vlachos, V.: Power Laws in Software. ACM Transactions on
Software Engineering and Methodology 18, 1–26 (2008)

22. Newman, M.: Power Laws, Pareto Distributions and Zipf’s Law. Contemporary Physics
46, 323–351 (2005)

23. Oliveira, P., Lima, F., Valente, M.T., Alexander, S.: RTTOOL: A Tool for Extracting
Relative Thresholds for Source Code Metrics. In: Proceedings of the International
Conference on Software Maintenance and Evolution (Tool Demo Track), pp. 1–4 (2014)

24. Oliveira, P., Valente, M., Paim Lima, F.: Extracting Relative Thresholds for Source
Code Metrics. In: Proceedings of the International Conference on Software Maintenance,
Reengineering and Reverse Engineering, pp. 254–263. IEEE (2014)

25. Passos, L., Guo, J., Teixeira, L., Czarnecki, K., Wasowski, A., Borba, P.: Coevolution
of Variability Models and Related Artifacts: A Case Study from the Linux Kernel. In:
Proceedings of the International Software Product Line Conference, pp. 91–100. ACM
(2013)

26. Passos, L., Padilla, J., Berger, T., Apel, S., Czarnecki, K., Valente, M.T.: Feature Scatte-
ring in the Large: A Longitudinal Study of Linux Kernel Device Drivers. In: Proceedings
of the International Conference on Modularity, pp. 1–12. ACM (2015)

27. Passos, L., Teixeira, L., Dintzner, N., Apel, S., Wsowski, A., Czarnecki, K., Borba, P.,
Guo, J.: Coevolution of Variability Models and Related Software Artifacts. Empirical
Software Engineering pp. 1–50 (2015)

28. Queiroz, R., Passos, L., Valente, M.T., Apel, S., Czarnecki, K.: Does Feature Scat-
tering Follow Power-Law Distributions? An Investigation of Five Pre-Processor-Based
Systems. In: Proceedings of the International Workshop on Feature-Oriented Software
Development (FOSD), pp. 23–29. ACM (2014)

29. Serebrenik, A., van den Brand, M.: Theil Index for Aggregation of Software Metrics
Values. In: Proceedings of the International Conference on Software Maintenance, pp.
1–9. IEEE (2010)

30. Souza, L., Maia, M.: Do software Categories Impact Coupling Metrics? In: Proceedings
of the Working Conference on Mining Software Repositories, pp. 217–220. IEEE (2013)

The Shape of Feature Code 29

31. Spencer, H., Collyer, G.: #ifdef Considered Harmful, or Portability Experience with C
News. In: Proceedings of the USENIX Technical Conference, pp. 185–197. USENIX
Association (1992)

32. Sullivan, K., Griswold, W.G., Song, Y., Cai, Y., Shonle, M., Tewari, N., Rajan, H.:
Information Hiding Interfaces for Aspect-Oriented Design. In: Proceedings of the In-
ternational Symposium on Foundations of Software Engineering, pp. 166–175. ACM
(2005)

33. Taube-Schock, C., Walker, R.J., Witten, I.H.: Can We Avoid High Coupling? In: Pro-
ceedings of the European Conference on Object-Oriented Programming, pp. 204–228.
Springer (2011)

34. Valente, M.T., Borges, V., Passos, L.: A Semi-automatic Approach for Extracting Soft-
ware Product Lines. IEEE Transactions on Software Engineering 38(4), 737–754 (2012)

35. Vasa, R., Lumpe, M., Branchand, P., Nierstrasz, O.: Comparative Analysis of Evolv-
ing Software Systems Using the Gini Coefficient. In: Proceedings of the International
Conference on Software Maintenance, pp. 179–188. IEEE (2009)

36. Vasilescu, B., Serebrenik, A., van den Brand, M.: You Can’t Control the Unfamiliar:
A Study on the Relations Between Aggregation Techniques for Software Metrics. In:
Proceedings of the International Conference on Software Maintenance, pp. 313–322.
IEEE (2011)

37. Wheeldon, R., Counsell, S.: Power Law Distributions in Class Relationships. In: Pro-
ceedings of the International Working Conference on Source Code Analysis and Manip-
ulation, pp. 45–54. IEEE (2003)

38. Zhang, F., Mockus, A., Zou, Y., Khomh, F., Hassan, A.E.: How does Context affect the
Distribution of Software Maintainability Metrics? In: Proceedings of the International
Conference on Software Maintainability, pp. 1–10. IEEE (2013)

