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ABSTRACT
Background:Theway how programmers comprehend source code
depends on several factors, including the source code itself and the
programmer. Recent studies showed that novice programmers tend
to read source codemore like natural language text, whereas experts
tend to follow the program execution flow. But, it is unknown
how the linearity of source code and the comprehension strategy
influence programmers’ linearity of reading order.
Objective: We replicate two previous studies with the aim of addi-
tionally providing empirical evidence on the influencing effects of
linearity of source code and programmers’ comprehension strategy
on linearity of reading order.
Methods: To understand the effects of linearity of source code on
reading order, we conducted a non-exact replication of studies by
Busjahn et al. and Peachock et al., which compared the reading
order of novice and expert programmers. Like the original studies,
we used an eye-tracker to record the eye movements of participants
(12 novice and 19 intermediate programmers).
Results: In line with Busjahn et al. (but different from Peachock
et al.), we found that experience modulates the reading behavior
of participants. However, the linearity of source code has an even
stronger effect on reading order than experience, whereas the com-
prehension strategy has a minor effect.
Implications: Our results demonstrate that studies on the reading
behavior of programmers must carefully select source code snippets
to control the influence of confounding factors. Furthermore, we
identify a need for further studies on how programmers should
structure source code to align it with their natural reading behavior
to ease program comprehension.
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1 INTRODUCTION
In the past decades, much research has focused on how program-
mers comprehend source code, which is a central activity in soft-
ware development [26, 52]. The underlying cognitive process, pro-
gram comprehension, is a prerequisite for all subsequent program-
mer activities, such as testing, debugging, and maintenance. Past
research theorized on two main strategies of how programmers
comprehend software. Bottom-up comprehension is used when pro-
grammers lack domain knowledge, experience, or context to effi-
ciently understand source code [39]. Instead, they have to under-
stand individual source code lines and statements and integrate
their semantic meaning to eventually build an overarching un-
derstanding (i.e., chunking [46]). Top-down comprehension is used
when programmers take advantage of previous experience or do-
main knowledge for an efficient hypothesis-driven comprehension
process [51], for example, guided by variable identifiers [10].

Although there is some evidence for the validity of these exist-
ing comprehension models, there are still knowledge gaps, such as
when and how programmers are able to apply top-down comprehen-
sion. Program comprehension is an internal cognitive process and
as such inherently difficult to measure [47]. Conventional methods,
such as think-aloud protocols or measuring task efficiency, cannot
provide deep insights into the underlying cognitive processes of
program comprehension.

One important aspect of program comprehension is observing
the way programmers read source code. Eye tracking has proved
useful to observe programmers reading source code and answer
such fundamental research questions on program comprehension
(e.g., [13, 44, 53]). For example, Sharif and Maletic replicated a
conventional study with eye tracking and found that naming style
affects program comprehension in that programmers are able to
read under_score style faster than camelCase style [8, 44].

Previous research suggested that the linearity of the reading order
could be an indicator of how efficient programmers comprehend
source code [13]. Busjahn et al.’s seminal study described several
eye-gaze measures to gauge linearity of reading order. They showed
that programmers read source code less linear than natural text and
also that expert programmers read source code less linearly than
novices [13]. This study indicates that comprehending source code
is a skill that needs to be developed and honed with experience.
A replication of Busjahn et al.’s study by Peachock et al. supports
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the adequacy of the developed eye-gaze measures and partially
corroborated Busjahn’s study results with student participants [38].

In this paper, we further dig into the role of the linearity of
reading order for program comprehension. Specifically, we aim
at understanding how programmers’ comprehension strategy and
linearity of source code itself affect programmers’ reading behavior.
Understanding all factors that influence programmers’ linearity
of reading order is critical to more accurately measure program
comprehension with eye tracking. To this end, we conducted a
non-exact replication of the studies by Busjahn et al. and Peachock
et al. with novice and intermediate programmers. Our study differs
in the following details: First, based on the two studies, we further
refined the materials with a more systematically varied source
code linearity. Second, we investigated in addition the interaction
between comprehension strategy (i.e., top-down comprehension or
bottom-up comprehension) with the linearity of reading order.

In short, we make the following contributions:
• We report on a non-exact replication of Busjahn et al.’s eye-
tracking study on linearity of reading order.

• We provide further evidence that more experienced program-
mers read source code less linearly than novices.

• We present data that indicate that top-down and bottom-up
comprehension affect linearity of reading order.

• We propose a method to systematize source code linearity and
demonstrate that differences between source code snippets
can substantially influence programmers’ reading order.

2 ORIGINAL STUDY AND REPLICATION
In this section, we briefly summarize the original study by Busjahn
et al. as well as the replication study by Peachock et al.

2.1 Original Study (Busjahn et al.)
Busjahn et al. conducted a novel study on programmers’ linearity
of reading order [13]. They compared the linearity of reading order
of novice and expert programmers as well as the novices’ linearity
of reading order for natural text and for source code. They observed
the eye movements of 14 students while reading source code as well
as natural text in their weekly Java beginners course. The natural
text were short English passages of four to five lines. In addition,
they asked 6 professional programmers to comprehend the source
code and observed their eye movements. Due to the novelty of
this research question, they also described appropriate eye-gaze
measures to quantify the linearity of reading order.

Experiment Design. Ultimately, Busjahn et al. ran 17 trials of
novices reading natural text, 101 trials of novices reading source
code, and 21 trials of experts reading source code. As the novices
were still learning programming, their snippets were simpler than
the snippets for the expert participants. Only two snippets had
to be comprehended by both participant groups. For all snippets,
participants were randomly asked one of three possible tasks: write
a summary of the source code, compute the output, or answer a
multiple-choice question. To observe eye movements Busjahn et al.
used a SMI RED-m remote eye-tracker with a sample rate of 120 Hz.

Participants. 7 of the 14 novices were females. They were be-
tween 19 and 33 years old, had, at most, little programming experi-
ence, and all had, at least, a medium English proficiency (while Ger-
man being the native language). The experts were all professional
programmers with, at least, 5 years of programming experience,
and were between 26 and 49 years old. One of the 6 experts was
female.

Variables. The study of Busjahn et al. had two independent vari-
ables: programmer experience (novice or expert, between-subject)
and, for novices, whether the presented stimuli were source code or
natural text (within-subject). Busjahn et al. analyzed the data in two
steps: First, they contrasted how novices read source code versus
natural text (within-subject). Second, they contrasted linearity of
reading order between experts and novices (between-subject).

Dependent Variables. To quantify the participants’ linearity of
reading order, Busjahn et al. describe a set of six eye-gaze measures,
which we summarize in Table 1 and which we will also use for
our data analysis.1 In essence, Busjahn et al.’s eye-gaze measures
abstract a fixation sequence of (x,y) coordinates on the screen to
higher-level concepts, such as regressions. Regressions are a sign
that a participant had to revisit a previous part, which could be due
to an insufficient understanding or following a snippet’s execution
(e.g., loop structures).

Needleman-Wunsch Algorithm. In addition to the six fixation-
based eye-gaze measures, Busjahn et al. analyzed the order in which
each source code line was fixated and contrasted it with (a) the
“story order” and (b) the execution order of a source code. The story
order of a source code snippet is the sequence of each line from
top to bottom, similar to natural text (e.g., 1, 2, 3, 4). The execution
order of a source code snippet is the sequence of lines in which
the code is executed, which may differ significantly from the story
order (e.g., 3, 4, 2, 1, 2, 4).

The presented source code snippets contained up to 30 lines of
source code. To effectively compare long sequences of line numbers,
Busjahn et al. relied on the Needleman-Wunsch (N-W) algorithm,
which was originally designed for molecular comparisons of pro-
teins [34] and later applied for use in eye-tracking research by
Cristino et al. [16]. The N-W algorithm computes the similarity
between two sequences. In this study, it can be interpreted as how
similar an observed linearity of reading order is to a line-by-line
reading order or a computer’s execution order of the source code.
Furthermore, as programmers often cannot comprehend a piece
of source code in a single read, Busjahn et al. added a dynamic
version of the N-W algorithm that tolerates multiple reads. In our
data analysis, we will also use both versions of the N-W algorithm
to assess the linearity of reading order of our participants.

Results. Busjahn et al. reported two main findings: First, novice
programmers read source code less linearly than natural text. Sec-
ond, expert programmers read source code less linearly than novice
programmers.

1Busjahn et al. also describe an element coverage measure, which we did not include
due to technical limitations of our experiment setup.
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Table 1: Overview of gaze-based measures taken from Table 1 from Busjahn et al. [13]. In each trial, F is the set of all recorded
fixations. Fi (where i = 1, ...,n) is the fixation recorded at time index i. L(Fi ) is the line number of the fixation at index i. In each
trial,W is the set of word indices in the text.W (Fi ) is the word number of the fixation at index i.

Measure Definition Computation

Vertical Next Text
% of forward saccades that either stay on the same line
or move one line down % of all Fi , where L (Fi ) − L (Fi+1) ∈ {0,−1}

Vertical Later Text
% of forward saccades that either stay on the same line
or move down any number of lines % of all Fi , where L (Fi ) ≤ L (Fi+1)

Horizontal Later Text % of forward saccades within a line % of all Fi , where L (Fi ) = L (Fi+1) ∧W (Fi ) ≤W (Fi+1)
Regression Rate % of backward saccades of any length % of all Fi , whereW (Fi ) >W (Fi+1)
Line Regression Rate % of backward saccades within a line % of all Fi , where L (Fi ) = L (Fi+1) ∧W (Fi ) >W (Fi+1)

Saccade Length
Average Euclidean distance between every successive
pair of fixations

∑n−1
i=1 Distance(Fi ,Fi+1)

|F |−1

Story Order
N-W alignment score of fixation order with linear text
reading order Alignment(L(F ), story-order pattern)

Execution Order
N-W alignment score of fixation order with the source
code’s execution order Alignment(L(F ), execution-order pattern)

2.2 Replication Study (Peachock et al. )
Experiment Design. Peachock et al. replicated Busjahn et al.’s

original study [38]: It was also a mixed-model experiment with two
independent variables (programmer experience, between-subject)
and stimuli (source code or natural text, within-subject). They also
invited student programmers (33 overall, 18 male, 15 female) and
asked them to comprehend seven short source code snippets and
three pieces of natural language text. They used the same natural
language snippets as Busjahn et al., but different source code snip-
pets in C++. The source code contained some variety in complexity,
but all on a rather low level. Similar to Busjahn et al., Peachock
et al. asked three random comprehension questions after each task
to ensure that participants fulfill the given task. Novice participants
had no or only little contact with programming. The “expert” par-
ticipants already had some programming experience, but were still
undergraduate students.

There were some differences in their experiment design to the
original study. Specifically, Peachock et al. used C++ (instead of Java)
snippets; the natural language content was the same, but due to the
different participant pool, it was in their native language (English).
Unlike Busjahn et al., they did not invite expert programmers, but
advanced undergraduate students, which they refer to as “non-
novice” participants. Peachock et al. used a Tobii X60 eye-tracker
with a sample rate of 60 Hz.

Analysis. Peachock et al. analyzed the dependent variable eye
movements in terms of the Busjahn et al.’s linearity measures.

Results. Peachock et al. reported the following results:
• Programmers read source code less linear than natural text
(replicated),

• There is no significant difference in linearity between novice
and expert participants (not replicated), and

• There are significant differences between natural text and
source code in terms of linearity of reading order based on the
N-W score (replicated).

2.3 Implications for Future Research
Busjahn et al. developed a tested way to quantify program com-
prehension: How linear do programmers read source code? With
their methodology, researchers can tackle further research ques-
tions about source code readability and programmer education
with affordable and reliable eye tracking. The two presented stud-
ies by Busjahn et al. and Peachock et al. show consistently that
programmers read source code less linear than natural text.

As a next step, we were interested in how the linearity of the
source code itself may affect programmers’ linearity of reading
order. Since the two studies did not explicitly manipulate the source
code linearity, we conducted a non-exact replication.

3 EXPERIMENT DESIGN
The overarching goal of our study is to gain a deeper understanding
of how source code, programmer experience, and comprehension
strategy affect linearity of reading order. We provide a replication
package, which includes all stimuli, acquired data, and analysis
scripts.2 Specifically, we pose the following research questions:
RQ1: Can we resolve the contradicting results of Busjahn et al. and

Peachock et al. regarding whether more experienced program-
mers read source code less linear than novice programmers?

RQ2: Does the comprehension strategy, that is, bottom-up and
top-down comprehension, affect linearity of reading order?

RQ3: Does the linearity of source code affect programmers’ linear-
ity of reading order?

To evaluate RQ1, we conducted a non-exact replication with
novice programmers as well as more experienced programmers
that can be classified as intermediate programmers according to
Dreyfus’ taxonomy of skill acquisition [18, 32]. Since we presented
the same source code snippets to both groups, we can reduce the
risk of a confounding factor arising from within the source code
snippets.

2https://github.com/brains-on-code/eyetracking-linearity-replication/

https://github.com/brains-on-code/eyetracking-linearity-replication/
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To address RQ2, we need to control the programmers’ compre-
hension strategy. We operationalized the comprehension strategy
by using meaningful versus obfuscated identifier names in the
source code snippets, which has been shown to induce top-down
or bottom-up comprehension (cf. Section 3.2, [50]).

To address RQ3, we measure the linearity of source code. For this
purpose, we have developed and validated a metric that quantifies
source code execution order, which we describe next.

3.1 Source Code Linearity i
To investigate how source code linearity affects linearity of reading
order, we define source code linearity i as follows:

i =
∆

Λ̄
, where ∆ =

|M |∑
i=1

δmi and Λ̄ =
1
|M |

×

|M |∑
i=1

λmi for mi ∈ M

with

λm := length of a method
M := {m |m ∈ P , m is a method)

δm := |Cm − Dm |

Dm := ιe for e := Declaration(m)

Cm := ιe for e := Call(m)

ιe := index(e) for e ∈ P

P := ΩProgram

The linearity i of a source code snippet is the relation between the
distances between jumps ∆ and the average method length Λ̄. A
jump δm for a method m is the absolute distance between line ι
where it is called (Cm ) and the line where it is declared (Dm ).

When programmers comprehend source code, they may follow
its execution flow. When they encounter a method call while read-
ing source code, their eyes may “jump” to the declaration of that
method. Throughout the process of a thorough understanding of a
source code snippet, over time this adds up to an overall “jump dis-
tance” ∆, which depends on the number of jumps and the distance
of each jump. The distance of a jump is substantially influenced by
method length, that is, when programmers have to jump to the sub-
sequent method, they have to skip the entire length of the current
method. Thus, we need to normalize the overall “jump distance” by
the average length Λ̄ for each method λm of all methods in a given
source code snippet.

For example, the snippet Calculation in Listing 1 contains two
methods, one with 7 and one with 4 lines. Thus, this source code
snippet has an average method length Λ̄ of 5.5 lines. The snippet
contains only one method jump from line 11 to 2 (i.e., overall jump
distance ∆ is 9 lines). We divide the overall jump distance ∆ by Λ̄
and obtain a result of i = 1.64, a rather low value indicating a fairly
linear snippet. We visualize the three large jumps of the less linear
snippet Student in Listing 2.

Prerequisites. For these definitions to work, we assume that a
given source code is a syntactically correct Java program, containing
the declaration of a package, a class, and a static main function.
Although only evaluated for Java source code, this principle can
also be applied to other programming languages.

Snippet Comparability with i . The source code linearity i allows
us to compare source code snippets with higher sensitivity than
other metrics (e.g., number or size of methods) with each other.
The lower the source code linearity i , the more linear a source code
snippet is (i.e., the flow of calls follows the order from the top of
the screen to the bottom). The higher i is, the less linear is a source
code snippet (i.e., the methods in the source code are not located in
a position corresponding to the sequence of their calls).

Validation Study. To evaluate whether the source code linearity i
captures the intuitive notion of linearity, we conducted a valida-
tion study with 10 advanced graduate students. In the validation
study, participants compared two snippets regarding their perceived
linearity. To this end, we selected 20 snippets with a wide range
of linearity, as reflected in the source code linearity i . Then, we
divided the snippets into three categories: linear, medium, and non-
linear, and asked participants to compare two snippets of different
categories (e.g., a linear and a medium snippet) and of the same
category (e.g., two linear snippets). This way, we evaluated whether
differences and similarity in linearity predicted by our source code
linearity i are also reflected in programmers’ intuitive notion of
linearity.

We found that, for most of the snippets, the linearity metric
reflected the perception of participants well. For the few snippets in
which both judgements were different, we excluded such cases from
the actual study to avoid having different estimations of linearity. It
would be interesting to refine the definition of source code linearity i
in future studies.

3.2 Material
In line with our research goals, we used source code snippets that
both novices and intermediate programmers are able to understand.
To understand the effect of source code linearity, we calculated i for
all candidate snippets and assigned them to a category (A, B, C, D,
or E). The category of a snippet indicates to which 20% percentile
its linearity i belongs. For example, a linearity i = 1.64 belongs to
the 30% percentile and thus is part of category B.

We selected 10 snippets, 2 from each category (cf. Table 2). We
re-used 8 Java snippets from the original study by Busjahn et al.
(including both snippets that were shown to novices and experts). In
addition, we created 2 new snippets (CheckIfLetters, SumArray),
comparable in complexity and content, to balance our snippets
along our linearity i metric. All snippets are rather short with,
at most, 30 lines of code. The source code snippets implement
algorithms commonly used in computing education (e.g., insertion
sort). For example, Listing 1 shows a snippet that calculates the
cubed number of 2 (i = 1.64, Category B).

Each snippet contains a single class with one main method, up
to 4 helper methods, and, at least, one System.out.print() state-
ment composing the snippet’s result.

Obfuscated Snippets. After selecting the 10 snippets, we created
a second version of all snippets, in which we removed semantic
cues by obfuscating all identifier names. This method was initially
used by Siegmund et al. to force participants to apply bottom-
up comprehension [48]. The motivation to distinguish bottom-up
and top-down comprehension, and to observe them separately, is
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Listing 1: Source code snippet that elicits top-down com-
prehension withmeaningful identifier names, which cal-
culates themathematical result of 23. The source code can
be largely read along its linear execution order from top
to bottom (visualized with→).

Listing 2: Source code snippet with obfuscated identifiers
that prints a student’s age after a birthday. The snippet
requires programmers’ eyes to vertically jump between
methods to follow execution flow (visualized with→).

two-fold: First, bottom-up comprehension reduces the advantage
of prior programming experience [39] as done by previous stud-
ies [3, 23, 24, 27, 28, 33, 48]. Second, the direct contrast between
meaningful and obfuscated identifier names allows us to investi-
gate how eye movements change depending on the comprehension
strategy (which is similar to the fMRI study by Siegmund et al. [50]).
We show an example of an obfuscated snippet that computes the
age after a birthday in Listing 2.

Table 2 lists all snippets, their linearity values, and an overview
of the behavioral results. All snippets in both versions, meaningful
and obfuscated, along with their solutions are available in our
replication package.

3.3 Task
We asked participants of both experience levels and both snippet
versions to enter the result of the final print statement for all
presented snippets. For example, for the snippet of Listing 1, the
correct output is “8”. This is a simplified version from the original
study, where Busjahn et al. randomly selected between computing
output, a comprehension summary, or multiple-choice questions.
The rationale of fixing the task to computing the output is that

we aimed to eliminate the chance that the kind of task affects
participants’ comprehension strategy (in addition to the source
code linearity and snippet obfuscation).

3.4 Independent Variables
Our study design contains three independent variables:

• Programmer experience (novice vs. intermediate programmers,
between-subject)

• Top-down vs. bottom-up comprehension (meaningful vs. ob-
fuscated identifier names, within-subject)

• Linearity of snippets (5 categories of A, B, C, D, E, with A
being most linear and E being least linear, within-subject, cf.
Section 3.1)

3.5 Dependent Variables
We consider two dependent variables: behavioral data (i.e., response
time and correctness) and eye gaze. We define response time as the
time from a participant first viewing a snippet until the time they
submit their answer. The raw data of the observed eye gaze is a
stream of (x,y) coordinates on the screen, which we used to compute
the measures of the study by Busjahn et al. (cf. Table 1, [13]).

3.6 Participants
We recruited participants for both groups from three universities,
which we detail in Table 3. We offered to participate in a raffle for a
20€ Amazon gift card, see a visualized export of their eye-tracking
data, and receive results of the study as compensation.

Novice participants had a fundamental understanding of Java and
object-oriented programming (i.e., passed, at least, an introductory
programming class). Our intermediate programmers were advanced
graduate students of computer science (i.e., higher-level master or
PhD students in computer science or a related field). We verified
our selection with small programming questionnaire during the
experiment [49]. We summarize our participants’ demographics
and programming experience in Table 4. The experience of our
intermediate programmers lies between the two previous studies’
“expert” groups. We classified our participant groups as novice and
intermediate programmers according to Dreyfus’ taxonomy of skill
acquisition [18, 32].

Due to the requirements of the eye-tracker, only programmers
without eye-vision conditions (e.g., strabismus; corrective glasses
or lenses were acceptable) were eligible to participate in our study.

3.7 Experiment Procedure
Eye-Tracker. We used a Tobii EyeX eye-tracker with a sample

rate of 60 Hz. Since we collected data at three different universi-
ties, different screen sizes and resolutions were in use: 1920×1200,
1920×1080, and 1680×1050. We scaled all analyses according to the
respective screen resolution.

Data Collection. The experimenter led participants through an
explanation of the experiment, all program comprehension tasks,
and finally demographic and eligibility questions.

We assigned most participants 10 snippets, except for the first
3 novices, who got only 7 snippets. The first three participants
were faster than expected and reported little exhaustion from the
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Table 2: All snippets used in the study, their metric values, and experimental results. For the metrics columns, darker shading
indicates higher values. Unless noted with *, all snippets were part of the study by Busjahn et al. [13]. How often a snippet
had to be solved by a group is unbalanced due to a randomized presentation of snippets regarding linearity and variant.

Snippet Metrics Variant Novices Intermediate Programmers

LOC # Methods Linearity i
(Category) Correctness Response Time [s̄] Correctness Response Time [s̄]

MoneyClass 8 1 0.00 (A) Meaningful 7/7 37.6 11/12 31.0
Obfuscated 5/5 55.3 7/7 44.2

SumArray* 12 1 0.00 (A) Meaningful 5/5 38.7 14/15 35.1
Obfuscated 3/4 42.7 4/4 47.3

CheckIfLetters* 21 2 1.56 (B) Meaningful 7/7 81.2 9/10 64.9
Obfuscated 2/2 15.1 8/9 101.4

Calculation 14 2 1.64 (B) Meaningful 6/8 72.4 12/14 47.4
Obfuscated 4/4 78.4 5/5 99.8

InsertSort 29 3 3.24 (C) Meaningful 2/9 163.0 3/12 153.9
Obfuscated – – 4/7 218.1

Vehicle 26 3 4.42 (C) Meaningful 7/7 86.1 16/16 54.1
Obfuscated 5/5 107.4 3/3 85.8

Student 23 4 8.27 (D) Meaningful 8/9 29.1 12/12 29.2
Obfuscated 2/3 64.1 7/7 46.1

SignChecker 26 3 9.90 (D) Meaningful 8/8 78.6 17/17 56.7
Obfuscated 2/4 107.1 2/2 68.7

Street 21 4 10.57 (E) Meaningful 6/6 26.4 14/14 30.1
Obfuscated 5/6 172.6 5/5 45.7

Rectangle 29 5 20.00 (E) Meaningful 9/9 94.6 11/11 59.9
Obfuscated 2/3 77.2 8/8 90.6

Overall Meaningful 65/75 (87%) 76.3 ± 54.0 120/133 (90%) 55.0 ± 39.9
Obfuscated 30/36 (83%) 96.9 ± 55.7 53/57 (93%) 89.6 ± 60.4

Table 3: Participant recruitment universities.

University
Passau

University
Weimar

University
Magdeburg

Novices 5 2 5
Intermediate
Programmers 0 17 2

Table 4: Demographic data of our participants. Our interme-
diate programmers tend to be older, but also have more ex-
perience specific to Java and general programming.

Novices (n=12) Intermediate Pro-
grammers (n=19)

Male 9 (75%) 18 (95%)
Female 3 (25%) 1 (5%)
Age (in Years) 21.4 ± 2.3 29.9 ± 4.6
Years of Programming 3.3 ± 1.8 12.2 ± 6.1
Years of Java Programming 3.0 ± 2.3 6.8 ± 5.5

meaningful snippets. Thus, we increased the number of meaningful
snippets from 4 to 7. For all subsequent participants, we presented

3 obfuscated (bottom-up comprehension) snippets and 7 meaning-
ful (top-down comprehension) snippets, which led to an imbalance
between the number of the two comprehension strategies (cf. Ta-
ble 2). We pseudo-randomized the order and the selection in which
snippets were presented (i.e., we ensured the split between obfus-
cated and meaningful snippets, but besides that, everything else
was random).

Execution. We obtained 15 eye-tracking data sets from novices
and 19 from intermediate programmers. We excluded three data
sets from novices, because the eye-tracker failed to track more than
one minute of data due to a setup issue. Therefore, all subsequent
data analyses (including behavioral data) are based on 12 novice
participants.

Deviation. Three obfuscated snippets contained (by mistake) an
error that would prevent compilation. We discuss an interesting
observation on how programmers with different experience levels
handle this issue in Section 6.2.

4 DATA ANALYSIS
4.1 Preparation and Preprocessing

Behavioral Data. To decide whether an answer was semantically
correct, we manually evaluated each response. We interpreted re-
sponses with only minor formatting inaccuracies as semantically
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correct (e.g., if a participant responded with a value of “1.4” instead
of “1.40”).

Eye-Tracking Data. The eye-tracker provides a stream of (x,y)
coordinates. We applied several preprocessing steps to ensure high
data quality and reliability.

First, we smoothed the stream of (x,y) coordinateswith a Savitzky-
Golay filter (window length of 5, polynomial order of 3) [35]. Next,
we applied a velocity-based algorithm to detect fixations and sac-
cades from the eye gaze. We used a velocity threshold of 150 pixel
in 100 milliseconds. If the velocity was below the threshold, it was
interpreted as a fixation, otherwise as a saccade [22].

Second, we created areas-of-interest (AOIs) for each line and
block of each snippet. The AOIs allow us to compute the measures
that describe the linearity of reading order as described by Busjahn
et al. For all subsequent analyses based on AOIs, we filtered out all
fixations outside of defined AOIs (e.g., participants looking around
the room). Following Busjahn et al., we included fixations with a
maximum of a 100 pixel horizontal deviation (≈ 7–8 characters), as
small AOIs can otherwise be easily missed (e.g., a closing bracket)
and may distort the results.

4.2 Analysis Procedure for Eye-Tracking Data
After preprocessing, we computed the measures capturing linearity
of reading order developed by Busjahn et al. (cf. Table 1) for each
participant group and experimental factor.

Since we have more than one independent variable, we compute
a linear mixed regression model, which allows us to also detect
possible interaction effects [30]. This analysis differs from Busjahn
et al., who only had one independent variable and used Mann-
Whitney-U tests to test for significant differences. For each of the
Busjahn et al.’s measures described in Table 1, we computed a
linear mixed regression model with three factors: programmer
experience (novice or intermediate programmer), comprehension
mode (top-down or bottom-up), and source-code linearity (in five
categories: A, B, C, D, E). We used the R lme4 package, version
1.1.21, to compute the linear model [2]. Data across all measures
yielded in a converged model, indicating that the provided factors
can explain the observed variance.We subsequently tested the fitted
model for statistical significance with the car package [19], version
3.0.6, which internally uses a type II Wald chi-square test.

To avoid an inflated probability of the type-I error (i.e., incorrect
rejection of a null hypothesis) due to multiple statistical testing, we
adjusted the significance thresholdwith a false-discovery-rate (FDR)
correction [6]. This resulted in an adjusted p-level significance
threshold of 0.033. Thus, we consider only results with a p-level
below 0.033 as statistically significant.

5 RESULTS
In this section, we report the results of the behavioral and eye-
tracking analysis, followed by our interpretation in Section 6.

5.1 Behavioral Data
We show a summary of the behavioral results between the two
participant groups in Table 5 and a detailed version for each snip-
pet, variant, and group in Table 2. While novices achieved a sim-
ilar correctness rate as the intermediate programmers (86% vs.

Table 5: Behavioral data separated by programming experi-
ence. Intermediate programmers are faster, but miss more
compiler errors. Gray font color marks non-significance.

Novices
(n=12)

Intermediate Pro-
grammers (n=19)

Correct Responses (All) 86% 91%
Correct Responses (Meaningful) 87% 90%
Correct Responses (Obfuscated) 83% 93%
Response Time (All, in sec) 83.0 ± 55.1 65.4 ± 49.4
Response Time (Meaningful) 76.3 ± 54.0 55.0 ± 39.9
Response Time (Obfuscated) 96.9 ± 55.6 89.6 ± 60.4
Compiler Errors Detected 7 of 11 (64%) 2 of 7 (28%)

91%, Mann-Whitney-U test3: U = 11121,p = 0.072), they were
across all snippets significantly slower, on average (83 sec vs. 65
sec, U = 8001,p = 0.000). Intermediate programmers showed a
faster comprehension when snippets contained meaningful iden-
tifier names, which facilitate top-down comprehension (76 sec vs.
55 sec, U = 3562,p = 0.000). But, when we obfuscated identi-
fier names enforcing bottom-up comprehension, intermediate pro-
grammers fall back close to the speed of novices (97 sec vs. 90 sec,
U = 889,p = 0.142).

Unlike intermediate programmers, most novices found the acci-
dental compiler errors in the obfuscated snippets (cf. Section 3.7).
However, this difference is non-significant (U = 52,p = 0.079).

5.2 Eye-Tracking Data
In Table 6, we provide an overview of the eye-tracking results for
all three RQs. In essence, we can partially replicate Busjahn et al.’s
results that intermediate programmers read source code less linear
and contradict Peachock et al.’s negative result (RQ1). Specifically,
we found evidence that intermediate programmers show signifi-
cantly more vertical next and vertical later eye movements, that
is, their eye gaze jumps to the next or a source code line further
down (cf. Table 1). In contrast to Busjahn et al., we observed that
intermediate programmers use more vertical regressions, that is,
that the percentage of their eye gaze movements going upwards
in source code is larger than that of novices. We cannot confirm
Busjahn et al.’s findings with the N-W algorithm in our data set,
which yielded non-significant results. In other words, novice and
intermediate programmers’ reading order is not different for our
sample.

We observed mixed results about whether and how program-
mers’ comprehension strategy affects their linearity of reading order
(RQ2). First, programmers using top-down comprehension show
percentage-wise less vertical regressions, but more horizontal later
eye movements than in bottom-up comprehension. In other words,
programmers’ eyes seem to move within a line more during top-
down comprehension. Although programmers use longer saccades
during top-down comprehension, this effect is not significant (after
FDR correction). The N-W scores for bottom-up comprehension are
significantly smaller than for top-down comprehension, indicating

3t tests are inappropriate as Shapiro-Wilk tests [42] showed non-normality for response
correctness and times.
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Table 6: Overview of the three studies’ eye-tracking results. Inequality symbol > indicates in which direction the linearity of
reading order is influenced. Gray font color marks non-significance. Text highlighted with green indicate replicated results ,
while purple indicates that our results are different from Busjahn et al. We did not find any significant interaction effects.

Busjahn [13] Peachock [38] Our Study

Experience* Experience* Experience** Comprehension
Strategy**

Source Code Linearity i
(A, B, C, D, E)**

Vertical Next p < 0.001, E > N p = 0.406 p = 0.031 , E > N p = 0.148, TD > BU p = 0.000, A > B > C > D > E
Vertical Later p < 0.010, E > N p = 0.461 p = 0.003 , E > N p = 0.059, TD > BU p = 0.000, D > E > C > B > A
Vertical Regressions p < 0.001, N > E p = 0.453 p = 0.010 , E > N p = 0.000, BU > TD p = 0.000, D > E > C > B > A
Horizontal Later p < 0.001, E > N p = 0.487 p = 0.008 , N > E p = 0.001, TD > BU p = 0.000, A > B > C > D > E
Horizontal Regressions p = 0.970, E > N p = 0.973 p = 0.044 , N > E p = 0.450, TD > BU p = 0.001, A > B > C > D > E
Saccade Length p < 0.001, E > N not provided p = 0.903 , N > E p = 0.046, TD > BU p = 0.000, D > E > A > C > B
Story Order (Naïve) p < 0.001 not provided p = 0.909 , N > E p = 0.000, TD > BU p = 0.000, A > D > E > B > C
Story Order (Dynamic) p < 0.0001 not provided p = 0.557 , N > E p = 0.000, TD > BU p = 0.000, A > D > B > E > C
Exec. Order (Naïve) not provided not provided p = 0.809 , N > E p = 0.000, TD > BU p = 0.000, A > D > B > E > C
Exec. Order (Dynamic) not provided not provided p = 0.932 , N > E p = 0.000, TD > BU p = 0.000, A > B > D > E > C

* Matt-Whitney U Tests ** Linear Mixed Model with Wald Chi-Square Test (Significance Threshold 0.033 after FDR Correction)
N = Novice, E = Expert/Intermediate Programmers BU = Bottom-Up, TD = Top-Down

that bottom-up comprehension is closer to a top-to-bottom reading
order, whereas top-down comprehension expresses itself in more
wandering eye movements.

In our study, source code linearity i significantly affects all ob-
served linearitymeasures (RQ3). In general, a higher linearity score i
(indicating source code with many large vertical jumps in its ex-
ecution order) leads to longer vertical eye movements, but fewer
short eye movements (i.e., within one or two neighboring source
code lines). While the order of the linearity categories A, B, C, D,
E appear sensible for vertical and horizontal eye movements, they
are mostly inconsistent for saccade length and the N-W scores. In
other words, source code linearity does not seem to influence the
average eye jump distance nor how similar the reading order is to
execution or story order.

6 DISCUSSION
6.1 Behavioral Data
We expected that more experienced programmers are generally
faster [31, 45], but when bottom-up comprehension is enforced, the
differences may vanish based on a contradictory result from stud-
ies of Soloway and Ehrlich [51] and Gilmore and Green [21]. We
indeed observed that intermediate programmers are significantly
faster than novices when meaningful identifier names facilitate top-
down comprehension. While the performance gap is significantly
reduced during bottom-up comprehension, novices are still slower.
We thus classify our result in between Soloway and Ehrlich’s van-
ishing effect [51] and Gilmore and Green’s result that experienced
programmers stay faster [21].

6.2 Spotting Compiler Errors in Snippets
Three of the obfuscated snippets (i.e., Street, SignChecker,
CheckIfLettersOnly) mistakenly contained function and variable

identifiers that were undefined (e.g., the variable cjviij1 in List-
ing 3 should be cjviij). This results in a compiler error and there-
fore not to a determined output. Interestingly, many novices spotted
this error, while most intermediate programmers did not.

1 Cjviij cjviij = new Cjviij(5);
2 cjviij.cijTqmniv(15);
3 System.out.print(cjviij1.wijTqmniv());

Listing 3: Part of the obfuscated snippet Street, which con-
tains a compiler error.Most intermediate programmersmiss
the non-initialized variable in Line 3, while novices tend to
notice it.

An early study of Shneiderman and Mayer showed that experts
focus on semantic aspects of source code, while novices concentrate
on syntax [46]. We discussed this phenomenon with three of our
intermediate programmers. They generally confirmed that these
early results still hold true in modern times, especially with IDE
support. They reported that, due to their daily work, they are used
to an IDE highlighting basic compiler errors. One reported that
“you have to look for compiler errors to find them”, which due to
the missing IDE highlighting (e.g., red underline) may not be on the
mind of a programmer. In addition, one reported that “at that spot,
you recognize the object based on the name without checking every
individual character”. Novices appear to be less likely to take such
mental shortcuts and need to learn to focus on semantic aspects of
source code.

6.3 Eye-Tracking Data
RQ1: Comparing Study Results Regarding Linearity of Reading

Order. The two studies by Busjahn et al. and Peachock et al. did
not draw a clear picture of whether there is a distinguishable dif-
ference in linearity of reading order with increased programming
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experience: Busjahn et al.’s expert programmers were significantly
different across several reading linearity measures, while Peachock
et al.’s “non-novices” were not. It is interesting to learn that our data
partially replicate Busjahn’s results with an intermediate program-
mer group, which brings us closer to learn with what experience
level programmers change their reading order.

Unlike Busjahn et al., we find that intermediate programmers use
significantly more eye movements across all three vertical measures.
This is consistent with the notion that experienced programmers’
eyes jump through source code, looking for “beacons” [10, 43].
Intuitively, it also makes sense that all three measures capturing
vertical eye movements point in the same direction (in our case,
intermediate programmers use more vertical eye movements).

Busjahn et al. also observed that experts more often stay on a
single line and read it from left to right, which, however, appears
contradictory to the interpretation that novices read source code
more “book like” from top to bottom and left to right, while experts’
eyes jump around more. Our data support the view that more
experienced programmers use less horizontal eye movements than
novices. This is plausible, because novices use more bottom-up
comprehension, which leads to reading entire lines of source code
from left to right. Our result is in general agreement with the notion
that experts apply a more erratic but intentional search through
source code and novices a more repetitive gaze pattern [4].

Again, in contrast to the results of Busjahn et al., we did not
observe significant differences in saccade length or reading order
between the two participant groups. We suspected that our results
diverge from Busjahn et al., because we showed both participant
groups the same snippets. The average saccade length for both
participant groups was the same, while Busjahn et al. showed longer
snippets to experts. However, when we normalize the observed
saccade length with the snippet length, this actually reverses, such
that longer snippets lead to shorter (normalized) saccades. Thus,
our results are inconclusive, and we cannot be certain how snippet
length, saccades, and experience interact.
RQ1: Overall, we were able to partially corroborate Busjahn et
al.’s result and contradict Peachock et al.’s result. Intermediate
programmers read source code less linear than novices.

RQ2: Effect of Comprehension Strategy on Linearity of Reading
Order. We aimed at understanding whether the comprehension
strategy, that is, top-down or bottom-up comprehension, leads to a
significant difference in programmers’ eye movements (RQ2). We
expected that programmers using top-down comprehension show
more vertical eye movements and less horizontal eye movements,
as top-down comprehension is rather a hypothesis-driven com-
prehension strategy, whereas bottom-up comprehension requires
building up a source code snippet’s meaning by reading every line.

However, our eye-tracking results are inconclusive: The differ-
ences in the fixation-based linearity measures were only significant
for two measures, which do not converge to an apparent inter-
pretation. All other measures were non-significant, leading to an
overall unclear picture about whether top-down comprehension
entail more vertical movements.

Interestingly, the reading order based on the N-W scores, which
did not discriminate between our novice and intermediate program-
mers, shows highly significant differences between bottom-up and

top-down comprehension. In other words, on average, the reading
patterns during bottom-up comprehension are closer to a snippet’s
story order, whereas reading patterns during top-down comprehen-
sion are closer to a snippet’s execution order. But, we note that all
scores are rather low (smaller than −100), indicating that there still
are large differences between expected reading order and actual
eye movements during program comprehension.
RQ2: While we partly uncover a less linear reading order dur-
ing top-down comprehension, most measures are inconclusive.
Thus, a difference of eye-movement patterns between bottom-
up and top-down comprehension is unsupported by our data.

RQ3: Effect of Source Code Linearity on Linearity of Reading Order.
One goal of our study was to understand whether the linearity of
source code significantly affects programmers’ eye movements.
The linearity of source code showed a strong effect on reading
order, for both novice and intermediate programmers and both
comprehension strategies. In other words, linearity of source code
seems to be the major driving factor that determines the reading
order, whereas experience and the comprehension strategy play
a more minor role. While this may not be surprising, we have
provided empirical evidence that this actually is the case.

The two original studies paved the way to study programmers’
reading order. We took one further step and varied source code
linearity in a systematic way to understand its influence. With our
setup, we found that there are two separate effects that influence
the reading order: On the one hand, efficient program comprehen-
sion by more experienced programmers or top-down comprehen-
sion leads to larger vertical eye movements, because programmers
search for certain features to quickly verify their hypothesis of a
snippet’s purpose. These are intentional eye movements that are
necessary to adeptly comprehend source code. On the other hand,
less linear source code forces programmers’ eyes to make unnec-
essary large vertical jumps when they try to follow a snippet’s
method call chain. Thus, while the former are eye movements initi-
ated by internal cognitive processes of the programmer to make the
comprehension process efficient, the latter are eye movements that
are imposed by external factors. Both types of eye movements may
also interact, such that a less linear structure makes it more difficult
for the programmer to make the intentional, hypothesis-confirming
eye movements. In other words, linearly structured source code
could reduce the required eye movements and make the compre-
hension process more efficient, if it supports the programmer’s
hypothesis-confirming eye movements.

However, our less linear snippets tend to be more complex, so
we cannot draw robust conclusions with the conducted study. In-
stead, we call for further dedicated studies that specifically contrast
source code with different internal structures but implementing the
same algorithm to understand how programmers shall organize
methods in a class [20]. Our source code linearity measure i , al-
though incomplete for some special cases, can be a starting point to
systematically operationalize the linearity of a source code snippet.
RQ3: The linearity of source code strongly affects programmers’
reading order: Less linear source code leads to large unnecessary
vertical eye movements.
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7 THREATS TO VALIDITY
7.1 Construct Validity
Several of our used eye-movement measures are based on matching
a fixation to a source code line. This leaves some room for inter-
pretation, as participants may use peripheral vision and do not
need to focus exactly on a source code line [36]. Like Busjahn et
al., we interpreted a fixation to be on a source code line if it was
horizontally less than 100 pixels away.

Similarly, there is room for interpretation when computing the
execution order of source code. For example, how to interpret lines
that only contain a closing bracket (}) is debatable or whether class
definition code (public class Example) should be considered as
part of the execution order. We included all brackets and boilerplate
code in the execution flow (as an interpreter would step through the
code). This technical interpretation may divert from how humans
read code and likely contributed to low N-W scores.

To operationalize linearity, we developed a source code linear-
ity metric and validated it with intuitive notions of linearity of
programmers. Although there are some deviations of the intuitive
perception and the linearity metric, this did not pose a threat to
construct validity, as we excluded such cases from our study.

7.2 Internal Validity
There are several threats to validity arising from our participant
sample. First, we have a skewness in gender distribution, which,
however, is close to the actual population in computer science for
our universities. Second, we have to question whether our partici-
pant group division was reasonable: Are our intermediate program-
mers actually sufficiently experienced programmers? To ensure
a correct assignment, we asked participants a few questions re-
garding their experience, based on a questionnaire developed by
Siegmund et al. [49]. Furthermore, the behavioral data indicate that
our assignment was reasonable.

Finally, regarding our eye-tracking data: We did not apply a man-
ual correction of the scan paths, which can be error prone [37]. A
visual exploration of the obtained data showed reasonable precise-
ness, so we do not consider our results threatened without a manual
correction. We also did not apply a drift correction [22], as our ex-
periment was comparably short, so we do not expect meaningful
drift.

7.3 External Validity
Our study exhibits the typical threats of having small Java programs
and recruited students. Our results can only be carefully generalized
to other contextual factors. Reading behavior of larger snippets with
higher control-flow complexity may show different results [17, 25].
Nevertheless, our setting targets an important population.

8 RELATEDWORK
Original Study and Replications. In addition to the original study

and its first replication introduced in Section 2, Blascheck and Sharif
conducted another replication, albeit focused on introducing a new
methodology of visualizing the linearity of reading order [9].

Eye Tracking on Program Comprehension. In addition to the orig-
inal study and its replications, there are numerous studies that

used eye tracking to observe program comprehension. For exam-
ple, Turner et al. used eye tracking to investigate the difference in
bug searching tasks between C++ and Python source code, which
yielded no significant difference [53]. Binkley et al. investigated
the difference in identifier styles (under_score vs. camelCase) and
found that it is mostly a matter of preference, with experts’ com-
prehension being more affected by the identifier style [7, 44]. There
are several other studies related to program comprehension cov-
ering method summarization [1, 41], syntax highlighting [5], code
review [43, 54], and programmer education and expertise [14, 40].
They all investigate one specific aspect of program comprehension,
but did not focus on reading order.

Source Code Metrics and Readability. While there is a plethora of
source code metrics [55], we are not aware of one that is designed
to specifically capture the linearity of source code. We consider the
linearity of source code as an element of code readability, which
captures all syntactic factors that affect programmers. For example,
Buse and Weimer asked programmers how readable source code
is and, based on the results, build a predictive model to estimate
source code readability [11, 12]. However, these readability studies
work on individual methods rather than (small) classes. On a class-
level, many studies focus onmaintainability [15] or complexity [29],
rather than fundamental readability.

9 CONCLUSION
Inspired by Busjahn et al.’s seminal study [13], and the replication
study by Peachock et al. [38], we set out to investigate the effect that
source code linearity, programmer experience, and comprehension
strategy have on reading order of source code. Our results indicate
the linearity of source code is a major driving factor that determines
programmers’ reading order, while experience and comprehension
strategy seem to play more minor roles. With our intermediate
programmers’ experience level lying between the two previous
studies, we seem to have found a turning point when programmers
switch from a linear reading order to a reading order following the
execution order. The strong effect of linearity implicates that the
structure of the source code should be matched to programmer’s
expectations to avoid unnecessary eye movements, which may
make program comprehension more efficient. In future studies,
we intend to dig deeper into the size of the effect of source code
linearity and programmer expectation, and the experience level.
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