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Abstract Background: Many software systems can be tuned for multiple objectives (e.g., faster run-
time, less required memory, less network traffic or energy consumption, etc.). Such systems can suffer
from “disagreement” where different models have different (or even opposite) insights and tactics on how
to optimize a system. For configuration problems, we show that (a) model disagreement is rampant; yet
(b) prior to this paper, it has barely been explored.

Goal: We aim at helping practitioners and researchers better solve multi-objective configuration opti-
mization problems, by resolving model disagreement.

Method: We propose a dimension reduction method called VEER that builds a useful one-dimensional
approximation to the original N-objective space. Traditional model-based optimizers use Pareto search to
locate Pareto-optimal solutions to a multi-objective problem, which is computationally heavy on large-
scale systems. VEER builds a surrogate that can replace the Pareto sorting step after deployment.

Results: Compared to the prior state-of-the-art, for 11 configurable systems, VEER significantly re-
duces disagreement and execution time, without compromising the optimization performance in most
cases. For our largest problem (with tens of thousands of possible configurations), optimizing with VEER
finds as good or better optimizations with zero model disagreements, three orders of magnitude faster.

Conclusion: When employing model-based optimizers for multi-objective optimization, we recom-
mend to apply VEER, which not only improves the execution time, but also resolves the potential model
disagreement problem.
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1 Introduction

One of the recent successes of AI for software engineering (SE) is automated con-
figuration [20]. Software comes with many options as well as various objectives, and
exploring all these configuration options for multiple objectives can be tedious, time
consuming, and even error-prone (when done manually). Much recent work shows
that AI tools can dramatically improve this procedure; for instance, regression tree
learners can report what subset of the configuration options are most influential to
achieving better performance [7, 12]. Further, while it takes a long time to run the
system with all possible (feasible) configuration settings, an incremental AI tool can
reflect on the model learned so far to recommend what is the next most informative
configuration to try [27]. This way, the time required to run enough configurations
to effectively optimize software can be substantially reduced (e.g., as shown by the
experiments of this paper, after running less than 100 configurations, we can optimize
systems with nearly 90,000 configurations).

When business users ask “what has been learned from these models?”, we need
interpretable models to offer comprehensible advice on how to best configure a sys-
tem [6, 29, 34]. But when software systems have multiple objectives (e.g., faster
transaction response time, fewer memory requirements, decreased network traffic,
decreased energy consumption, etc), such advice could clash. We call this the model
disagreement problem: while one model shows some configuration options to be use-
ful to achieve one objective, another model might argue that such options are actually
detrimental to another objective. Table 1 shows examples of model disagreement.
Later in this paper, we show that model disagreement is rampant in all our test cases
(see our experimental results in §7).

Looking at the literature, we find very little discussion on model disagreement.
That is, model disagreement may be a long-standing, but previously under-explored,
problem. This begs the questions “why has this problem not been reported before?”

Table 1: Examples of model disagreement found by tools described later in this paper.
Please note that, in project SS-F, we mark the two rules chunck < 0.14 and chunck >
0.05 as disagreement because, although their ranges are not necessarily exclusive,
they do point to the opposite optimizing directions (increase vs. decrease).

Project Model 1 Model 2

SS-E How to minimize runtime How to minmize CPU load
columnTiling = True columnTiling = False
goodQuality = True goodQuality = False
AutoAltRef = False AutoAltRef = True

SS-F How to minimize latency How to maximize throughput
max_spout > 0.55 max_spout < 0.05

chunk < 0.14 chunk > 0.05

SS-G How to minimize runtime How to minimize CPU load
compressionZqap = False compressionZqap = True
compressionLzma = True compressionLzma = False

processorCount > 0.17 processorCount < 0.17
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Perhaps other researchers were content to stop after generating multiple solutions
(e.g., 10,000 solutions across the frontier of best solutions). In our work, however,
we have been studying interpretation tools that offer clear advice on how to best
configure a system. Hence, we prefer not to confuse users with a long list of candidate
solutions. Instead, we prefer rule-based summaries (such as those seen in Table 1).

This paper tests the following conjecture. If multiple objectives complicate inter-
pretations, then one possible solution is to:

(1) Reduce multi-dimensional objective space to a lower-dimensional space.
(2) Reason in that reduced space.

We propose a tactic called VEER, which is applied as follows: (a) lay out all the
configuration options as points in an N-dimensional objective space, then (b) rank
the best point as “1”. After that, we “VEER” to the nearest best point P to rank it as
“2”; and so on. The ranks found by VEERing across all the objectives are then used as
a single-dimensional objective space. Configuration recommendations are then found
by reasoning over this simpler space.

Overall, the contributions of this paper are:
– We verify the existence of the model disagreement problem in multi-objective

software configuration.
– We show that model disagreement is not a simple problem that can be easily

solved via some simplistic weighting mechanisms (e.g., a naive multi-regression
approach).

– We propose a novel tactic to resolve the model disagreement problem and gener-
ate confusion-free model interpretations.

– We show that, since VEER is exploring a simpler goal space, it runs very fast
(up to 1,000 times faster while at the same time recommending configuration
solutions that are as good as or better than the prior state-of-the-art).

2 Background and Related Work

2.1 Why do configuration optimizations need “interpretation?”

This section argues the necessity of interpretability and transparency for configura-
tion models, which motivates this paper.

Configurable software systems come with numerous options such that users can
customize the system for their varying requirements. However, once a configuration
space becomes large, users can easily get confused by possible interactions among
configuration options with distinct impacts on diverse objectives. For example, many
software systems have poorly chosen defaults [14, 36]. Hence, it is useful to seek bet-
ter configurations. Unfortunately, understanding the configuration space of software
systems with large configuration spaces can be challenging [22, 39], and exploring
more than just a handful of configurations is usually infeasible due to long bench-
marking time [41].

When manual methods fail, automatic tools can be of assistance. In the case of
configuration, those automatic tools are usually assessed with respect to the objec-
tives of the system. Many prior works have demonstrated effectiveness in optimizing
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Fig. 1: An overview of the configuration optimization problem. Prior research fo-
cused on the performance of the model, as shown in the bounded region. What has
been missed is the evaluation on the inside rationales of the surrogate models. Prior
model-based optimizers only assess the quality of selected solutions (with the gray
block being neglected). As shown later in §3.4, models trained on different objective
can often disagree on how to optimize a configuration.

configurations for single-objective and multi-objective systems [13, 31, 33]. In this
paper, while we focus on systems with more than one objectives, we add one more
assessment criteria: transparency. A recent 2021 report by the Gartners group1 states

Responsible AI governance (and) transparency (our emphasis) ... is the most
valuable differentiator in this market, and every listed vendor is making progress
in these areas.

A model with conflicting interpretations on different objectives is considered more
of opaque than transparent. That is, model disagreement complicates transparency
since users cannot directly and immediately understand the implications of multiple
models, if those models disagree with each other. Hence, we seek for means to resolve
such conflicting interpretations when it comes to optimizing a software system for
multiple objectives.

We are concerned with transparency since, as shown in Figure 1, ML models that
chase different goals might make different recommendations. Therefore, even if each
of the machine learners is interpretable, it remains possible that the internals of dif-
ferent machine learners are disagreeing or conflicting with each other: For example,
one model might offer an insight that increasing certain option X1 can optimize an
objective G1, while another model believes increasing such option will harm another
objective G2. In Table 1, we present some examples of such disagreement observed
from dataset explored in this paper.

1 http://tiny.cc/gartners21

http://tiny.cc/gartners21
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2.2 What is a good interpretation?

Looking through the literature, we can find very little on how to handle model dis-
agreement in multi-objective optimization tasks. The closest thing we have found to
our work is the Clafer visualizer [2] environment. In Clafer, when there is a trade-off
among multiple objectives in an optimization problem, the users are asked to make
the decision on the trade-off.

While Clafer improves practitioners’ understanding by visualizing the perfor-
mance of different configuration candidates, such form of interpretations still has
its limitations. Firstly, Clafer’s interpretations on how to optimize a configuration
task is instance-based: While candidate configurations with various trade-off among
multiple objectives are shown to users, no further insights are generalized by Clafer.
In other words, users may be able to obtain a vague picture of what configuration
options have positive influence on certain objective (in terms of performance mea-
sured), yet those options can usually be conflicting due to competing objectives (see
examples in Table 1). In the end, there still lacks of conclusive agreement on which
options should be preferred.

Secondly, the problem with human-centered approaches such as the Clafer vi-
sualizer is that a repeated empirical result illustrates that humans are very poor or-
acles for what best improves a project (e.g., in Devanbu’s ICSE’16 study [10] on
500+ developers at Microsoft, even when developers work on the same project, they
mostly make conflicting and/or incorrect conclusions about what factors most affect
software quality; similar patterns were observe in Shrikanth’s ICSE-SEIP’20 study
[30]). Hence we seek methods that remove as much as possible those competing rec-
ommendations.

Regarding as much as possible, sometimes objectives are inherently opposed in
their recommendation direction, due to the semantics of the domain. If this effect
has the majority case, then the method of this paper would be doomed to fail. That
said, the novel result of this paper is that at least for the data sets studied here, the
objectives are not inherently apposed. Since we can generate a disagreement-free
model to provide solutions that perform as well or better as those seen produced
by other methods, this result should prompt much future work exploring emergent
simplicity in multi-objective reasoning in SE.

3 Details, Definitions and Algorithms

This section refines the motivation of this paper by defining the configuration opti-
mization problem and reviewing prior works associated with the problem. Table 2
shows the datasets used in our experiments.

3.1 Configurable Software System (CSS)

In general, a configurable software system (CSS) contains a set of valid configura-
tions C . Let ci ∈ C represent the ith valid configuration and ci, j represent the jth
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Table 2: Configurable software systems used in this paper. The abbreviations of sys-
tems are ordered by the total number of valid configurations |C |. The “B/N” in the
third column indicates the number of binary options and numerical options. The last
column represents the number of objectives O in the corresponding project.

Name Abbr. Domain #Options (B/N) |C | Performance Measures |O|

HSQLDB SS-A SQL database 15/0 864 run time, energy, cpu load 3
MariaDB SS-B SQL database 7/3 972 run time, cpu load 2
wc-5d-c5 SS-C streaming process system 0/5 1 080 throughput, latency 2
VP8 SS-D video encoder 7/4 2 736 run time, energy, cpu load 3
VP9 SS-E video encoder 9/3 3 008 run time, cpu load 2
rs-6d-c3 SS-F streaming process system 0/6 3 839 throughput, latency 2
lrzip SS-G compression tool 9/3 5 184 run time, cpu load 2
x264 SS-H video encoder 17/0 4 608 run time, cpu load 2
MongoDB SS-I No-SQL database 13/2 6 840 run time, cpu load 2
LLVM SS-J compiler 16/0 65 536 run time, cpu load 2
ExaStencils SS-K Stencil code generator 4/6 86 058 run time, cpu load 2

option in that configuration. In our case studies, the option ci, j is either a numerical
parameter or a Boolean value. A numerical parameter (i.e., page size) has multiple
different numerical values and Boolean values are indicating a certain option as en-
abled or disabled. A configurable software system also contains a set of performance
measures Y (i.e., response time, energy consumption, etc.), where yi,k ∈ Y represents
the kth performance value of the ith configuration in C. Since we consider config-
urable systems with more than one performance measure, k is always greater than 1.
The configuration space C is referred to as an independent variable while the perfor-
mance measure space Y is referred to as a dependent variable (i.e., depends on C ).
Theoretically, to find an optimal configuration for a software system, we learn the re-
lationship between C and Y by approximating the function f : C 7→Y that maps con-
figurations onto the performance (objective) space by f (ci,0, ...,ci, j) = (yi,0, ...,yi,k).
In real-world practice, the evaluations required to approximate the function f , also
referred to as measurements, are usually expensive and time-consuming. Therefore,
in this paper, the cost of a configuration optimizer is referred to as the total amount of
measurements taken to generate the optimal solutions (may not be actually “optima”,
but one that an optimizer determines to be optimal).

While there always exists an optimal solution in a single-objective optimization
task (where a better solution can be determined by a single criterion), there might
not be any optimal solution in a multi-objective optimization task. This might be the
situation where no configuration is best in all objectives. Therefore, we need to quan-
tify and evaluate the overall quality of a configuration in a different manner, called
the domination relationship. There are two major types of domination relationship:
binary domination [16], and continuous domination [23]. According to the definition
of binary domination, a configuration c1 is binary dominant over c2 iff:

y1,i ≤ y2,i∀i ∈ {1,2, ...,n} and
y1, j < y2, j for, at least, one j ∈ {1,2, ...,n}

(1)
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Algorithm 1: Non-dominated Sorting (NDSorting)
Data: C contains configurations await to be sorted; performance function f maps configurations

to the corresponding performance values.
Result: A set of non-dominated configurations Cnd , also referred to as the Pareto frontier.
begin

C f irst ←C
Cnd ←C
while C f irst 6= /0 do

c1←C f irst .pop()
Csecond ←C f irst
while Csecond 6= /0 do

c2←Csecond .pop()
// using either domination as defined in Eq. 1 or Eq. 2
if f (c1) dominates f (c2) then

Cnd .remove(c2)
if f (c2) dominates f (c1) then

Cnd .remove(c1)

return Cnd

In contrast, continuous domination defines that a configuration c1 is dominant over
c2 iff:

loss(c1,c2)< loss(c2,c1) (2)

where the loss function is defined as:

loss(c1,c2) =
n

∑
j=1
−e(y2, j−y1, j)× 1

n

where yi, j is min-max normalized

(3)

Note that in both equations above, the default setting is that the lower performance
measure y is preferred. By definitions, a best (optimal) configuration is one that is not
dominated by any other configuration, denoted as a non-dominated solution. And
the set containing all non-dominated solutions is called Pareto frontier set. In short,
the goal in a multi-objective optimization problem is to find as many optimal (non-
dominated) solutions as possible while minimizing the evaluation cost (using fewer
measurements).

To compute the non-dominated solution set, the non-dominated sorting process
is required, which has a runtime complexity of O(MN3) where M is the number of
objectives and N is the population size. It is also noteworthy that NSGA-II [9] pro-
posed a fast and elitism sorting approach that reduced this complexity to O(MN2). As
described in Algorithm 1, this paper follow the same sorting process used in NSGA-
II. This is important since our approach provides a faster workaround that only uses
non-dominating sorting during model training and avoids the use of it when executing
the trained optimizer.
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Algorithm 2: SMBO (e.g., FLASH)
Data: C contains all candidate samples; performance function f maps configurations to the

corresponding performance values; initialized surrogate models M contain multiple
models, one per objective; budget denotes the stopping criterion; S denotes the
non-dominated solutions found so far.

Result: Optimized models M, non-dominated configurations Cnd
begin

Ctrain ← Random(C) // initialize training samples
C.remove(Ctrain)
M← FitModel(Ctrain, f )
S← /0
while budget ≥ 0 do

C_new← SelectConfig(M, f ,C)
C.remove(C_new)
C_train.add(C_new)
M.train(Ctrain, f )
Cnd ← NDSorting(Ctrain, f ) // as described in Algorithm 1
if Cnd .isUpdated then

continue
else

budget← budget−1

return M, Cnd

3.2 Sequential Model-Based Optimization (SMBO)

Previous work has commented on the cost of performing configuration exploration.
Given all the possible configurations, it can be prohibitively expensive and time con-
suming to run them all.

In the AI literature, one method to explore a large and complex space without
excessive sample is sequential model-based optimization (SMBO). SMBO is an ef-
ficient tactic to find extremes of a performance (objective) function that is expensive
to evaluate (in terms of measurement cost and time). Also referred to as Bayesian
optimization in literature, SMBO can better incorporate prior knowledge in the form
of already measured solutions (in our case, configurations) as compared to traditional
optimization algorithms [5, 32]. By sequentially updating and learning from the prior
knowledge, SMBO can make estimations on the rest of unmeasured solutions so that
it can locate the most “interesting” (estimated to have better performances) space for
further sampling.

As shown in Algorithm 1 and Algorithm 2, the concept of SMBO is simply
and straightforward: Given the current knowledge learned about the problem space,
where should the procedure explore next? The advantages of SMBO over other tradi-
tional MOEA approaches (e.g., NSGA-II [9], SPEA2 [42], MOEA/D [40]) are:

– SMBO explores the unknown part of configuration space sequentially based on
knowledge already gained from the optimization so far. This results in much fewer
evaluations required to achieve the termination criteria (e.g., only 70 samples
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needed to explore a space of nearly 80,000 configurations, while traditional ge-
netic algorithms require much more evaluations2).

– SMBO contains a set of surrogate models, on which the optimization is per-
formed. Each model is fitted for a unique objective. After the termination, the
surrogate models can provide human-comprehensible insights on how to achieve
better performance for different objectives.

It is undeniable that traditional multi-objective optimizers still have their values, es-
pecially when the valid search space is vast and the evaluation of solutions is in-
expensive. Unfortunately, the problems explored in this paper do not fall into this
category. Configurable software systems can often contain constraints among con-
figuration options, which can reduces the valid configuration space vastly [20]. For
example, the system SS-H in Table 2 has 17 binary options yet with only 4 608 valid
configurations in total. That is, the ratio of valid solutions in the whole search space
is 4608/(217) = 3.5%. Under such circumstance, it is believed that guidelines should
be adopted to improve cost efficiency of sampling [28]. Therefore, we believe that
SMBO is a more suitable approach for our problem case.

3.3 Finding Interpretable SMBO (with FLASH)

Many approaches have been proposed using the SMBO framework. In terms of trans-
parency, Nair et al.’s FLASH system [27], is somewhat unique in that if offers a suc-
cinct summary of the learned model [35]. As we shall see, this directly addresses one
problem (model transparency) but introduces another (model disagreement).

First proposed by Nair et al., FLASH can achieve on-par performance while over-
coming the shortcomings of prior SMBO methods: Nair et al. reported that FLASH
takes 102 evaluations– which is much less than the 104 evaluations required by other
optimizers. Such improvement is notable since it makes FLASH more scalable to
large-scale systems with a vast search space. For example, the data used in this paper
required 6 calendar months to collect (running on a multi-core CPU farm). While
that data is necessary to certify a new algorithm (like VEER), once that algorithms is
fielded, it needs to respect the practical difficulties associated with data collection.

While Gaussian process models (GPM) are often used [12] in SMBO, Nair et al
found that, for optimizing configurable software, GPM scales very poorly to larger
dimensional data [27]. Nair et al. found that a faster, and the more scalable, system
can be implemented using regression trees. In FLASH, each objective is modeled as
a separate Classification and Regression Tree (CART) model. They found that even
if regression trees are somewhat incorrect about their predictions, those approximate
predictions can still be used to rank different candidate configurations [26]. FLASH
is implemented following the general SMBO framework as described in Algorithm
2, where the surrogate models M are CART learners.

There are several reasons we chose FLASH:

2 Holland’s advice [16] for genetic algorithms (such as NSGA-II and MOEA/D) is that 100 individuals
need to be evolved over 100 generations; i.e., 104 evaluations in all.
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Fig. 2: Visualization of the model disagreement problem in FLASH [27]. The internal
rationales of the surrogate models are as presented in Table. 1. “ND" means non-
dominated. The x and y axis represent the two performance objectives (min-max
scaled) in the dataset SS-E in Table 2. The star at the bottom-left corner indicates the
ideal optimum.

– Nair et al. showed that FLASH can handle models orders of magnitude faster than
a prior state-of-the-art methods based on Gaussian process models [43].

– FLASH makes its conclusions after very few samples to the domain.
– Due to the small size of the sample space, then the decisions used by FLASH

generate very small models (one per objective). Hence, FLASH can produce the
human-readable models needed for the AI transparency issues discussed in §2

3.4 Model Disagreement Problem and FLASH

For our purposes, FLASH is both a success and a failure. Firstly, it fixed the scalabil-
ity issues of GPM. At the same time, it turns out that model disagreement is rampant
in the models generated by FLASH (or example, see all the examples of disagree in
Table 1 were generated by FLASH).

To understand the root cause of such model disagreement, we attempted to vi-
sualize the inside rationales of the two surrogate models. As shown in Figure 2, the
“optimal” solutions selected by the two models are rather different, which is totally
reasonable and expected, given that they are optimizing for different objectives. How-
ever, it is noteworthy that the final “optimal” solutions yielded by FLASH (which is
selected by the non-dominated sorting procedure) share no similarity with either of
the two solution sets. That is to say, the interpretations generated by the two mod-
els alone are not “final”, and if users merely rely on such interpretations to locate
optimal configurations, they are more likely to obtain sub-optimal solutions that are
distant to the ones yielded by FLASH. Since the non-dominated sorting procedure is
a non-parametric process from which we cannot extract interpretations, we need an
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additional model that can mimic the performance of the sorting procedure meanwhile
allowing us to obtain comprehensible insights.

4 VEER: Disagreement-free Multi-objective Optimizer

As a response to our insights in §3.4, we design VEER based on the following design
choices:

– To ensure our model provides final interpretations, we design a method to reduce
the multi-dimension objective space into a single-dimensional space. This will
enable us to provide interpretations that take into account the overall performance
across multiple objectives.

– To ensure our interpretation is confusion-free, we use one single-output model as
the new surrogate model. This way, we avoid the dilemma that the same candidate
solution (configuration) gets ranked differently by different learners (or different
outputs from one multi-output model).

– To conduct a fair comparison with FLASH, and to obtain rule-based interpreta-
tions, we choose to use CART as the new surrogate model to optimize on the
synthetic single-dimension space. In future deployment, VEER is applicable to
any interpretable models such as Linear Regression and Naive Bayes.

An overview of the framework using VEER is shown in Figure 3 (which also
includes the experimental rig used in this paper). The component ZIGZAG, as illus-
trated in Figure 4, is the core heuristic used in VEER to generate the single-dimension
objective space, and its implementation varies for different definitions of domination.
In this paper, we choose to use the heuristic implemented with continuous domina-
tion because we believe it can better reflect and preserve the domination relationship
among solutions in our setting: As one can observe from the two examples in Fig-
ure 4, when using binary domination, point c is assigned a higher rank than point

Fig. 3: An overview of the framework using VEER, and the evaluation setup used
in our experimentation. Note that the first block is described in Algorithm 1 and
Algorithm 2, whereas the second block, VEER, is described in Algorithm 3.
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Fig. 4: ZIGZAG: candidate configurations are ranked according to their ability of
dominating other configurations across the configuration space. Starting at the best
objective (bottom left, which is ranked #0), VEER zigzags around objective space
looking for the next best unvisited objective. Configurations that cannot dominate or
be dominated by each other are assigned the same rank.

e. However, if we only look at these two solutions, neither of them can dominate
each other, thus, assigning them different ranks seems less reasonable. Such tricky
situations can be avoided in the continuous domination scenario because points are
ranked precisely according to their distance toward the "heaven" point (where both
objectives are optimized).

VEER uses CART as the final surrogate model motivated by effectiveness and
interpretability considerations. As previously shown by FLASH, an optimizer model
built with CART can achieve comparable and sometimes superior performance in
multi-objective optimization as compared to GPM. One reason that CART scales
better than GPM in data of larger dimensionality is that CART does not presume
the "smoothness" of the data space: models like GPM make an assumption to the
data space that configurations closer to each other have similar performance. Such
assumption can usually be invalid because a seemingly small change in configura-
tion options might actually represent a crucial shift in configuration strategy (i.e.,
the choice of data structure often has a substantial impact on the performance of
a storage-oriented system). Our second consideration is interpretability. Gigerenzer
pointed out that tree-structured models express great rationality and interpretability,
making it easier for users to obtain actionable insights about the data [11]. A re-
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Algorithm 3: VEER
Data: M is a set of SMBO models already trained. Mi ∈M corresponds to the models trained for

the ith objective. C contains all valid configurations.
Result: MV EER is the resulting model that will be utilized to replace the original M during

deployment.
begin

Csample← RandomSample(C, ration)
Y ←{}
PR←{}
for Mi ∈M do

yi←Mi.predict(Csample)
Y .append(yi) // record the predicted performance values for the ith objectives

i← 1
while Csample 6= /0 do

Cnd ← NDSorting(Csample,Y )
Csample.remove(Cnd )
PR.update(Csample, i) // record the current Pareto rank as depicted in Figure 4
i← i+1

MV EER← FitModel(Csample,PR)
// Fit a new model using PR as the dependent feature.
C f inal← argmin(MV EER.predict(C))
//Those predicted to have lowest PR will be returned as final choice of configurations.
return MV EER,C f inal

cent survey about practitioners’ beliefs about visual explanations of defect prediction
models also shows that CART is favoured by practitioners for its interpretability [19].
The result of the survey reported that among 6 methods of offering visual explana-
tions, CART is ranked as the 1st tier in terms of insightfulness and quality of the
generated visual explanations.

Algorithm 3 offers details on VEER’s internal workings.

5 Research Questions

This section illustrates research questions and our strategy to address these questions.
To systematically evaluate its merits, we compared VEER with one of the most

recent state-of-the-art configuration optimizer, FLASH. Moreover, to verify whether
the model disagreement problem can be tamed via a simple and naive approach, we
also implemented two variants of FLASH to serve as the baseline.

Our research questions are geared towards assessing the performance of VEER
regarding 3 aspects: (a) effectiveness of configuration solutions generated from the
model using VEER heuristic, (b) interpretability of VEER, and the (c) execution
time of the model using VEER heuristic. More specifically, we ask the following
research questions:

RQ1: Is there a model disagreement problem for multi-objective optimization of
CSS?
Before doing anything else, we need to first motivate the investigation of this paper.
In this research question, we ask whether the standard model-based method (FLASH)
used in the multi-objective configuration problem results in conflicting suggestions
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on optimizing different objectives. To measure the level of such conflicts, we used
the rank correlation measurement called Kendall’s τ test to assess whether learners
trained on different objectives rank the candidate configurations in different orders.

RQ2: Is the disagreement problem “linearly solvable”?
All the technology proposed in this paper is superfluous if an existing alternate method
can handle the problem of interpreting multi-objective optimization results. There-
fore, we attempt to edit the default FLASH into two variants, using two different
heuristic function to reduce the objective space: (a) the weighted sum equation and
one single-output regression learner, or (b) a multi-output regression learner. The two
benchmark methods are referred to as SingleWeight and MultiOut respectively. Our
experiments will show that both methods have significant shortcomings.

RQ3: Can VEER resolve the model disagreement problem while maintaining on-
par performance with benchmark methods?
Here, we test whether introduction of the VEER heuristic will compromise perfor-
mance of the state-of-the-art optimizer . To measure that, we evaluate not only the
quality of the returned solutions, but also the robustness of the model. Measurements
used to evaluate the merits of VEER and other benchmark methods are elaborated in
§6.3

RQ4: Can VEER reduce the execution time?
We explore other positive side effects brought by VEER. One of the most apparent
improvements of VEER is that since multiple learners within the optimizer are re-
placed by a single learner, the model can now skip the step of computing domination
sort across the whole holdout set, which is computationally very intense. To assess
the extent of the improvement, we will record the execution time of VEER when
applying it to the holdout set, and compare it with that of other benchmark methods.

6 Experimental Setup

To answer our research questions, our experiment compares the performance of con-
figuration optimizers using VEER heuristic against those using alternative heuristics.

As depicted in Figure 3, all the configuration optimizers in our experiment will
divide the configuration space into 2 sets: the training pool, and the holdout set (we
split them 50% to 50%). Each optimizer sequentially samples along the training pool
to add the selected next most informative configuration item into the training set
(and this set is a subset of the training pool). The selected configurations and the
corresponding performance measures are then used to train the machine learners
within the optimizer. Then, the performance of each optimizer is evaluated using
the holdout set. Apart from that, VEER has one additional step, which is to use the
ZIGZAG process as illustrated in Figure 4 to train a hyper-space model using ran-
dom samples chosen from the rest of the training pool. Note that, since this step does
not require to access the actual performance measures Y of the additionally chosen
samples C, it will not increase the measurement cost in the real-world application.
Finally, to assess the stability and reliability of our approach in a statistical man-
ner, our experimentation will randomly choose 50% of the configuration space as
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the holdout set. To reduce the effect of the random seeds, the whole process is re-
peated for 100 times. For replication purposes, our code and datasets are on-line:
https://github.com/anonymous12138/multiobj.

6.1 Data

To empirically evaluate the effectiveness of our approach, we use datasets collected
from different configurable software systems. Each dataset contains the whole popu-
lation of all valid configurations of that system and the performance measures of each
configuration (by “all”, we mean all combinations given the selected configuration
options). Table 2 describes the nature of each dataset. We selected the datasets based
on the following criteria: (1) different sizes to examine the scalability and robust-
ness, (2) different domains to improve external validity, and (3) different application
domains (client-server and desktop) to cover different performance aspects (i.e., run
time of compressing a video vs. run time to perform a set of actions on a database).
Among all the datasets, SS-C and SS-F are datasets used in FLASH. Others (SS-
A, SS-B, SS-D, SS-E, and SS-G to SS-K) are datasets recently collected by us. For
datasets that are collected by us, we applied the following process: To reduce mea-
surement noise, we executed all measurements in isolation (i.e., no other tasks are
performed) on machines with minimal Debian 9 or Debian 10 installations and re-
peated each measurement 3–5 times. While the standard deviation of a performance
measure exceeded 10%, we repeated the measurement of the configuration.

6.2 Baselines

To assess our approach comprehensively, we included several SMBO methods as
benchmark methods in out experiment. At first, we collected some existing open-
source SMBO methods, such as FLASH [27], HyperOpt [4] (using TPE [3] as sur-
rogate models) and SMAC [18]. Unfortunately, we found that both HyperOpt and
SMAC do not support customized constraints on the search space. As illustrated in
§3.2, such constraints are rather crucial as they filter out over 99% of invalid con-
figurations [20]. Hence, we had to implement our own versions of the SingleWeight
and MultiOut alogorithms described in §5. The implementation follows the SMBO
framework as described in prior works [3, 5, 27], denoted as SingleWeight and Mul-
tiOut3. The major difference among these benchmark methods is the output format
of surrogate models (either single-output or multi-output) and option of using either
weighted sum or non-dominated sorting to select the final solutions. The implemen-
tation of all benchmark methods is available in our online repository.

3 And the source code for that implementation can be found in the reproduction package mentioned in
our abstract

https://github.com/anonymous12138/multiobj
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6.3 Performance Criteria

First of all, to assess effectiveness of our approach against benchmark models, we
choose to measure the quality of the solutions set returned by each model. A solu-
tion set contains configurations that a model believes to have optimal performance
among all configurations. Given the definitions of binary and continuous domination,
a solution set can contain more than one configuration. To measure the quality of
the solution set, this paper uses generational distance [37] (GD) as the indicator. GD
computes the average distance between the solution set returned by a model and the
actual optimal solution set. There are other indicator such as inverted generational
distance [8] (IGD) and hypervolume [17] (HV). However, prior research suggests
GD as a more suitable metric to uniformly reflect the overall quality of the solution
set [1]. For example, if one intentionally adds very poor solutions into the solution
set, IGD and HV cannot reflect the change in the overall quality of the new solution
set.

Secondly, to assess the interpretability of a model, in this paper we are specif-
ically assessing the level of disagreement among multiple learners within a multi-
objective model. We argue that if interpretations extracted from different learners
are conflicting or disagreeing with each other, the model will fail to provide stake-
holders with unequivocal insights that are truly informatively or actionable. In that
spirit, we use a rank correlation test, Kendall’s τ test [21], to measure the extent
of disagreements among learners built on different objectives. Kendall’s τ test is a
non-parametric statistical test which can be used to measure the ordinal association
between 2 lists of measured variables (in this paper, 2 objective values on the same
configurations). According to the definition from Kendall correlation, we first catego-
rize any pair of configurations by their performance measure into 2 kinds: discordant
pairs and concordant pairs. Let (Ai,Bi) and (A j,B j) denote a pair of configurations,
represented by the performance measures in objective A and objective B. This pair is
concordant if the sorted order of (Ai,A j) and (Bi,B j) agrees: one configuration has
better performance than the other in both objectives4. Otherwise, the pair is discor-
dant. After that we compute the Kendall coefficient τ using the following equation:

τ =
(P−Q)

(P+Q)
(4)

where P is the number of concordant pairs, Q the number of discordant pairs. In
general, the Kendall correlation is high when the 2 variables are ranked similarly, and
the correlation is low when the 2 variables are ranked differently. More specifically
in our case study, a positive τ coefficient means a relatively similar ordering among
different objectives, which indicates less disagreement among different learners in a
multi-objective model; A τ coefficient near 0 means the 2 lists of ranks assigned by
different learners have no correlation at all; A negative coefficient means the learners
rank configurations in somehow opposite order.

4 We define a concordant pair in tasks of more than 2 objectives in a similar manner: one configuration
has better performance than the other in all objectives. This is not originally defined by Kendall, but we
believe it is a proper extension.
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Finally, to assess computational complexity of our approach, we measure the
execution time of applying each model on the holdout data to generate a solution set.
All the above analyses and measurements were executed on a 64-bit Windows 10
machine with a 2.2 GHz 4-core Intel Core i5 processor and 8 GB of RAM.

6.4 Statistical Analysis

To make comparisons among all algorithms on a single project, we use a non-parametric
significance test and a non-parametric effect size. Specifically, we use the Scott-Knott
test [25] that sorts the list of treatments (in this paper, VEER and baselines) by their
median scores. After the sorting, it then splits the list into two sub-lists. The objective
for such a split is to maximize the expected value of differences E(∆) in the observed
performances before and after division [38]:

E(∆) =
|l1|
|l|

abs(E(l1)−E(l))2 +
|l2|
|l|

abs(E(l2)−E(l))2 (5)

where |l1| means the size of list l1. The Scott-Knott test assigns ranks to each result
set; the higher the rank, the better the result. Two results will be ranked the same if
the difference between the distributions is not significant. In this expression, Cliff’s
Delta estimates the probability that a value in list A is greater than a value in list B,
minus the reverse probability [24]. A division passes this hypothesis test if it is not a
“small” effect (Delta≥ 0.147). This hypothesis test and its effect size are supported
by Hess and Kromery [15].

7 Results

This section provides experiment results that answer the research questions (RQs)
previously discussed.

7.1 RQ1

Is there a model disagreement problem for multi-objective optimization of CSS?
Table 3 checks for the existence of this problem by showing the rank correla-

tion of FLASH, which is measured by Kendall’s τ coefficient. As shown in Table 3,
there are a few systems where the rank correlation is relatively high (SS-I and SS-K).
This could be because the objectives in those systems are not so conflicting. In such
cases, feature interactions learned from different learners are likely to be homoge-
neous since essentially these learners can substitute each other without harming the
model performance. On the other hand, for most of the case studies in this paper, we
do observe that configurations are ranked in a rather opposite way by learners trained
on different objectives.

In summary, we answer RQ1 as follows:
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Table 3: RQ1 and RQ2 result: Median values of the Kendall’s τ coefficient. Higher
coefficients are better, and the lowest score(s) are highlighted in each dataset. Please
note that the default FLASH (with no additional heuristics or linear variants) will
simply be referred to as FLASH.

FLASH (Default) SingleWeight MultiOut VEER
SS-A 0.47 1.00 0.82 1.00
SS-B 0.16 1.00 0.13 1.00
SS-C 0.60 1.00 0.65 1.00
SS-D -0.17 1.00 -0.07 1.00
SS-E -0.56 1.00 -0.54 1.00
SS-F -0.30 1.00 -0.30 1.00
SS-G -0.47 1.00 -0.51 1.00
SS-H -0.69 1.00 -0.69 1.00
SS-I 0.73 1.00 0.73 1.00
SS-J -0.08 1.00 -0.17 1.00
SS-K 0.87 1.00 0.88 1.00

Answer 1: In our case studies, we can assert that multi-objective configurable
software systems often have extensive interpretability problems, in terms of
model disagreement among multiple learners.

7.2 RQ2

Is the disagreement problem “linearly solvable”?
This section compares the results of FLASH (which works on each objective sep-

arately) to MultiOut and SingleWeight (which work on some linear combinations
of the objectives).

For MultiOut, we show in Table 3 that we can increase the rank correlation by
replacing the multiple single-output CART learners with a single multi-output CART
learner. This could be a good sign implying that in some cases FLASH can be easily
improved in the model disagreement problem via making a small mutation on its
original implementation. However, such improvement does have its upper bound,
given the disagreement still exists pervasively among all datasets.

As for SingleWeight, because we beforehand transformed multi-objective space
into a single objective via a weighted sum function, the optimizer now requires one
surrogate model. This totally resolved the disagreement problem by reducing the ar-
ity of output. However, as later reported in Table 4, this approach can sometimes
compromise the performance significantly. We conjecture that it could be because
the optimal solutions are not uniformly distributed or the optimal solutions reside in
a non-convex region which leads the weighted sum approach to fail.

In summary, we answer RQ2 as follows:
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Table 4: RQ3 result: Median values of generational distance (GD) for all 4 methods.
Each row highlights the GD value(s) that are statistically significantly worst by more
than a small effect size (as determined by statistical tests of §6.4).

FLASH (Default) SingleWeight MultiOut VEER
SS-A 0.007 0.011 0.014 0.013
SS-B 0.125 0.171 0.100 0.119
SS-C 0.020 0.021 0.019 0.022
SS-D 0.060 0.059 0.061 0.058
SS-E 0.131 0.135 0.144 0.136
SS-F 0.098 0.082 0.113 0.113
SS-G 0.014 0.296 0.016 0.014
SS-H 0.013 0.013 0.016 0.013
SS-I 0.034 0.038 0.034 0.042
SS-J 0.386 0.437 0.384 0.362
SS-K 0.299 0.306 0.304 0.298

Fig. 5: RQ3 result: The distribution of GD measures for all four models. The GDs
from the last 2 datasets are relatively higher than others, partially because these 2
datasets are (10+ times) larger than other datasets.

Answer 2: Neither SingleWeight nor MultiOut can fix the disagreement is-
sue while not risking to comprise the performance. That is to say, this problem
is not "linearly solvable".

7.3 RQ3

Can VEER resolve the model disagreement problem while maintaining on-par
performance with benchmark methods?

First of all, we need to clarify that we will not use the rank correlation as the ma-
jor indicator to evaluate the merit of our approach. The reason is, when the model used
to generate the solution set is a single-output learner, there is naturally no disagree-
ment at all, which always guarantees a perfect correlation (Kendall’s τ coefficient =
1). This result is totally to be expected by us since VEER is designed purposefully to
resolve the disagreement problem.
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Therefore, we need to evaluate whether VEER compromises the performance
as compared to FLASH. In Table 4, we report the generational distance (GD) of
solution sets provided by each optimizer. We used a non-parametric effect size test
to determine if the difference between the two performance measures is statistically
significant. As shown by the table, in most cases VEER can achieve comparable
performance. We note in Figure 5 that VEER in some cases has a slightly larger
variance than other methods. Specifically, in four cases out of eleven (SS-B, SS-C,
SS-F, SS-I), VEER has a larger inter-quartile (IQR) than FLASH. This was actually a
pre-experimental expectation since VEER is a patch on FLASH (so VEER gets all the
variance of FLASH, plus some extra "wriggle" due to its own learning process). It is
also noteworthy that in the majority datasets (SS-A, SS-C, SS-D, SS-G, SS-H, SS-I,
SS-K), the inter-quartile range of VEER was very small (less than 0.033). Lastly, we
note that while that IQR is larger, the significance of that larger size does not effect
our argument (as supported by the statistical tests in §6.4.)

In summary, we answer RQ3 as follows:

Answer 3: The design choices made for VEER are able to resolve the model
disagreement problem. Moreover, it does not compromise the performance of
the original optimization model in most cases (in some cases, VEER obtained
greater variance in GD than FLASH or other methods).

7.4 RQ4

Can VEER reduce the execution time?
While executing VEER during the experimentation, one of the most obvious

bonuses is that VEER runs much faster than prior methods when applied to the
holdout set. As shown in Figure 6, the average execution time using VEER when
applied to the holdout set is much faster than that of other benchmark methods. The

Fig. 6: RQ4 result: The inverse runtime ratio using FLASH’s runtime as the bench-
mark, calculated by dividing the average runtime of FLASH over that of other meth-
ods. Higher ratio is better.
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model can be up to 1000+ times faster than other benchmarks when applied on the
largest dataset. Note that we also observe a larger variance in runtime when the size
of datasets increases. This is because the runtime is also hugely influenced by the
size of the returned solutions set: when there are more non-dominated solutions in
the holdout set, the time till the termination of the non-domination sort will increase
proportionally. VEER does not suffer from such complexity given its design of "com-
pressing" multi-objective space into a single dimension.

In summary, we answer RQ4 as follows:

Answer 4: As shown in the experiment result, VEER takes a much shorter
time to generate the solution set out of the holdout set than other methods.
Moreover, as the size of the holdout set increases, the execution time of VEER
grows much slower than that of other methods, which indicates better scala-
bility of VEER.

8 Discussion

In this section we discuss what makes VEER novel and more useful than prior meth-
ods in optimizing multi-objective configuration.

Final interpretations: In the domain of multi-objective optimization, final so-
lutions are yielded by processing non-dominated sorting first. However, this part is
non-parametric and cannot be used to extract interpretation. Therefore, traditional
SMBO optimizers are only capable of providing preliminary interpretations from
single-objective models. The same attribute is also reflected on Clafer, the configu-
ration visualizer: Clafer helps practitioners understand the commonalities and vari-
ants among different configuration solutions on the Pareto frontier. However, such
instance-based visualization cannot yield generalizable rules on how to optimize mul-
tiple goals. VEER, on contrary, provides final rule-based interpretations about how to
optimize a configuration in general.

Fast: Non-dominated sorting is a computation-intensive step with an optimizer.
VEER replaces it with the hyper-space model that mimics the behavior of the non-
dominating sorting procedure. By directly learning the relationship between the non-
dominated ranks and the independent variables (configuration options), VEER can
achieve significantly (up to 103 in the largest system) faster execution time.

Adjustable: In addition to the merits above, VEER can also incorporate with
the preference-based approach by simply adjusting the distance calculation function
insides ZIGZAG. As shown in Figure 7, by customizing the preference weights (e.g.,
[2 : 1] means optimizing one objective is twice as important as optimizing the other
one), VEER can generate solutions that reflect such user preferences.

Uncompromising: Our approach cannot be generalizable to all configurable soft-
ware systems: when two objectives are competing (with strong negative correlation),
VEER is doomed to fail since a configuration that optimizes one objective will in-
evitably compromise the other one by the same extent. However, we show that this
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is not the case in datasets explored so far. In fact, VEER can generate disagreement-
free interpretations without compromising the performance in most cases; In others,
VEER inevitably suffers from greater variances.

9 Threats to validity

Given the complexity of our experiments in 11 real-world configurable software sys-
tems, many factors can threaten the validity of our results.

Internal Validity. First of all, the multi-objective optimizer learns from benchmark
measurements that we collected from various configurable systems. While we have
rejected measurements with relatively high variance, it remains possible that some
measurements are incorrect, which can bias the learning procedure of the optimizer
and may result in worse solution sets.

Secondly, we measure the level of model disagreement using a rank correlation
test, namely Kendall’s τ test. One shortcoming of this test is that it has to be per-
formed on ranks assigned to the same set of variables, which forces us to compute
the correlation on the whole population (since optimal solutions defined by different
objectives are hardly the same). As is well-known, it is actually the optimal (non-
dominated) solution set that an optimizer cares about, and the very majority of the
whole population are only sub-optimal solutions. Therefore, it could be a possible

Fig. 7: As per Figure 2, squares marked as “Non-dominated sorting” denotes the
final solutions return by FLASH. Figure on the right side shows the zoom-in area of
FLASH and VEER solutions. These results are better than those seen in Figure 2 since
it ensures interpretations from VEER are final. Moreover, VEER can be adjusted, if
needed, to reflect user preferences on different objectives.
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case that there is actually little disagreement within the optimal solutions but much
disagreement among the sub-optimal space.

External Validity. While we believe our findings is generalizable as supported
by the experimentation result, this does not guarantee the model to be automatically
scalable to systems with larger spaces and dimensionalities. However, to increase the
external validity of our study, we did intentionally choose datasets from various sizes,
dimensions, and application domains.

Secondly, we select CART as the embedded surrogate model because prior re-
search has shown that CART is capable to achieve good performance and has great in-
terpretability with feature interactions being presented as decision conditions within
the tree [27]. Another consideration is that since we use FLASH, one of the most re-
cent state-of-the-art optimization models, as the benchmark method, we would prefer
to control variables within the experiment so that our comparison is sufficiently "fair".
That said, it is possible that other white-box machine learners (e.g., logistic regres-
sion, Naive Bayes) can achieve superior performance than CART while we have not
explored yet. However, this paper is centered around assessing the feasibility of our
proposed method used to improve Pareto-based optimization. Our current experiment
results suffice to illustrate the effectiveness of our work.

10 Conclusion

We have shown that model disagreement is rampant in the standard case studies used
to assess multi-objective configuration problems. As stated in our introduction, the
current literature has surprisingly little on this topic. Hence we are concerned that
model disagreement may be a long-standing, but previously under-explored, problem.

To better address this problem, we have proposed a confusion-free multi-objective
configuration optimizer, VEER, which is built on top of a state-of-the-art sequential
model-based optimizer FLASH. We have shown that VEER has not only inherited
many merits of FLASH (good performance and low training cost), but also resolved
the potential model disagreement problem. We have demonstrated the effectiveness
of VEER in resolving model disagreement while maintaining on-par quality for the
configuration solutions.

To do this, first, we investigated the existence of model disagreement problem in
cases studied in this paper, where the interpretations returned by FLASH can some-
times be conflicting, as indicated by the rank correlation.

Second, we demonstrated that VEER can enhance the shortcoming of FLASH.
VEER is capable of mapping an N-dimensional objective space (in this paper, N is
2 and 3) onto a single-dimensional space without information loss of the domination
relationship. Since the synthetic single-dimensional objective space can be learned
by just one machine learner, the model disagreement problem collapses in itself.

Finally, we have shown that VEER can achieve on-par performance compared to
the original FLASH model, indicating no information loss during the procedure.

Another bonus of VEER is that by simplifying the objective space, the execution
time of applying the optimizer model during the testing (or deployment) time has
been dramatically reduced (1,000 times at most). It is also noteworthy that since the
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computational cost of VEER is also relatively small compared to that of an optimizer,
the overhead of adding VEER on top of any model-based optimizer should be trivial.

Regarding future work, we will invest our effort in addressing open issues de-
scribed in §9. Beyond that, we believe VEER can be not only applicable in con-
figuration optimization tasks, but also hyper-parameter tasks from machine learning
techniques as described in the FLASH paper [27]. Moreover, there exists an increas-
ing demand for commissions such as auto-generated code (from chatGPT or Copilot,
etc.) to the local domain. Tools like VEER might be useful for tuning the choice
points inside that code (e.g., given a genetic k-th nearest neighbor code snippet from
chatGPT, designers could use VEER to decide what is the best setting for k.
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