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Abstract—Modern software systems often exhibit numerous
configuration options to tailor them to user requirements,
including the system’s performance behavior. Performance models
derived via machine learning are an established approach
for estimating and optimizing configuration-dependent software
performance. Most existing approaches in this area rely on
software performance measurements conducted with a single
workload (i.e., input fed to a system). This single workload,
however, is often not representative of a software system’s
real-world application scenarios. Understanding to what extent
configuration and workload—individually and combined—cause
a software system’s performance to vary is key to understand
whether performance models are generalizable across different
configurations and workloads. Yet, so far, this aspect has not been
systematically studied.

To fill this gap, we conducted a systematic empirical study
across 25 258 configurations from nine real-world configurable
software systems to investigate the effects of workload variation at
system-level performance and for individual configuration options.
We explore driving causes for workload–configuration interactions
by enriching performance observations with option-specific code
coverage information.

Our results demonstrate that workloads can induce substantial
performance variation and interact with configuration options,
often in non-monotonous ways. This limits not only the generaliz-
ability of single-workload models, but also challenges assumptions
for existing transfer-learning techniques. As a result, workloads
should be considered when building performance prediction
models to maintain and improve representativeness and reliability.

I. INTRODUCTION

Most modern software systems can be customized by means
of configuration options enabling desired functionality or
tweaking non-functional aspects, such as performance or energy
consumption. The relationship between configuration choices
and their influence on performance has been extensively studied
in the literature [1]–[10]. The backbone of performance estima-
tion are prediction models that map a given configuration to the
estimated performance value. Learning performance models
relies on a training set of configuration-specific performance
measurements. In state-of-the-art approaches, observations
usually rely on only single-workload measurements that aim
at reflecting performance behavior of a typical real-world
application scenario.
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Figure 1: Throughput distribution of 1954 configurations of the
database system H2 for the TPC-C benchmark at two different
scale factors.

It is almost folklore that choice of the workload (i.e., the
input fed to the software system) influences the performance
of software systems in different ways [11], as has been shown
for the domains of SAT solving [12], [13], compilation [14],
[15], video transcoding [16], [17], data compression [18], and
code verification [19]. Beside apparent interactions, such as
performance scaling with the size of a workload, qualitative
aspects can result in intricate and inadvertent performance
variations.

Take as an example two performance throughput distributions
across the configuration space of the database system H2
in Figure 1. Here, the exact same configurations on two
different parameterizations of the benchmark TPC-C have
been measured. In this setting, the scale factor controls the
modeled number of warehouses.

While for most configurations, throughput decreases when
the scale factor is increased some configurations achieve even a
higher throughput1. This example illustrates that configuration-
dependent performance can be highly sensitive to workload
variation and that the performance behavior under different
workloads can change in unexpected ways. In turn, this can
render performance models based on a single workload useless,
unless the configuration options’ sensitivity to workloads is
accounted for.

1A similar workload-specific performance distribution was described by
Pereira et al. for the video encoder X264 [17].



To address this limitation, two different approaches have
been pursued in the literature: performance modeling (1) based
on existing knowledge [20]–[24], and (2) for a combined
configuration-workload problem space [19], [25].

The first approach relies on transfer-learning techniques,
in which, given an existing performance model, in a second
step only the differences to a new environment or workload
are learned. A transfer function encodes which configuration
options’ influences on performance are sensitive to workload
variation. While transfer learning is an effective strategy that is
not limited to varying workloads [20]–[24], its main limitation
is that the transfer function is specific to the differences between
two environments.

In contrast to transfer learning, a second and more generalist
approach is to consider the input fed to a software system as
a further dimension for modeling performance. A workload is
characterized by properties that—individually or in conjunction
with software configuration options—influence performance.
For such a strategy to work, one requires in-depth knowledge
of the characteristics of a workload that influence performance,
let alone these characteristics can be mathematically modeled
at all. This strategy has been effectively tested for a variety
of application domains, such as program verification [19]
and high-performance computing [25]. However, the added
complexity comes at substantial cost. Not only does it require
substantially more measurements, one often lacks knowledge
of which performance-relevant characteristics best describe
a workload (e.g., what makes a program hard to verify or
optimize).

The existing body of research [1]–[10], [26]–[29] confirms
the prevalence and importance of the influence of the workload
on the performance of software systems. All these works are
aware of the workload dimension as a factor of performance
variation, yet little is known about the quality and driving
factors of the interplay between configuration options and
workloads. Are workloads and configurations as two factors
influencing software performance orthogonal and can be treated
independently, or does their interplay give rise to intricate and
inadvertent performance behavior? For example, varying the
workload had a non-uniform effect on different configurations
of the database system H2 (cf. Fig. 1), suggesting a specific
interaction between certain configuration options and the
workload.

We have conducted an empirical study that sheds light
on whether and how choices of configuration and workload
interact with regard to performance. Specifically, we have
analyzed 25 258 configurations from nine configurable real-
world software systems to obtain a broad picture of the
interaction of configuration and workload when learning
performance models and estimating performance (i.e., response
time). Aside from studying the sole effects of workload
variation on performance behavior, we explore what drives
the interaction between workload and configuration. To this
end, we enrich performance observations with corresponding
coverage data to understand workload variation with respect
to the executed code.

We found that varying the workload can influence
configuration-dependent software performance in different
ways, including non-linear and non-monotonous effects. As
a key take-away, we provide empirical evidence that single-
workload approaches do not generalize across workload vari-
ations and that even existing transfer-learning techniques are
too limited to address non-monotonous performance variations
induced by qualitative workload changes. We demonstrate how
coverage testing can outline a path to screen for workload-
sensitive configuration options.

To summarize, we make the following contributions:
– An empirical study of 25 258 configurations from nine

configurable software systems on whether and how in-
teractions of workload and configuration affect software
performance;

– A detailed analysis illustrating that (1) system-level
performance, and (2) the performance influence of indi-
vidual configuration options can be sensitive to workload
variation and often exhibit a non-monotonous relationship,
caused by variation in the execution of option-specific
code;

– A critical reflection of the suitability of single-workload
models for predicting configuration-dependent perfor-
mance and assumptions of state-of-the-art transfer-learning
approaches in this area;

– An archived repository on zenodo.org2 with supplementary
material, including performance and coverage measure-
ments, configurations, and an interactive dashboard for
data exploration to reproduce all analyses and additional
visualizations left out due to space limitations.

II. PRELIMINARIES AND RELATED WORK

Software performance emerges from a variety of factors
including configuration, workload, and hardware setup. In what
follows, we revisit work that models the relationship between
such factors (individually or in combinations) and software
performance.

A. Performance Prediction Models

Configurable software systems is an umbrella term for any
kind of software system that exhibits configuration options to
customize its functionality [30]. While the primary purpose
of configuration options is to select and tune functionality,
each configuration choice may also have implications on
non-functional properties (e.g., execution time or memory
usage)—be it intentional or not. Performance prediction models
approximate non-functional properties, such as execution time
or memory usage, as a function of software configurations
c ∈ C, formally, Π : C → R.

Such black-box models do not rely on an understanding
of the internals of a configurable software system, but are
learned from a training set of configuration-specific perfor-
mance observations. In this vein, finding configurations with
optimal performance [26]–[29] and estimating the performance

2https://doi.org/10.5281/zenodo.7504284
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for arbitrary configurations of the configuration space is
an established line of research [1]–[10]. Over the decade,
several different learning and modeling techniques have shown
to be effective to learn configuration-dependent software
performance, including probabilistic programming [1], multiple
linear regression [2], classification and regression trees [5]–[7],
Fourier learning [8], [9], and deep neural networks [3], [4],
[10]. The set of configurations for training can be sampled from
the configuration space using a variety of different sampling
techniques [31], [32]. All sampling techniques aim at yielding
a representative sample, either by covering the main effects
of configuration options and interactions among them [33] or
by sampling uniformly from the configuration space [29], [34].
Most sampling techniques share the perspective of treating
a configurable software system as a black-box model at
application-level granularity. Recent work has incorporated
feature location techniques to guide sampling effort towards
relevant configuration options [35], [36] or to model non-
functional properties at finer granularity [37], [38].

B. Varying Workloads

When assessing the performance of a software system, one
asks how well a certain operation is executed, or, phrased
differently, how well an input fed to the software system is
processed. In the context of this study, we will refer to such
inputs as workloads. By nature, the workload of a software
system is application-specific, such as a series of queries and
transactions fed to a database system or a sequence of raw
image files processed by a video encoder. Workloads can often
be distinguished by the characteristics they exhibit, such as the
amount and type of data to be processed (text, binary data).

In practice, a useful workload for assessing performance
should closely resemble the real-world scenario that the system
under test will be deployed in. To achieve this, a well-defined
and widely employed technique in performance engineering is
workload characterization [39], [40]. To select a representative
workload, it is imperative to explore workload characteristics
and validate a workload with real-world observations. This can
be achieved by constructing workloads from usage patterns [41]
or by increasing the workload coverage using a mix of different
workloads rather than a single one [42].

While workload characterization and benchmark construction
is domain-specific, there are numerous examples of this task
being driven by community efforts. For instance, the non-profit
organizations Transaction Processing Performance Council
(TPC) and Standard Performance Evaluation Corporation
(SPEC) provide large bodies of benchmarks for data-centric
applications and across different domains, respectively.

C. Workloads and Performance Prediction

Different approaches have been proposed to tackle the
problem of workload sensitivity in performance prediction.

a) Workload-aware Performance Modeling: Extending
on workload characterization (cf. Section II-B), a strategy that
embraces workload diversity is to incorporate workload char-
acteristics into the problem space of a performance prediction

model. Here, performance is modeled as a function of both
the configuration options explicitly exhibited by the software
system as well as the workload characteristics, formally
Π : C × W → R. The combined problem space enables
learning performance models that generalize to workloads
that exhibit characteristics denoted by W since we can
screen for performance-relevant combinations of options and
workload characteristics. This domain-specific strategy has
been successfully applied to domains such as program verifi-
cation [19], algorithm selection [43], or the parametrization of
the Java microbenchmark harness [44]. In these instances, the
characteristics (varying aspects of a workload) are explicitly
specified and do not require further characterization.

Its main disadvantages are twofold: The combined problem
space (configuration and workload dimension) requires substan-
tially more observations to screen for identifying performance-
relevant options, characteristics, and interactions thereof. In
addition, previous work found that only few configuration
options are sensitive to workload variation [21]. That is, the
problem of identifying meaningful, but sparse predictors is
exacerbated since one must not only identify performance-
relevant configuration options but also workload-sensitive ones.
It is not possible to find such a characterization in every case.
Even worse, a chosen characterization can be wrong and omit
important factors or overestimate unimportant factors.

At large, the notion of the influence of workloads on
configuration-dependent performance remains the exception
in the literature: While a study related to ours explores and
confirms the presence of interactions between the workload and
configuration options [45], only few researchers even consider
this dimension of the problem space.

b) Transfer Learning for Performance Models: Another
strategy for workload-aware performance prediction builds on
the fact that, across different workloads, only few configuration
options are in fact workload sensitive [21]. One first trains a
model on a standard workload and, subsequently, adapts it to
a different workload of choice. Contrary to a generalizable
workload-aware model, transfer-learning strategies focus on
approximating a transfer function that, without characterizing
the workload, encodes the information on which configuration
options are sensitive to differences between a source and
target pair of workloads. Training a workload-specific model
and adapting it on demand provides an effective means to
reuse performance models, which is not only limited to
workloads [20], [23], [24], [46]. The main shortcoming of
transfer learning is that it does not generalize to arbitrary
workloads, since a transfer function is tailored to a specific
target workload. Basically, one trades generalizability for
measurement cost, because learning a transfer function requires
substantially fewer training samples.

While both directions (workload-aware performance mod-
eling and transfer learning) are effective means to handle
workload sensitivity, to the best of our knowledge, there
is no systematic assessment of the factors that drive the
interaction between configuration and workload with regard
to performance. Understanding scenarios that are associated



with or even cause incongruent performance influences across
workloads (1) help practitioners to employ established analysis
techniques more effectively and (2) motivate researchers to
devise analysis techniques dedicated to such scenarios.

III. STUDY DESIGN

In what follows, we describe our research questions and
measurement setup. We make all performance measurement
data, configurations, workloads, and learned performance
models available on the paper’s companion Web site.

A. Research Questions

The first two research questions are concerned with the work-
load sensitivity of the studied software systems’ performance
behavior. We first take a look at the entire system (RQ1) and
its configurations and, subsequently, to individual configuration
options (RQ2). In Sec. V, we explore possible driving factors
and indicators for workload-specific performance variation of
configuration options (RQ3).

1) Performance Variation Across Workloads: Performance
variation may arise from workload variation [11]. In a practical
setting, the question arises whether, and if so, to what
extent an existing workload-specific performance model is
representative of the performance behavior of also other
workloads. That is, can a model estimating the performance
of different configurations be reused for the same software
system but run with a different workload? Clearly, it depends.
But, analyzing systematically how the degree of similarity of
workloads and corresponding performance behaviors varies
across the configuration space provides insights into the extent
the strategies of transferring performance models (outlined in
Section II-C) might be applicable. To this end, we formulate
the following research question:

RQ1 To what extent does performance behavior vary
across workloads and configurations?

2) Option Influence Across Workloads: The global per-
formance behavior emerges from the influences of several
individual options and their interaction as well as the combined
influence with the workload on performance. To understand
which configuration options are driving performance variation,
in general, and which are workload sensitive, in particular, we
state the following research question:

RQ2 To what extent do influences of individual config-
uration options depend on the workload?

B. Experiment Setup

1) Subject System Selection: We have selected nine con-
figurable software systems for our study. To ensure that our
findings are not specific to one domain or ecosystem, we
include a mix of Java and C/C++ systems from different
application domains (cf. Table I). In particular, we include
systems studied in previous and related work [17], [35], [37],
and we incorporate further ones with comparable size and
configuration complexity (in terms of numbers of configurations

Table I: Subject System Characteristics

System Lang. Domain Version # O # C # W

JUMP3R Java Audio Encoder 1.0.4 16 4 196 6
KANZI Java File Compressor 1.9 24 4 112 9
DCONVERT Java Image Scaling 1.0.0-α7 18 6 764 12
H2 Java Database 1.4.200 16 1 954 8
BATIK Java SVG Rasterizer 1.14 10 1 919 11

XZ C/C++ File Compressor 5.2.0 33 1 999 13
LRZIP C/C++ File Compressor 0.651 11 190 13
X264 C/C++ Video Encoder baee400. . . 25 3 113 9
Z3 C/C++ SMT Solver 4.8.14 12 1 011 12

# O: No. of options, # C: No. of configurations, # W: No. of workloads tested

and configuration options). All systems operate by processing
a domain-specific workload fed to them. Our study treats
execution time as the key performance indicator with the
exception of H2, for which we consider throughput.

2) Workload Selection: Our study relies on a selection of
workloads for each domain or software system. Ideally, each
set of workloads is diverse enough to be representative of
most possible use cases. We selected the workload sets in this
spirit, but cannot always guarantee a measurable degree of
diversity and representativeness prior to conducting the actual
measurements. Basically, this it what motivates this study in
the first place. Nevertheless, we discuss this aspect as a threat
to validity in Section VII.

Next, we outline the nine subject systems along with the
workloads tested.

For the audio encoder JUMP3R, the measured task was
to encode raw WAVE audio signals to MP3. We selected a
number of different audio files from the Wikimedia Commons
collection3 and varied the file size/signal length, sampling rate,
and number of channels. Both applications share all workloads.

For the video encoder X264, the measured task was to
encode raw video frames (y4m format). We selected a number
of files from the “derf collection”4, a set of test media for a
variety of use cases. The frame files vary in resolution (low/SD
up to 4K) and file size. For files with 4K resolution, we limited
our measurements to encoding a subset of consecutive frames.

For the file compression tools KANZI, XZ, and LRZIP, we
used a variety of community compression benchmarks that
represent different goals, including mixes of files of different
types (text, binary, structured data, etc.) or single-type files.
We augmented this set of workloads with custom data, such as
the Hubble Deepfield image and a binary of the Linux kernel.
Beyond this set of workloads, for XZ and LRZIP, we added
different parameterizations of the UIQ2 benchmark5 to study
the effect of varying file sizes.

For the SMT solver Z3, the measured task was to decide the
satisfiability (find a solution or counter example) of a range of
logical problems expressed in the SMT2 format. We selected the
six longest-running problem instances from z3’s performance
test suite and augmented it with additional instances from the

3https://commons.wikimedia.org/wiki/Category:Images
4https://media.xiph.org/video/derf/
5http://mattmahoney.net/dc/uiq/
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SMT2-Lib repository6, to cover different types of logic and to
increase diversity.

For the SVG rasterizer BATIK, the measured task was to
transform a SVG vector graphic into a bitmap. We selected a
number of resources from the Wikimedia Commons collection,
primarily varying in terms of file size.

For the embedded database H2, we used a selection of
four benchmarks (SmallBank, TPC-H, YCSB, Voter) from
OLTPBENCH [47], a load generator for databases. For each
benchmark, we varied the scale factor, which controls the
complexity (number of entities modeled) in each scenario.

For the image scaler DCONVERT, the measured task was
to transform resources (image files, Photoshop sketches) at
different scales (useful for Android development). We selected
files that reflect DCONVERT’s documented input formats (JPEG,
PNG, PSD, and SVG) and vary in file size.

3) Configuration Sampling: For each subject system, we
sampled a set of configurations. As exhaustive coverage of
the configuration space is infeasible due to combinatorial
explosion [48], for binary configuration options, we combine
several coverage-based sampling strategies and uniform random
sampling into an ensemble approach: We employ option-wise
and negative option-wise sampling [2], where each option
is enabled once (i.e., in, at least, one configuration), or all
except one, respectively. In addition, we use pairwise sampling,
where two-way combinations of configuration options are
systematically selected. Interactions of higher degree could
be found accordingly, however, full interaction coverage is
computationally prohibitively expensive [48]. Last, we augment
our sample set with a random sample that is, at least, the size
of the coverage-based sample. To achieve a nearly uniform
random sample, we used distance-based sampling [34]. If a
software system exhibited numeric configuration options, we
varied them across, at least, two levels to measure their effect.

4) Coverage Profiling: To assess what lines of code are
executed for each combination of workload and software
configuration, we used two separate approaches for Java and
C/C++. For Java, we used the on-the-fly profiler JACOCO7,
which intercepts byte code running on the JVM at run-time.
For C/C++, we added instrumentation code to the software
systems using CLANG/LLVM8 to collect coverage information.
We split the performance measurement and coverage analysis
runs to avoid distortion from the profiling overhead.

5) Measurements: We conducted all experiments on three
different compute clusters, where all machines within a compute
cluster had an identical hardware setup: cluster A with an Intel
Xeon E5-2630v4 CPU (2.2 GHz) and 256 GB of RAM, cluster
B with an Intel Core i7-8559U CPU (2.7 GHz) and 32 GB of
RAM, and cluster C with an Intel Core i5-8259U (2.3 GHz)
and 32 GB of RAM. All clusters ran a headless Debian 10
installation (kernel 4.19.0-17 for cluster A and 4.19.0-14 for
clusters B and C). To minimize measurement noise, we used

6https://smt-comp.github.io/2017/benchmarks.html
7JACOCO: https://www.jacoco.org/jacoco/trunk/doc/
8LLVM: https://clang.llvm.org/docs/SourceBasedCodeCoverage.html

a controlled environment, where no additional user processes
were running in the background, and no other than necessary
packages were installed. We ran each subject system exclusively
on a single cluster: H2 on cluster A; DCONVERT and BATIK
on cluster B; the remaining systems on cluster C.

We collect performance data using the tools GNU TIME
(execution time) and OLTPBENCH (throughput). For all data
points, we report the median performance across five repetitions
(except for H2), which has shown to be a good trade-off
between variance and measurement effort [49]. Across these
repetitions, most configurations exhibit only little variation (e.g.,
only a few seconds for whole-system benchmarks which run for
several minutes): The ratio of configurations with a coefficient
of variation (standard deviation divided by the mean) of less
than 10 % ranges from 91 % (LRZIP) to 99 % (X264). For H2,
we omitted the repetitions as, in a pre-study running on the
identical cluster setup, we found that, across all benchmarks,
the coefficient of variation of the throughput was consistently
below 5 %.

IV. STUDY RESULTS

In this section, we present the results of our empirical
study with regard to variation of system-level performance
distributions (RQ1) and the performance influence of individual
configuration options (RQ2).

A. Comparing Performance Distributions (RQ1)

1) Operationalization: We answer RQ1 by pairwisely com-
paring the performance distributions from different workloads
(cf. the comparison in Figure 1) and by determining whether any
two distributions are similar or, if not, can be transformed into
each other: For the former case, we tested all combinbations of
workload-specific performance observations with the Wilcoxon
signed-rank test9 [52]. We rejected the null hypothesis H0

at α = 0.95. To account for overpowering due to high and
different sample sizes (cf. Table I), we further checked effect
sizes to weed out negligible effects. Following the interpretation
guidelines from Romano et al. [53], for no combination,
Cliff’s δ [54] exceeded a threshold effect size of |δ > 0.147|.
For the latter case, we are specifically interested in what type of
transformation is necessary as this determines how complex a
workload interacts with configuration options. Specifically, we
categorize each pair of workloads with respect to the following
aspects:

1) Linear Correlation: To test whether both performance
distributions are shifted by a constant value or scaled by a
constant factor, we compute for each pair of distributions
Pearson’s correlation coefficient r. To discard the sign of
relationship, we use the absolute value and a threshold of
|r| > 0.6 to indicate a linear relationship.

2) Monotonous Correlation: We test whether there is a
monotonous relationship between the two performance
distributions. We use Kendall’s rank correlation coefficient

9We use non-parametric methods since performance-distributions are often
long-tailed and multi-modal [50], [51] and thus fail to meet requirements for
parametric methods.

https://smt-comp.github.io/2017/benchmarks.html
https://www.jacoco.org/jacoco/trunk/doc/
https://clang.llvm.org/docs/SourceBasedCodeCoverage.html


Table II: Three disjoint categories and criteria of relationships
between pairs of workload-specific performance distributions.

Category Criteria

LT Linear transformation r∗ ≥ 0.6
XMT Monotonous transformation r∗ < 0.6 and τ∗ ≥ 0.6
NMT Non-monotonous transformation (otherwise)

Table III: Frequency of each category (cf. Table II) for each
software system studied and pairs of workloads.

System Σpairs LT XMT NMT
abs rel abs rel abs rel

JUMP3R 15 15 100.0 % 0 0 % 0 0 %
KANZI 36 28 77.8 % 4 11.1 % 4 11.1 %
DCONVERT 66 29 43.9 % 0 0 % 37 56.1 %
H2 28 13 46.4 % 0 0 % 15 53.6 %
BATIK 55 28 50.9 % 8 14.6 % 19 34.6 %

XZ 78 65 83.3 % 1 1.3 % 12 15.4 %
LRZIP 78 57 73.0 % 13 16.7 % 8 10.3 %
X264 36 36 100 % 0 0 % 0 0 %
Z3 66 10 15.2 % 1 1.5 % 55 83.3 %

τ [55] and a threshold of |τ | > 0.6 for a monotonous
relationship.

Based on these two correlation measures, we composed three
categories that each pair of performance distributions can
be categorized into. If both distributions exhibit a strong
linear relationship, we classify them as linearly transformable
( LT ). If we observe a strong monotonous, but not a linear
relationship, we classify such pairs as exclusively monotonously
transformable into a separate category ( XMT ). Last, we have
the pairs with a non-monotonous relationship ( NMT ). We
summarize the category criteria as well as the category counts
in Table III.

2) Results: We list the results of our classification in
Table III. The observed range of relationships across the
nine software systems exhibit no type that prevails across
all software systems. All software systems, at least in part,
exhibit performance distributions that can be transformed into
one another using a linear transformation ( LT ). In particular,
for JUMP3R and X264, we observe solely such behavior. The
presence of linear transformations corroborates experimental
insights from Jamshidi et al., who encoded differences between
performance distributions using linear functions [21].

Exclusively monotonous transformations ( XMT ) are the
exception and are found only in five out of the nine systems
(KANZI, BATIK, XZ, LRZIP, Z3), twice with only one workload
pair each (XZ and Z3). For all, except two systems (JUMP3R
and X264), we observe non-monotonous relationships ( NMT )
with differing prevalence. For three systems (DCONVERT, H2,
and Z3), the majority of transformations required is non-
monotonous; for the other four systems (KANZI, BATIK, XZ,
LRZIP), more than 10 % of workload pairs fall into this
category.

Summary (RQ1): Varying the workload causes a substantial
amount of variation among performance distributions. Across
workloads, we observed mostly linear (for six of the nine
subject systems), but to a large extent, also non-monotonous
relationships (for three of the nine subject systems).

B. Workload Sensitivity of Individual Options (RQ2)

1) Operationalization: To address RQ2, we need to deter-
mine the configuration options’ influence on performance and
assess their variation across workloads.

Explanatory Model: To obtain accurate and interpretable
performance influences per option, we learn an explanatory
performance model based on the entire sample set using
multiple linear regression [1], [2], [9]. Each variable in the
linear model corresponds to an option, and each coefficient
represents the corresponding option’s influence on performance.
We limit the set of independent variables to individual options
(rather than including higher-order interactions) to be consistent
with the feature location used for RQ3, where we determine
option-specific, yet not interaction-specific code segments.

Standardization: To facilitate the comparison of regression
coefficients across workloads, we follow common practice
in machine learning and standardize our dependent variable
by subtracting the population’s mean performance and divide
the result by the respective standard deviation. Henceforth,
we refer to these standardized regression coefficients as
relative performance influences. A beneficial side effect of
standardization is that the observed variation of regression
coefficients for each configuration option cannot be attributed
to shifting or scaling effects ( LT ). This way, we can pin
down the non-linear or explicitly non-monotonous effect that
workloads may exercise on performance.

Handling Multicollinearity: Multicollinearity is a standard
problem in statistics and arises when features are correlated [56].
It can, for instance, be caused from groups of mutually
exclusive configuration options and result in distorted regression
coefficients [1]. Although the model’s prediction accuracy
remains unaffected, we cannot trust and easily interpret the
calculated coefficients. To mitigate this problem and, in
particular, to ensure that the obtained performance influences
remain interpretable, we follow best practices and remove
specific configuration options from the sample that cause
multicollinearity [1]. For the training step, we exclude all
mandatory configuration options since these, by definition,
cannot contribute to performance variation. In addition, for each
group of mutually exclusive configuration options, we discard
one group member when learning a model. These measures
reduced multicollinearity to a negligible degree [57]. After these
corrections, we observed no configuration options exceeding a
variance inflation factor (indicating multicollinearity) of 5.

2) Results: Our results show a wide variety of degrees of
workload sensitivity. Due to the size of our empirical study and
space limitations, we selected three configuration options that
showcase different characteristic traits of workload sensitivity
that we observed. An exhaustive analysis for all configuration



options is illustrated in terms of an interactive dashboard
provided as supplementary material. We strongly invite the
interested reader to use this interactive dashboard to explore
all distributions and results obtained in this study.

In Figure 2, we show the distribution of configuration
options’ performance influences for three of the nine software
systems (JUMP3R, Z3, and H2). Each vertical bar depicts
the relative performance influence under a specific workload,
the colored ranges depict positive (green) and negative (red)
performance influences. The following patterns refer to one
row in Figures 2a, 2b, and 2c (configuration option) for one
subject system each.

a) Conditional Influence: For some configuration options,
we observe that they affect performance only under specific
workloads and remain non-influential otherwise. An example
of such conditional influence is the configuration option Mono
of the MP3 encoder JUMP3R. We illustrate the performance
influence of this option across six workloads presented as bars
in the last row of bars in Figure 3a. Selecting this option
reduced the execution time substantially for two workloads,
whereas, for the other workloads, the effect was far smaller.

According to the documentation of JUMP3R10, selecting this
option for stereo files (i.e., audio files with two channels)
results in averaging them into one channel. Indeed, the two
workloads described with reduced execution time the only ones
that exhibit two audio channels in this selection. Hence, this
example illustrates how a workload characteristic can condition
the performance influence of a configuration option.

b) High Spread: Another pattern we found is that the
performance influence of most (relevant) configuration options
exhibits a large spread. For example, option proof of the
SMT solver Z3 can both increase or decrease the execution
time, as shown in Figure 3b (row 3). Compared to the
example above, we cannot attribute this variation to an apparent
workload characteristic. The global parameter proof enables
tracking information, which is used for proof generation in
the case a problem instance is unsatisfiable. Each workload
in our selection contains multiple problem instances to decide
satisfiability for. We conjecture that the ratio of satisfiable to
unsatisfiable instances likely accounts for this high variation.
From the user’s perspective, any input to the solver is opaque
in that satisfiability as a workload characteristic cannot be
determined practically without a solver.

c) Scaling Anomaly: The scaling anomaly pattern is
shown for the configuration option MVSTORE of the database
system H2 in Figure 3c (left). This option controls which
storage engine, either the newer multi-version store or the
legacy page store, is used. We observe that selecting the newer
multi-version store increases the measured throughput for all
but one benchmark scenario. Using the Yahoo! Cloud Serving
Benchmark (YCSB) with two different scale factors (which
control the workload complexity, expressed as number of rows),
we found that the lower complexity parameterization (ycsb-
600) resulted in lower throughput. This is in stark contrast to

10JUMP3R: https://github.com/Sciss/jump3r/blob/master/README.md
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Figure 2: Distribution of configuration options’ performance
influences under different workloads for JUMP3R, Z3, and H2.
Each vertical bar in a row depicts the performance influence of
an individual option under a specific workload. The observed
ranges of positive and negative influences are highlighted in
green and red, respectively.

the expectation that a more complex workload would show
lower throughput. While it is possible that some optimizations
of the multi-version store are effective only under higher load,
this example demonstrates that performance influence is not
guaranteed to scale with the workload as expected.

https://github.com/Sciss/jump3r/blob/master/README.md


Summary (RQ2): Workloads can affect performance in-
fluences of configuration options in various ways (e.g.,
conditioning influence, introducing variance, having outliers).
We can correlate some variation of performance influences
with workload characteristics, yet identifying relevant work-
load characteristics is highly domain-specific and cannot be
considered trivial.

V. EXPLORING CAUSES OF WORKLOAD SENSITIVITY

The results for the first two research questions demonstrate
sensitivity of the influence of configuration options to the work-
load due to non-monotonous interactions, which is consistent
with the findings of a related study [45]. Before we discuss
implications for performance modeling in the Section VI,
we investigate the underlying factors that drive workload
sensitivity.

We hypothesize that executions under different workloads
also exhibit variation with respect to what code sections are
executed (and which are not) and how this code is used (e.g.,
number of method invocations or loop iterations). Differences
in performance influences of individual methods may stem
from differences in program execution. Depending on whether
an option is active or what value it has been set to, we may visit
different code sections of the program or do so with varying
frequency. To investigate to what extent one could infer or
even explain performance variations based on different code
execution profiles, we apply standard code-coverage analyses
under different configurations and workloads. Our research
question is as follows:

RQ3 Does the variation of performance influence of
configuration options across workloads correlate
with differences in the respective execution foot-
print?

Exploiting a potential relationship between workload sen-
sitivity of configuration options and differences in software
execution could be beneficial. Instead of testing various com-
binations of configurations and workloads, code analysis can
serve as a cost-effective way to detect workload sensitivity of
individual options by identifying workload-specific differences
in program execution.

A. Operationalization

To explore whether and to what extent performance variations
correlate with variations in the execution paths (that stem
from the interplay of the given workload and configuration),
we employ an analysis based on code coverage informa-
tion (cf. Sec. III-B4).

We combine performance observations with code coverage
data to evaluate the execution under different workloads,
specifically focusing on code sections implementing option-
specific functionality. By comparing the coverage of this code,
we can develop hypothetical scenarios explaining workload
sensitivity.

First, if we observe that the coverage of option-specific code
is conditioned by the presence of some workload characteristic,
we expect that such an option is influential only under the
corresponding workloads. This scenario enables us (to some
extent) to use code coverage as a cheap-to-compute proxy
for estimating the representativeness of a workload and, by
extension, resulting performance models: For options that are
known to condition code sections, we can maximize option-
code coverage to elicit all option-specific behavior and, thus,
performance influence. For instance, a database system could
cache a specific view only if a minimum number of queries
are executed. Here, the effect of any caching option would be
conditioned by the workload-specific number of transactions.

Second, if we observe performance variation across work-
loads in spite of similar or identical option-specific code
coverage, we draw a different picture. In this case, we cannot
attribute performance variation to code coverage, yet have
to consider differences in the workloads’ characteristics as
potential cause: The presence of a workload characteristic may
influence not what code sections are executed, but how code
sections are executed. In a simple case, a software system’s
performance may scale linearly with the workload size. In
a more complex case, the presence of a characteristic may
determine how frequently an operation is repeated, as is the
case for a table merge operation in a database system. Here,
we would not elicit the worst-case performance if a previous
transaction has sorted the data (e.g., by building an index).

1) Locating Configuration-Dependent Code: To reason
about option-specific code, we require a mapping of configura-
tion options to code. The problem of determining which code
section implements which functionality in a software system
is known as feature location [58]. While there is a number
of approaches based on static [35], [59], [60] and dynamic
analysis [36], [61], [62], we employ a more light-weight, but
also less precise approach, that uses code coverage information.
The rationale is that, by exercising feature code, for instance,
by enabling configuration options or running corresponding
tests, its location can be inferred from differences in code
coverage. Applications of such an approach have been studied
not only for feature location [63]–[66], but root in work on
program comprehension [67]–[71] and fault localization [72],
[73].

Specifically, we follow a strategy akin to spectrum-based
feature location [65]: We commence with obtaining a baseline
of all code that can be associated with a configuration option
in the scope of our workload selection. Since we are looking
for workload-specific differences in option-code coverage, the
expressiveness of such a baseline depends on the diversity of
the workloads in question. To infer option-specific code, we
split our configuration sample (cf. Section III-B3) into two
disjoint sets co and c¬o such that option o is selected only in co
and not in c¬o

. Next, we select from our code coverage logs the
corresponding covered lines of code, So and S¬o. The rationale
is that all shared lines between both sets are not affected by
the selection of option o. Thus, we compute the symmetric set
difference So = So ∆ S¬o to approximate option-specific or,



at least, option-related code sections. To finally obtain code
sections that are option-specific under a specific workload w,
we repeat the steps above. Here, we consider only execution
logs under workload w (So,w and S¬o,w) and compute the
symmetric set difference So,w = So,w ∆ S¬o,w.

2) Comparing Execution Traces: From (a) the information
about which code sections are specific to a configuration option
and (b) how much of these sections is actually covered under
different workloads, we can compare the workload-specific
execution traces for each option. By comparing the sets So,v
and So,w for any two workloads v and w, we can estimate the
similarity between the option-code coverage with the Jaccard
set similarity index. A Jaccard similarity of zero implies that
there is no overlap in the code lines covered under each
workload, whereas a Jaccard similarity of 1 implies that the
exact same code was covered. Based on this pairwise similarity
metric simo(v, w), we can compute a corresponding distance
metric do(v, w) = 1 − sim(v, w) and cluster all workload-
specific execution profiles. We use agglomerative hierarchical
clustering with full linkage to construct dendrograms. In this
bottom-up approach, we iteratively add execution footprints to
clusters and merge subclusters into larger ones depending on
their Jaccard similarity to each other.

B. Results

We report our findings for the relationship between exe-
cution footprints and performance influences for the same
configuration options presented for RQ2, since these illustrate
likely causes of workload sensitivity and the limitations
of solely relying on code coverage. The dashboard on the
supplementary Web site provides diagrams and inferred feature
code for all configuration options. The dendrograms next to
the visualizations of performance influences in Figures 3a,
3c, and 3b, respectively, illustrate how similar the covered
lines of option-specific code are under each workload. The
dendrograms depict the Jaccard similarity clustering, where
the split points indicate what Jaccard distance individual sets
of lines or subclusters exhibit. The farther to the left the point
is, the more similar are the components.

We observe that, in many cases, where a configuration option
is “conditionally influential” (cf. Section IV-B2a), the respective
option-specific code under the interacting workloads fall into a
cluster, as with the option-specific code for Mono in Figure 3a.
In this particular example, the dendrogram can be somewhat
misleading as the number of common lines of code between
workloads helix and dual-channel is far greater than between
the other four workloads. Hence, differences in the coverage of
option-specific code can account for, at least, some workload
sensitivity.

The other two examples, the configuration options proof
(Z3) and MVSTORE (H2), provide a different picture. Akin to
the variation of performance influence of proof, the clustering
for this configuration option (cf. Figure 3c) shows that some
clusters are disjoint, and thus the option-specific code is highly
fragmented depending on the workload.
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(a) Workload-dependent performance influences of configuration
option Mono of JUMP3R.
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Figure 3: Workload-dependent performance influences of
configuration options (a) Mono (JUMP3R), (b) proof (Z3), and
(c) MVSTORE (H2) (left) and option-code coverage clusterings
for the the configuration options (right).

In the same vein, for MVSTORE, we see that the option-
specific code is highly fragmented, yet all four benchmarks
constitute clusters of high internal similarity. In the context
of the observed variation of performance influences for the
Yahoo! Cloud Serving Benchmark (YCSB), we see that even
very high similarity in the covered code can virtually either
improve or deteriorate performance.

For cases where we did not detect any differences in
code coverage despite substantial differences in an option’s
performance influence across workloads, our results suggest
that the way how code was executed (i.e., how frequently
methods or loops are executed) is shaping performance.



Summary (RQ3): Varying the workload can condition
the execution of option-specific code coverage and cause
performance differences. However, there is no single driving
cause of variation: Code utilization depending on workload
characteristics is a likely cause accounting for the majority
of variation in the performance influence of an option.

VI. DISCUSSION

Our results draw a clear picture of workload-induced perfor-
mance variations of individual options. This sheds light on the
extent of representativeness of single-workload performance
models. But, this is not the end of the story: We saw complex
variations that challenge transfer-learning approaches, which
aim to overcome the workload specificity of models.

A. Workload Sensitivity and Single-Workload Approaches

The observed workload sensitivity of configuration options
exhibits a wide range of characteristics. While a large portion
of options scales proportionally with workload complexity or
remains unaffected by workload variation, the performance
influences of several configuration options are sensitive to the
workload. So far, the existing body of work on modeling [1]–[9]
and optimizing [26]–[29] configuration-specific performance
largely neglects the impact of workload variation at the cost
of generalizability. Our findings from RQ2 demonstrate that
unexpected interactions of configuration options with the
workload are not uncommon, which can distort performance
estimations.

Beyond performance estimation, using performance models
as surrogates for finding configurations with optimal perfor-
mance properties is not without risk. For instance, there are
several approaches utilizing the rank or importance of op-
tions [27], [29]. Given the observed workload sensitivity, such
rankings remain susceptible to the choice of workload.

Insight: Workload sensitivity challenges the robustness and
generalizability of single-workload performance models, yet
it is neglected in state-of-the-art approaches. Worse, robust
techniques using only rankings or relative importance of
options are inapplicable for certain workload variations.

B. Adressing Workload Variations

In Section II-C0a, we have outlined the existing body of work
that aims at incorporating workload variations into performance
modeling [19]–[22]. Despite the effectiveness of individual
approaches, our results raise questions about assumptions used
for transfer learning [20], [21] in this setting.

1) Transfer Learning: In their exploratory analysis, Jamshidi
et al. reuse existing performance models by learning a linear
transfer function across workloads [21]. Our results from
RQ1 have shown non-monotonous performance relationships
across workloads, which is challenging to capture with such
transfer functions. The presence of non-monotonous interac-
tions between workloads and configuration options motivates
employing more advanced machine learning techniques.

Table IV: Common top five influential configuration options
among pairs of workloads.

System Workload 1 Workload 2 # Common

JUMP3R helix.wav sweep.wav 2
KANZI vmlinux fannie mae 500k 1
DCONVERT jpeg-small svg-large 2
H2 tpcc-2 tpcc-8 3
BATIK village cubus 4

XZ deepfield silesia 4
LRZIP artificl uiq-32-bin 3
X264 sd crew cif short sd city 4cif short 4
Z3 QF NRA hong 9 QF BV bench 935 3

The more recent transfer-learning approach Learning to
Sample [20] improves over the prior exploratory work by
Jamshidi et al. [21]. It operates under the assumption that
sampling for a new context, such as workloads, should focus
on the influential options and interactions from a previously
trained performance model. While this approach has shown
to be effective, our results from RQ2 contradict the basic
assumption of stable influential options. To illustrate this in
the context of our study, we select a pair of workloads for
each of the nine subject systems studied and compare the
ranking of configuration options with regard to their absolute
performance influence (cf. RQ2). In Table IV, we show for
each pair, how many configuration options are ranked in the top
five (most influential) and shared across both workloads. For
these workload pairs, we see that the rankings are inconsistent
and thus not a reliable heuristic for transfer learning.

As the performance influence of configuration options can
be conditioned by workload characteristics, a more appropriate
metric to guide sampling would be to assess which configura-
tion are workload sensitive rather than focusing on influential
ones. This reiterates the problems described for most kinds of
performance prediction approaches above.

2) Workload-aware and Configuration-aware Performance
Modeling: While there is little work that explicitly considers
the impact of factors beside configuration options on perfor-
mance [19], our results from RQ2 support idea of domain- or
application-specific performance modeling. For instance, for
several configuration options of JUMP3R, we can confidently
associate workload sensitivity with a workload characteristic.
To abstract more from application-specific approaches, a
notion of workload sensitivity as a form of uncertainty is a
promising avenue for further work. Work on using probabilisitc
programming to learn performance models [1] could be adapted
to encode workload sensitivity.

Insight: Applying transfer learning to adapt performance
models to new workloads must lift the assumption that the
set of influential configuration options is stable. Domain-
specific and workload-aware approaches are promising and
should be extended on.

3) Identifying Workload Sensitivity via Code Analysis: Our
findings from RQ3 show that it is possible to identify workload



sensitivity through code analysis. This can be done using
systematic coverage testing, which can be easily incorporated
into CI/CD pipelines along with other code analyses, such as
hit counts. While this low-cost metric can enhance existing
approaches and help to interpret and contextualize performance
estimations, it is important to note that more detailed analyses
may be required to fully explain all performance variation.
These findings can be applied in practice, for example, by using
code coverage data to estimate up-front whether an option is
input-sensitive and annotating existing performance models
with a usage score per option. These results are important
for understanding the performance of configurable software
systems and for designing effective benchmarks.

Insight: Code analysis can be used to identify workload
sensitivity and inform benchmark design in configurable
software systems, but it is important to consider the limita-
tions of this approach.

VII. THREATS TO VALIDITY

Threats to internal validity include the presence of measure-
ment noise, which may distort our classification into categories
(Section IV-A) and model construction (Section IV-B). We
address these threats by repeating each experiment five times
(except for H2; cf. Section III-B5) and reporting the median
as a robust measure in a controlled environment. Our coverage
analysis (cf. Section III-B4) entails a noticeable instrumentation
overhead, which may distort performance observations. We
mitigate this threat by separating the experiment runs for
coverage assessment and performance measurement. In the case
of H2, the load generator of the OLTPBENCH framework [47]
ran on the same machine as the database since we were testing
an embedded scenario.

Threats to external validity include the selection of subject
systems and workloads. To increase generalizability, we select
software systems from various application domains as well as
two different programming language ecosystems (cf. Table I).
To increase the representativeness of our workloads, we vary
relevant characteristics and, where possible, reuse workloads
across subject systems of the same domain. Although there
might be additional workload characteristics, our results
demonstrate already for this selection severe consequences
for existing performance modeling approaches. So, further
variations could only strengthen our message.

VIII. CONCLUSION

Configuration options are a key mechanism for optimizing
the performance of modern software systems. Yet, state-of-the-
art approaches of modeling configuration-dependent software
performance largely ignore performance variation caused by
changes in the workload. So far, there is no systematic assess-
ment of whether, and if so, to what extent workload variations
can render single-workload approaches inaccurate. We have
conducted an empirical study of 25 258 configurations from
nine configurable software systems to characterize the effects
that varying workloads can have on configuration-specific

performance. We compare performance measurements with
coverage data to identify possible similarities of executed code
of different workloads compared to performance variations.

We find that workload variations affect software performance
not only at the system-level, but also affect the influence
of individual configuration options on performance, often
in a non-monotonous way. While in some cases, we can
correlate performance variations with the workload-conditioned
execution of option-specific code, workload characteristics
influence the utilization of option-specific code in further non-
trivial ways (e.g., number of method calls).

We critically reflect on prevalent patterns, that we found in
our subject systems and aim at raising awareness to the missing
notion of workload sensitivity in existing approaches in this
area. Our study provides an empirical basis that questions the
practicality and generalizability of existing single-workload
approaches as well as the validity of assumptions under which
existing transfer-learning approaches in this area operate.
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“ConfigCrusher: Towards White-Box Performance Analysis for Con-
figurable Systems,” Automated Software Engineering (ASE), pp. 1–36,
2020.

[36] M. Velez, P. Jamshidi, N. Siegmund, S. Apel, and C. Kästner, “White-Box
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