
An Empirical Study on Configuration-Related Code Weaknesses
Flávio Medeiros
IFAL, Alagoas, Brazil

flavio.medeiros@ifal.edu.br

Márcio Ribeiro
UFAL, Alagoas, Brazil
marcio@ic.ufal.br

Rohit Gheyi
UFCG, Paraíba, Brazil
rohit@dsc.ufcg.edu.br

Larissa Braz
UFCG, Paraíba, Brazil

larissanadja@copin.ufcg.edu.br

Christian Kästner
CMU, Pennsylvania, USA
kaestner@cs.cmu.edu

Sven Apel
Saarland University, Saarland, Germany

apel@cs.uni-saarland.de

Kleber Santos
UFCG, Paraíba, Brazil

kleber@copin.ufcg.edu.br

Abstract

Developers often use the C preprocessor to handle variability and
portability. However, many researchers and practitioners criticize
the use of preprocessor directives because of their negative effect
on code understanding, maintainability, and error proneness. This
negative effect may lead to configuration-related code weaknesses,
which appear only when we enable or disable certain configuration
options. A weakness is a type of mistake in software that, in proper
conditions, could contribute to the introduction of vulnerabilities
within that software. Configuration-related code weaknesses may
be harder to detect and fix than weaknesses that appear in all
configurations, because variability increases complexity. To address
this problem, we propose a sampling-based white-box technique to
detect configuration-related weaknesses in configurable systems.
To evaluate our technique, we performed an empirical study with
24 popular highly configurable systems that make heavy use of
the C preprocessor, such as Apache Httpd and Libssh. Using our
technique, we detected 57 configuration-related weaknesses in 16
systems. In total, we found occurrences of the following five kinds
of weaknesses: 30 memory leaks, 10 uninitialized variables, 9 null
pointer dereferences, 6 resource leaks, and 2 buffer overflows. The
corpus of these weaknesses is a valuable source to better support
further research on configuration-related code weaknesses.

Keywords

Configurable Systems, Preprocessors, Code Weaknesses
ACM Reference Format:
Flávio Medeiros, Márcio Ribeiro, Rohit Gheyi, Larissa Braz, Chris-
tian Kästner, Sven Apel, and Kleber Santos. 2020. An Empirical Study on
Configuration-Related Code Weaknesses. In 34th Brazilian Symposium on
Software Engineering (SBES ’20), October 21–23, 2020, Natal, Brazil. ACM,
New York, NY, USA, 10 pages. https://doi.org/10.1145/3422392.3422409

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SBES ’20, October 21–23, 2020, Natal, Brazil
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8753-8/20/09. . . $15.00
https://doi.org/10.1145/3422392.3422409

1 Introduction

Almost any substantial software system can be configured to
adapt it to the requirements of the user, the target platform and the
application scenario [12, 30, 49]. The individual configurations de-
rived this way differ in terms of the features they offer [23], which
encapsulate platform-specific code and optional functionalities. De-
velopers often implement configurable systems using preprocessor
directives, such as the #ifdef macro, declaring parts of the source
code as optional. However, despite the widespread use of the C
preprocessor, many studies and practitioners1 criticize the use of
preprocessor directives because of their negative effect on code
understanding and maintainability [5, 12, 18, 24, 30]. This negative
effect may lead to configuration-related weaknesses, which typi-
cally occur only in specific configurations. Weakness is a type of
mistake in software that, in proper conditions, could contribute to
the introduction of vulnerabilities within that software [35]. The
Common Weakness Enumeration (CWE) is a project idealized to
share information about weaknesses and how to fix them. Mali-
cious hackers search for weaknesses in code and unfixed reports
on bug trackers, and they try to get benefits for exploring them,
damage the service availability, or sell the information in the black
markets [14, 15]. However, finding and fixing configuration-related
code weaknesses is a non-trivial task due to the complexity of
configurable systems.

There are some tools that may help developers to detect code
weaknesses, such as Cppcheck [1] and FlawFinder [52]. However,
they do not consider the complete configuration space of a given
configurable system, and the developers cannot select which config-
urations to test when using them. For example, the default behavior
of Cppcheck is to test all possible configurations, but this is an
impractical task for highly configurable systems. Previous work
consider other kind of issues in their analysis, such as configuration-
related syntax errors [31], configuration-related undeclared and un-
used identifiers [32], and type and compilation errors [2, 7, 8, 31, 32].
Other works [3, 37] consider code weaknesses in their analysis.
They identify code weaknesses in the bug trackers of configurable
systems, and study some aspects of them. Still, little effort has been
put into studying configuration-related code weaknesses in detail,
and into proposing tools to detect and fix them.

1For example, Linux developers suggest that “code cluttered with #ifdefs is difficult to
read and maintain. Don’t do it.”

193

https://doi.org/10.1145/3422392.3422409
https://doi.org/10.1145/3422392.3422409

SBES ’20, October 21–23, 2020, Natal, Brazil Medeiros et al.

In this paper, we propose a sampling-based white-box technique
to detect configuration-related weaknesses in configurable systems.
It selects a subset of configurations to analyze individually using
the Linear Sampling Algorithm (LSA) [29]. We use LSA in our study
because it provides a good balance between the number of selected
configurations and bug-detection capabilities [29]. We combine LSA
with Cppcheck, a static analysis tool that is able to detect different
kinds of code weaknesses, including memory leaks, resource leaks,
buffer overflows, dereferences of null pointers, and uninitialized
variables [1]. In our technique, we replace the default behavior of
Cppcheck with the more promising LSA sampling approach to scale
in practice. To evaluate our technique, we performed an empirical
study on 24 popular open-source C configurable systems to better
understand configuration-related weaknesses.

We focused on the following kinds of weaknesses: uninitialized
variables (CWE-457),2 null pointer dereferences (CWE-476), re-
source leaks (CWE-400 and CWE-775), buffer overflows (CWE-120),
and memory leaks (CWE-400 and CWE-401). We considered sys-
tems used in practice, such as Apache Httpd, Cherokee, and Libssh.
These systems are all highly configurable, and they heavily use the
C preprocessor. by taking additional kinds of configuration-related
weaknesses into account.

Overall, our technique found 57 configuration-related weak-
nesses in our corpus of subject systems. Specifically, they occur in
16 (67%) of the subject systems. We confirmed all configuration-
related code weaknesses by searching for fixes in the corresponding
software repositories (i.e., made by actual developers of the config-
urable system), and by submitting patches to developers (51 and 6
weaknesses, respectively). We excluded from the analysis the weak-
nesses that we cannot confirm as real ones. In total, 93% of the weak-
nesses involved one or two configuration options. Our results show
that the numbers of configuration-related weaknesses that develop-
ers introduce when modifying existing code (51%) and introducing
new functionality (49%) are fairly similar. This result differs from
our previous findings, according to which developers introduce
most configuration-related syntax errors (87%) when modifying
existing code [31], and most configuration-related undeclared and
unused identifiers (73%) when introducing new functionality [32].

The mains contributions of our study are:
• A technique to detect weaknesses in configurable systems
considering five different types of weaknesses (Section 3);

• A dataset with 57 weaknesses that can be used by other re-
searchers and practitioners. This dataset can be used by tool
developers to improve their sbug finding tools (Sections 4
and 5).

2 Motivating Example

In this section, we describe an example of a configuration-related
code weakness in Gawk,3 a configurable system implementing a
utility tool to rewrite text files based on patterns. Figure 1 presents
an excerpt of the Gawk source code. This code contains a configu-
ration option (controlled by macro I18N) that implements language

2See more details at: https://cwe.mitre.org/data/definitions/id.html, where id is the
number of the CWE.
3https://www.gnu.org/software/gawk

internationalization. It is responsible for adapting the tool to specific
regions or languages. As this code snippet contains one configu-
ration option, we can generate two different configurations: the
first one with macro I18N enabled (Configuration 1); and another
configuration with macro I18N disabled (Configuration 2).

1. static tree_t * parse_bracket_exp (){
2. // Lines of code...
3. #ifdef I18N
4. mb = (cs*) calloc (sizeof (cs), 1);
5. #endif
6. // Lines of code...
7. #ifdef I18N
8. if (sb == NULL || mb == NULL){
9. #else
10. if (sb == NULL){
11. #endif
12. return NULL;
13. }
14.}

No warnings

Configuration 2

#undef I18N

Memory leak

Configuration 1

#define I18N

Figure 1: A code snippet of Gawk with a memory leak when
we enable macro I18N.

When executing the code snippet of Figure 1 with I18N enabled
(i.e., Configuration 1), it may cause a memory leak weakness (CWE-
400 and CWE-401): the program allocates memory to variable mb
at Line 4 but does not deallocate it when returning NULL at Line 12.
This is a configuration-related weakness, as it occurs in Configura-
tion 1, but it does not happen in Configuration 2. The consequences
of such an issue depend on the application itself. It can be very
dangerous if it occurs in a kernel-land process. In that context, a
memory leak may lead to serious system stability issues [42]. While
easy to spot in this small code excerpt, real configurable systems
contain many configuration options, which make the analysis of
every configuration infeasible. As a result, real configurable sys-
tems, for example, Linux [2], Apache Httpd [31, 32] and GCC [19],
contain weaknesses that appear only in specific configurations.

Developers may detect a configuration-related weakness depend-
ing on the configurations they check. The majority of C develop-
ment tools used in practice, including the compilers GCC and Clang,
consider only one configuration at a time, that is, they analyze code
after preprocessing. Because of this limitation, these tools may
not show configuration-related warnings and compilation errors.
Although these tools do not detect weaknesses, like the memory
leak in the code depicted in Figure 1, developers still use them
to detect this kind of bug [37]. Variability-aware tools, such as
TypeChef [25], consider the complete configuration space when an-
alyzing configurable systems. However, the time-consuming setup
and compilation process of these tools hinder the analysis of large
systems. Moreover, these tools also do not consider weaknesses.

Previous studies [2, 3, 7, 8, 18–20, 22, 32] considered
configuration-related bugs, such as compilation and syntax errors.
Moreover, researchers have discussed the problems of preprocessor
directives, their negative influence on the development of tool sup-
port, and configuration-related bugs [27, 31, 32]. Other works [3, 37]
study some aspects of code weaknesses found in bug trackers of
configurable systems. However, little effort had been put into un-
derstanding configuration-related code weaknesses in details, and
into proposing tools to detect and fix them.

194

https://www.gnu.org/software/gawk

An Empirical Study on Configuration-Related Code Weaknesses SBES ’20, October 21–23, 2020, Natal, Brazil

3 A Technique to Detect Configuration-Related
Code Weaknesses

Next we present an overview of our technique (see Section 3.1).
We explain each of its steps in Section 3.2.

3.1 Overview

Figure 2 illustrates our technique. It receives as input the
source code of the configurable system, a sampling approach, the
configuration-option constraints and build-system information
available, and an analysis tool to check the source code. The con-
straints and build-system information are not required, though,
as many C open-source configurable systems do not have these
pieces of information available. The technique consists of three
steps. First, it uses the LSA sampling approach to systematically
select configurations (Step 1). Then, it verifies whether the selected
configurations are valid ones according to the received build-system
information (Step 2). Finally, it runs Cppcheck considering each
selected configurations (Step 3). The technique output is the set of
detected weaknesses. For each weakness, we perform an extra man-
ual analysis, identifying whether they are configuration-related.

#ifdef
#endif

#endif
#ifdef

Configurable System
with Preprocessor

Directives

Co
nfi

gu
ra

tio
ns

Samples

#ifdef
#endif

#endif
#ifdef

1

...
... Report

Constraints &
Build-System Information

Sampling
Algorithm

2

3

Analysis
Tool

Output

Input

Figure 2: A white-box technique to detect configuration-
related code weaknesses based on sampling.

3.2 Technique

To detect configuration-related weaknesses, we need to consider
multiple configurations. Checking every configuration individually
is often infeasible, because real-world C configurable systems have
high numbers of configuration options, leading to configuration
spaces of exponential sizes. For instance, Libxml2 has more than 2
thousand configuration options, and the Linux Kernel more than
12 thousand options. To tackle this scalability problem, we use a
sampling-based approach to select a subset of configurations to
analyze. That is, we preprocess the code to systematically gener-
ate some configurations and analyze each selected configuration
individually [28, 29, 50].

Our technique starts by selecting each source file of the config-
urable system individually to perform a per-file analysis to reduce
the number of selected configurations. Step 1 uses a sampling ap-
proach to select configurations systematically. In this step, our
technique can use different sampling approaches. In this paper, we
use LSA [32] that combines the following algorithms:

• One-disabled: Abal et al. [3] suggested this approach based on
98 configuration-related bugs analyzed in the Linux kernel.
It deactivates one configuration option at a time; it requires
n configurations per file, where n is the number of configu-
ration options in each source file.

• One-enabled: the approach is similar to one-disabled, but
one-enabled activates one configuration option at a time.
One-enabled also requires n configurations per file, where n
is the number of configuration options in each source file.

• Most-enabled-disabled: this approach consists of activating
all configuration options and then deactivating all options,
which require two configurations per file.

LSA selects 2 + 2 ∗ 𝑛 configurations, in which n is the number of
configuration options. For instance, LSA selects 10 configurations
for a source file with 4 distinct configuration options. According to
the results of a previous study [29], LSA increases the number of
detected weaknesses, while reducing analysis effort (i.e., number
of selected configurations).

Step 2 makes sure that we do not check invalid configurations
according to the constraints. For instance, the Linux kernel uses
two configuration options (i.e., X86_32 and X86_64) to represent
32-bit and 64-bit platforms respectively. There is a constraint that
these options are mutually exclusive, so that developers can select
only one at a time. During this step, our technique also receives
build-system information, if available, to identify source files that
are conditionally included depending on configuration options.

Last, Step 3 runs the analysis tool and presents a report. In this
step, we run the tool for every source file of the configurable system,
once for each selected configuration. For weaknesses that appear in
all selected configurations, we perform additional manual analysis
to detect whether they are configuration-related or not.

Previous approaches evidence that sampling is effective to detect
configuration-related bugs [2, 19, 31, 32]. However, the analysis of
configurable systems, even using sampling, may not scale when
we incorporate certain pieces of information, such as header files,
build-system information, configuration option constraints, and
global analysis [29]. In this sense, to make our technique scalable,
we accepted some limiting assumptions.We perform per-file instead
of a global analysis to reduce the number of selected configurations
(i.e., our technique considers only configuration options within a
single source file at a time). The per-file analysis used in our tech-
nique may yield some false positives and negatives. For instance, it
may miss some weaknesses that may happen in more than one file.
We may allocate a memory in one file and deallocate memory in
another one. As another example, a file may allocate and deallocate
a memory, but in some configurations, another file may change
the control flow and not deallocate memory. We used a per-file
analysis to make our analysis scalable. By using our technique, we
can process an average file with 10-15 preprocessor macros, and
about 700 lines of code, in between 7-10 seconds.

4 Study Setup and Results

We evaluated our technique in 24 highly configurable systems,
such as Apache Httpd and Libxml2. In this section, we present
the setup of our empirical study. First, we present the experiment
definition (Section 4.1). Then, we present our subjects (Section 4.2).

195

SBES ’20, October 21–23, 2020, Natal, Brazil Medeiros et al.

Following, we present our experiment planning and instrumenta-
tion (Section 4.3). Finally, we describe our experiment main results
(Section 4.4).

4.1 Definition

The goal of our experiment consists of analyzing our technique
in order to evaluate code with preprocessor directives with respect
to find configuration-related weaknesses from the point of view of
researchers in the context of repositories of real configurable sys-
tems. In particular, we addressed the following research question:

• RQ1. How many configuration-related code weaknesses can
our technique detect?

To answerRQ1, we counted the number of configuration-related
weaknesses detected in each configurable system.

Answering this question is important to better guide the devel-
opment of tools to detect and avoid weaknesses in practice. For
example, the tools could take more effort to detect certain types of
weakness than others. In addition, they could pay special attention
to some specific configurations.

4.2 Subjects Selection

Overall, we analyze 24 systems written in C ranging from 20
to 2,126 configuration options. Libxml2 has the highest number of
distinct configuration options (2,126) distributed across its source
files, while Mpsolve has the lowest number of distinct configuration
options (20). The configurable systems are from different domains,
such as Web servers, text editors, databases, and games. We se-
lect these configurable systems guided by previous works [26, 27],
which studied C configurable systems that are statically config-
urable with the C preprocessor (i.e., systems that use preprocessor
conditional directives). We present details of each configurable sys-
tem in Table 1, It indicates the configurable system name, applica-
tion domain, lines of code, number of files, number of configuration
options, number of configuration analyzed, number of distinct code
versions (i.e., number of commits in the repositories), and the num-
ber of configuration-related weaknesses detected in our empirical
study. Figure 3 presents the confidence interval of the number of
options per analyzed configurable system.

4.3 Planning and Instrumentation

For the purpose of our study, we evaluate commits from the mas-
ter branches of the repositories of each of the 24 systems. Further,
we also consider previous versions of the source code using the Git
software repositories of the configurable systems. To systematically
select configurations, our technique (described in Section 3) uses
LSA [32]. In Table 1, we present the number of configurations that
LSA selects for each subject system. As LSA selects configurations
per-file, the total number of configurations analyzed is the sum of
the selected configurations of each source file. LSA ensures, in the
absence of constraints, pair-wise and three-wise coverage of config-
uration options. That is, it selects a superset of configurations in
which all combinations of two and three options are analyzed (i.e.,
2-way and 3-way combinatorial interaction testing). For instance,

M
ac
ro
s

Figure 3: Confidence interval of the number of options per
analyzed configurable system.

considering options A and B in Figure 4, we can see that there is a
configuration where A and B are enabled (configuration 7); another
configuration in which both A and B are disabled (configuration 3);
and other configurations where only A or B is enabled (for example,
configurations 1 and 2). The same situation occurs for configuration
options A and C, A and D, B and C, and B and D. We can use the
same rationale to see that LSA covers all combinations of three
configuration options. Three-wise coverage is difficult to compute
with constraints [9, 28, 29, 39, 40, 47], but LSA approximates 3-way
coverage with reasonable computation effort [29].

One-disabled

One-enabled

Most-enabled-disabled

Configuration 1

Configuration 2

Configuration 3

Configuration 4

Configuration 5

Configuration 6

Configuration 7

Configuration 8

Configuration 9

Configuration 10

Option is enabled Option is disabled

Configuration Options A B C D

Figure 4: Selecting configurations systematically with LSA.

After selecting configurations for each source file, we use Cp-
pcheck version 1.67 to detect weaknesses in each selected configu-
ration on a per-file basis. We consider weaknesses of the following
kinds: to uninitialized variables (CWE-457), null pointer derefer-
ences (CWE-476), resource leaks (CWE-400 and CWE-775), buffer
overflows (CWE-120), and memory leaks (CWE-400 and CWE-401).
Cppcheck indicates the CWE type in its output [1]. We also use Git
version 2.3.2 to retrieve the source code of the commits from the
configurable systems. We count the lines of code and the number of
files using the Count Lines of Code (CLOC) [10] tool version 1.56.

4.4 Results

Overall, we found some weaknesses in the subject systems. How-
ever, a number of them occur in invalid configurations and others
are not configuration-related. For the purpose of this study, we

196

An Empirical Study on Configuration-Related Code Weaknesses SBES ’20, October 21–23, 2020, Natal, Brazil

Table 1: Overview of the subject systems, including the total number of configuration-related code weaknesses.

Config. System Domain LOC Files Opt. Config. Vers. Weaknesses

Apache Httpd Web server 144,768 362 700 2,894 25,615 5
Bash Interpreter 96,153 248 757 3,942 130 1
Bison Parser generator 24,325 129 269 946 5,423 1
Cherokee Web server 63,109 346 452 1,582 5,748 3
Dia Diag. software 28,074 132 307 1,550 5,634 4
Expat XML library 17,103 54 84 418 47 0
Flex Lexical analyzer 16,501 41 130 366 1,607 0
Fvwm Window manager 102,301 270 301 1,578 5,439 6
Gawk GAWK interpreter 43,070 140 714 2,504 1,345 1
Gnuchess Chess player 9,293 37 39 166 236 0
Irssi IRC client 51,356 308 157 758 4,130 2
Libpng PNG library 44,828 61 327 1958 2,188 3
Libsoup SOUP library 40,061 178 92 448 2,005 0
Libssh SSH library 28,015 125 115 718 2,915 13
Libxml2 XML library 234,9314 162 2,126 5,932 4,246 1
Lighttpd Web server 38,847 132 215 906 1,470 3
Lua Lang. interpreter 14,503 59 145 436 83 1
M4 Macro expander 10,469 26 106 330 953 1
Mpsolve Math. software 10,278 41 20 136 1,434 0
Privoxy Proxy server 29,021 67 158 880 63 0
Rcs Revision control 11,916 28 97 366 915 0
Sqlite Database system 94,113 134 467 3,322 553 0
Sylpheed E-mail client 83,528 218 286 1,546 2,733 3
Vim Text editor 288,654 178 942 8,170 5,720 9

Total 1,525,220 3,476 9,006 41,416 57
Lines of code; number of source files; number of compile-time configuration options; number of analyzed configurations;

number of analyzed versions; and number of detected configuration-related weaknesses.

focused on analyzing the weaknesses that we could confirm by sub-
mitting patches to the configurable systems weakness trackers or
by identifying fixes on the configurable systems repositories. This
way, we found 57 configuration-related code weaknesses in 16 out
of our 24 subject configurable systems (67%), as we present in Ta-
ble 1. We counted in our statistics only weaknesses that developers
fixed or weaknesses for which we submitted patches that devel-
opers accepted. Developers had previously fixed 51 weaknesses
(89%) detected in our study. In total, we submitted 12 patches to fix
weaknesses still in the code of 7 configurable systems, and develop-
ers accepted and fixed 6 (50%) of them. We found different types
of configuration-related weaknesses, as we present in Figure 5:
30 memory leaks (53%), 10 uninitialized variables (18%), 9 derefer-
ences of null pointers (16%), 6 resource leaks (11%), and 2 weak-
nesses related to buffer overflows (4%).

We further determined the number of configuration options
involved in each configuration-related weakness. The majority
of weaknesses involve one configuration option: 50 weaknesses
(88% of the preprocessor-related weaknesses considered in our

16%

4%

9%

16%

55%

Uninitialized Variables
Buffer Overflows
Resource Leaks
Null Pointer Dereferences
Memory Leaks

Figure 5: Types of configuration-related weaknesses.

study). Furthermore, we found three weaknesses that involve two
configuration options; two weakness that relates to three options;
one weakness that involves five configuration options; and one
weakness that relates to seven options.

One weakness found by our technique is explained in Section 2.
Next, we present an example of a configuration-related uninitialized

197

SBES ’20, October 21–23, 2020, Natal, Brazil Medeiros et al.

variable in Figure 6 for illustration. We found this uninitialized
variable in Bash, and this weakness occurs only when we disable
options TRACE and REGISTER, and enable option WATCH. In this
configuration, variable ubytes is not initialized at Line 5, but used
at Line 15. Technically, the value of an uninitialized non-static local
variable is indeterminate in C, and accessing it leads to an undefined
behavior. This weakness was detected in Bash 4.2 and fixed in Bash
4.4. We present more information about all weaknesses detected in
our study at the supplementary website [51].

#undef TRACE
#undef REGISTER
#define WATCH

#define TRACE
#define REGISTER
#define WATCH

1. static void internal_free (){
2. int ubytes;
3. // Lines of code..
4. #if (defined (TRACE) || defined (REGISTER))
5. ubytes = p->minfo.mi_nbytes;
6. #endif
7. // Lines of code..
8. #if definedEx (TRACE)
9. mtrace_free (ubytes, file, line);
10. #endif
11. #if defined (REGISTER)
12. mregister_free (ubytes, file, line);
13. #endif
14. #if defined (WATCH)
15. malloc_ckwatch (file, line, ubytes);
16. #endif
17.} Uninitialized

Variable

...

Configuration 1

#define TRACE
#define REGISTER
#undef WATCH

Configuration 2

Configuration 8

Figure 6: An example of a configuration-related uninitial-
ized variable.

We performed an analysis of correlation to investigate similar-
ities between the projects that we found weaknesses. We could
not find a pattern in the 16 systems with weaknesses with respect
to domain, LOC, number of configurations, number of versions,
number of files, and number of optional features (see Table 1).

5 Discussion

In Section 5.1, we answer the research question. We present the
patches submitted to the configurable systems in Section 5.2, and
discuss the threats to validity in Section 5.3.

5.1 Research Question

RQ1. Howmany configuration-related code weaknesses can
our technique detect?

In total, we found 57 configuration-related code weaknesses in 16
out of the 24 C configurable systems considered in our study. We
present the number of configuration-related weaknesses detected
in each configurable system in Table 1. In our study, we found the
following kinds of configuration-related weaknesses: memory leaks
(30), uninitialized variables (10), dereferences of null pointers (9),
resource leaks (6), and buffer overflows (2).

We found that most (93%) of the configuration-related weak-
nesses gathered in our study involved up two configuration op-
tions. In total, 50 of them involved one configuration option, three
involved two options, two involved three options, one involved
five options, and one involved seven options. Moreover, we found
30 memory leaks involving: one (26), two (2), three (1) and five

(1) configuration options. The configuration-related weakness that
involved seven configuration options is a resource leak that occurs
in the source code of the Lua configurable system. One uninitialized
variable that occurs in the source code of Apache Httpd involved
two configuration options. One uninitialized variable that occurs
in Bash involved three configuration options and we present in Fig-
ure 6. The other weaknesses of both resource leak and uninitialized
variable kinds involved only one configuration option. All buffer
overflows and null point dereference weaknesses also involved only
one configuration option.

The kind of weakness that most occur in our study is memory
leak (53%). It is an unintentional form of memory consumption
whereby the developer fails to free an allocated block of mem-
ory when no longer needed. The consequences of such weakness
depend on the application itself [42]. This kind of weakness is con-
sidered potentially dangerous if it occurs in a long-lived user-land
application, as these applications continue to waste memory over
time, eventually consuming all RAM resources. It may lead to ab-
normal system behavior. Furthermore, it is considered dangerous if
it occurs in a kernel-land process. In this context, a memory leak
may lead to serious system stability issues [42].

We found two buffer overflows in Bison (one) and Vim (one).
This weakness occurs when a program attempts to put more data
in a buffer than it can hold or when a program attempts to put data
in a memory area past a buffer. In this case, a buffer is a sequential
section of memory allocated to contain anything from a character
string to an array of integers. Writing outside the bounds of a block
of allocated memory can corrupt data, crash the program, or cause
the execution of malicious code [41]. Buffer overflow is classified
with high severity [41], and it is considered the third most danger-
ous software error [33]. Furthermore, an attacker may intentionally
trigger a resource leak. When successful, the attacker might be able
to launch a denial of service attack by depleting the resource pool.
In general, resource leak weaknesses have two common causes:
error conditions and other exceptional circumstances; and confu-
sion over which part of the program is responsible for releasing the
resource [44]. Using our technique, we found six resource leaks in
five configurable systems: Libssh (two), Lua (one), Lighttpd (one),
Sylpheed (one) and Libxml2 (one).

In some languages such as C and C++, stack variables are not
initialized by default. They generally contain junk data with the
contents of stack memory before the function was invoked. An
attacker can sometimes control or read these contents [34]. In total,
we found ten uninitialized variables in Apache Httpd (three), Dia
(two), Cherokee (one), Libssh (one), Sylpheed (one), Fvwm (one)
and Bash (one). Moreover, a code may dereference a null pointer,
thereby raising aNullPointerException. When successful, an attacker
might be able to use the resulting exception to bypass security logic
or to cause the application to reveal debugging information that
will be valuable in planning subsequent attacks [43]. We found
nine null point dereference weaknesses in the source code of five
configurable systems: Libssh (four), Irssi (two), Apache Httpd (one),
Dia (one), and Fvwm (one).

The C preprocessor is flexible enough to allow developers to
embrace any code fragment with preprocessor conditional direc-
tives, even a single token such as an opening bracket. This way,
developers can introduce preprocessor conditional directives that

198

An Empirical Study on Configuration-Related Code Weaknesses SBES ’20, October 21–23, 2020, Natal, Brazil

do not align with the underlying syntactic structure of the source
code [25, 26]. Previous studies used terms such as undisciplined or
incomplete preprocessor use to refer to preprocessor conditional di-
rectives of this kind [18, 27]. In our motivating example, presented
in Figure 1, we illustrate an undisciplined use of the preprocessor.
We can see at Lines 7, 9 and 11 that the conditional directives split
up parts of the if statement. Undisciplined preprocessor use may
influence the code quality negatively [5, 12, 30], and might ease the
introduction of configuration-related weaknesses in practice. By an-
alyzing the 57 configuration-related code weaknesses considered in
our study, we found that 9 configuration-related weaknesses occur
in undisciplined preprocessor directives. Some types of weaknesses
may occur more often in the presence of undisciplined annotations.

Developers face configuration-related weaknesses in practice.
Our results suggest that variability hinders the detection of
configuration-related weaknesses.

5.2 Submitting Patches to Fix the Weaknesses

We submitted 12 patches [51]—for each code weakness not al-
ready fixed by developers—to 7 configurable systems: Apache Httpd
(4), Dia (1), Gawk (1), Lighttpd (2), Libxml2 (1), Sqlite (2), and
Sylpheed (1). We submitted these patches by using bug track sys-
tems, and e-mail lists. For every system, we read the documentation
to identify the guidelines for submitting patches.

We consider that developers accept a patch when they mention
that it is a weakness, or keep the patch open after updating some
patch information, such as its priority. Conversely, we consider
that developers reject the patch when they mention it is not a
weakness, or update this information on the patch. Overall, devel-
opers accepted 6 (50%) out of 12 patches we submitted to the C
configurable systems. We present information about the patches
in Table 2, listing the name of the configurable system, file name
with the weakness, the type of weakness, and the patch status.
Developers already fixed all accepted patches.

Regarding the 6 rejected patches, the Apache Httpd developers
rejected four patches: two weaknesses that arise in invalid configu-
rations, and two false positives (in one case the developer stated
that the reported null pointer dereference was a false positive, since
the virtual storage address begins at 0,4 and in the other case the
Cppcheck did not consider a variable was static and reported amem-
ory leak on it).5 The Sqlite developers also rejected two patches
as they were false positives. The developer mentioned that both
reports were false positives because the build system ensures that
the specific macros that cause the weaknesses are defined at that
part of the code, avoiding any problem related to memory leak or
uninitialized variable.

5.3 Threats to Validity

5.3.1 Construct validity The issue of whether the configuration-
related code weaknesses detected are real weaknesses threatens
construct validity. We addressed this threat by getting feedback
4https://bz.apache.org/bugzilla/show_bug.cgi?id=56210
5https://bz.apache.org/bugzilla/show_bug.cgi?id=56211

Table 2: Patches submitted to the configurable systems.

Configurable
System File Problem Status

Dia test-boundingbox.c Uninit variable Fixed
Gawk regcomp.c Memory leak Fixed
Lighttpd mod_dirlisting.c Memory leak Fixed
Lighttpd mod_dirlisting.c Resource leak Fixed
Libxml2 catalog.c Resource leak Fixed
Sylpheed jpilot.c Resource leak Fixed
Apache Httpd ssl_util.c Null deference Rejected
Apache Httpd mpm_winnt.c Memory leak Rejected
Apache Httpd ap_regkey.c Uninit variable Rejected
Apache Httpd ap_regkey.c Uninit variable Rejected
Sqlite os_win.c Uninit variable Rejected
Sqlite test_intarray.c Memory leak Rejected

from the actual developers, confirming each weakness reported in
our statistics in two ways: (1) finding a fix in newer versions of
the code; and (2) submitting patches to the configurable systems.
Developers accepted and fixed 6 out of the 12 configuration-related
code weaknesses reported, and we confirmed 51 weaknesses that
developers fixed in newer versions of the source code.

5.3.2 Internal validity Regarding internal validity, the corpus
of weaknesses is critical for our empirical study. Creating a repre-
sentative corpus is difficult, primarily because we have no means
of knowing all weaknesses in a given system. This is because there
is no comprehensive quality assurance strategy in the first place.
By using a tool to detect weaknesses, as we did with Cppcheck,
we limit our study to weaknesses that this tool can detect, such as
memory leaks, uninitialized variables, and null pointer dereferences.
It is important to notice that we selected Cppcheck because it is a
tool used in practice, it was mentioned in a number of interviews
that we did with developers [30]. Further, we found developers
mentioning it in commit messages in open-source projects.

To minimize this threat, we performed a study with the tools
CppCheck, Flawfinder, Splint, GCC, and Clang Analyzer, and we
considered 21 bugs reported the variability bugs database [3]. We
run the tools by using their default configuration and we checked
all possible configurations of the source code, as we used the sim-
plified version of the bugs provided in the variability bugs database
(that is, brute force is feasible in the simplified version). The results
show that all tools do not detect the majority of bugs: CppCheck
detected 08 (38%) bugs, GCC detected 05 (24%), Flawfinder detected
02 (10%) bugs, Splint detected 02 bugs (10%) also, and Clang Ana-
lyzer detected 04 (19%) bugs. In addition, we considered only the
configuration-related weaknesses that we fully understand, this
way we may miss some real configuration-related weaknesses.

Furthermore, our technique analyzes one file at a time. It does
not find weaknesses that span multiple files. So, we may miss some
code weaknesses (false negatives). Furthermore, our technique does
not check all possible configurations, as we used sampling which
checks only a subset of configurations. So, we might miss some
weaknesses in configurations that we do not analyze. To minimize

199

https://bz.apache.org/bugzilla/show_bug.cgi?id=56210
https://bz.apache.org/bugzilla/show_bug.cgi?id=56211

SBES ’20, October 21–23, 2020, Natal, Brazil Medeiros et al.

this threat, we used a LSA sampling approach aiming at maximizing
the number of detected code weaknesses [29].

We did not consider the build-system information of each subject
system in our study. Build-system information is inherent difficult
to analyze in a sound fashion [11, 38, 46], and most subject systems
do not have this information available. In these systems, our results
do not consider, for example, configuration-related weaknesses that
occur in source files without preprocessor conditional directives
that are included conditionally depending on configuration options.

Our technique considered only updated and added files to find
configuration-related weaknesses in configurable system reposito-
ries, from the second to the last commit, as described in Section 3.
However, this technique may lead to false negatives. For instance,
developers may update a file A, which leads to weaknesses in a
different file B. In our technique, because only A has been modi-
fied, we only analyze A. However, later, if developers modify B, our
technique potentially catches the weaknesses. To minize this threat,
we submit patches to the open-source systems and find a commit
fixing the weaknesses. Thus, we only consider real weaknesses.

5.3.3 External validity We analyzed 24 configurable systems
of different domains, sizes, numbers of configuration options, and
numbers of developers, and found 57 configuration-related weak-
nesses in 16 of them. We selected mature C configurable systems
used in industrial practice, but we also selected some younger con-
figurable systems with a few developers to consider a broader range
of configurable system’s characteristics (see Figure 3). The corre-
sponding communities exist for years and are active. This way, we
reduce threats related to external validity.

6 Implications for Practice

In this section, we discuss some implications that our results
bring to practice. First, our results agree with Muniz et al. [37] find-
ings by showing that developers face configuration-related code
weaknesses in practice. Previous works [30, 37] do not propose a
technique to detect configuration-related weaknesses in the source
code of configurable systems. Current state-of-the-art variability-
aware tools need a time-consuming setup, such as TypeChef [25]
and SuperC [21], hindering their application in practice. Thus, de-
velopers should put effort into the development of variability-aware
analysis tools to minimize weaknesses in practice.

Second, our results support the conjecture [37] that most
configuration-related code weaknesses involve one or two con-
figuration options (93%). For instance, most of the memory leaks
(28 out of 30) detected in our study involved no more than two
configuration options. In addition, we found the following num-
ber of configuration-related memory leaks that involved up to two
configuration options: nine null dereferences, nine uninitialized
variables, two buffer overflows, and four resource leaks. This re-
sult is similar to previous studies regarding configuration-related
bugs [2, 3, 19, 22, 29, 31, 32, 48]. Moreover, the pair-wise sampling
approach [47] checks all combinations of two configuration options
and would detect all configuration-related weaknesses involving
one or two configuration options (93% of the code weaknesses con-
sidered in our study). So, based on this information, developers

can start testing the source code using simple algorithms, and use
other time-consuming algorithms, such as three-wise and four-wise
sampling, only when testing the source code before releases.

Third, we found some differences regarding the way developers
introduce configuration-related weaknesses. Developers normally
introduce most configuration-related syntax errors (87%) when
modifying code [31], and most configuration-related undeclared
and unused identifiers when introducing (73%) new functionali-
ties [32]. Our study shows that developers introduce configuration-
related memory and resource leaks, buffer overflows, null pointer
dereferences, and uninitialized variables by introducing new func-
tionalities (51%) and modifying existing code (49%). Hence, in-
stead of using only a particular technique to detect all kinds of
configuration-related weaknesses and bugs, our results support
the claim that we need different strategies and tools to properly
catch them. For instance, we might need lightweight tools that
check for configuration-related syntax errors on the fly, but more
time-consuming code analysis with global information to detect
other configuration-related weaknesses (applying it only when in-
troducing new source files or before submitting new code versions
to configurable system repositories).

Fourth, the corpus of weaknesses gathered in our work is a valu-
able source to further study configuration-related weaknesses, and
to test and improve variability-aware analysis tools. Furthermore,
we support Muniz et al. [37] findings while analyzing two kinds
of weaknesses that they did not consider during their analysis
(uninitialized variable and resource leak).

7 Related Work

Muniz et al. [37] conducted two studies to regarding the per-
ception of developers of configurable systems with #ifdefs related
to weaknesses, and the strategies and tools they use to identify
and remove them. In the first one, they manually analyzed 27
configuration-related weaknesses of Apache Httpd, Linux and
OpenSSL reported on their bug trackers. They found weaknesses of
the following kinds: null pointer (six), integer overflow (six), mem-
ory leak (three), format string (two), race condition (one), risky
cryptographic algorithm (one), and integer underflow (one). Most
of their occurrences are null pointer and integer overflow. Further-
more, Muniz et al. [37] findings showed that all their 27 analyzed
weaknesses involved up to two configuration options, this result is
similar to ours. We found that 94.5% of the configuration related
code weaknesses gathered in our study involved up to two configu-
ration options. In their second study, Muniz et al. [37] conducted a
survey with 110 developers of the previous configurable systems.
They found that some developers do not check any configurations
to detect weaknesses, and some senior developers could not identify
integer and buffer overflows. We found two buffer overflows using
our technique. In addition, they found that some developers do not
use proper tools to detect weaknesses in configurable systems with
#ifdefs. Our study results show evidences that our technique can
detect configuration-related weaknesses in configurable systems.

Mordahl et al. [36] presented an empirical study of real-world
variability bugs. To achieve this goal, they built a framework that
simulates variability-aware by integrating four static analysis tools

200

An Empirical Study on Configuration-Related Code Weaknesses SBES ’20, October 21–23, 2020, Natal, Brazil

(CBMC, Clang, Infer and Cppcheck) and applying this approach
in three configurable systems (axTLS, Toybox and BusyBox). Our
work uses the LSA algorithm in conjunction with Cppcheck on 24
configurable systems to identify weaknesses.

Abal et al. [3] manually studied 98 variability bugs of four C/C++
configurable systems, such as Linux and Apache. Sixty-two bugs are
weaknesses (CWEs 078, 120, 125, 190, 197, 401, 403, 416, 440, 457, 476,
561, 563, 617, 675, 685, 764, 843). For each of the weaknesses, they
analyzed relevant variability properties and summarized them into
a self-contained C99 program with the same variability properties.
These simplified weaknesses aid understanding the real weakness
and constitute a publicly available benchmark for analysis tools.
Also, they created simplified patches, and single-function versions
of the weaknesses for evaluation of prototype and intraprocedural
analyses. In addition, they provided the VBDb (Variability Bugs
Database) containing the corpus of 98 variability bugs (some of them
weaknesses). In our work, we propose a technique to automatically
detect configuration-related weaknesses. It receives a link to a
repository of a C/C++ system, and automatically evaluates each
of their commits. As a result, we found 57 configuration-related
weaknesses. We confirmed each configuration-related weakness
by searching for fixes in the corresponding software repositories
(i.e., made by actual developers of the configurable system), and
by submitting patches to developers. In total, we submitted 12
patches, and developers accepted 50% of them. They already fixed
all accepted patches. Our technique detects some resource leaks
that they do not find (CWEs 400 and 775).

Ferreira et al. [13] conducted an empirical study of the Linux
Kernel to analyze whether #ifdefs influence the occurrence of
vulnerabilities. They investigated the relationship between config-
uration complexity and the occurrence of vulnerabilities according
to some metrics. They counted the number of #ifdefs that appear
inside a function. They considered howmany distinct configuration
options are used within a function. They analyzed the vulnerability
history of functions, by checking whether a certain function has
been touched by developers to fix past vulnerabilities. Their analy-
sis revealed that vulnerable functions have, on average, 3.04 times
more #ifdefs internally than non-vulnerable functions. Moreover,
vulnerable functions have on average 4.2 times more configura-
tion options internally than non-vulnerable functions. Vulnerable
functions have fewer configuration options, and have, on aver-
age, a 1.3 times more outgoing function calls than non-vulnerable
functions. Our work complements their work [13] by studying 57
configuration-related weaknesses in 16 configurable systems.

Halin et al. [22] evaluated all possible configurations (26,000+)
of one version of JHipster, a popular code generator for web appli-
cations. They used a cluster of 80 machines during 4 nights for a
total of 4,376 hours (182 days) CPU time. They found that over 35%
of the configuration failed, and identified 6 feature interactions that
caused 99% of these failures. The one-enabled, one-disabled, and
most-enabled-disabled can detect 3.15, 2.34, and 0.67 out of 6 faults
in their study, respectively. We observed differences regarding the
way developers introduce the configuration-related weaknesses,
providing insights for tool developers. Palix et al. [45] performed
studies to detect faults in several versions of the Linux Kernel using
Coccinelle. A previous study [6] presented the tool named Plug
to detect memory leaks in C and C++ programs. However, these

tools are not variability-aware. In our technique, we combined
Cppcheck [1] with LSA.

Some researchers studied the way developers use the C prepro-
cessor in practice [4, 5, 12]. Liebig et al. [27] analyzed 40 config-
urable systems and warned that developers can introduce subtle
syntax errors, for example, by annotating a closing bracket but not
the opening one. They classify this kind of preprocessor use as
undisciplined. Other researchers proposed similar classifications,
such as incomplete [16–18] and unstructured [12] preprocessor
use. According to Liebig et al. [27], undisciplined preprocessor use
makes up 15.6% of the total number of preprocessor directives.
Medeiros et al. [30] interviewed 40 developers and performed a
survey with 202 developers to understand why the C preprocessor
is still widely used in practice despite the strong criticism the pre-
processor receives in academia. They found that the majority of
developers believe that undisciplined preprocessor usage influences
code quality, maintainability and error-proneness negatively. All
these studies discussed the C preprocessor and its problems, such as
bugs, inconsistencies, and code quality. However, none of these stud-
ies took into consideration configuration-related code weaknesses.
In our work, we performed an empirical study of 24 popular highly
configurable systems using the C preprocessor at compile time to
answer a number of research questions related to the number of
configuration-related weaknesses.

8 Concluding Remarks

In this paper, we propose a sampling-based white-box technique
to detect configuration-related weaknesses in the source code of
configurable systems. To evaluate our technique, we performed an
empirical study on 24 highly configurable systems. In particular,
we answered one research question related to the frequency of
configuration-related weaknesses.In summary, we found 57 distinct
configuration-related code weaknesses in 16 out of 24 configurable
systems considered in our study. Configuration-related code weak-
nesses may happen due to the complexity of detecting and fixing
weaknesses related to preprocessor directives, especially when they
involve a number of configuration options. However, it is important
to quickly fix weaknesses, especially the ones with high severity,
avoiding exposing the system to malicious attacks.

Our findings are important to support developers to understand
these weaknesses, develop variability-aware analysis tools, mini-
mize such weaknesses in practice, and improve software quality. As
future work, we intend to extend this empirical study by consider-
ing different kinds of weaknesses (other CWEs). Further, we intend
to analyze all files at the same time to try to identify weaknesses
involving more preprocessor macros.

Acknowledgments

We would like to thank the anonymous reviewers. This work
was partially supported by CNPq and CAPES grants.

References

[1] 2020. Cppcheck Design. http://cppcheck.sourceforge.net/.

201

http://cppcheck.sourceforge.net/

SBES ’20, October 21–23, 2020, Natal, Brazil Medeiros et al.

[2] Iago Abal, Claus Brabrand, and Andrzej Wasowski. 2014. 42 Variability Bugs
in the Linux Kernel: A Qualitative Analysis. In Proceedings of the International
Conference on Automated Software Engineering. 421–432.

[3] Iago Abal, Jean Melo, Stefan Stănciulescu, Claus Brabrand, Márcio Ribeiro, and
Andrzej Wasowski. 2018. Variability Bugs in Highly Configurable Systems: A
Qualitative Analysis. Transactions on Software Engineering and Methodology 26,
3 (2018), 10:1–10:34.

[4] Ira D. Baxter. 1992. Design maintenance systems. Commun. ACM 35, 4 (1992),
73–89.

[5] Ira D. Baxter and Michael Mehlich. 2001. Preprocessor conditional removal by
simple partial evaluation. In Proceedings of the Working Conference on Reverse
Engineering. IEEE, Germany, 281–290.

[6] Michael D. Bond and Kathryn S McKinley. 2008. Tolerating memory leaks. In Pro-
ceedings of the Object-Oriented Programming Systems Languages and Applications.
109–126.

[7] Larissa Braz, Rohit Gheyi, Melina Mongiovi, Márcio Ribeiro, Flávio Medeiros,
and Leopoldo Teixeira. 2016. A Change-centric Approach to Compile Config-
urable Systems with #Ifdefs. In Proceedings of the 15th International Conference
on Generative Programming: Concepts & Experiences. 109–119.

[8] Larissa Braz, Rohit Gheyi, Melina Mongiovi, Márcio Ribeiro, Flávio Medeiros,
Leopoldo Teixeira, and Sabrina Souto. 2018. A change-aware per-file analysis
to compile configurable systems with #ifdefs. Computer Languages, Systems &
Structures 54 (2018), 427–450.

[9] Renée Bryce and Charles Colbourn. 2006. Prioritized interaction testing for pair-
wise coverage with seeding and constraints. Information and Software Technology
48, 10 (2006), 960–970.

[10] Al Danial. 2020. CLOC. http://cloc.sourceforge.net/.
[11] Christian Dietrich, Reinhard Tartler, Wolfgang Schroder-Preikschat, and Daniel

Lohmann. 2012. A robust approach for variability extraction from the Linux
build system. In Proceedings of the Software Product-Line Conference. 21–30.

[12] Michael Ernst, Greg Badros, and David Notkin. 2002. An Empirical Analysis of C
Preprocessor Use. Transactions on Software Engineering 28, 12 (2002), 1146–1170.

[13] Gabriel Ferreira, Momin Malik, Christian Kästner, Jürgen Pfeffer, and Sven Apel.
2016. Do #ifdefs influence the occurrence of vulnerabilities? An empirical study
of the Linux kernel. In Proceedings of the International Systems and Software
Product Line Conference. 65–73.

[14] Matthew Finifter, Devdatta Akhawe, and David Wagner. 2013. An empirical
study of vulnerability rewards programs. In Proceedings of the USENIX Conference
on Security. 273–288.

[15] Stefan Frei, Dominik Schatzmann, Bernhard Plattner, and Brian Trammell. 2010.
Modeling the security ecosystem - the dynamics of (In)security. Springer US, 79–
106.

[16] Alejandra Garrido and Ralph Johnson. 2002. Challenges of Refactoring C Pro-
grams. In Proceedings of the International Workshop on Principles of Software
Evolution. 6–14.

[17] Alejandra Garrido and Ralph Johnson. 2003. Refactoring C with Conditional
Compilation. In Proceedings of the International Conference on Automated Software
Engineering. 323–326.

[18] Alejandra Garrido and Ralph Johnson. 2005. Analyzing Multiple Configura-
tions of a C Program. In Proceedings of the International Conference on Software
Maintenance. 379–388.

[19] Brady Garvin and Myra Cohen. 2011. Feature Interaction Faults Revisited: An
Exploratory Study. In Proceedings of the International Symposium on Software
Reliability Engineering. 90–99.

[20] Brady Garvin, Myra Cohen, and Matthew Dwyer. 2011. Using Feature Local-
ity: Can We Leverage History to Avoid Failures During Reconfiguration?. In
Proceedings of the Workshop on Assurances for Self-adaptive Systems.

[21] Paul Gazzillo and Robert Grimm. 2012. SuperC: parsing all of C by taming the
preprocessor. In Proceedings of the Programming Language Design and Implemen-
tation. 323–334.

[22] Axel Halin, Alexandre Nuttinck, Mathieu Acher, Xavier Devroey, Gilles Perrouin,
and Benoit Baudry. 2017. Test them all, is it worth it? A ground truth comparison
of configuration sampling strategies. arXiv preprint arXiv:1710.07980 (2017).

[23] Kyo Kang, Sholom Cohen, James Hess, William Novak, and Spencer Peterson.
1990. Feature-Oriented Domain Analysis Feasibility Study. Technical Report.
Carnegie Mellon University.

[24] Christian Kastner and SvenApel. 2009. Virtual Separation of Concerns –A Second
Chance for Preprocessors. Journal of Object Technology 8, 6 (2009), 59–78.

[25] Christian Kastner, Paolo Giarrusso, Tillmann Rendel, Sebastian Erdweg, Klaus
Ostermann, and Thorsten Berger. 2011. Variability-Aware Parsing in the Presence
of Lexical Macros and Conditional Compilation. In Proceedings of the Object-
Oriented Programming Systems Languages and Applications. 805–824.

[26] Jorg Liebig, Sven Apel, Christian Lengauer, Christian Kastner, and Michael
Schulze. 2010. An analysis of the variability in forty preprocessor-based soft-
ware product lines. In Proceedings of the International Conference on Software
Engineering. 105–114.

[27] Jorg Liebig, Christian Kastner, and Sven Apel. 2011. Analyzing the discipline
of preprocessor annotations in 30 million lines of C code. In Proceedings of the

International Conference on Aspect-Oriented Software Development. 191–202.
[28] Jorg Liebig, Alexander von Rhein, Christian Kastner, Sven Apel, Jens Dorre, and

Christian Lengauer. 2013. Scalable Analysis of Variable Software. In Proceed-
ings of the European Software Engineering Conference and the Symposium on the
Foundations of Software Engineering. 81–91.

[29] Flávio Medeiros, Christian Kastner, Márcio Ribeiro, Rohit Gheyi, and Sven Apel.
2016. A Comparison of 10 Sampling Algorithms for Configurable Systems. In
Proceedings of the International Conference on Software Engineering. 643–654.

[30] Flávio Medeiros, Christian Kastner, Márcio Ribeiro, Sarah Nadi, and Rohit Gheyi.
2015. The Love/Hate Relationship with the C Preprocessor: An Interview Study.
In Proceedings of the European Conference on Object-Oriented Programming. 999–
1022.

[31] Flávio Medeiros, Márcio Ribeiro, and Rohit Gheyi. 2013. Investigating
Preprocessor-Based Syntax Errors. In Proceedings of the International Confer-
ence on Generative Programming: Concepts & Experiences. 75–84.

[32] Flávio Medeiros, Iran Rodrigues, Márcio Ribeiro, Leopoldo Teixeira, and Rohit
Gheyi. 2015. An Empirical Study on Configuration-Related Issues: Investigating
Undeclared and Unused Identifiers. In Proceedings of the International Conference
on Generative Programming: Concepts & Experiences. 35–44.

[33] Mitre. 2019. Top 25Most Dangerous Software Errors. http://cwe.mitre.org/top25/.
[34] Mitre. 2020. Uninitialized Variable. https://cwe.mitre.org/data/definitions/457.

html.
[35] Mitre. 2020. Weaknesses. https://cwe.mitre.org/documents/glossary/index.html#

Weakness.
[36] Austin Mordahl, Jeho Oh, Ugur Koc, Shiyi Wei, and Paul Gazzillo. 2019. An

empirical study of real-world variability bugs detected by variability-oblivious
tools. In Proceedings of the Foundations of Software Engineering. 50–61.

[37] Raphael Muniz, Larissa Braz, Rohit Gheyi, Wilkerson Andrade, Baldoino Fonseca,
and Márcio Ribeiro. 2018. A Qualitative Analysis of Variability Weaknesses in
Configurable Systems with #Ifdefs. In Proceedings of the International Workshop
on Variability Modelling of Software-Intensive Systems. 51–58.

[38] Sarah Nadi and Richard Holt. 2014. The Linux kernel: A case study of build system
variability. Journal of Software: Evolution and Process 26, 8 (2014), 730–746.

[39] Changhai Nie and Hareton Leung. 2011. A Survey of Combinatorial Testing.
Computing Surveys 43, 2 (2011), 11:1–11:29.

[40] Sebastian Oster, FlorianMarkert, and Philipp Ritter. 2010. Automated Incremental
Pairwise Testing of Software Product Lines. In Software Product Lines: Going
Beyond, Jan Bosch and Jaejoon Lee (Eds.). Lecture Notes in Computer Science,
Vol. 6287. 196–210.

[41] OWASP. 2020. Buffer Overflow. https://owasp.org/www-community/
vulnerabilities/Buffer_Overflow.

[42] OWASP. 2020. Memory Leak. https://owasp.org/www-community/
vulnerabilities/Memory_leak.

[43] OWASP. 2020. Null Pointer Dereference. https://owasp.org/www-community/
vulnerabilities/Null_Dereference.

[44] OWASP. 2020. Resource Leak. https://owasp.org/www-community/
vulnerabilities/Unreleased_Resource.

[45] Nicolas Palix, Gael Thomas, Suman Saha, Christophe Calves, Julia Lawall, and
Gilles Muller. 2011. Faults in Linux: Ten Years Later. In Proceedings of the In-
ternational Conference on Architectural Support for Programming Languages and
Operating Systems. 305–318.

[46] Leonardo Passos, Jianmei Guo, Leopoldo Teixeira, Krzysztof Czarnecki, Andrzej
Wasowski, and Paulo Borba. 2013. Coevolution of Variability Models and Related
Artifacts: A Case Study from the Linux Kernel. In Proceedings of the International
Software Product Line Conference. 91–100.

[47] Gilles Perrouin, Sagar Sen, and Jacques Klein. 2010. Automated and Scalable
T-wise Test Case Generation Strategies for Product Lines. In Proceeding of the
International Conference on Software Testing, Verification and Validation. 459–468.

[48] Sabrina Souto, Marcelo d’Amorim, and Rohit Gheyi. 2017. Balancing Soundness
and Efficiency for Practical Testing of Configurable Systems. In Proceedings of
the International Conference on Software Engineering. 632–642.

[49] Henry Spencer and Geoff Collyer. 1992. Ifdef Considered Harmful, or Portabil-
ity Experience with C News. In Proceendings of the USENIX Annual Technical
Conference. USENIX Association.

[50] Reinhard Tartler, Christian Dietrich, Julio Sincero, Wolfgang Schroder-Preikschat,
and Daniel Lohmann. 2014. Static Analysis of Variability in System Software:
The 90,000 #ifdefs Issue. In USENIX Annual Technical Conference. 421–432.

[51] Our Team. 2020. Supplementary website. https://sbesweaknesses.github.io/.
[52] David Wheeler. 2020. FlawFinder. https://www.dwheeler.com/flawfinder/.

202

http://cloc.sourceforge.net/
http://cwe.mitre.org/top25/
https://cwe.mitre.org/data/definitions/457.html
https://cwe.mitre.org/data/definitions/457.html
https://cwe.mitre.org/documents/glossary/index.html#Weakness
https://cwe.mitre.org/documents/glossary/index.html#Weakness
https://owasp.org/www-community/vulnerabilities/Buffer_Overflow
https://owasp.org/www-community/vulnerabilities/Buffer_Overflow
https://owasp.org/www-community/vulnerabilities/Memory_leak
https://owasp.org/www-community/vulnerabilities/Memory_leak
https://owasp.org/www-community/vulnerabilities/Null_Dereference
https://owasp.org/www-community/vulnerabilities/Null_Dereference
https://owasp.org/www-community/vulnerabilities/Unreleased_Resource
https://owasp.org/www-community/vulnerabilities/Unreleased_Resource
https://sbesweaknesses.github.io/
https://www.dwheeler.com/flawfinder/

	Abstract
	1 Introduction
	2 Motivating Example
	3 A Technique to Detect Configuration-Related Code Weaknesses
	3.1 Overview
	3.2 Technique

	4 Study Setup and Results
	4.1 Definition
	4.2 Subjects Selection
	4.3 Planning and Instrumentation
	4.4 Results

	5 Discussion
	5.1 Research Question
	5.2 Submitting Patches to Fix the Weaknesses
	5.3 Threats to Validity

	6 Implications for Practice
	7 Related Work
	8 Concluding Remarks
	References

