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an analysis of 25 large open-source projects, is that STMC is not related to project quality measures—software bugs and churn—in
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1 Introduction
The relationship between social and technical factors in software

engineering has received considerable attention in the past. De-

spite its importance, to the best of our knowledge, a systematic

formalisation and empirical evaluation based on a rich set of lon-

gitudinal, triangulated software engineering data is still lacking.

In this article, we describe a large-scale empirical study inves-

tigating a formalisation of the well-known hypothesis of socio-

technical congruence. More speci�cally, we explore whether

alignment or misalignment of social communication structures

and technical dependencies in large software projects in�uences

software quality. To this end, we have de�ned a quantitative and

interpretable notion of socio-technical congruence, which we call

socio-technical motif congruence (STMC). STMC is a measure of

the degree to which developers working on the same �le or on two

related �les, need to communicate. As socio-technical congruence

is a complex and multi-faceted phenomenon, the interpretability

of the results is one of our main concerns, so we have employed a
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careful mixed-methods statistical analysis. In particular, we pro-

vide analyses with similar techniques as employed by seminal

work in the �eld [1], [2] to ensure comparability of our results

with the existing body of work.

The major result of our study, based on an analysis of 25

large open-source projects from �ve di�erent ecosystems, is that

STMC is not correlated to basic and measurable project quality

outcomes—software bugs and churn—in any temporal scenario.

That is, we �nd no signi�cant statistical relationship between the

alignment of developer tasks and developer communications on

the one hand, and project outcomes on the other hand. We draw

the conclusion that if there is in fact a relation, it resides with other

project quality outcomes or at higher orders of organisational

and technical granularity. This conclusion is based on rigorous

analyses of our dataset, which spans hundreds of years worth of

project data, ranging over four di�erent dimensions of software

project and community activity information (source code, mailing

lists, issue-tracking logs, and commit logs and changes).

Although addressing a massive research corpus, our research

design is minimalistic to increase internal validity [3]. To this end

we: (a) formalise the concept of STMC in a simple, interpretable

manner, and we de�ne a quantitative measure—degree of socio-
technical motif congruence (dSTMC)—of the concept. To ensure

the generality and replicability of our results, we analyze the

“residues”—the inevitable outputs and by-products—of software

development undertakings. The design that we analyze is pro-

vided by a project’s code structure—�les and their relationships—

and the communication structure that we analyzed is manifested

by project members and their communication relationships. To-

gether these structures comprise networks of technical artefacts

and people. For the sake of generality, we chose the simplest

de�nition of a congruence pattern; (b) based on this notion, we
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Fig. 1. Overview of our research design.

extract the two networks from software engineering records: (i)

code (i.e., analyzing �les, their syntactic relationships, and their

co-evolution patterns) and (ii) people (i.e., project members and

their relationships, determined by analysing project mailing list

and issue-tracking data); (c) we capture elementary quality met-

rics: code churn and bug density; (d) �nally, we employ a mul-

titude of statistically interpretable techniques that qualitatively

and quantitatively establish the connection between dSTMC and

software quality. Since looking for all imaginable consequences

of following or violating STMC is fundamentally impossible, we

need to pick speci�c measures, and thus we choose robust ones

of practical relevance. We pay special attention not to focus on

formal statistical signi�cance based on subjective thresholds [4],

but center our analysis and discussion on relevance, together with

a fully open and reproducible approach. An overview of the pro-

cess that we follow is provided in Figure 1.

Our assumption is that, if STMC is relevant then the degree to

which technical dependencies match social communication struc-

tures should a�ect project outcomes, which are measured as code

quality metrics. In case of negative �ndings, this of course leaves

the possibility that STMC is relevant for other outcomes that we

do not consider in this study. In this article, we focus on code

quality metrics that are, at the same time: (a) most-immediately

impacting software stakeholders; (b) relating to organisational

structures according to the literature; (c) re�ecting the lowest level

of abstraction of software projects and community activity. We

focus on software bugs [5] and code churn [6], [7], as discussed in

Section 7. Note that, while there are many alternative complexity

metrics, these have led us to essentially identical results and con-

clusions. More precisely, we test: (a) whether there are meaningful

socio-technical patterns that arise from STMC; (b) whether the

presence of such patterns in�uences bugs and churn, (c) how the

impact of dSTMC compares to other in�uence factors, and (d)

whether e�ects induced by dSTMC endure over time.

Our results show that there is no observable relation between

dSTMC and bugs or churn; while this does not eliminate the pos-

sibility of other bene�cial e�ects of STMC on desirable software

qualities, our results exclude one major class of such desiderata,

and the methodology we employ can be re-used to examine such

possibilities. Our results also demonstrate that the quantitative

in�uence of any possible e�ects caused by STMC on quality out-

comes is orders or magnitudes smaller than for other in�uence

factors, and is therefore not a worthwhile target for substantial

optimisation in practical industrial development.

The major contributions of this article are:

(1) a robust and testable quantitative instantiation of STMC,

together with a measurable de�nition of its prevalence in

real-world software development projects;

(2) a fully automatic, time-resolved analysis pipeline published

as open source software
1

that combines heterogenous data

sources and makes our study fully reproducible;

(3) a large-scale investigation using multiple statistical, inter-

pretable and parsimonious approaches ranging from multi-

variate linear regression to elastic nets, of how dSTMC and

software qualities are related, including a temporal analysis,

based on formalisations of developer–artefact coupling and

communication mechanisms;

(4) a discussion of the potentially wide-ranging impact of our

�ndings on common software architecture and folklore, in

particular, related to the crucial question of how to opti-

mise human cooperation and communication in develop-

ment projects, and which aspects of human cooperation reap

the most bene�ts when supported and improved.

All data generated by our study, the raw input data, and

the scripts to perform the required analytical computations, are

available at the supplementary web site https://cdn.lfdr.de/stmc.

The website contains a comprehensive set of graphs and data that

could not be presented directly in the article.

2 RelatedWork
The relationships existing between organizational structure, its

characteristics, and the underlying relationships with software

structure and quality has been examined from several perspec-

tives over the years. On the one hand, the literature in soft-

ware engineering has most prominently focused on understand-

ing and characterising the relationships around socio-technical

congruence [8]. In recent work, Kamola [9] investigates the e�ects

of socio-technical congruence in the context of multiple open-

source software projects, with similar but deeper investigations

conducted by Syeed et al. [10], but on a single case study. Simi-

larly, Bailey et al. [11] analyze the e�ects of congruence over time

and at larger scale, constituting the theoretical basis for Betz et
al. [12]. In op. cit., the authors provide a comprehensive overview

of socio-technical congruence, relating to Conway’s “Law” and

other scienti�c literature pursuing an empirical perspective. In

much the same timeframe, Cataldo et al. [1] provide evidence of

the impact implied in the aforementioned relations. We seek to

shed light on the theoretical relations in the scope of the orga-
nizational structure ↔ software structure congruence addressed

by all the aforementioned work. Our attempt is to dig into the

1. See http://siemens.github.io/codeface/.

https://cdn.lfdr.de/stmc
http://siemens.github.io/codeface/
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TABLE 1
Overview of subject projects.

Project Lang Domain # Contributors # Commits # Issues # eMails Analysis Period

VCS Issues eMail + Comments VCS Issues eMail

ActiveMQ Java Message Queue 87 2 781 1 471 9 792 6 048 60 241 12/05–06/17 12/05–06/17 12/05–07/17

Ambari JavaScript Middleware 120 889 301 20 544 19 147 94 700 08/11–06/17 09/11–06/17 11/13–07/17

Apex Java, C++ Middleware 67 71 140 4 736 694 27 553 06/12–05/17 07/15–06/17 08/15–07/17

Camel Java Middleware 421 2 145 1 080 28 675 11 384 48 447 03/07–06/17 04/07–06/17 05/07–07/17

Cassandra Java Distributed DB 271 3 045 966 14 028 13 481 13 056 03/09–06/17 03/09–06/17 01/09–07/17

CouchDB Erlang Distributed DB 149 1 109 861 10 115 3 255 47 454 03/08–06/17 04/08–06/17 02/08–07/17

Geronimo Java Framework 61 129 518 13 172 781 6 567 08/03–03/13 08/03–02/13 12/02–12/04

Groovy Java, Python Middleware 272 2 599 163 13 277 7 982 3 328 08/03–06/17 09/03–06/17 03/15–07/17

Hadoop Java, C++ Distributed DB 159 1 976 3 101 15 701 8 087 23 603 05/09–06/17 05/09–06/17 08/12–05/17

HBase Java, C++ Distributed DB 208 1 827 944 13 526 18 079 63 981 04/07–05/17 04/07–06/17 02/08–07/17

Hive Java, C++ Middleware 179 2 524 911 10 164 16 782 127 448 09/08–06/17 09/08–06/17 10/10–07/17

Ignite Java, C# Middleware 135 293 346 15 559 5 485 23 897 02/14–06/17 11/14–06/17 10/14–07/17

Karaf Java, JavaScript Framework 104 797 358 6 055 5 192 12 058 11/07–06/17 04/09–06/17 06/10–07/17

Kudu C++ Operative-System 77 155 124 5 959 1 920 5 754 10/12–07/17 08/13–07/17 12/15–07/17

LibCloud Python Library 283 389 165 5 232 931 3 658 08/09–07/17 12/09–07/17 05/11–07/17

Lucene Java, Python, Perl Middleware 108 4 322 2 098 26 245 17 116 293 945 09/01–06/17 10/01–06/17 09/01–12/03

Mahout Java, C++ Library 45 670 615 3 867 1 984 44 981 01/08–05/17 01/08–06/17 01/08–07/17

Mesos C++ Middleware 274 914 511 10 738 7 096 39 655 07/13–06/17 06/13–06/17 07/13–07/17

REEF C#, Java Middleware 61 79 81 3 005 1 831 15 133 08/12–07/17 09/14–07/17 09/14–07/17

Sentry Python Application 25 127 126 906 1 787 7 221 12/12–06/17 08/13–06/17 08/13–07/17

Spark Scala Middleware 1 346 4 158 1 580 18 252 16 261 28 333 03/10–06/17 10/12–06/17 06/13–07/17

Subversion C Application 92 156 853 57 692 4 323 36 361 03/00–06/17 03/01–06/17 03/00–07/17

Thrift C++ Framework 203 1 782 270 4 982 4 209 41 053 07/06–05/17 05/08–06/17 10/10–07/17

TrafficServer C++ Application 240 496 384 9 454 5 086 13 523 10/09–07/17 10/09–01/17 08/09–07/17

Wicket Java Framework 82 1 889 740 19 895 6 388 22 612 09/04–06/17 10/06–06/17 09/06–07/17

Zeppelin Java Application 257 773 308 3 094 2 588 48 710 06/13–06/17 03/15–06/17 01/15–07/17

organisational and technical macro- and micro-structures [13],

[14] to �nd, characterise, and possibly quantify existing empirical

relations between, if any.

We do not assume any formulation of STMC as a theoretical

basis; rather, we seek to understand its measurable e�ect, if any at

all. The most relevant research related to our inquiry comes from

Colfer et al. [15], who formulate and investigate the “mirroring hy-
pothesis”, that organizational structure (represented as a network

of co-committing and communicating developers) and software

architecture (represented as a design-structure matrix showing

syntactic dependencies among software components [16]) should

be mirror images of each other. The authors do, in fact, �nd evi-

dence supporting the mirroring hypothesis. They consider eight

open-source projects based on limited sampling criteria, which

brings some limitations to generalisability of their results. How-

ever, despite considering the three-fold number of projects, sim-

ilar generalisability restrictions are still shared by our results). A

similar objection can be made regarding the work by Kwan et
al. [17] as well as Herbsleb et al. [18], albeit we would like to point

ot that using an order of magnitude more subject projects can not

decisively solve the question of generalizability. However, we feel

that our work nonetheless provides a substantial step forwards in

terms of size and history of the analysed software projects. Other

studies also investigate STMC based on a qualitative discussion or

using a smaller number of subject projects, for instance [2], [19],

[20]. Bird et al. [21] successfully uses socio-technical networks

to train predictive models for build failures, but operates on a

di�erent level of artefact granularity than our study, and uses

an agglomeration without obvious interpretation of graph mea-

sures (degree, centrality,. . . ). These can additionally be di�erent

depending on the project under consideration, since the mixture is

driven by maximising prediction accuracy. As we have discussed

in Section 5.1, our goal is to understand the in�uence of (given)

interpretable, operational characteristics of development e�orts,

and we do not see a contradiction between our negative results

and the positive results given by Bird et al. [21]. It would be

interesting to cross-check their �ndings with our data, albeit we

have to leave this to future work.

Finally, from an organisational perspective, it is already a

known fact that the characteristics in an organizational structure

can a�ect the way in which software is managed, operated, and

evolved in that structure (e.g., see Bird et al. [22]). In the same

vein, our study seeks to distill the relevant structural character-

istics that a�ect the organizational and technical structures of

open-source software projects; our long-term goal is to construct

a community quality model, through which both technical and

social debt [23]–[25] can be assessed [26], [27]. Much in the same

way, studies such as by Howinson [28] have tried to distill a

theory of socio-technical aspects in open-source projects (e.g.,
motivation, coordination, or collaboration), but this and similar

approaches [29] fail to relate to concrete patterns and metrics (e.g.,

collaborativity or cohesion across an organizational structure)

that could be used for planning preventive and corrective actions.

Conversely, from a di�erent perspective, the same study of the

open-source phenomenon has led to several distinct formulations

of the same mirroring hypothesis.

From a methodological perspective, we have chosen to analyze

structural congruence by identifying and studying the evolution

of “network motifs”, that is, recurrent patterns of socio-technical

relations that span the architectural and organizational structure,

as we describe in Section 3.2. The idea of using network motifs

to infer structural properties of networks is well-established in

many scienti�c �elds [30], [31] but never before seen in soft-

ware engineering organizational research prior to executing this

work. Using network motifs to distill STMC mirrors observa-

tional studies in open-source communities [32], [33] that isolate

positive reinforcement patterns of organizational behavior and

their impact on software architecture. In addition, network motifs

have been widely used in studying and understanding dynamic

organizational and socio-technical networks [34] that evolve over
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time [35], much like open-source software communities and their

software architectures. The work closest to ours at the method

level is limited to visualization of social relationship, for example,

Sarma et al. [36], most predominantly in the context of global

software engineering [37]. We dig deeper and wider to narrow

down—by means of network-based motif analysis—the patterns

and recurrences of relationships claimed in the literature.

3 Research Design
As we have illustrated in Figure 1, the research design of our

study comprises multiple steps that range from large-scale data

collection and preprocessing from multiple data sources via data

fusion and validity veri�cation to an iterative model building and

re�nement process. We dedicate this chapter to discussing vari-

ables and procedures used, starting with presenting our research

questions.

3.1 Research Questions
In our study, we consider three research questions:

• RQ1—Is there a recurrent STMC pattern that enables us to
quantify the amount of agreement between organisational and
technical structures? To address this question we need to: (a)

�nd basic patterns of relationships that an organised process

exhibiting STMC may induce; (b) count and track the number

of such basic patterns over time; (c) assess whether these

observed patterns are due to random e�ects or not.

Based on the counts, we de�ne various measures for the de-
gree of STMC (dSTMC) to augment the notion of STMC with

a quanti�ed measure of how strong the concept is present in

a given setting.

• RQ2—Is dSTMC related with software quality? If dSTMC is a

meaningful concept, it must have a measurable, quantitative

in�uence on software quality. That is to say, we would expect

that some measures of software quality will vary with the

degree of STMC exhibited by a project.

• RQ3—Are there temporal implications of STMC? One basic,

recurring assumption about STMC, as outlined in Section 2,

postulates that organisational and technical patterns in sys-

tem development are in agreement, but there are two possible

temporal implications by which any such e�ects can be con-

sidered; forward (advanced) and backward (retarded). This

raises the questions of whether certain degrees of dSTMC at

one point in time can lead to di�erent properties of a project

at a later point in time (and, if so, with what time delay) and

whether measured project properties at one point in time

in�uence communication structures at a later time?

3.2 Variables and Procedure
We are interested in the connection between social and technical

aspects of software development projects. Socio-technical net-

works are one of the standard tools used to abstract and represent

how people communicate and collaborate with each other and

have been deployed in many analysis scenarios [38]–[41]. Our ap-

proach uses a network of people (developers) and artefacts (�les)

that describes communication between people, dependencies be-

tween artefacts, and interactions between persons and artefacts.

To obtain a reliable representation of a project’s communi-

cation patterns, we collect collaboration data on technical arte-

facts from version control systems and data on communication

from mailing lists and issue trackers using established standard

construction methods [38], [42], [43] (details are in Section 3.2.3).

Particular attention is given to correctly resolving identities from

di�erent data sources [44].

3.2.1 Operationalising STMC
The network structures that we construct allow us to bring the

concept of STMC into a precise, testable formulation through

the use of two network motifs. A network motif is a sub-graph

that is embedded in a larger graph. Every socio-technical hy-

pothesis needs to, in some way or another, relate an artefact

network (representing system design via technical dependencies)

to a developer network (communication structure) by formulating

constraints.
Our formulation of STMC re�ects a recurrent, time-resolved,

sub-structure in a social network. In turn, a social network is a

weakly-typed graph [23] where multiple such time-resolved sub-

structures are possible. For example, consider the organisational-
silo e�ect (see Fig. 2) or even more complex community smells, such

as the priggish members, which would entail micro- and macro-

structural as well as sentiment-related social network motifs [25],

[45], [46].
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Fig. 2. Illustration of the organisational-silo effect; one side of the com-
munity is collaborating around a software artefact, but a communication
silo exists around that artefact).

Indeed, before delving into more complex motif analyses fea-

turing anti-patterns such as the e�ects outlined above, STMC

re�ects one basic (general and thus fundamental) constraint. That

is, when two developers change a pair of �les that have a depen-

dency, these developers may also need to communicate [47] (Note

that, since we are studying open source projects, we assume that

most developer communication occurs through formal project

channels, e.g., mailing lists and issue trackers, cf. Sec. 7). This

communication constraint, for a pair of dependent artefacts, is

de�ned here as an indirect collaboration. The collaboration is indi-

rect as it occurs through artefact dependencies, and is assumed to

be desirable. Conversely, if two developers collaborate indirectly

and do not communicate, then this characterises an undesirable

situation: an anti-motif pattern.

Figure 3 illustrates motif and anti-motifs for indirect collabo-

ration and non-collaboration. Since the four nodes of the network

can be conveniently be represented as a square, we refer to in-

direct collaboration as a square motif, and non-collaboration as a

square anti-motif.
Similarly we consider a second motif pattern that represents

direct collaboration, which occurs when two developers modify a

single artefact in the same time window. According to the ideas of

STMC, they too should communicate. Analogous to the indirect

collaboration, an anti-motif pattern occurs when the developers

involved fail to communicate. As Figure 3 shows, the resulting
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Fig. 3. Square (left) and triangle (right) motifs and anti-motifs measure
the two most elementary forms of direct and indirect collaboration.
Circles are developers, squares are artefacts. Solid edges indicate
communication, dashed edges indicate modification, and dotted edges
indicate dependency.

graph takes the form of a triangle. Hence direct collaboration will

be referred to as a triangle motif and direct non-collaboration will

be referred to as a triangle anti-motif.
The square and triangle motifs and anti-motifs might be con-

sidered too simplistic to represent non-trivial socio-technical ef-

fects. Reformulating the organizational-silo e�ect de�ned above

in terms of our elementary motifs illustrates that, quite to the

contrary, simpler motifs can be seen as a “basis” for more involved

positive or negative socio-technical interactions. While positive

triangle motifs are present in the context of such e�ects, so are also

negative anti-motifs. Consequently, presence of organisational-

silo situations in the data implies a dominance of negative over

positive motifs, and our approach would categorise the situation

as adverse. The example also highlights that considering the pro-

portion between positive and negative motifs is important; this

imbalance is, in fact, used in addressing RQ1.

3.2.2 Socio-Technical Network Structure
A socio-technical network is formalised by a graph G = (V,E),
where the set of nodes V = Vd∪Va comprises developers Vd and

technical artefacts Va, source �les in our case. The set of edges E =
Ecomm ∪ Edep ∪ Emod models communication between developers

by Ecomm ⊆ Vd × Vd (solid lines in Figure 3), modi�cations of

artefacts by developers via Emod ⊆ Vd × Va (dashed lines), and

dependencies between artefacts by Edep ⊆ Va × Va (dotted lines).

3.2.3 Network Construction
We selected 25 open source projects listed in Table 1 on page 3 from

which to construct socio-technical networks. These projects vary

in the following dimensions: (a) size (lines of source code from

76 kLoC to over 1.1 MLoC, number of developers from 25 to 1350),

(b) age (time since �rst commit; three to more than ten years),

(c) programming language (we did place attention on popular

languages as determined by practical measures such as the TIOBE

index, but need to include the capabilities of the various compo-

nents of our analysis pipeline), (d) application domain. We require

(1) availability of public records for eMail and issue tracking com-

munication, and (2) availability of links between version control

system (VCS) commits and issues. We have additionally taken

practical importance and wide-spread deployment into account,

albeit the latter factors cannot be justi�ed by entirely objective

criteria. Instead, we have also resorted to previous (subjective)

practical experience gathered in industrial projects. While this se-

lection procedure could have arrived at a di�erent set of projects,

we do—owing to the large variation in the above dimensions—

have no reason to assume that the results would be drastically

di�erent if we had chosen a di�erent set of sample projects.

3.2.3.1 Gathering Raw Data: To obtain the socio-

technical network that describes communicative relations be-

tween developers, technical relations between artefacts, and mod-

i�cations of artefacts by developers, we employed the tool Code-

face
2

to analyze a project’s version control system. Following

standard construction methods [48], an edge between an artefact

and a developer is present when the developer modi�es an artefact

in a commit. We focus on �les as artefacts. Additionally, entries in

issues trackers are (as by the above requirement (2)) connected to

commits, for instance by including an identi�er of an issue that is

connected with a commit in the commit’s description. Comments
on issues link developers by a communication relationship. Taken

together, this establishes a mapping between artefacts (touched by

the commit) and issues, and permits identi�cation of communica-

tion over a subset of �les for a given time period. A developer

network is then a graph where each vertex is a developer, and

each weighted edge is the sum of comments between pairs of

developers across all issues.

3.2.3.2 Inferring Communication, Dependencies
and Qualities: De�ning what constitutes developer communi-

cation, artefact dependencies and software quality are of course

subject to expectations and requirements. The literature employs

many di�erent conventions, and we support multiple construc-

tion approaches to increase the generality of our considerations

(note that we provide more technical details on the collection of

base data and network construction in the appendix):

• Artefact–artefact dependencies: We denote a dependency be-

tween a pair of artefacts if they have been involved in com-

mits together, if they have static (language-level) dependen-

cies, such as calling or inheritance relationships, or if they

are semantically (textual content of source code comments)

related. See the appendix for details.

• Developer communication: We capture communication rela-

tionships from emails (messages and responses), issue track-

ers (entries and comments), and a combination of both.

• Quality indicators: We use the number of bugs and amount

of churn (committed lines of code) per �le as simple, robust

and easily quanti�able measures of software quality. From

the bug count per �le for a give temporal range, we compute

the bug density by normalising the bug count by the size of

the �le as given by the number of lines it contains.

Our analysis is performed on all 3 × 3 × 2 = 18 resulting

combinations of dependencies, communication mechanisms, and

quality indicators.

The construction methods for artefact-artefact dependencies

are determined as follows:

1) Static dependencies [49] between artefacts (such as function

calls) are obtained using the Understand
3

tool. A dependency

structure matrix (DSM) with one row and column for each

artefact captures dependencies from one artefact to another.

This coupling mechanism represents the most basic structure

of a software system.

2) Evolutionary dependencies (co-changes) [50], [51] are ob-

tained using Codeface. An edge between artefacts arises

when two artefacts are jointly modi�ed in one commit.

3) Artefact–artefact respectively semantic coupling (attempt-

ing to capture the developers’ mental model of a system) is

obtained by semantically analysing comments [52] respec-

tive key terms associated with source code [53], [54]. Latent

semantic indexing techniques are employed to identify re-

lationships between key terms, which are then aggregated

2. http://siemens.github.io/codeface/
3. https://scitools.com
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at the �le level and interpreted as semantic dependencies be-

tween artefacts. These dependencies are also obtained using

the Codeface tool. This coupling mechanism focuses on co-

ordination and implicit aspects of the software architecture.

Developers communicate using various communication chan-
nels. Each channel may re�ect a di�erent interpretation of the

developer’s network [55], even if the construction method is the

same. We have analyzed communication from both issue track-
ers and mailing lists because these resources are available for

a wide range of projects, and are known to provide reasonably

reliable and comprehensive information on developer communi-

cation [53], [56]. Note that, while our analysis pipeline produces

weighted networks, where edge weights represent communica-

tion frequency (and related measures, depending on the meaning

of an edge), we deliberately ignore weights. To the best of our

knowledge, we are not aware of any objectively justi�ed cut-o�

value below which edges should not be considered because of

their irrelevance. Additionally, introducing the concept of rele-

vance would entail further challenges: A pair of developers could

frequently debate unimportant trivia, which would nonetheless

lead to a heavily weighted communication edge. Another pair

could engage in a short discussion on issues of the gravest mag-

nitude, which would yet deliver a light-weight edge. We are not

aware of any means to reliably and objectively weight the content

of communication, or provide related means for other edge types.

To measure software quality, we count the number of bugs

associated with an artefact (bug density) and compute the magni-

tude of churn (changed lines per artefact). Clearly, an increasing

number of bugs is equivalent to decreasing software quality. Like-

wise, a high change rate (churn) over extended periods of time on

a given artefact is indicative of low software quality [6].

Since properties of projects are not static but change over

time, we extract the previously described co-variables not just for

single static code snapshots, but we construct a series of networks

(G0,G1, . . . ,Gn) where network Gi includes activities that took

place during the temporal interval [i, i + ∆t] (i = 0 denotes the

�rst point in time for which all data sources provide artefacts).

We uniformly use a window size ∆t of three months. Meneely and

Williams [56] have shown that the e�ect of enlarging the window

beyond three months is marginal for a wide range of analysis

tasks; we discuss in Section 7.3 that their argumentation also holds

for our analyses.

3.2.4 Pattern Detection

We have introduced STMC informally. We will now formalise

this concept. Given a two-mode graph G = (V,E) that models

the artefact-developer network, and a motif described by another

two-mode graph M = (V′,E′), we need to count how many sub-

graphs G̃ = (Ṽ, Ẽ) ⊆ G with Ṽ ⊆ V and Ẽ ⊆ Ṽ×Ṽ are isomorphic

to M, respectively if there exists a function f : V0 7→ V′ such that

(v0, v1) ∈ E0 ⇒ ( f (v0), f (v1)) ∈ E′. This is similar to the well-

known (counting variant of the) sub-graph isomorphism problem.

However, we need make sure that f is injective to ensure that miss-

ing edges in the motif are mapped to missing edges in the larger

graph (otherwise, any motif in the graph would also be counted as

an anti-motif). This is known as induced sub-graph matching, and

has the added computational bene�t that the decision variant is in

P (unlike the general problem that is known to be NP-complete),

which makes our approach practically tractable. The approach is

illustrated in Figure 4.

t

Gt1 = (V1,E1) Gt2 = (V2,E2)

Fig. 4. Detecting STMC patterns in time-resolved collaboration graphs.
Nodes and edges have the same meaning as in Figure 3; sub-graphs
that correspond to motifs are emphasised using non-black colours and
thicker strokes.

We obtain four measurements of motif patterns for every

time window per project: (1) square motif counts, (2) square anti-

motif counts, (3) triangle motif counts, and (4) triangle anti-motif

counts. Since motifs characterise agreement with STMC, and anti-

motifs disagreement with STMC, and they are measured on each

time window, we are able to measure STMC over a project’s

lifetime through direct (triangle motif) and indirect (square motif)

collaboration. In particular, we can determine the extent of STMC

in a project by computing the ratios between the occurrences of

motifs and anti-motifs. Figure 5 illustrates the magnitudes of mo-

tifs that occur in some of the subject projects; while we carefully

establish the validity of the measurements and their relation to the

real world in Section 4, we observe that the triangle and square

motifs and anti-motifs develop similarly over time, and do not

�uctuate randomly. The large absolute numbers of motif counts

(hundreds to thousands for each time window) underline that

statistically relevant �ndings are accompanied by an appropriate

e�ect size. The congruent temporal development of triangle and

square motif and anti-motif counts, which is visually apparent,

serves as intuitive sanity check that the measurements are con-

sistent.
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Fig. 5. Typical time-resolved square and triangle motif and anti-motif
counts for representative sample projects. Triangles and squares in the
graph represent the according motifs and anti-motifs.

3.2.4.1 Configuration Model Hypothesis Testing: To

address RQ1, any measurement of dSTMC using the four motif

patterns above must be accompanied by an empirical evaluation of
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whether the counted motifs are occurring randomly, given the size

of the network and the chance that any pair of nodes will or will

not be connected randomly. To verify this, we chose to employ a

con�guration model—a generalised random graph model [57] that

allows for constructing a multitude of graphs with the (�xed) de-

gree sequence of an empirical reference graph, while randomizing

all other structure. Given a degree sequence—the monotonic, non-

increasing sequence of vertex degrees; recall that many topologi-

cally di�erent graphs can have the same degree sequence, which

is at the heart of the idea—of a network, the model randomly
chooses, for every node, which other node it will be paired with

(bounded by the speci�ed node degree), while maintaining the

overall degree sequence. To construct a graph variant, the algo-

rithm �rst removes all edges from the original graph, and assigns

the elements of the degree sequence to the nodes, encoded in half-

edges. Then, two such half-edges are chosen uniformly at random,

and connected to a complete edge. Iteratively, another pair from

the remaining half-edges is chosen and connected, until there are

no half-edges left (we omit details on how to handle networks

with an uneven number of nodes).

Since we deal with a two-mode network that contains two

di�erent types of nodes, we need to additionally make sure that

the functional characteristics of the nodes (besides their number)

are preserved. The approach employed by our calculations relies

on methods initially invented for structurally related biological

problems [58], [59], and is known to maximise dissimilarity be-

tween source and rewired graph (as measured by the Jaccard

Index [60]), while minimising the number of transformation (edge

switching) steps that need to be performed.

We iteratively perform the rewiring process N times for each

time window t, determine the number of triangle and square

(anti-) motifs (indexed by m) in each rewired con�guration model

graph, and obtain a (discrete) probability distribution pm,t(n) =
ĉm,t/N, where ĉm,t denotes the count for a motif m in time win-

dow t (N is chosen su�ciently large to guarantee convergent

results). Providing statistical certainty requires considerable com-

putational e�ort (measured in CPU months), which we would like

to highlight: While this may be a purely technical issue from

a conceptual point of view, it poses a considerable amount of

practical challenges that can only be solved by using state-of-the-

art methodology from distributed computing and big data analysis

which, in turn, is possible because in a completely reproducible

setting thanks to the e�orts of researchers in the statistical, nu-

merical and high performance computing domains [61]–[73].

We can then relate this simulated distribution to the number

cm,t of (anti-) motifs m observed in the measured, real network

at time window t, and employ standard statistical techniques as

in [44] to compute how probable it is to obtain the empirically

observed count in a socio-technical network that arose randomly,

just like the rewired graphs. If the real-word data turn out to be

highly improbable, we conclude that the observed counts do not

stem from a random process, but must arise from a meaningful

and intentional interaction of developers (of course keeping the

restrictions of statistical hypothesis testing in mind). The validity

of our approach is further discussed in the appendix on page 23.

To establish a bridge between appearance counts of the four

motif patterns in given time window and statistically signi�cant

e�ects on measurable project quality or other outcomes, we pro-

pose an artefact participation measure. We count, for each arte-
fact, how often the artefact occurs (participates) in each one of

the counted motifs. These numbers can then be visualised and

analysed in a multitude of ways, for instance using time series

methods, or, more importantly, by correlating them with various

quality observables.

3.2.4.2 Effect of dSTMC on Software Quality: We

have focused our investigation on the consequences of STMC on

issues (bugs and problems identi�ed in a project’s issue-tracking

system) and churn (the number of lines modi�ed, over time, as

determined by a project’s con�guration management system), as

these are commonly used measures of project quality. If STMC

is present in a project, or in some development time windows, it

should have a measurable in�uence on project quality. We test this

by correlating dSTMC with the aforementioned quality measures.

Besides using quality and communication data from the same

time window, we also check whether there are any temporally

distributed e�ects (changes in projects take time to manifest; for

instance, changes in dSTMC in one time window may lead to

better software quality in a following window).

4 Research Question 1 – STMC Patterns
After all formal de�nitions and technical procedures have been

introduced, let us commence to discussing research question 1,

which concerns the identi�cation of statistically valid and quan-

ti�able STMC patterns.

4.1 Network Construction

We base the investigation of the �rst research question on our op-

erationalisation of STMC. For each motif, analysis, and time win-

dow, the number of motifs present in the real data is determined

by an induced sub-graph isomorphism calculation on the socio-

technical collaboration graph, and then compared to the counts

obtained for the rewired graphs. This is illustrated in Figure 17

for a subset of the time ranges for project HBase (with co-change

as dependency mechanism, eMail as communication mechanism,

and Jira as bug tracking mechanism), shown for square motif

and anti-motif. Owing to the large magnitude of information that

arises from the many projects, analyses, and time ranges that we

consider, we can discuss only representative examples. The reader

can refer to the accompanying website for the complete data sets

and analyses.

Time-resolved analysis: For each motif, analysis, and time win-

dow, we perform a one-sample t-test resulting in a p-value with

the Null hypothesis that the empirical (i.e., real-world) sub-graph

count is compatible with the data obtained from graph rewiring.

We want to emphasise two aspects: Firstly, unlike �shing for

signi�cant results, the same hypothesis is tested on di�erent anal-

yses. Secondly, our multiple testing approach cannot unintention-

ally generate a small number of signi�cant results from a set

of otherwise insigni�cant results by just increasing the sample

size of the number of experiments [74]. In contrast, our tests

lead to rejection in almost all instances. Consequently, we are not

a�ected by false discovery rate-type [75] issues. The repeated tests

result in a distribution of p-values, most of which are extremely

small, below 10−2
. The full distribution is available in the online

supplement.

We note that p-values tend, on average, to be slightly larger

for the triangle than for the square motif, which can intuitively

be easily understood as the simple triangle motif is more likely to

appear randomly in a graph structure than the structurally more

complicated square motif.
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Global analysis: To gain a data-set–wide overview, we show

the distributions that arise for the individual projects, coupling

mechanisms and motif types in Figure 6. We can reject H0 at an

essentially arbitrary level in the overwhelming majority of cases

for all analysis combinations, indicating that the features we de-

tect in the data are highly non-random in nature, and independent

of the projects that we analyse.
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Fig. 6. Empirical cumulative distribution function (ECDF) for p values
obtained with time-resolved statistical significance testing for network
accuracy, resolved by motif type (horizontal panels) and coupling mech-
anisms (vertical panels). The range is reduced to a maximal value of
20% because no appreciable changes happen in larger regions.
Vertical, dashed lines indicate the commonly employed significance
levels of 1%, 5% and 10%, but these are only used to guide the eye.
The horizontal dotted line illustrates the 100% level of the ECDF.

While the �gure shows guiding lines for typical signi�cance

levels, these are only used for illustrative purposes, and should

not be taken as a pre-speci�ed signi�cance level [76] on part of

the authors. Following the latest recommendation of the statistics

community [77], [78], we also do not make any claims about sig-

ni�cance or insigni�cance of our (repeated) measurement results.

Our major claim is that it is highly unlikely that the observed

socio-technical structures stem from random processes, and that

the amount of chance required to obtain the results in a random

scenario makes, together with the con�rmatory sociological in-

vestigation in previous work [44], a compelling argument for the

meaningfulness of our base network construction.

4.2 Quantitative Measures for the Degree of STMC
With the non-random occurrence of the two types of motifs es-

tablished, and for various combinations of technical dependencies

and communication channels, de�ning STMC is a matter of relat-

ing the two quantities (motifs and qualities) in an appropriate way.

To ease interpretability, the quantity should be normalised, and

should not depend on the absolute motif counts. However, since

this implicitly requires STMC to be scale invariant with respect to

artefact size, which we do not want to mandate a priori, we also

allow the size of artefacts to in�uences a second, complementary

measure of STMC. From the many possible mathematical realisa-

tions of these requirements, we have chosen signed motif percent
di�erence r(|AM|, |M|) (with |M| and |AM| denoting the number of

motifs and anti-motifs, respectively) and the LoC normalised motif
di�erence l(|AM|, |M|) given by

r(|AM|, |M|) B 2
|AM| − |M|
|AM| + |M| , (1)

la(|AM|, |M|) B |AM| − |M|
|a| , (2)

which result in a normalised quantity r ∈ [−2, 2], and an unre-

stricted quantity l ∈ (−∞,∞) that depends on the size of the

artefact given by |a|—for the case of �les as artefacts, which we use

in our study, |a| is given by the number of source lines. r quanti�es

the relative di�erence between two measures a and b without

having to set one as base quantity. Instead, r computes both, the

relative di�erence between a, b and b, a, and then averages the

results. Note that the covariates could also be related via, for

instance, |M|/(|AM| + |M|), but this does not change any of the

interpretations presented in the article. We found that the chosen

ratios provide, in our opinion, the fewest mathematical surprises

that require explaining.

Another property of r that makes it well suited to describe

socio-technical aspects is that it exhibits less rapid variations and

fewer discontinuous changes than the constituent quantities |M|
and |AM|. Social processes can reasonably be expected to only

change gradually when a project evolves, and so should any quan-

tities describing the associated phenomena.

To interpret r, consider three cases. When the number of

(positive) motifs is constant (|M| = c = const), and the num-

ber of (negative) anti-motifs grows, lim|AM|→∞ r(c, |AM|) = 2.

A growing number of anti-motifs relative to a given number of

motifs means a decreasing dSTMC; the quantity r approaches 2
in this case. Contrariwise, with an increasing dSTMC, that is,

|AM| = c = const and a growing number of (positive) motifs,

it holds that lim|M|→∞ r(|M|, c) = −2. When positive and negative

motif counts balance each other (|AM| = |M|), then r(c, c) = 0
(to handle a pathological case, we set r(0, 0) B 0.). The measure

describes two aspects: Sign indicates a regime of STMC (-1) and of

anti-STMC (+1), and magnitude provides a normalised e�ect size.

Interpreting la(|AM|, |M|) is similar, except that increasing un-

bounded di�erences between motif- and anti-motif counts lead

to increasing, unbounded values of l. Most importantly, the sign

behaviour of la(·, ·) is identical to r(·, ·). The convention has been

chosen with the form of regression models y ∝ β · r(|AM|, |M|) in

mind: The left-hand sides considered in this study are bug density

and churn; both are “bad” (negative connotation) when they are

high, and “good” (positive connotation) when they are low. When

there are more positive motifs than (negative) anti-motifs, both r
and la are negative. Consider the case in which the coe�cient β
is positive. Then, the regressand y decreases (which is desirable,

since a smaller bug density is “good”) when the absolute mag-

nitude of r and la increases. Consequently, under the given sign

convention, positive regression coe�cients β represent a “good”,

desirable scenario, while negative coe�cients represent a “bad”

scenario. This is supposed to ease interpreting the result graphs

that follow.

We do not implicitly assume that one or the other of r or la
is more “natural” or preferable in any way; both indeed describe

di�erent aspects of the problems. We leave the decision to the data

and their analysis.

4.3 Answering Research Question 1

Considering construction and validity assurance of our socio-

technical networks obtained from real data, we have established

that motif and anti-motif patterns occur strongly non-randomly

in collaboration graphs. They vary moderately, yet distinctly over

time, and are therefore are not just a global static property of a

project. Since the chosen motifs relate key social and technical

aspects of a project, and capture any changes of these relations
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over time, they serve as the desired indicators for dSTMC, in

particular given the measures r and l that relatively relate counts

of the two quantities. Therefore, we answer RQ1 a�rmatively.

5 Research Question 2—Relation to SW Quality
As we have outlined earlier, any meaningful hypothesis regard-

ing STMC must clearly indicate the observable (positive) conse-

quences of high dSTMC, and must similarly indicate the (nega-

tive) consequences of lower values of dSTMC. We are now in-

terested in studying the in�uence of STMC on software quality,

as characterized by bug density and churn. Assuming there is

a meaningful relationship between social and technical aspects

of software development as captures by STMC, then a higher

dSTMC value shall lead to fewer bugs (because developers are

communicating “appropriately”), and a lower dSTMC shall lead

to more bugs. The available data allow us to test this relationship

by considering how dSTMC of a given artefact (determined by

the positive and negative motifs the artefact participates in), and

software quality (number of bugs, churn) associated with the

artefact are related. We investigate this relationship in a multi-

stage process that progresses from an in-depth analysis of speci�c

projects with various statistical techniques to a more general,

broader-scale investigation that con�rms the detail �ndings for

a large number of projects, and for long temporal histories.

5.1 Regression Modelling

Understanding how a set of measured variables in�uences a quan-

tity of interest, and separating the e�ect of one particular variable

from the e�ect of the remaining variables, is a problem that has

been comprehensively considered in the statistical literature [79],

[80]. Previous work has considered multivariate linear models

(e.g., [1]) or more advanced forms of regression for this purpose

to understand the nature of socio-technical e�ects in software

engineering. We perform a three-stage approach of increasing

sophistication and generality:

(1) We compute multivariate linear and logistic regression mod-

els on our data sets, and carefully evaluate validity, signif-

icance, and e�ect size [81]. We conclude that they are not

able to provide satisfactory evidence for strong relations be-

tween dSTMC and software quality. Additionally, testing the

ful�lment of modelling preconditions shows that the class of

analysis techniques is not the optimal choice for our data.

We also discuss that we cannot reproduce earlier results

on socio-technical relationships based on slightly di�erent

notions of dSTMC.

(2) To determine how de�ciencies of the straightforward models

are related to how the data are transformed, we employ

generalised additive models that introduce additionally re-

quired non-linear transformations of predictors in a non-

parametric way, yet keep (compared to many machine learn-

ing approaches [82]) the analysis outcome interpretable. The

compatibility of the improved models with the given data

are en par with previous approaches, but still strongly sup-

port our conclusion that no meaningful relationship exists

between the dSTMC and the considered quality properties.

In particular, the (automatically chosen) non-linear transfor-

mations only increase the importance non-STMC predictors,

con�rming that de�ciencies of simpler modelling approaches

do not cause the non-relevance of STMC predictors.

(3) Ensuring correct models in terms of satisfying mathemati-

cal pre- and postconditions requires considerable and care-

ful manual analysis with the previous approaches. To ex-

tend the analysis to the full sample, we use the elastic net

approach [83], which combines variable selection, regular-

ization and delivering interpretable models into one non-

parametric, fully automatic approach that is, in particular,

insensitive to data imperfections such as co-linearity. The

analysis widens our results to the full sample of 25 projects,

with no change in the general statement that STMC has

limited to no in�uence on key software qualities.

We judiciously base our analysis on various forms of regres-

sion modeling for two reasons: Firstly, results from any such

models are well interpretable, a feature that is not shared by many

of the more recent machine learning techniques, especially as

our main goal is not to make predictions about data by learning

from examples, but to gain an understanding of the measured

data sets. Secondly, many previous discussions of socio-technical

issues are based on regression modelling, and our results can be

better put in context and compared with such e�orts by using

similar techniques.

However, we would like to point out that the amount of data

considered in our study typically exceeds what previous studies

have analysed (as far as objectively measurable quantities such as

number of developers, amount of source code artefacts, etc. are

concerned). In addition, we consistently use time resolution to

ensure that changes over time can be appropriately modelled. This

causes a multi-fold increase in the number of models that need to

be computed, and, in particular, veri�ed and analysed. We need to

bridge the gap between using models that, of course, appropriately

represent any insights contained in the data, but that can also

be presented and discussed without overburdening readers with

countless graphs and tables. Furthermore, to exercise sensitiv-

ity analysis [84], we employ a step-wise, two-fold approach: (1)

analysing a selected number of projects in more depth to establish

a baseline understanding of what the data have to tell, with a

focus on establishing model correctness, and then (2) analysing

the complete data set with simpler models, but in more analysis

combinations, to base insights on a broader basis, and to ascertain

that no essential contributing factors have been missed.

Whenever we present the results of a statistical modelling

technique on a subset of the data, we provide the same results and

graphs for all other projects in the sample on the accompanying

website https://cdn.lfdr.de/stmc, resulting in hundreds of graphs

that can not reasonably be presented and discussed otherwise.

However, great care has been taken to ensure that the results

obtained from subsets can be generalised to the full sample set by

manually iterating over all graphs for each statement made in the

article, and ascertaining that there are no substantial structural

deviations.

To interpret the result of regression models in what follows, in

particular, regarding the relevance of individual covariates by their

contribution to the regressor, the magnitude of the covariates is

important. Table 2 shows an overview for the complete dataset of

project HBase. Values vary for other projects and depending on

the temporal range, but the shown numbers provide a guideline

for “typical” values.

5.2 Multivariate Linear Regression
We focus our attention �rst on building and interpreting multi-

variate linear regression models, as usual in a time-resolved man-

https://cdn.lfdr.de/stmc
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TABLE 2
Covariate magnitude overview for HBase. Log-transformed quantities
are suffixed by “[l]”. Data for the complete set of subject projects are

available in the online supplement.

Covariate Min Avg Med Max SD

# Devs. 1.0 4.0 3.0 42.0 3.9
Avg. Essential[l] 0.0 0.8 0.7 1.9 0.2
Churn[l] 0.0 4.5 4.6 10.6 1.5
LoC[l] 3.4 6.5 6.5 11.3 1.1
Max. Nesting[l] 0.0 1.4 1.4 2.4 0.5
# Motifs 0.0 1.7 0.0 98.0 5.8
la(|AM|, |M|) −0.1 0.0 0.0 0.5 0.0
r(|AM|, |M|) −2.0 1.6 2.0 2.0 0.9

ner. We are interested in the in�uence of STMC on key software

quality indicators. However, it is well established that factors such

as lines of code (LoC), number of developers, etc. greatly in�uence

the outcomes of interest. This raises the question to what quan-

titative degree dSTMC in�uences the outcome, and regression

models allow us to infer the in�uence of dSTMC while controlling

other factors.

Linear regression models are perceptively easy to specify and

compute, but any conclusions drawn from the results strongly

depend on the correctness and validity of the model speci�cation.

One particularly important precondition is that the amount of

collinearity between predictors is capped. We have used standard

techniques of linear regression models to ascertain this property,

as we discuss in more detail in the Appendix on page 23. The

resulting selection of predictors include, beside the various motif-

related quantities that we de�ne in this paper, typical standard

software engineering measures, such as lines of code, traditional

complexity metrics, such as maximal nesting, and socio-technical

key indicators, such as number of developers.
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Fig. 7. Model diagnostics for the linear model regressing for bug density,
chosen for an exemplary range (15) of project Cassandra. The diagnostic
plots explore how well the assumptions for uncorrelated and normally
distributed residuals are satisfied (see the text for further details).

Let us start our discussion by investigating the relation be-

tween the predictors and bug density, that is, the number of bugs

per artefact size. Bug density is a metric quantity, and we use a

standard multivariate linear regression model (see, among dozens

or other good textbooks, Ref. [80]), given (in matrix notation) by

~y = X~β + ~ε (3)

~y = X~β + Z~u + ~ε (4)

where each entry of ~y represents one observation of the regres-

sand (in more explicit notation, the model can of course be written

as yi = β01 + β1xi,1 + β2xi,2 + · · · + βkxi,k + εi = β0 +
∑

i βixi,k
for each individual observation i of regressand y and regression

coe�cients β j.). The associated observations of each regressor

(as determined by the collinearity analysis in Figure 9 in the

appendix) are given as matrix rows in X, while
~β collects the

regression coe�cients including an intercept term β0. Finally, ~ε
contains the residual values unexplained by the model, that is, the

deviation between measured values and model result. It holds that

~y ∼ N(E(~y),1σ2).
Discrete regressor quantities with a su�ciently large number

of counts are subjected to the usual variance-stabilising log trans-

formation, essentially following prior work and common statisti-

cal practise. We indicate log transformations of a given regressor

with a label su�x “[l]”.

Consider Figure 21, which shows the distribution of regression

coe�cients for the model covariates, and the corresponding p
values (see page 9 in the appendix for a discussion on how we

ascertain model correctness; Table 2 gives an overview about

typical values that appear in our models as measured for project

HBase during a three-month long development cycle). While we

include a (statistically signi�cant) intercept term in all calcula-

tions, we omit it in any graphs of the resulting data, because

its magnitude substantially dominates other regressors. Besides,

the average value of the regressand at zero contributions of the

regressors is not of interest for our study. Regardless of what one

de�nes as “signi�cant” (we do not interpret signi�cance values

for individual covariates as an indicator of relevance, nor do we

mandate any prescribed “signi�cance thresholds” for individual

covariates), we can for any of the covariates �nd an interval where

it is signi�cant (given that p values are normally distributed when

the null hypothesis of coe�cient insigni�cance is valid [80], this is

an expected observation). However, there are only two covariates

that consistently show small values, namely, the number of lines

of code, and the number of developers, both of which are well-

known in�uence factors for quality properties [85], [86].

Most importantly, none of the socio-technical measures we

inspect has a substantial contribution to bug density, and the con-

tributions of the quantity is fairly symmetrically centered around

zero, which means that they can have a positive or negative in-

�uence on bug density, depending on the analysis interval. Irre-

spective of magnitude or statistical signi�cance of the regressors,

this means that increasing the value of dSTMC by, for instance,

establishing a larger number of positive motifs by changes in

development and coordination processes, can lead to either better

or worse bug density while all other in�uence factors that we

consider in our model are kept constant. This indicates that the

measures, and with them the underlying forms of socio-technical

congruence, are not an optimisation goal worthwhile pursuing.

In addition to the time-resolved multivariate regression model,

we also compute a mixed linear model as de�ned in Eq. (4): In-

stead of inferring di�erent models for each temporal range, we

compute one global linear mixed model (LMM), but consider the

di�erent ranges as an additional random parameter to the model—



TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. XX, MONTH 20XX 11

essentially, this turns the evaluation of the data sets into a longi-

tudinal study. This addresses the question of whether the project

exhibits di�erent characteristics depending on the analysed tem-

poral range, respectively of STMC, varies over time. Contrariwise,

we could assume that a project behaves in essentially the same

way in all intervals, save for di�erences caused by random, unob-

served factors that vary between ranges.

Consider again the results in Figure 21: red crosses embedded

in the graphs show the resulting coe�cients for the covariates in

this model compared to the distributions obtained by the stan-

dard linear model. Most estimates are substantially di�erent from

the median values of Model Eq. (3), and many are below the

�rst or above the third quantile. This clearly indicates that the

global, time agnostic model of Eq. (4) di�ers considerably from

time-dependent models of Eq. (3), highlighting the need for a

�ne-grained time-resolved analysis. Most importantly, as before:

STMC has no appreciable in�uence on bug density, regardless of

the measure chosen.

One common, yet debatable measure to judge model quality

is the adjusted R2
value, which indicates what fraction of the

variation in the data is explained by a given model (we use the

approach discussed in Ref. [87] to resolve di�culties with com-

puting R2
for the more advanced models later on, and to ensure

that computation is based on the same conceptual framework for

all regression models employed in this article). As Figure 12 shows,

a typical value for R2
for the linear and generalised linear models

is around 0.6, with some variation among projects and over time.

Regressing for bug density delivers slightly higher values than for

churn, and overall, the observed R2
values are satisfactory.

We move on to analysing the in�uence of dSTMC covariates

and more traditional software engineering metrics for Churn. In

contrast to the previously discussed regressor bug density, Churn

is a count quantity that cannot be assumed to stem from a normal

distribution, and thus necessitates to apply a generalised linear

model [88], [89] that relaxes assumptions on the response: For

one, the expected value may depend on a smooth monotonic func-

tion of the predictors (link function), and the distribution of the

regressor must not be normal, but can stem from an exponential

family distribution,
4

resulting in the basic structure

g(~y) = X~β + ~ε, (5)

g(~y) = X~β + Z~u + ~ε (6)

where Eq. (5) represents the generalised linear model (GLM), and

Eq. (6) is a mixed model extension that allows for including ran-

dom e�ects, as for the linear model of Eq. (4). Besides introducing

the link function g that connects the value obtained from the

predictors by the model with the expected value of the regressand,

the most important change for our purposes is that E(~y) ∼ fΘ(~y),
that is, the expected value of the regressor is determined by the

aforementioned distribution f controlled by one or two parame-

ters.

A common choice for count data is to use a Poisson model with

a logarithm as link function. The Poisson distribution requires the

expected value of the regressor to be identical to the variance of

the regressor, which we experimentally established to not hold

for our data that exhibit overdispersion [80]. Consequently, we

4. Specific members of the family fΘ(y) = exp[(yΘ − b(Θ))/a(ψ) +
c(y, ψ)] with scale parameter ψ and another parameter Θ include,
depending on how values a, b and c are chosen, the Gaussian, Poisson
and Quasi-Poission distributions that are relevant for our analysis.

use a quasi-Poisson regression instead, which includes another

parameter (estimated from the data) to model the variance, but is

otherwise mostly identical to a Poisson count regression with log

link. Coe�cient estimates will be identical for both modelling ap-

proaches, but the quasi-Poisson approach leads to an adjustment

of the inference process for over-dispersed data. In fact, a standard

Poisson regression on our data leads to signi�cant contributions

of all covariates.

The results for regressing for churn are shown in Figure 9,

and paint a similar picture to the previous regression—most im-

portantly, STMC also has no in�uence on Churn. Diagnostic plots

as shown in Figure 9 illustrate that the residual distributions are

(with exceptions for some temporal ranges) satisfactory, and are

likewise with respect to the correlation structure (not shown).

Any inferences drawn from the model are therefore reliable.

5.3 Generalised Additive Models
The described model de�ciencies, in particular, with respect to the

bug density models, can be eliminated by further lifting the re-

maining linearity assumptions of the linear and generalised linear

models, by employing generalised additive models (GAMs)) [90],

formulated as

g(~y) = X~β +

k∑
i=1

~fi(~xi) + ~ε, (7)

which makes it possible (besides inheriting the properties of the

generalised model including the use of a link function to connect

the expected value of the regressand with the value delivered

by the model from the predictors, and the ability to work with

responses that follow a distribution from the exponential fam-

ily) that contributions—from a subset of the covariates—can be

modelled by smooth functions fi of the covariates. Most impor-

tantly, the optimal “degree” of smoothness is non-parametrically

determined by the �tting algorithm, and does not mandate any

a-priori functional choice. While non-parametric transformations

necessarily lead to some reduction in model interpretability, they

can be used to cross-check the aptitude of previously chosen para-

metric transformations of covariates. Technically,
~fi(~x) applies a

smooth function fi(x) component-wise to each element of the vec-

tor ~xi, which collects all observations of the i-th covariate. We use

penalized regression splines, estimated by penalized regression

models [67], to solve Eq. (7).

The conclusions that can be drawn from the generalised mod-

els (cf. Fig. 12 and 10) are three-fold: Firstly, introducing non-

linearity into the model considerably improves the R2
measure

to values usually well above 0.8, which is more a testament to the

bounded amount of noise in the data than to model correctness,

considering that only low-dimensional non-linear transforma-

tions have been chosen by the model (better values can, in general,

not be expected for processes involving human participation [91],

so in this sense, our model is su�ciently complete). However, the

value may be helpful for readers to broadly relate our results to

related work that speci�es model quality only in terms of R2
.

GAMs also o�er a clear improvement in terms of R2
over gen-

eralised linear models. While in itself this is uninteresting (adding

covariates, which a non-linear transformation is essentially bound

to do, will always improve R2
), the fact that the non-linear trans-

formation is essentially identical for all projects and all temporal

ranges, as shown in Figure 11 for a subset (Spark, HBase, Camel,

TrafficServer,HBase andGroovy) demonstrates that the trans-

formation is structurally similar for varying revision ranges and
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Fig. 8. Results of a time-resolved quasi-poisson logistic regression for churn (the figure is restricted to projects HBase and Spark, but results for other
projects – as shown in the online supplement – exhibit very similar characteristics). Boxplots show the distribution of the regression coefficients
obtained for all time intervals; triangles represent the individual coefficient values to provide an impression on the actual amount of data.
The embedded red crosses shows the single coefficient obtained for each covariate by a mixed linear models that considers the analysis range
as an independent stochastic variable. Confidence intervals at the 95% significance level have been computed for each time interval; the ranges
are shown as partly opaque blue, wide solid vertical lines. More intense/darker colouring therefore represents regions of an increasing number of
overlapping confidence intervals. Plots for the complete set of subject projects are available in the online supplement
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Fig. 9. Residual distribution for the quasi-Poisson churn model in a
quantile-quantile plot. The interpretation of the display is identical to
Figure 7. Deviations from the required normal distribution at the outer
lobes are present, and indicate the need for improvement.

projects. The non-linear transformations only a�ect quantities

that anyway dominate the previous analysis, namely LoC and

developer count, which ascertains that the lack of relevance for

STMC measures does not stem from ill-speci�ed or missing data

transformations, but is inherent in the data as such.

The improvement obtained by non-linearly transforming the

covariate beyond the usual variance-stabilising transformation

is limited, and it does not uncover the need to use a substan-

tially di�erent a-priori data transformation than then ones already

employed. As a minor consequence, we note that the data set

could probably also be used for predictive purposes after sym-

bolically modelling the transformation that is chosen by the non-

parametric approach. Figure 11, as compared to Figure 12 strongly

hints that missing explanatory variable data are not an attractive

possible cause of de�ciencies of the linear and generalised linear

model resulting in moderate R2
values, since the required non-

linearities are not severe.

To summarise our main �ndings: STMC does not provide a

substantial explanatory value also for GAM models – the in�u-

ence is on par with known problematic [92] predictors such as

essential and cyclomatic complexity, and does therefore not seem

relevant for practical software engineering purposes.

We carefully evaluated the quality of the approach’s residual

structure using similar tests as before to ensure mode correct-

ness, but refer the reader to the online supplement for details

and graphical summaries. As always, full results for other subject

projects are available in the online supplement.

The choice of generalised additive models leads to a much

improved model quality compared to more straight-forward re-

gression approaches (the automatically chosen nonlinear trans-

formations do, of course, reduce the predictive power of our mod-

els to some extent, but prediction is not a goal of this work—

our study is for one con�rmative, and prediction in the absence

of an e�ect is anyway of limited value), which is once more

underlined by Figure 12, which shows the value distribution of

adjusted R2
values. It is much improved compared to the results

in the previous section. Additionally, it puts our models on par (or

even improves over) the �ndings in the seminal work of Cataldo,

Herbsleb and coworkers [1], [47] with respect to this quantity and

the amount of required regressors. We emphasise once more the



TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. XX, MONTH 20XX 13

HBase / Churn (Quasi-Poisson) Trafficserver / Bug Density (Gaussian)

Spark / Churn (Quasi-Poisson) Cassandra / Bug Density (Gaussian)

la(|AM|, |M
|)

r(|AM|, |M
|)
# Bugs

# Devs.
# Motifs

Avg. Essential[l]

Churn[l]
LoC[l]

Max. Nestin
g[l]

Motif Type
la(|AM|, |M

|)
r(|AM|, |M

|)
# Bugs

# Devs.
# Motifs

Avg. Essential[l]

Churn[l]
LoC[l]

Max. Nestin
g[l]

Motif Type

0.01

0.05
0.1

0.25

0.5

0.75

1

0.01

0.05
0.1

0.25

0.5

0.75

1

p
va

lu
e

[sq
rt

]

Fig. 10. Results of a generalised additive model (GAM) in terms of p value distributions for the individual regressors with a quasi-Poisson link function
for Spark and HBase (left) with churn as dependent variable, and for a standard GAM Gaussian model for bug density for Cassandra and TrafficServer
(right). Smoothing is allowed for all independent variables. Triangles embedded in the Box plots represent the actual p-values computed for each
covariate and each temporal analysis range.
Conventionally employed significance levels of 1% and 5% are marked by horizontal lines to guide the eye. Note that the p value scale has been
square root transformed to provide a higher visual resolution for the range of small values.

restricted value of R2
in assessing model quality despite its wide-

spread application in the software engineering literature, and the

clear limitations of such comparisons.

5.4 Model Scale-Up
The modelling approaches that we have employed so far, and also

many of the approaches used in the literature, use various forms of

regression analysis to establish results that balance two essential

needs of statistical analysis: Firstly, to obtain good explanatory

(or even predictive) performance, and secondly, to provide a par-

simonious, interpretable model that can be discussed (and tested!)

using a-priori scienti�c knowledge or human understanding. This

requires careful mathematical modelling and, more importantly,

comprehensive diagnostics to ensure correctness of statements

derived from the results. Drawing conclusions and generalisations

from a large number of samples is a daunting enterprise in that

context. We will address this problem in the following.

The needs of establishing correct and parsimonious models

require selecting relevant variables without any a-priori �xing of

(essentially arbitrary) signi�cance values, and the correct han-

dling of problematic structures in the data, which can lead to ill-

speci�ed models. Consequently, we now focus on e�ective and

robust models, and judge covariate importance not based on sig-

ni�cance (e�ectively also removing sample size considerations),

but on predictive importance and model performance, even if our

concern is not prediction, but understanding. In a way, this shifts

our “modelling culture” [82] from algorithmic modelling towards

data modelling. Eventually, the conclusions that we can draw from

employing the two philosophical approaches will turn out to be

identical, which we feel is a scienti�cally reassuring result.

Ordinary least squares (OLS) and generalised regression is

known to often perform badly when trying to solve both purposes,

description and prediction [83]. Commonly employed automatic

methods to achieve parsimony (like, for instance, best subset se-

lection) have been shown to be a�icted with numerous issues

such as instability (see, e.g., [93]. Ridge regression [94] augments

OLS with a penalty on regression coe�cients measured by the

L2 norm
5 ‖ · ‖2. It solves problems with multi-collinearity by

evading matrix inversion singularities, and consequently requires

no up-front removal of similar (or even identical) predictors, sup-

porting the requirement for a fully automatic analysis process.

However, ridge regression always retains the full set of regressors

in the model, thus failing the parsimony requirement. The latter is

achieved by a structurally similar approach, lasso regression [95],

which penalises regression coe�cients based on the L1 norm

‖ · ‖1. Lasso regression can perform model shrinking by automatic

selection of covariates, but is a�icted with the issue of essentially

5. Recall that ‖~x‖p B (∑m
i=1 |xi|p)1/p defines the p-norm of an m-

dimensional vector ~x that reduces to the usual Euclidean norm for p = 2.
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Fig. 11. Illustration of non-linear transformations on the contribution
provided by LoC[l] by GAM (the shaded areas represents the 95%
confidence interval). The transformation is structurally similar for the
shown revision ranges and projects: For small amounts of source code,
bug density increases for more code since the coefficient is positive;
however, the rate at which bug density increases with growing amounts
of code quickly drops for larger source files. From a certain threshold
onwards (5, representing 105 LoC owing to the log transform of the pre-
dictor), the influence of LoC to bug density is getting less pronounced,
and can even become negative. This is consistent with observations
by other authors. More importantly, though, effect and transformation
chosen by the model are not only consistent over different time ranges,
but also across projects, which increases confidence in the consistency
of our data.
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randomly picking one regressor from a group of correlated regres-

sors, among other less important drawbacks [83].

Eliminating the drawbacks and combining the advantages of

both methods is done by the elastic net approach [96], which

interpolates between ridge and lasso regression. Based on the

same speci�cation as for orthodox OLS given in Eq. (3), ~y = X~β+~ε,
the elastic net determines coe�cient estimates

~β by solving the

problem

β̂ B argmin
β

λ
[
(1 − α)‖~β‖22/2 + α‖~β‖1

]
(8)

subject to hyper-parameter λ ∈ [0, 1], which controls the strength

of the penalty, and a “mixture” parameter α ∈ [0, 1] that bridges

between the cases of pure ridge (α = 0) and pure lasso (α = 1)

regression. Note that the elastic net allows us to work with re-

sponses that stem from Gaussian or Poisson distributions. It is not

possible to employ the Quasi-Poisson family to account for di�er-

ing variance and expected value, which is the case for our data.

Since we are anyway unable to provide con�dence intervals—that

would be invalidated by this shortcoming—for elastic net results,

and the point-wise estimates are identical for Poisson and Quasi-

Poisson based computation, this is not a concern for our analysis.

For each time window, we separately determine the best set

of values for λ and α by using a cross-validation approach [79],

which delivers the smallest mean error of the resulting model. We

do not consider values of α outside of [0.1, 0.9] to avoid any of the

drawbacks of the boundary cases discussed above. This does not

introduce an arbitrary choice into our analysis—the optimisation

procedure turns out to always deliver values in this range anyway.

We have installed warning mechanisms that give note in case a

pure ridge or lasso would result as best performing procedure.

In the following calculations, we scale and center the data so

that they exhibit zero mean value and unit variance, which is

a common, yet not undebated practice in regression analysis to

compare the relative in�uence of coe�cients (Ref. [97] reviews the

many arguments for either side) to compare the relative “impor-

tance” of regressors, which gives a reasonable means of gauging

the relative importance of predictors [98]: A change by one unit of

each regressor (while keeping the other variables in the regression

model constant) corresponds to a change by one standard deviation
of the regressand, However, the reader needs to keep in mind that

non-linear transformations are applied to the predictors before
scaling and centering. Since most of the criticisms on the trans-

formation relate to models with non-linear contributions, interac-

tion e�ects, or handling of categorical variables, we refrain from

introducing the �rst two in the following, and perform separate

analyses with respect to the motif type (square or triangle), which

is the only categorical variable in our data set.

One drawback of the elastic net approach (and, partially,

the non-standard inference approach via cyclic coordinate de-

scent [96]) is that the question of how to provide con�dence in-

tervals, which we have done for all approaches so far, is currently

still subject to considerable scienti�c debate [99]. Remedies based

on bootstrapping and resampling usually result in too small quan-

tities [100], which give a false sense of precision. Consequently,

we discontinue the provision of con�dence intervals, contrary to

previous sections.

For both regressands—bug density and churn—large values are

undesirable, and both dSTMC measures shrink (in the sense of

moving towards negative values with larger absolute magnitudes)



TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. XX, MONTH 20XX 15

Camel Cassandra Groovy HBase Spark Trafficserver

-0.
01

0
-0.

00
5

0.0
00

0.0
05
0.0

10
-0.

04
-0.

02 0.0
0

-0.
00

4
-0.

00
2

0.0
00

0.0
02

-0.
01 0.0

0
0.0

1
0.0

2
-0.

00
5

0.0
00

0.0
05

-0.
00

50

-0.
00

25
0.0

00
0

0.0
02

5

Churn[l]
LoC[l]

# Bugs
r(|AM|, |M|)

# Devs.
# Motifs

Avg. Essential[l]
Max. Nesting[l]

la(|AM|, |M|)

Mean Median

Camel Cassandra Groovy HBase Spark Trafficserver

-1.0-0.5 0.0 0.5 -1.0-0.5 0.0 0.51.0 -0.4 0.0 0.4 0.8-2 -1 0 1 2 -1.0-0.5 0.0 0.51.0-1.0-0.5 0.0 0.51.01.5

LoC[l]
# Bugs

r(|AM|, |M|)
# Devs.

# Motifs
Avg. Essential[l]
Max. Nesting[l]

Bug Density
la(|AM|, |M|)

Coefficient [sqrt]

Fig. 13. Coefficient distribution for elastic net regression models (top row: bug density, bottom row: churn). Every point represents the magnitude
of a regression coefficient for one time interval (based on scaled and centered input data), and bars show the mean/median value over all analysis
intervals. A two-sided square root transformation is used on the coefficient values, and the red vertical line highlights coefficient value 0. Plots for
the complete set of subject projects are available on the supplementary website.

when the relative number of motifs increases, and grow, respec-

tively become more positive when the relative number of motifs

increases:

STMC(r < 0)⇔ fewer bugs, (9)
Anti-STMC(r ≥ 0)⇔ more bugs. (10)

The same applies to l. This translates into an expected positive
relation between the regression coe�cients for r and l and bug

density, and likewise for l. The convention ensures that positive
regression coe�cients indicate a regime that we denote as STMC

regime, and negative coe�cients arise in the opposite, anti-STMC

regime.

The results of computing the model for the set of the usual

six reference projects that can still be conveniently visualised are

shown in Figure 13. The �gure is intended to make statements

about two (time-wise) global and local aspects: Results for each

time interval are given by individual data points, and for each

interval, the model delivers one value for each covariate. To see

whether the behaviour is consistent over time, we need to ag-

gregate the local results into one global result. We do this by

computing the median of the results over time for each covariate

(since mean and median summaries of the coe�cient distributions

agree well, the model does not deliver results that strongly devi-

ate from the total set of results, which shows result stability, an

important property in automated analyses). The same covariates

that have consistently resulted in small p values for the previous

approaches are assigned coe�cient magnitudes that di�er from

zero. The magnitudes for both realisations of dSTMC are small

and, more importantly, scatter around zero, which once more

underlines that their in�uence on software quality can be both

good and bad. Consequently, they are inopportune quantities for

the goal of optimising development processes.

Finally, we would like to draw attention to the consistency

of results across projects (easily seen by comparing the columns

of each row of the graph), which once more underlines that our

observations are not peculiarities of individual projects, but relate

to general properties of software projects.

In summary, the results obtained for the sample set are con-

sistent with any of the results of the in-depth analysis, which

provides con�dence that applying the method to the full project

set in the same analysis setting delivers reliable outcomes, which

we feel once more strengthens our conclusions.

5.5 Large-Scale Elastic Net Deployment

None of the previously considered sample projects has shown

any relevant in�uence of dSTMC so far. However, this might still

be caused by particular properties of the projects, and do not

generalise to a larger sample. To decisively answer RQ2 (and be-

cause generalisability is at the core of most meaningful scienti�c

statements), we want to place our insights on a considerable larger

sample space introduced in Table 1. This requires us to compute

the elastic net not only for more projects than before, but also

in three di�erent temporal scenarios, resulting in a number of

combinations that can not reasonably be visualised as in Figure 13.

Consequently, we compress the display of results in two more

stages.

Figure 14 provides a time series for each of the four combina-

tions of motif (triangle/square) and regressor (bug density/churn)

for one particular analysis combination—email+Jira communica-

tions with co-change dependencies in an isochronous temporal

relation (we have performed the same calculations with reduced
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Fig. 14. Isochronous time series relating STMC regressors and predicted quantity (bug density of churn) for a subset of subject projects based on
combined email and Jira communication, as well as file-level artefact dependencies obtained by co-change relationships—data and graphs for the
full set of projects are available at the supplementary website. Dotted (±0.05) and dashed (±0.1) lines indicate corridors for 5% and 10%, but are
only used to guide the eye and not as a dichotomic decision boundary. Symbols ∆ and � represent triangle and square motif, respectively. Results
for all subject projects are available on the supplementary website.

communication data sets, which did not result in substantial dif-

ferences to the shown results, indicating that our data are com-

plete in this aspect). For each data point, we compute the sum of all

absolute values of the regression coe�cients, and then we infer the

relative magnitude that the coe�cient for l(|AM|, |M|) contributes.

This means that each data point represents βk/
∑

i |βi|, where k is

the index of the coe�cient for l. The magnitude of the quantity

measures the extent of in�uence of dSTMC on the regressor, and

the sign shows if the in�uence is bene�cial (+) or adverse (-).

The observed magnitudes rarely exceed 10%, and often remain

below 5% (time points with no visible contributions can either

indicate a value that was too small to plot, despite the symmet-

ric square root transformation that magni�es smaller values, or

that the elastic net assigned a coe�cient of zero). While positive,

bene�cial contributions occur slightly more often than negative

ones (with the exception of bug density and the triangle motif

for project HBase, where positive contributions that also con-

sistently dominate), there is an overall balance between positive

and negative e�ects without any recognisable temporal patterns.

This indicates that the presence of STMC has not only has limited

in�uence, but can also, essentially randomly, at one time cause

bene�ts, and at another time disadvantages.

The correlation time series also illustrates another aspect:

Despite the well-known substantial correlation between bugs and

churn [101], the time series can di�er considerably when the in-

�uence of the STMC measure is compared for the same motif, but

with di�erent regressands. This is nicely visible for the projects

Spark and the triangle motif: The consistently bene�cial contri-

butions with respect to bug density turn into a consistently neg-

ative contribution for churn. Comparing the results for identical

regressands but di�erent motif types, shows more consistent, but

also clearly di�erent behaviour. This underlines that both motifs

and quality measures capture di�erent aspects of the projects, and

do not just re-iterate the same observations.

Results for the most comprehensive set of communication data

(email+Jira) and all three dependency mechanisms (co-change,

DSM, and semantic dependency) are shown in Figure 15 for a

subset of sample projects. One boxplot in Figure 15 summarises the

content of one single panel in Figure 14. It is also immediately ob-

vious that no substantial di�erences arise from the use of di�erent

coupling mechanisms, which means that our key observations are

valid regardless of the exact construction details of the underlying

socio-technical network.

The corresponding results for the full set of sample projects

are given in Figure 16 (it su�ces to consider the set of isochronous

data points for now): Each data points represents the relative

in�uence of la(|AM|, |M|) on the regressand; dashed lines indi-

cate the 10% and 90% quantiles, which means that the dominant

fraction of all observed values is con�ned between these two

lines. By comparing these lines with the solid horizontal lines that

indicate boundaries for ±10%, it becomes clear that the in�uence

of this socio-technical measure on quality is very weak. Even in

the cases where consequences of STMC hold, they do not have

much in�uence on software quality as measured by bug density.

The results for churn are essentially identical, and likewise for

other measures of socio-technical congruence. Space restrictions
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Fig. 15. Relative coefficient magnitude (influence of motif LoC norm diff la(|AM|, |M|)) time series summaries for a typical subset of subject projects
for correlations based on email and Jira communication data for different temporal relationships (isochronous, advanced and retarded). Horizontal
lines are as in Figure 14

require us to refer to the online supplement instead of presenting

the graphs here.

5.6 Answering Research Question 2

Considering the complete set of analyses performed on the data,

we can summarise that STMC does not have any notable in�uence

on the robust and widely deployed quality indicators of bugs and

churn. We must therefore answer RQ2 negatively.

6 Research Question 3—Temporal Analysis

The previous discussion was concerned with relating di�erent

co-variables from the same time window. This has shown that

no meaningful relationship between STMC and software quality

indicators exists. This suggests the interpretation that the pres-

ence of STMC delivers no short-term e�ects on software quality.

However, this does not exclude the possibility that STMC could

lead to signi�cant e�ects only after a time delay. More generally,

STMC in one time window could be correlated with observable

e�ects in a di�erent time window.

To determine if there are any such time-shifted relations, we

introduce advanced elastic net models that consider quality data

in time window n and motifs in the following time window n + 1,

as well as retarded models that relate quality data in time window

n with motifs in previous time window n − 1 (we refer to our

prior analyzed correlations, that connect co-variables from the

same time window, as isochronous in the following). Intuitively,

the presence of retarded relations suggests that a positive amount

of dSTMC leads to improvements in project quality at a later time.

Strong advanced relations, on the other hand, could be interpreted

as a situation where the presence of a bug, a complicated piece of

code, or other undesirable circumstances leads to more commu-

nication at a later time because discussion among developers is

required to �nd resolutions.

Results for advanced and retarded elastic net model calcula-

tions are given in Figure 16 on the next page. As in the isochronous

case, it can be seen that both, STMC and Anti-STMC regimes are

present over time, but with only moderate to negligible relative

in�uence of the socio-technical regressors. Recall that each data

point shows the relative contribution of la(|AM|, |M|) to various

models; it is visually obvious that almost no data points exceed a

relative contribution of 10%, and—as the red lines that denote the

10 and 90 percent quartiles show—the relative in�uence is usually

even less than this amount. All these statements hold regardless

of temporal direction. The results therefore e�ectively con�rm the

outcome for the isochronous models as discussed in RQ2.

One minor, but notable observation is that the relative

magnitude of socio-technical indicators is slightly stronger for

isochronous than advanced and retarded correlations, which in-

tuitively hints at the interpretation that e�ects of communication

and cooperation on software quality do not manifest over arbi-

trary time distances, but materialise in temporal proximity. This

shall be explored in further work.

6.1 Answering Research Question 3

In summary, we see that the maximal deviations for non-

isochronous temporal relations are insubstantial and permit us to

draw a conclusion analogous to RQ2: The in�uence of temporal

relationship is insubstantial, as the observed relations between

dSTMC and software quality indicators are again small to neg-

ligible. STMC is not a signi�cant and relevant predictor for future

software quality, and past software quality is not related with

future STMC.
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Fig. 16. Summary of relative coefficient magnitudes for la(|AM|, |M|), displayed for the complete subject sample set, all temporal directions (advanced,
isochronous, retarded), quality measures (bug density, churn) and coupling mechanisms (co-change, semantic coupling, DSM). Observe the square
root transformation of the magnitudes on the y scale to enlarge the densely populated region centered around zero. The horizontal spread per project
is caused by jittering the data points to ensure visibility of the complete data set. The solid horizontal lines indicate the corridor for ± 10%; dashed
red lines show the 10 and 90 percent quartile of the data.
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7 Verifiability & Threats to Validity
Our work, like all research e�orts, rests on certain assumptions

that must be taken, and may be a�ected by factors that are out of

our experimental control. We turn our attention to these aspects

next.

7.1 Verifiability
Our methods have been consistently designed for independent

external veri�cation and replication. All code and analysis infras-

tructure (with the exception of the Understand tool, for which

no open source alternative could be found, but which enjoys

widespread use in software engineering research) are available as

open source software for public use, and we have taken care that

required libraries and programming environments are also avail-

able under the same conditions. We have invested substantial ef-

fort on documenting not only the code, but also our development

and design choices. The ≈ 400 commits required for the study are

augmented by roughly 130KB of revision control system notes –

about the size of the actual publication –which not only provides

crucial knowledge to veri�ers and replicators of our research, but

also facilitates a simple application of our techniques to other

projects. The base data sets (eMails, issues and revision control

data) used for the study are all available on our supplementary

website.

7.2 Threats to Validity
Construct validity. Since we use social networks constructed from

heterogenous data sources, one threat is that the networks do

not accurately capture reality. Since there is substantial previous

evidence that such networks are authentic in re�ecting developer

perception [42], [56], this threat is minor. Another concern re-

gards uni�cation of developer contributions across multiple data

sources to a single identity, and technical di�culties of parsing

real-life data that often fail to comply with standards. This could

lead to networks whose content di�ers from the actual content of

the data sources. Beside relying on well-tested analysis code used

by multiple research groups over many years, we subjected our

additional code to internal peer review among the authors, which

limits this threat to validity.

Another threat is that the issue and email records are nec-

essarily incomplete, and that unobserved communication chan-

nels would alter the results. It seems implausible, though, that

developers would extensively use such alternate channels without

publicly announcing them (while email communication may be

seen as outdated at the time of writing, contemporary studies

like Ref. [102] show that for projects with eMail based work-

�ows, covert code integration can be detected by the absence of

email discussion, which in turn strongly suggests that all relevant

communication is performed via email for such projects). The

accompanying website contains correlation plots and summary

graphs that show results for all measure combinations resolved by

eMail only and eMail+bug tracking data sets (since the number of

eMail messages available for the typical project relatively exceeds

the number of bug tracker entries by usually at least one order

of magnitude, we did not consider bug tracker entries alone), and

little di�erences can be observed for these two alternatives.

In the same rein, we rely on the validity of bug and issue

tracker entries in the sense that they need to represent concerns

that agree with the software engineering notion of “bug”, but

whose quality is known to vary [103].

While our approach generally meets or exceeds the state of

the art for analyzing socio-technical data, it may be the case that

current approaches are not rich enough to identify strong rela-

tionships between socio-technical congruence and software qual-

ity. For example, representing developer communication without

considering the content of their discussions may obscure impor-

tant details. Likewise, the content of a commit may be relevant to

reasoning about socio-technical congruence and its relationship

to software quality.

External validity. We draw our conclusions from analysing

a manual selection of 25 open source projects. Possible conse-

quences of this manual selection are mitigated by choosing a wide

variety of projects that di�er in many dimensions and constitute a

diverse population. Furthermore, we considered the longest pos-

sible historical data and time-resolved analysis to prevent tempo-

rally biasing our results. The restriction to “large” projects with

active histories is less of a threat, because coordination in smaller

projects with only a handful of developers provides few opportu-

nities for coordination problems. Since open source development

tools and methods are seeing strong application in closed devel-

opment e�orts, and since a substantial fraction of commercial

projects rely on open source components, the line between open

and closed development has blurred [104]–[106]; the threat from

choosing to analyse only open source projects is therefore deemed

minor.

Internal Validity. Software quality has many aspects, and

focusing on two selected measures does not capture the phe-

nomenon in its entirety. Since bugs and churn are some of the

most impactful and widely studies observable measures of qual-

ity, other measures should not paint an entirely di�erent quality

picture, and it is known that such indicators are usually highly

correlated [5]. To substantiate this assumption, we have computed

a number of complexity and volume metrics (for instance, average

and maximal cyclomatic complexity, essential complexity, and

other measures provided by the Understand tool) for the subset

of projects discussed in Fig. 15. We �nd varying STMC and anti-

STMC behaviour without discernible pattern. The absolute mag-

nitudes of correlation strengths are typically even below those

reported for bugs and churn. While the aforementioned measures

are widely used in practice, there is no universally accepted con-

sensus on which measures are optimal (or preferable) in which

circumstances. Therefore, we show details only in graphs in the

online supplement, and refrain from further discussion in the

main part of the article. This restriction also increases internal

validity.

Likewise, experiments with high-level global indicators such

as the scalar, global decoupling level [107] are not reported here

for lack of space, but strengthen our conclusion that the described

threats are minor. Calculation results are available in the online

supplement.

There are other formalisations of socio-technical collaboration

beyond the triangle and square motif employed in our approach.

However, owing to the elementary structure of our (anti-) motifs,

it is likely that they would appear as sub-(anti-) motifs of larger

(anti-)motifs, which makes it unlikely that correlations would

di�er much from what we observe.

7.3 Sensitivity Analysis

Our study requires choosing the width of the analysis time win-

dow, for which a certain amount of subjectivity cannot be avoided.
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Determining the relationship between structure (via artefact–

artefact dependencies) and communication obviously requires

knowledge of the structure. For semantic and static dependencies,

the structure is determined from the state of the source code

at the beginning of an analysis interval; inferring the structure

via the co-change mechanism requires analysing changes to the
source that themselves happen during the chosen time period. We

have chosen a historical window of one year to gather changes

(with the intention of capturing su�cient data to get an accurate

representation of dependencies, and not capturing too much data

to inherit outdated architectural features), and have veri�ed for

a randomly chosen subset of the subject projects that varying

the window size by 3 to 6 months does not alter our conclu-

sions (additionally, Ref. [56] shows that enlarging the analysis

window beyond three months only marginally changes developer

networks extracted from version control systems).

8 Discussion
Basing statistical analyses on dichotomic, lexicographic decision

rules used to be standard scienti�c practice over many decades,

and consequently, many of the previous attempts at studying the

problem at hand are based on this paradigm. We feel it is appro-

priate to reiterate that our study is not any more based on such

rules, which follows the latest recommendations of the statistics

community. It has (once more over decades, but with recently

increasing force) come to the attention of researchers in many

�elds (see, e.g., Ref. [4]) that using point null hypotheses that

imply a sharp distinction between e�ect and non-e�ect (and also

zero systematic error) are highly problematic [108]–[111]. They

describe overall implausible situations. Since a larger number of

smaller, noisier studies is additionally bound to detect statistically

signi�cant results with higher probability than a single large-scale

study [112], we have deliberately opted for the latter, accepting

the many problems that this raises in presenting, discussing, and

publishing the results. However, we �nd the approach leads to a

very clear picture.

8.1 Impact on Structure, Organisation and Priorities in
Large-Scale Software Development
To reiterate our major empirical �nding: We have, using a mul-

titude of carefully constructed models from di�erent statistical

schools of thought, observed only negligible relationships be-

tween STMC and our measures of software quality: bugs and

churn. And, perhaps more importantly: The direction of any pos-

sible relations varies randomly over time, such that the very same

socio-technical scenario that leads to good outcomes at one point

in time can lead to bad results in the next. What conclusion

should we draw from these results which, it must be emphasized,

contradicts many assumptions about socio-technical congruence

over the past �ve decades?

Our interpretation is striking and unambiguous: STMC, at

least as it is manifested in our motifs and anti-motifs, does not

matter with respect to the number of bugs in the code and the

associated densities, nor with respect to code churn; or at least

does not matter much, as evidenced by the 25 projects that we

studied.

If there is a measurable relation between STMC and properties

of software artefacts, the relation must be manifested at a level of

abstraction that is higher than relations between pairs of software

�les. The key practical consequence, contrary to commonly made

assumptions, is that software architects and project managers of

large, complex software systems should not spend too much time

on optimizing the communication structures of such projects with

bug density and churn in mind. While these social aspects of

projects are obviously not unimportant, they just as obviously do

not have a strong impact on critical, measurable project outcomes.

Given that every project is budget and schedule constrained,

project leaders should therefore be spending more of their �nite

resources on improving other aspects, for example: knowledge

of tools and languages, completeness and automation of testing,

coding practices, automation, and so forth.

8.2 Relation to Landmark Investigations of Socio-
Technical Congruence

The notion of socio-technical congruence was shaped by Cataldo

et al. in Ref. [47] and subsequently re�ned by the same authors [1]

where they elaborate socio-technical congruence in formal terms

and empirically investigate its impact on product quality. Similar

work [113] led to the many network-based declinations of socio-

technical congruence, for instance, its evolution into a network-

based software community awareness [114], in which de Souza et

al. discuss it as the basis for awareness maintenance mechanisms.

Since the seminal works of Cataldo, Herbsleb and colleagues dis-

cuss questions that are similar to ours (the impact of various

notions of socio-technical congruence on key software quality

indicators) and use related techniques (multivariate linear and

logistic regression), but arrive at di�erent conclusions, it seems

pertinent to comment in more detail on the relation between their

�ndings and the conclusions of this investigation.

Firstly, the types of socio-technical congruence used in the

di�erent studies are related, but not identical: Cataldo et al. de-

�ne socio-technical congruence via technical dependencies based

on either static coupling (data/function/method references across

�les) or alternatively, in our terminology, co-changes [1], [47],

[115]. Secondly, the aforementioned studies consider �le buggy-

ness (has a �le been modi�ed in the course of resolving a �eld

defect?) and resolution time for change requests as main quality

indicators respectively covariates of interest; the conceptual rela-

tion to bug density is obvious, but the measures are not the same.

Regarding statistical power, the base data for the cited studies

cumulatively encompass 2 projects, 8 development years, and 154

developers, which is, at least, an order of magnitude less than our

dataset in every aspect.

Given such pronounced conceptual similarities, how can it be

that Cataldo et al. arrive at conclusions along the lines of “all (...)
types of dependencies are relevant and their impact is complemen-
tary, showing their independent and important role in the develop-
ment process” [47], while we �nd that socio-technical congruence

is of less importance than previously believed? Fortunately, both

points of view can be reconciled if the focus is not put on statistical

signi�cance, but on e�ect size and relevance, which is also what

matters in the end of the day in practical software development.

The regression models constructed by Cataldo et al. [47] relate

resolution time with many regressors including various forms of

congruence. The achieved R2
values lie around 0.75, which is simi-

lar to our models, and p values for the congruence-related covari-

ables are between 1% and 10%, which is—even by proponents of the

use of p values—usually taken as not quite excessively signi�cant.

Depending on the time interval we consider in our models, it

can well happen that we arrive at similar p values, although our
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interpretation is di�erent, following the statistical approach that

we have discussed at length in this article. Of course, p values are

uniformly distributed under the null hypothesis, and values in this

range are not too unlikely to arise for large enough samples under

H0.

While the exact interpretation of p values could be seen as sta-

tistical �ne print by some when the widely deployed dichotomi-

sation into signi�cant and non-signi�cant contributions is em-

ployed, a perhaps even more important consideration concerns

the relative magnitude of regression coe�cients. Coe�cients that

deal with congruence are substantially smaller than those for

other in�uence factors, and di�er in some cases even by orders

of magnitude. As a concrete example, and again referring to the

study of Cataldo et al. [47], this is most pronounced for change

request priority (coe�cient -0.4), but other covariables (for in-

stance, change size with a coe�cient magnitude of 0.31) also fall

into this class. Contrast this to a coe�cient of -0.05 for structural

congruence: If, for instance, the priority of a change request is

doubled, the relative contribution to resolution time is -0.8, and

the request will be processed substantially quicker (as it should

be). If the amount of structural congruence is doubled, the relative

contribution is only -0.1, which is drastically smaller. Considering

that changing the priority of a request can usually be performed

with the literal “mouse click”, a substantial e�ort in terms of

work and team organisation can be expected to be required to

make any change to the socio-technical structure of a project.

Consequently, we �nd that many realistically achievable e�ects

of socio-technical congruence are more likely to be on the level

of perturbative variations of the major in�uence factors. It goes

without saying that an identical conclusion can be drawn from

our results, too.

Consequently, we argue that there is no unresolvable disagree-

ment between our study and previously achieved seminal results

in terms of statistical inference, but predominantly in terms of in-
terpretation of these results. To arrive at a strong conclusion, it is of

course necessary to perform a careful mixed-methods analysis (to

not introduce bias by a particular method) on a su�ciently large

sample size (to achieve generality), including a careful sensitivity

analysis (to combine di�erent viewpoints), as we have done in our

study.

8.3 Relation to other Socio-Technical Hypotheses
The relationship between social and technical aspects of software

development has been discussed and investigated for about half

a century (e.g., consider for example, Conway [116] as well as

others after him [18], [22], [23]). Conway’s Law, for instance, is

the earliest in a family of socio-technical hypotheses that relate

software structure to the organizational structures producing it.

It �rst appeared in 1968 [116] as an empirical observation that

attempted to relate the structure (or, in modern terms, software
architecture) of a system with the structure of the organization that

creates and maintains it [117], [118]: “Organizations which design
systems [. . . ] are constrained to produce designs which are copies of
the communication structures of these organizations.”

From a simple textual analysis, Conway’s Law postulates: (1)

a relationship between software system structure and its commu-

nication/organisational structure [117]; (2) that organisations are

constrained by some invisible force to produce designs that mirror

the organisational structure. It seems immediately evident that

this notion can be easily mapped to our de�nition of STMC, or

is, at least, closely related to it.

What the law, however, does not explain is what might occur if

this constraint is violated (a law without non-trivial consequences

is of limited practical and theoretical value). This shortcoming

severely hampers the degree to which the law can be used as an

empirical device to guide the organization of large-scale software

engineering projects and their architectures: The function of a

law in scienti�c considerations is to describe, in the best case

quanti�ed and mathematically, a generalised observation on how

certain things relate to each other [119], [120], given a particular

theoretical framework that explains one or many laws for the

smallest possible number of requires observable quantities. In the

process of advancing scienti�c progress, it is natural that measure-

ments can appear at some point in time that violate a given law,

which then prompts the development of either extended theories,

or to reformulate laws. Of course, the impact of any hypothesis

or law without observable consequences that di�er depending on

whether it is ful�lled or not is limited, and our study suggests that

this scenario seems to apply for Conway’s Law.

Regardless of this limitation, Conway’s Law is intriguing and

potentially far-reaching in impact and meaning, and therefore it

has been the subject of numerous studies that address aspects such

as its implication for distributed software development [12], soft-

ware tasking [17], splitting complex software organizations [115],

or how designs mirror a project’s communication structures [15],

to name a few. However, we feel that our work shows that verify-

ing or falsifying the law is actually not a pressing issue— for the

simple reason that, following our results, it does not matter much

whether it holds or not in terms of practical software engineering

and software quality consequences.

8.4 Limitations
There are clearly some limitations to our de�nition of socio-

technical motifs, their relation to software quality, and the inter-

pretation of connections and non-connections discussed in this

study. The projects that we chose are all fairly large, with dozens

to hundreds of contributor, and thousands of issues and commits.

And these projects all have “average” levels of overall complexity

(as can, e.g., be derived from global measures such as the de-

coupling level [107], which we computed for all subject projects

and found the results to fall in the “average” range [0.25, 0.7]
of the unit interval), which is to say that their architectures are

neither ideal nor are they toxically bad. One might expect that, in

projects with highly coupled architectures, communication would

be absolutely essential to manage the complexity. One of the ma-

jor purposes of decoupling, which we typically achieve through

abstraction and the application of patterns, is to allow for the

independent activities of developers.

We conclude that the next step of our evidence-based endeav-

our into the nature of STMC will need to involve projects with

very high (or low) levels of coupling, at the tails of the distri-

bution, where we might observe a stronger in�uence of dSTMC.

Additionally, we will need to investigate if other quality measures

and indicators (see, e.g., [121]) exhibit a stronger connection with

STMC than the measures used in this work.

9 Conclusion
In this article we have presented a method to empirically inves-

tigate the connection between the presence of socio-technical

structural observables with software quality as determined by

robust, practical measures based on elementary network motifs
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that formalise one particular, yet fundamental notion of socio-

technical congruence. A large-scale longitudinal study on a di-

verse set of software projects has shown that these motifs occur

strongly non-randomly, and that their occurrence varies as the

projects evolve. We have de�ned a quantitative and interpretable

notion of socio-technical motif congruence, and have shown that

it is, in no substantial way, related to measurable project quality

outcomes—software bugs, bug density and churn—in any tempo-

ral scenario.

A key lesson learned is that socio-technical congruence has

less substantial consequences than was previously believed, and

hence might not deserve the great attention that it has received.

Our argument can be extended to hypotheses like Conway’s Law

that have received great attention during the last �ve decades,

but often fail to result in appreciable, measurable and quanti�able

consequences.
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Appendix
Validity of Socio-Technical Base Data
We have discussed in Section 3.2.4.1 how the base data for our

analysis are gathered, and how they are processed into a bi-model

graph that represents the socio-technical network. We elaborated

on page 6 how we ensured that the generated graphs are con-

gruent with the real-world structure of developers and artefacts.

Figure 17 shows a time-resolved graph that visualises the results

of the con�guration model hypothesis testing procedure resolved

by three month time windows for project HBase for the square

motif and square anti-motif. This �gure shows probability density

functions for the possible di�erent (anti-) motif counts pm,t(n) of

a network generated randomly with the same degree sequence

as the real world network. The red dot indicates the project’s

observed, empirical motif count cm,t.

It is visually imminent that the observed count is extremely

unlikely to stem from any of the simulated distributions, albeit

this can also be statistically ascertained by using a t-test that is

signi�cant at (for all practical purposes) arbitrarily small levels

for almost all temporal ranges. In a small fraction of all temporal

ranges (for instance the interval ending in 12/16), the real data

are partly compatible with a random network structure. Such

outliers are not unexpected for noisy real-world data. We did not

try to investigate exact causes for these situations (that could,

for instance, be caused by erratic and uncoordinated intermittent

phases in a project’s lifecycle), but we have instead made sure that

subsequent analysis stages are su�ciently robust to also deal with

such base inputs.

Model Assumptions and Conditions
In Section 5.2 on page 9, we have introduced linear regression

models to analyse the dependence of software quality indicators,

bug density and churn, on the socio-technical motif structure in

the presence of other in�uence factors. Valid linear models need to

satisfy various assumptions and conditions, and we analyse next

how well this holds for our models and data.

Figure 9 shows the correlation structure of the measured vari-

ables that are available for our study. Apart from quantities like

bug density, churn, motif count and dSTMC that form the core of

our study, we also include traditional complexity indicators like

(sum/average) cyclomatic/essential complexity [122] and maximal

nesting [123] to allow for assessing the relative in�uence of novel

metrics in comparison to more traditional ones. The latter possess

know weaknesses that are also re�ected in the diagram—sum
6

of essential complexity, sum cyclomatic and �le size in terms of

lines of code are highly correlated. To avoid collinearity in the

model, yet include traditional software engineer that can serve as

a “baseline” and comparison measure on the usefulness of dSTMC,

we exclude the sums of essential and cyclomatic complexity, and

keep the admissible (in the sense of aptitude for linear models)

measures maximal nesting and average cyclomatic complexity.

The correlation values shown in Figure 9 re�ect the situation

for a single temporal range of a single subject project. To establish

an appropriate set of regressors for the full dataset (it is not only

impractical to specify di�erent models depending in project and

time range, but would also limit comparability of the resulting

insights), we resort to computing the distribution of the variance

6. Sum refers to the sum of all essential complexity values for every
function in a given artefact; average complexities are computed by
normalising said value by the number of functions in an artefact.

in�uence factor (VIF) for all projects that are subjected to regres-

sion analysis. The VIF is computed for each regressor per project

and analysis time range, and results (for this combination) in a

single scalar value that quanti�es the amount of collinearity of the

regressor with the other covariables. Figure 19 presents the results.

While there is no accepted strict threshold for VIF above which

a variable is considered “too” collinear, strictly applying rules of

thumb is problematic [124], but values below �ve or even ten are

usually regarded as inconsequential [125]. The regressors selected

in the above consideration do in the vast majority of all cases not

exceed either threshold, and can thus be used to specify one single,

uni�ed project- and time independent regression model.

Details of Data Collection

We have outlined the general mathematical structures and compo-

nents used to represent developer, artefact and developer-artefact-

networks in Section 3.2.3. Since they are based on data obtained

from real-world systems, constructing them is a complex and

intricate, yet mostly technical issue. We provide more details on

the required steps in this appendix, but want to explicitly point

out that the source code of our analysis pipeline is the de�nitive

reference for all data processing and transformation operations

required to replicate our �ndings.

Information concerning development artefacts is extracted

from data in version control systems. Our pipeline supports the

analysis of git repositories, which does not limit generality of

our approach because nearly every other VCS can be converted

into a git repository without loss of information. Git supports

highly non-linear histories based on multi-branch development,

and the �rst step is to linearise this history into one time-ordered

sequence of events based on when a commit was authored. We

rely on capabilities provided by git itself for this purpose, like in

most previous work.

The linearised commit sequence is then traversed for each

time window, and snapshots of the source tree for each commit

are used as basis for constructing the various artefact-artefact

dependencies:

1) Static dependencies are computed by running the “Under-

stand” tool from SciTools (build 838), exported into CSV for-

mat by und export -dependencies file csv (the exact

call sequence is given in �le codeface/R/gen_dsm.r), and

then converted into a dependency structure matrix (DSM)

by our analysis pipeline. The Understand tool computes all

dependencies that relate a (sub-)artefact in one �le with a

(sub-)artefact in another. For instance, if a function in �le

A calls another function in �le B, a dependency between A
and B arises. Other dependencies taken into account include

textual imports (for instance, header �les), and inheritance

relationships for object-oriented languages; a full list is given

on the product website. From the set of languages employed

in the subject projects, Understand is capable of parsing C,

C++, C#, Python, and Java. Projects Ambari and CouchDB,

which are written in JavaScript and Erlang, respectively, are

excluded from the DSM-based analysis. While Understand

creates a weighted DSM, our analysis does not consider the

“strength” of a dependency, only its existence.

2) Evolutionary dependencies, also called co-changes, are di-

rectly inferred from our analysis pipeline (the concrete im-

plementation is given in function query.dependency in

codeface/R/dependency_analysis.r). By iterating over
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Fig. 17. Empirical motif count (red dot) and count distribution given by the rewiring process illustrated for a subset of the complete analysis period
for project HBase. The calculation ensures that the networks our considerations are based on represent meaningful information in the data.
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gression model covariates. One randomly chosen temporal range (28)
of project HBase is used to illustrate the interdependence of possible
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and correlation values. Colour of the table fields entries indicates sign
and magnitude of the measured correlation, crossed out fields mark
insignificant values (at the usual 5% significance level).
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Fig. 19. Variance inflation factor distributions for all covariates contribut-
ing to bug density and churn models, and encompassing all temporal
ranges for Spark, HBase, TrafficServer, Groovy, and Cassandra. Vertical
solid lines embedded in the densities mark the 90% and 95% quantiles;
dashed lines from top to bottom indicate two commonly used upper
bounds for unproblematic values of VIF.

the linearised list of commits, we infer which �le artefacts are

touched for each commit. Using this information, and given a

speci�c �le f , we can then infer the set of �les { f ′1 , f ′2 , . . . , f ′N}
that changed jointly with f in any of the previous commits.

The type of change (addition or deletion) is not taken into

account.

3) Semantic dependencies are the most involved coupling mech-

anism to compute. For a given snapshot of the source code

under consideration, our pipeline �rst extracts the imple-

mentation for each function in the system, (code and com-

ments); the boundaries of each function within a �le are

obtained using the Doxygen tool. Multiple established text

mining (TM) steps are then applied to each function (docu-
ment in TM terminology):

• Stemming reduces word diversity by removing su�ces

(e.g., “ing”, “ly”, “er”), thus bringing words to their root

form, and eliminates words that contain little information.

• A term-document matrix (TDM) of size M×N, where M is

the number of keywords and N the number of documents,

is created from the stemmed data. The entry at position

(i, j) is non-zero when document d j contains term ti. To

increase the in�uence of terms that describe distinct con-

cepts and decrease the in�uence of the remaining terms,

we apply an established standard weighting scheme, the

frequency-inverse document frequency (Ref. [126] gives a

detailed rationale for this choice).

• Latent semantic indexing, a matrix decomposition tech-

nique that relies on the singular value decomposition, is

used to project the high-dimensional space of employed

terms into a much lower-dimensional subspace, with the

added bene�t of resolving synonymic and polysemic rela-

tionships. The technique is a standard approach described

in detail in [127], and has been shown to be applicable and

useful for the problem at hand by Bavota et al. [128].

• Semantic coupling between documents is obtained by

computing the cosine similarity between all document

vectors projected onto the lower dimensional subspace

attained from applying latent semantic indexing. Two doc-

uments are considered to be coupled if the coupling value

exceeds a certain threshold, for which we use a value sug-

gested by Joblin et al. [54] after extensive experimentation.

Finally, the results obtained on a per-function basis are then
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aggregated to a per-�le basis to ensure alignment with the

analysis granularity used for the other coupling mechanisms.
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Fig. 20. Constructing developer networks from eMail communication.

Communication relationships can be inferred from mailing list

and issue tracker communication. Communication networks are

inferred in the same way for both, since all eMails and issues

are associated with (a) a unique identi�er, (b) a person send-

ing/submitting the mail/issue, (c) a date when the message/issue

was sent. Also, the resulting initiation/response structures can be

represented by trees in both cases. The construction methodology

follows standard practises of the �eld (see, e.g., Refs. [22], [129]),

and is illustrated in Fig. 20: A conversation from a mailing list

archive is shown for three individuals that compose three eMails

in a single thread. Links between individuals and the eMails they

have authored are available in addition to links between eMails

that express “Reply-to” relationships. The corresponding devel-

oper communication network stemming from activities on the

mailing list is given on the right-hand side of the �gure.

Raw data for eMails are obtained from public archives o�ered

by the subject projects, and issues are downloaded from Jira bug

trackers using the Titan tool (we have �ltered for issue type

“Bug” for the latter source). All raw data sets are provided on the

accompanying website.

While we have tried to provide the most important details

of our technical approach, there is a large number of remaining

details that we cannot comprehensively discuss here. Any tech-

nical deviations from the above that might remain are implicitly

documented (and preserved in a replicable way) by the pipeline

source code available on the aforementioned website.

Model Correctness
Multivariate linear models (as we consider in Section 5.2 on

page 9) are numerically stable, and can be very well interpreted

when certain model assumptions are satis�ed. Drawing correct
conclusions is, in general, also only possible for correctly speci�ed

models. We have taken care to perform the required checks [80]

for the subset of projects discussed in this and the following

section, and need to point out two problematic aspects inherent

in the base data set that is visible in Figure 7 for a randomly

chosen temporal analysis interval. Deviations from the expected

distributions could of course also be detected by formal tests;

following [130], we do prefer graphical illustrations since they

provide more �ne-grained insights into the nature of the problems

than binary signi�cance tests, and also reduce sensitivity consid-

erations.

Firstly, there are clear deviations from the normality assump-

tion ~ε ∼ N(0, σ2) for the residual distributions. Second, we see

a substantial amount of temporal correlation between residuals.

While the �rst issue has no in�uence on parameter estimation

itself, any derived p values will be too low, and con�dence in-

tervals too wide, which essentially implies that the importance of

STMC will be even overestimated by our model. Since we �nd the

in�uence to be limited anyway, the in�uence of mis-speci�cations

on our conclusions is limited. Let us also remark that random

interval selection was performed by incrementally seeding a ran-

dom number generator with a �xed value that is incremented by

one for each time interval selected. We use this procedure to avoid

any (even inadvertent) bias towards “welcome” results in selecting

displayed subsets.

The problem of correlated residuals can be pinpointed to a

particular structure of the data, as indicated by the distinction

between data points contributed by artefacts with zero bug den-

sity (yellow/triangles), and non-zero such entries (black/dots):

The large majority of artefacts is not associated with any bug.

This problem (or, rather: structural observation) is inherent in

the data, and is directly linked to the way how projects collect

bugs, and maintain the information, which we cannot in�uence.

Consequently, we need to accept that bug tracker entries are only

a proxy for buggyness. We have performed a second iteration of all

analyses presented in this article with included zero bug densities,

leading to essentially identical statements as in the cleaned case,

but, of course, su�ering from the consequences of violating the

model assumptions. Results are shown in the online supplement.
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Fig. 21. Results of a time-resolved multivariate linear regression for bug density (the figure is restricted to projects Spark and HBase, but results for
other projects – as shown in the online supplement – are structurally very similar). The interpretation of the graph is identical to Figure 8: The box
plot for every covariate summarises the contributions for all temporal analysis ranges. Red crosses represent the coefficient values resulting from
the mixed effects linear regression model Eq. (4), and vertical blue lines of varying intensity indicate the 95% confidence intervals.
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