
Identifying Software Performance Changes Across
Variants and Versions

Stefan Mühlbauer
Leipzig University

Germany

Sven Apel
Saarland University

Saarland Informatics Campus
Germany

Norbert Siegmund
Leipzig University

Germany

ABSTRACT
We address the problem of identifying performance changes in
the evolution of configurable software systems. Finding optimal
configurations and configuration options that influence perfor-
mance is already difficult, but in the light of software evolution,
configuration-dependent performance changes may lurk in a po-
tentially large number of different versions of the system.
In this work, we combine two perspectives—variability and time—
into a novel perspective. We propose an approach to identify con-
figuration-dependent performance changes retrospectively across
the software variants and versions of a software system. In a nut-
shell, we iteratively sample pairs of configurations and versions
and measure the respective performance, which we use to update a
model of likelihoods for performance changes. Pursuing a search
strategy with the goal of measuring selectively and incrementally
further pairs, we increase the accuracy of identified change points
related to configuration options and interactions.
We have conducted a number of experiments both on controlled
synthetic data sets as well as in real-world scenarios with differ-
ent software systems. Our evaluation demonstrates that we can
pinpoint performance shifts to individual configuration options
and interactions as well as commits introducing change points
with high accuracy and at scale. Experiments on three real-world
systems explore the effectiveness and practicality of our approach.

CCS CONCEPTS
• Software and its engineering→ Software performance; Soft-
ware evolution.

KEYWORDS
Software performance, software evolution, configurable software
systems, machine learning, active learning

ACM Reference Format:
Stefan Mühlbauer, Sven Apel, and Norbert Siegmund. 2020. Identifying Soft-
ware Performance Changes Across Variants and Versions. In 35th IEEE/ACM
International Conference on Automated Software Engineering (ASE ’20), Sep-
tember 21–25, 2020, Virtual Event, Australia. ACM, New York, NY, USA,
12 pages. https://doi.org/10.1145/3324884.3416573

ASE ’20, September 21–25, 2020, Virtual Event, Australia
© 2020 Association for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in 35th IEEE/ACM
International Conference on Automated Software Engineering (ASE ’20), September 21–25,
2020, Virtual Event, Australia, https://doi.org/10.1145/3324884.3416573.

1 INTRODUCTION
Software performance plays a crucial role in users’ perception of
software quality. Excessive execution times, low throughput, or
otherwise unexpected performance without added value can render
software systems unusable. Poor performance is often a symptom
of deficiencies in particular software components or the overall
software architecture. Changes in the observed performance of a
software system can be attributed to changes to the software at
different levels of granularity (architecture, code, etc.).
Typically, modern software systems provide configuration options
to enable users and admins customizing behavior to meet different
user requirements. Configuration options usually correspond to
pieces of selectable functionality (features), which contribute to
overall performance with different proportions. That is, different
configurations of a software system exhibit different performance
characteristics depending on configuration decisions made by the
user.
Performance changes during software evolution—intended or not—
can affect all or only a subset of configurations since changes to a
software system often relate to a particular configuration option or
set of options. This is why performance bugs are rarely visible in de-
fault configurations, but revealed only in certain configurations [8].
If undetected, such perennial bugs can persist for the lifetime of a
software system as software evolves. Adding this technical debt con-
stantly can accumulate and entail trends of degrading performance
quality [5].
Performance assessment and estimation is a resource-intense task
with many possible pitfalls prevailing. Best practices for conducting
performance measurements emphasize a dedicated and separated
hardware setup to prevent measurement bias by side-processes
and, subsequently, obtain reproducible results [18]. What is often
overlooked is the fact that most software systems are configurable,
which introduces another layer of complexity. Due to combinatorics,
even for a small number of configuration options, the range of
possible valid configurations renders exhaustive measurements
infeasible.
Our goal is to enable the retrospective detection of changes in the
performance of configurable software systems and pinpoint them
to a specific option or interaction. For example, a patch of a cer-
tain feature is likely to affect only configurations where such fea-
ture is selected. We would like to know in which revision this
patch was introduced and which features were affected. Many soft-
ware systems are configurable, but have no performance regression
testing routine set in place. To uncover performance deficiencies
that emerged from revisions in the past development history, it
is infeasible to test each and every commit and configuration. In
essence, we face a combinatorial explosion along two dimensions:

https://doi.org/10.1145/3324884.3416573
https://doi.org/10.1145/3324884.3416573

ASE ’20, September 21–25, 2020, Virtual Event, Australia Stefan Mühlbauer, Sven Apel, and Norbert Siegmund

time (versions) and configuration space (variants). First, we aim
at finding changes in software performance from one version to
another. The detection of such changes is referred to as change
point detection [2, 3, 10, 19, 24, 25]. The main limiting factor is that
exhaustive measurements across the configuration space are nei-
ther available nor feasible [31]. Change point detection techniques
with both exhaustive measurement [2, 3] as well as limited data
availability [10, 19, 24, 25] have been successfully applied to identify
performance changes. Second, we aim at associating performance
changes (from one version to another) with particular configura-
tion options or interactions among them. There is substantial work
regarding a related problem, which is estimating the influence of
individual options on performance [7, 26, 28, 29] for a single version
of the software system, ignoring the temporal dimension. Instead
of estimating the influence of options and interactions on perfor-
mance, we want to know: Which option or interaction is responsible
for a particular change point in the version history of a software
system?
Our main idea is as follows: We address the configuration com-
plexity of this problem by selecting representative sample sets of
configurations. Then, we uniformly sample a constant number
of commits for each configuration and conduct respective perfor-
mance measurements. Based on these measurements, we learn a
prediction model. For each configuration, we estimate the likeli-
hood of each commit being a change point (i.e., that performance
of some configurations changes abruptly compared to the previous
commit). Next, we leverage similarities in the performance histo-
ries of configurations that share common options. Since we sample
the commits for each configuration independently, we obtain for
each change point many estimations using measurements of dif-
ferent commits. Overall, this allows us to obtain more accurate
estimations of performance-changing commits with tractable ef-
fort. Based on a mapping from configurations to predicted change
point probabilities for each configuration and commit, we derive
the options responsible for each particular change point, which we
call configuration-dependent change points. In summary, we offer
the following contributions:

• A novel technique to effectively identify shifts in performance
of configurable software systems. It is able to pinpoint causative
commits and affected configuration options with high accuracy
and tractable effort.

• A feasibility demonstration of our approach by implementing
an adaptive learning strategy to obtain accurate estimations
with acceptable measurement cost.

• An evaluation using both synthetic and real-world performance
data from three configurable software systems. Synthetic data
let us assess our model and approach conceptually and at scale,
whereas we are able to assess practicality with real-world data.

• A companion Web site1 providing supplementary material in-
cluding a reference implementation of our approach, perfor-
mance measurement data, and additional visualizations.

1https://github.com/AI-4-SE/Changepoints-Across-Variants-And-Versions/ or an
archived version at https://archive.softwareheritage.org/browse/origin/https://github.
com/AI-4-SE/Changepoints-Across-Variants-And-Versions/

2 CONFIGURATION-DEPENDENT CHANGE
POINTS

Performance as a property emerges from a variety of factors. Besides
external factors, including hardware setup or execution environ-
ment [22], the configuration of a software system can influence
performance to a large extent [29]. Most modern software systems
exhibit configuration options that correspond to selectable pieces
of functionality. With configuration options, we turn features on
and off creating a variant of the software system. Depending on
the configuration, different system variants with different behavior
and performance can be derived.

2.1 Performance-Influence Models
Consider the following running example of a database manage-
ment system (DBMS) with two selectable features: Encryption
and Compression. Either feature adds execution time to the overall
performance, but, if both features are selected, the execution time
is smaller than the sum of the individual features’ contribution to
performance: Less data is encrypted if it is compressed beforehand.
An interaction in this setting is the combined effect of features
Encryption and compression. We can assign each feature and
interaction an influence that it contributes to the overall perfor-
mance, if selected. In our example, the individual influences of the
two features are positive (increasing execution time), whilst the
interaction’s influence is negative (decreasing execution time).
The influence of features on performance can be described using a
performance-influence model [28]. A performance-influence model
is a linear prediction model of the form Π : 𝐶 → R, whereby
𝐶 denotes a configuration vector (assignment of concrete values
to configuration options) and the estimate is a system variant’s
real-valued performance:

Π(𝑐) = 𝛽𝑇 𝑐 =


𝛽1
.
.
.

𝛽2|𝐹 |


𝑇

·

𝑐1
.
.
.

𝑐2|𝐹 |


𝛽𝑖 ∈ R2

|𝐹 |

𝑐𝑖 ∈ {0, 1}2
|𝐹 | (1)

𝐹 denotes the set of all features. Our linear model has |2𝐹 | terms,
whereby each term 𝑡 ⊆ 𝐹 corresponds to a subset of 𝐹 and is
described by a coefficient 𝛽𝑓 and a configuration parameter 𝑐 𝑓 .
Coefficients encode the performance-influence of features and in-
teractions. 𝑐 is a vector and denotes the assignment of concrete
values to configuration options or interactions. A configuration
parameter 𝑐𝑡 evaluates to 1, if all configuration options of the corre-
sponding subset 𝑡 ⊆ 𝐹 are selected, and 0 otherwise. The empty set
corresponds to the invariable core functionality of the software sys-
tem. Singleton subsets correspond to individual features, compound
subsets to interactions of features.
For our DBMS example, we present a fully determined performance-
influence model in Equation 2. The first two terms correspond to
the features Encryption and Compression, respectively. The third
term represents the interaction of both features. The configura-
tion parameter 𝑐Compr∧Encrypt evaluates to 1, if both 𝑐Encrypt and
𝑐Compr evaluate to 1. That is, 𝑐Compr∧Encrypt ≡ 𝑐Encrypt · 𝑐Compr.
In the last term, we omit the configuration parameter 𝑐∅ , as this
term represents invariable functionality.

https://github.com/AI-4-SE/Changepoints-Across-Variants-And-Versions/
https://archive.softwareheritage.org/browse/origin/https://github.com/AI-4-SE/Changepoints-Across-Variants-And-Versions/
https://archive.softwareheritage.org/browse/origin/https://github.com/AI-4-SE/Changepoints-Across-Variants-And-Versions/

Identifying Software Performance Changes Across Variants and Versions ASE ’20, September 21–25, 2020, Virtual Event, Australia

ΠDBMS (𝑐) = 𝛽Encrypt · 𝑐Encrypt + 𝛽Compr · 𝑐Compr
+ 𝛽Compr ∧ Encrypt · 𝑐Compr ∧ Encrypt + 𝛽∅

(2)

Prediction models of configuration-dependent performance of this
form are not the only possible representation [4, 7], but linear mod-
els are easy to interpret [28]. We review extensions and alternatives
to linear performance-influence models in Section 6.

2.2 Evolution of Performance Influences
Performance-influence models describe how features contribute to
performance, but they do not allow for understanding configuration-
dependent performance changes over time. We expand our DBMS
example with a temporal dimension, considering a development
history of hundred commits. In particular, we assume the following
three events. (1) At commit 25, feature Compression has been
modified, increasing the execution time; feature Encryption is
introduced at commit 25 and can be combined with Compression.
(2) At commit 50, the interaction of Compression and Encryption
changes, resulting in an increased execution time. (3) At commit 80,
the core functionality of the DBMS is refactored, which decreased
execution time for all variants.

0 20 40 60 80 100
Time [commit]

0.5

1.0

1.5

2.0

2.5

Pe
rfo

rm
an

ce
 [s

]

vanilla
compression
encryption
compr & encr

Figure 1: Performance of 4 variants with 3 change points

The performance histories of the four valid variants in Figure 1
exhibit three change points: commits 25, 50, and 80. These change
points, however, do not affect all configurations. For instance, ex-
ecution time decreases for all configurations at commit 80, but
increases at commit 50 only for one configuration. Given this ex-
ample, the target outcomes of our approach are (1) the locations
of the three change points (commits 25, 50, and 80), (2) the asso-
ciation of such commits to the features and interactions (Compr,
Compr ∧ Encrypt), and the invariable functionality, respectively.

2.3 Taming Complexity
A naive approach for identifying change points in the evolution of
configurable software systems is to simply combine existing work
on performance modeling of commit histories and performance
prediction of software configurations.
For our example, we could measure all variants for each commit
building a performance-influence model per commit. Having 4 con-
figurations and 100 commits, this would result in 400 measurements.
Since the number of configurations grows exponentially with the
number of features, we end up with 2𝑛 times 𝑇 measurements
where 𝑛 is the number of features and 𝑇 is the number of com-
mits. Clearly, this does not scale along both dimensions: Already a
few features would render even small commit histories intractable,

Commits
VanillaCompre

ss
ionEncry

ptio
nCompr. &

 Encr.
.

configuration-specific
change points?

Exploration: new configurations

Exploitation: new configurations

Exploration: new commits

Exploitation: new commits

Existing measurements

Figure 2: Active sampling strategies for a DBMS with 4 con-
figurations

and even small configuration spaces make this approach infeasible
given realistic commit histories of a few thousands of commits.
To obtain accurate estimations with a limited budget of measure-
ments, we require a different approach. We propose an iterative and
adaptive sampling approach. That is, we use an initial, but small
sample set to explore the problem space and then increase the level
of granularity at promising regions and dimensions (development
history segments as well as individual features and interactions, in
our case).
Based on the introductory DBMS example (cf. Figure 1), we illus-
trate our sampling strategy in Figure 2. Here, each box depicts a
possible measurement (i.e., a pair of a configuration and a commit).
Black bars represent change points hidden in the software system‘s
performance histories (i.e., measurements immediately before and
after a change point are dissimilar). The current state of the sample
set comprises all measurements that are filled in grey.
To include new measurements into the sample set, we consider the
following situations. On the one hand, our sample set might already
hint to some possible change points and associated configuration
options. On the other hand, our sample set might be too sparse,
such that we cannot infer some change points yet. To address this
trade-off, we devise two strategies, exploration and exploitation,
both of which address both configurations and commits.
For exploitation, we sample new measurements to verify guesses
based on the current state. That is, in Figure 2, we might include the
measurements depicted by black-filled symbols (/). Black-filled
stars () represent measurements that are of interest because we
have already identified one change point for configuration Com-
pression. We exploit this knowledge to test further configuration
options involved in this change point. The black-filled pentagons ()
represent measurements that are interesting, because we have iden-
tified another early change point for Compression, but within a
rather broad range of commits. Thus, we include further measure-
ments from that range to narrow down the possible range for this
particular change point.
For exploration, we might include the measurements denoted by
white symbols (/). White stars () represent measurements that
explore new configurations. In our example, the interaction be-
tween Compression and Encryption is the only configuration
left to be measured. We include several commits of a particular
new configuration to unveil possible performance variation that
indicates possible change points. White pentagons () represent

ASE ’20, September 21–25, 2020, Virtual Event, Australia Stefan Mühlbauer, Sven Apel, and Norbert Siegmund

measurements that are of interest because they increase the overall
measurement coverage. We include measurements from large in-
tervals of not yet measured commits, since possible change points
can be hidden there.
These four strategies (exploration and exploitation of configurations
and commits) prioritize measurements to be included next into the
sample set. Adaptive sampling techniques have been successfully
applied to obtain both performance-influence models [26, 29] and
performance histories [19] before. However, it is unclear whether
fewermeasurements are sufficient to assess the performance-influence
of configuration options and interactions with respect to version
changes. This is what we address in this work.

3 AN ALGORITHM FOR CHANGE POINT
DETECTION

We propose an algorithm to detect substantial shifts in the perfor-
mance of software configurations and associate them to individual
commits and options or interactions. We lay out our approach as an
iterative search across the commit history and configuration space.
We provide an overview of our approach in Figure 3. It starts with
a small initial sample set of measurements (i.e., performance obser-
vations of varying configurations and varying commits). Based on
this sample set, it calculates for each configuration the likelihood
of each commit being a change point.
Subsequently, our algorithm estimates a candidate solution, which
is a set of pairs of a commit and a configuration option. Each of
such pairs describes the estimated involvement of a configuration
option in the shift of performance. Interactions are conceived as
multiple tuples with identical commits. That is, if a commit occurs
in multiple tuples, each with different configuration options, this
indicates that the shift arises from an interaction among two or
more options. Henceforth, we will refer to such pairs as associations.
After obtaining one candidate solution per search iteration, we aug-
ment the sample set of measurements with regard to two objectives:
exploration and exploitation. Exploration aims at including previ-
ously unseen commits and configurations to improve coverage of
the search space. Exploitation aims at including measurements in
the sample set that, based on the previous candidate solution, may
increase confidence in associations or rule out false positives (i.e.,
commits falsely identified as change points or options falsely asso-
ciated with a commit). As for exploitation, we make an informed
decision of which measurements are to be included, whereas explo-
ration is agnostic of previous candidate solutions.
As each iteration yields a candidate solution, we keep track of asso-
ciations in a solution cache and repeatedly update the confidence
of associations. The rationale is not to lose previously identified
change points, but at the same time, allow for removing identified
changes points that are likely false positives due to new measure-
ments. Some associations, especially in the beginning, might be
influenced by sampling bias and can be removed if successive iter-
ations do not repeatedly revisit these associations. The algorithm
terminates if the solution cache does not change for a number of
iterations or a maximum number of iterations/measurements has
been reached. In what follows, we present the steps of our approach
in detail.

(1)

Initial Sampling

(2)

Compute Change Point
Likelihoods

(for each configuration)

(3)

Associate Change
Points and Configuration

Options

(4) Acquire New Measurements

Acquire Commits... Acquire
Configurations...

(5)

Update Solution Cache &
Check Stoppage Criteria

Figure 3: Overview of our approach: 1○ Selecting training
data across configuration space and version history, 2○ esti-
mating the change point probability distribution per config-
uration, 3○ estimating change points as candidate solutions,
4○ adaptively augmenting the training set, and 5○ updating
the solution cache and evaluating termination criteria.

3.1 Initialization and Sampling
The first step of our approach is to select a sample set of perfor-
mance measurements. We select a relatively small, but fixed number
of configurations, 𝑛configurations. For each configuration, we select
a fixed percentage of commits, 𝑟commits, and assess their respective
performance. The initial sample set in this setup is kept small and
may not represent all relationships between configuration options
and performance evolution. The rationale is that, to make our ap-
proach more scalable, we explore the combined search space and
refine the temporal and spatial (i.e., configuration-related) resolu-
tion where necessary.
For the initial configuration sampling, we use distance-based sam-
pling [14], which is a form of random sampling that strives for
uniform coverage at low cost. In general, uniform random sampling
of configurations is considered to yield the most representative cov-
erage of a configuration space, but it is prohibitively expensive for
real-world configurable software systems with constraints among
options (i.e., not all combinations of configuration options are valid
configurations). Distance-based sampling addresses this problem
by demanding the number of selected options to be uniformly dis-
tributed to avoid local concentration.
The key idea of our algorithm to iteratively augment the training set
addresses two issues: (1) The configuration space exhibits exponen-
tial complexity. (2) Interactions of higher degrees (i.e., interactions
involving two or more configuration options) are possible, but rela-
tively rare among configurable software systems [15, 16]. Therefore,
instead of exhaustive sampling with respect interaction degrees, we
iteratively add new configurations to our training sample to search
previously undetected influences of options and interactions.
For each configuration in our sample set, the algorithm selects a
small number of commits (e.g., one or two percent of all commits)
for which it measures performance. The rationale of having only
few commits is that, given a relatively large number of configu-
rations, many similar configurations will exhibit change points
of the same cause. We mitigate the poor temporal resolution by
selecting the commits independently. Compared to a fixed sample
of commits across all configurations, this way, each commit is more
likely to be measured, at least, once. That is, we obtain change-point
estimations for related configurations from independent training

Identifying Software Performance Changes Across Variants and Versions ASE ’20, September 21–25, 2020, Virtual Event, Australia

samples. For instance, consider the third change point in the intro-
ductory DBMS example: At commit 80, all configurations exhibit a
performance change. If we sampled two commits, 70 and 90, for all
configurations, all that wewould learn is that there is a change point
somewhere between these two versions. Instead, our approach sam-
ples the commits 70 and 90 for the first two configurations, and
commits 75 and 95, as well as 65 and 85 for the remaining two con-
figurations respectively. Our best guess then is to assume a change
point between commits 75 and 85 since all measurements agree
with this conclusion. This way, we increase the temporal resolution
while keeping the overall number of performance measurements
manageable.

3.2 Iteration: Change Point Likelihoods
For each configuration in our sample set, we estimate the proba-
bility of each commit being a change point for the corresponding
configuration. To this end, we need to define what counts as a
performance change. We use a user-defined threshold, which dis-
criminates between measurement noise and performance changes
such that different application scenarios as well as system-specific
peculiarities can be accounted for. If the performance difference for
a configuration between two commits exceeds this threshold, we
count this difference as a performance change. Although manually
defined, there are several possibilities to estimate this threshold au-
tomatically. Prior to learning, the measurement variation obtained
by the repeating measurements for the same configuration multiple
times can be estimated and employed as a minimum threshold. In
addition, a relative or absolute threshold can be derived from the
application context, such as a ten percent or ten seconds increase
in execution time.
We encode the threshold in a step function 𝜃𝜏 :

𝜃𝜏 (𝑎, 𝑏) =
{
0, | 𝜋 (𝑎) − 𝜋 (𝑏) | < 𝜏

1, | 𝜋 (𝑎) − 𝜋 (𝑏) | ≥ 𝜏
𝑎, 𝑏 ∈ 𝑉 , 𝜏 ∈ R (3)

The function evaluates to 1 if the difference between performance
𝜋𝑎 and 𝜋𝑏 of commits 𝑎 and 𝑏 exceeds the threshold 𝜏 and 0 if not.
Given a pair of commits, we can now decide whether performance
has changed somewhere between the two commits. However, not
each pair of commits is equally informative. The farther the distance
between two commits, the lesser the information we can obtain, as
there might be several change points in between. In addition, the
effect of one change point between two commits can be shadowed
by another change point in the opposite direction, such as that one
change point increases the execution time and a second decreases
the execution time again. We define the influence of each pair on
our estimation by weighing each pair inversely proportionally to
the distance between two commits.

𝑝 ′(𝑣) =
∑

{𝑎∈𝑉 | 𝑎<𝑣 }

∑
{𝑏∈𝑉 | 𝑏>𝑣 }

𝜃𝜏 (𝑎, 𝑏)︸ ︷︷ ︸
step function

· (𝑎 − 𝑏)−2︸ ︷︷ ︸
weighting term

(4)

𝑝 (𝑣) = 𝑝 ′(𝑣)∑𝑛
𝑖=1 𝑝

′(𝑖) (5)

For a given commit 𝑣 ∈ 𝑉 , we can now estimate a change point
probability by comparing each pair of commits before and after
𝑣 . This is illustrated in Equation 4, where 𝑝 ′(𝑣) is the sum of the

0 200 400 600 800 1000
time

0.000

0.002

0.004

0.006

p(
v)

all versions
approximation
sample measurements

0 200 400 600 800 1000
Time

2

4

6

Pe
rfo

rm
an

ce

Figure 4: Performance history with 1, 000 commits and two
change points (bottom); Ground truth and approximated
change point likelihood 𝑝 (𝑣) (top)

influence times the performance change indicator 𝜃𝜏 for each pair
of commits. In practice, however, measuring all commits 𝑉 is unde-
sirable. Therefore, we sample a small number of commits 𝑇 ⊂ 𝑉

instead and compare each pair of commits before and after 𝑣 to ob-
tain an approximation of 𝑝 ′(𝑣). Last, to obtain a proper probability
distribution, we need to normalize each value 𝑝 ′(𝑣), as illustrated
in Equation 5. Consequently, we obtain an approximation 𝑝 (𝑣) that
represents a probability distribution with

∫ |𝑉 |
0 𝑝 (𝑣) 𝑑 𝑣 = 1. The

resulting probability distribution as well as its approximation are
illustrated in Figure 4, where each change point corresponds to a
peak in the probability distribution.

3.3 Iteration: Assembling a Candidate Solution
We now have change point likelihood estimations for all config-
urations in our sample set. Different configuration options and
interactions contribute to this change point likelihood as we have
seen in the introductory DBMS example. In the following step, we
estimate the coordinates (pair of commit and configuration option)
of likely change points. So, we first estimate candidate commits
based on the change point likelihood from the previous step. Then,
we associate these candidate commits with configuration options.

3.3.1 Candidate Commits. For each configuration, we compute
an approximation of the change point likelihood over commits (cf.
Figure 4) to identify local maxima (peaks). We select such peaks
under the condition that the peak change point likelihood is greater
than a threshold:

𝑡CPL =
1
|𝑉 | + 𝑁CPL ·

√
1
|𝑉 | ·

∑
𝑣∈𝑉

(1
|𝑉 | − 𝑝 ′(𝑣)

)2
︸ ︷︷ ︸

standard deviation of 𝑝′ (𝑣)
over all commits

(6)

The threshold 𝑡CPL is the average change point likelihood over all
commits plus a factor 𝑁CPL times its corresponding standard de-
viation over all commits. The factor 𝑁CPL (default value: 3) allows

ASE ’20, September 21–25, 2020, Virtual Event, Australia Stefan Mühlbauer, Sven Apel, and Norbert Siegmund

us to filter peaks that do not stand out enough and might be false
positives. The greater 𝑁CPL is, the stricter the filtering of peaks.
That is, for each configuration in our learning set, we obtain a
set of commits (configuration-dependent candidate commits) that
represent possible change points. To reduce variation among the
obtained commits, we cluster the commits using kernel density esti-
mation (KDE). The purpose of KDE in our setting is to estimate the
probability mass function of whether a commit is a change point.
The local maxima of this KDE, subsequently, represent our set of
candidate commits. Note that, if two distinct change points are
almost coincident commit-wise, they can be mistakenly identified
by our approach as one change point that, subsequently, can be as-
sociated with configuration options belonging to the two individual
change points.

3.3.2 Associating Commits and Options. For each candidate com-
mit that we obtain, we want to know which configuration op-
tions are most likely responsible for the respective peak. Hence,
we estimate the influence of each configuration option on the
change point likelihood. The core idea is to train a linear model
𝑀 : [0, 1]𝑛options → [0, 1], in which each configuration option’s
coefficient corresponds to its influence.
Instead of an ordinary linear regression model, we use a linear
model that implements the 𝐿1 norm for regularization (LASSO). In
addition to the least squares penalty, this technique favors solu-
tions with more parameters coefficients set to zero. This technique
is commonly used to help prevent over-fitting, decrease model
complexity, and eliminate non-influential model parameters (con-
figuration options, in our case) [30]. The effect of 𝐿1 regularization
in a model is specified by an additional hyper-parameter 𝜆. We tune
this hyper-parameter using threefold cross-validation.
For each model (for a candidate commit), we consider a configura-
tion option as associated with a commit, if its influence 𝑐𝑖 (i.e., the
absolute value of its coefficient) is greater than a threshold:

𝑡influence =
1

𝑛options
+ 𝑁influence ·

√
1

𝑛options
·
∑(1

𝑛options
− 𝑐𝑖

)2
︸ ︷︷ ︸

standard deviation of 𝑐𝑖
(7)

We consider options as influential, if their estimated influence is
greater than if each configuration option were equally influential.
In addition, we add to this threshold the standard deviation of the
influences of all configuration options. In theory, our regression
model eliminates non-influential configuration options. If more
than configuration option is influential (i.e., two or more options
interact) their respective estimated influence should be roughly
equal. To avoid false positives in he estimation of influential config-
uration options, we use the standard deviation and the parameter
𝑁influence (default value: 1) to filter only estimations with low vari-
ation among the estimated influences. If the intercept of a model
(i.e., the coefficient not related to any regression model variable)
exceeds this threshold, we consider this candidate commit a change
point that is not configuration-dependent (i.e., it affects all config-
urations). The outcome is a list of associations: pairs of candidate
commits and (likely) influential configuration options.

3.4 Iteration: Acquiring New Measurements
The last step in each iteration is the acquisition of new measure-
ments. We extend the existing sample with both new commits
for configurations already sampled as well for an additional set
of new configurations. The role of including new data is twofold.
First, previously assessed configurations or commits might not have
captured unseen performance shifts. Therefore, a portion of new
data is acquired without further knowledge (exploration). Second, a
candidate solution might over- or under-approximate associations
and can contribute to the algorithm’s overall estimation. Therefore,
sampling the second portion of data is guided by exploiting each
iteration’s candidate solution (exploitation).

3.4.1 Acquiring Commits. The exploration of new commits follows
a simple rule: For each configuration, we sample a number commits
that exhibit the maximum distance to already sampled commits.
The exploitation of an iteration’s candidate solution employs the
estimation of a configuration’s change point likelihood (cf. Sec-
tion 3.2). We randomly sample among those commits for which the
change point likelihood indicates a possible change point, but is
not confident. In detail, we select a number of commits for which
the change point likelihood is greater than the average (1 divided
by the number of commits), but smaller than the average plus the
standard deviation of change point likelihood over all commits. By
sampling in this range of commits, we incorporate existing knowl-
edge (above average likelihood), but control over-fitting by only
sampling commits with maximum likelihood.

3.4.2 Acquiring Configurations. The exploration of new configu-
rations is similar to the initial sample selection strategy (distance-
based sampling) described in Section 3.1. We select a constant
number of configurations (default value: 75) for exploration.
The exploitation part of acquiring new configurations is guided by
the current set of candidate solutions. Each candidate solution de-
scribes a change point and associated configuration options. These
associated options can be a correct assignment or be an over- or
under-approximation. In the latter cases, too many or too few op-
tions are associated with a change point. We exploit the existing
candidate solutions in a way that addresses both under- as well
as over-approximation. We select new configurations using a con-
straint solver and therefore can specify additional constraints. In
the case of under-approximation, too few relevant configuration op-
tions are associated with a change point. Given a candidate change
point, we require that all associated options keep enabled and that
50 % of all not-associated options can be selected. This way, we keep
already associated options, but allow new configuration options
to be included. Likewise, in the case of over-approximation, too
many irrelevant configuration options are associated with a change
point. Given a candidate change point, we require that variation
only occurs among 50 % of the options associated with the change
point. That is, we can remove up to 50% of configuration options
and narrow down the selection of relevant configuration options.
We limit the total number of new measurements per iteration with
a budget 𝑛measurements. This budget is split between acquisition for
commits and configurations with a factor 𝑛commits_to_configs = 0.5.
The measurement budget for commit acquisition is further split be-
tween exploration and exploitation with a factor 𝑛commits_explore =

Identifying Software Performance Changes Across Variants and Versions ASE ’20, September 21–25, 2020, Virtual Event, Australia

0.5. That is, initially, 50 % of the budget are used for configuration
acquisition and 25% for commit exploration and exploitation, re-
spectively. As the algorithm proceeds, we want to shift the budget
from an equal split between exploration and exploitation towards
exploitation. The rationale is that in early iterations, we focus on
identifying change points in the configurations’ performance histo-
ries, whereas, in later iterations, our approach focuses on pinpoint-
ing configuration options to change points. Therefore, we multiply
the factor 𝑛commits_to_configs by 0.95 and the factor 𝑛commits_explore
by 0.9. That is, the algorithm shifts (1) towards sampling configura-
tions in depth and (2) focuses on exploitation in later iterations. The
rationale is that we consider pinpointing commit to configuration
options a more difficult task than finding performance-changing
commits.

3.5 Solution Cache and Stoppage Criteria
After each iteration, we insert the candidate solution in a solution
cache. This solution cache is a mapping of associations to weights
indicating a degree of confidence. The rationale is that, if an associ-
ation is included repeatedly in an iteration’s candidate solution, it
is likely a true positive (i.e., a true change point). By contrast, an
association that is included only a few times is likely a false posi-
tive and can be discarded. We update the solution cache after each
iteration in three steps. First, all associations that are either newly
included or have been seen before have their weight increased by
a constant factor 𝑤increase = 1. Our default value for 𝑘 is set to 3.
Second, the weights of all associations in the solution cache are
multiplied by a constant decrease factor 𝑒decrease ∈]0, 1[. We set
the default value for 𝑒decrease to 0.3. Last, we remove all associations
from the solution cache if their weight is smaller than a threshold
𝑡drop. We define 𝑡drop as the weight an association exhibits if it
is included once in a candidate solution but not in 𝑘 ∈ N succes-
sive iterations. Effectively, value for 𝑡drop is (𝑒decrease)𝑘 since the
increment𝑤increase is 1.
Similarly to the conditions for dropping an association from the
solution cache, the algorithm terminates if no association is dropped
from the solution cache for 𝑘 iterations in a row and all association’s
weights are greater than 1. As a fallback termination criterion, the
algorithm also terminates if a user-specified maximum number of
measurements𝑚max or number of iterations 𝑖max is reached.

4 EVALUATION
When evaluating our approach with a single experiment, we face a
conflict between internal and external validity, a problem that is
prevalent in software engineering research [27]. To assure internal
validity, the assessment of our approach with respect to accuracy
requires prior knowledge of change points as ground truth, which
is hardly obtainable as this would require exhaustive performance
measurements across commits and configurations. Moreover, to as-
sure external validity, we require a great degree of variation among
subject systems (e.g., number of commits and options, domains of
subject systems, etc.) to learn about scalability and sensitivity. So,
for a fair assessment, we require not only a large set of systems,
but also the respective ground truth performance measurements.

The caveat is that it is practically impossible to conduct such ex-
haustive performance measurements in the large, which was the
main reason for proposing our approach in the first place.
To address this dilemma in our evaluation, we conduct two sepa-
rate experiments, based on synthetic and real-world performance
measurements. The first set of experiments uses synthesized per-
formance data providing a controlled experimental setup to assess
scalability, accuracy, and efficiency at low cost while simultaneously
being able to simulate different scenarios by varying the number of
change points and affected configurations in the synthesized data.
The second sett of experiments uses a batch of real-world perfor-
mance measurements of three software systems as a necessarily
incomplete ground truth to explore whether our algorithm can be
practically applied to real-world systems.
With this split experiment setup, we aim at answering the following
two research questions:
RQ1: Can we accurately and efficiently identify configuration-de-

pendent performance change points?
RQ2: Can we practically identify configuration-dependent change

points in a real-world setting?

4.1 Controlled Experiment Setup
We break down the research question RQ1 into three objectives to
study the influence of the size of configurable software systems,
change point properties, and measurement effort.

4.1.1 Influence of System Size. We are interested in how the size
of a configurable software system influences the accuracy and ef-
ficiency of our approach. To answer this question, we synthesize
performance data for systems of varying size in terms of number of
configuration options and the number of commits. For the number
of configurations 𝑛options, we selected a range that resembles con-
figurable software systems studied in previous work [19]; likewise,
we selected a range for the number of commits 𝑛commits to cover
young as well as mature software systems. We present the ranges
of the two size parameters in Table 1.

4.1.2 Influence of Change Point Properties. A change point may
correspond to a single option or an interaction among multiple op-
tions. Furthermore, two change points might be only a few or many
commits apart. Therefore, for the synthesized software systems, we
vary both the total number of change points as well as the degree of
interactions that a software system contains. The number of change
points ranges from one to ten, reflecting findings of a recent study
about performance change points [19]. We sample the degree of
interactions from a geometric distribution (the discrete form of an
exponential distribution), which is specified by a single parameter
𝑝 between 0 and 1, henceforth called 𝑝interaction. The greater the
value of 𝑝interaction, the less likely we generate higher-order inter-
actions. The rationale of this setting stems from previous empirical
work [16, 17] that has shown that, by far, most performance issues
are related to only single options, or interactions of low degree. We
present the specific ranges of the two parameters in Table 1.

4.1.3 Influence ofMeasurement Effort. Wewant to understand how
the invested measurement effort affects accuracy and efficiency.
An initial sample set chosen too small or large might fail to cover
change points to exploit or waste measurement effort. In addition,

ASE ’20, September 21–25, 2020, Virtual Event, Australia Stefan Mühlbauer, Sven Apel, and Norbert Siegmund

Table 1: Parameter ranges for the synthetic experiment.

Parameter Range

Synthesized
Systems

𝑛options 8, 16, 32, 64
𝑛commits 1000, 2500
𝑛changepoints 1, 2, 5, 10
𝑝interaction 0.5, 0.7, 0.9

Initialization
𝑁initial 2, 5, 10
𝑛measurements 100, 200, 500

the number of measurements per iteration can be selected irrespec-
tive of the software system size, resulting in too few measurements
per configuration, and, thus failing to identify change points. That
is, for the initialization of our algorithm, we vary both the initial
number of configurations and the number of measurements per
iteration. We select the number of configurations in the initial sam-
ple set as 𝑛changepoints times the number of configuration options,
and the number of measurements per iteration from a range of
three values. We fix the percentage of commits per configuration
at 3 percent, which has been a promising sampling rate in previous
work [19]. We present the ranges of the two parameters in Table 1.

4.1.4 Operationalization. We synthesize performance data by ini-
tializing each option with a randomly selected influence (cf. coeffi-
cients from Equation 1) from the range [−1, 1]. In addition, we ran-
domly select a number of interactions among options to introduce
interactions of varying degrees. The interaction degree (i.e., number
of selected configuration options) follows a geometric distribution.
We assign to each interaction a real-valued influence uniformly
from the range [−1, 1]. We define six parameter ranges (cf. Table 1)
for the number of configuration options 𝑛options, the number of
commits 𝑛commits, the number of change points 𝑛changepoints, the
parameter for the geometric distribution of interaction degrees
𝑝interaction, a factor 𝑁initial, and the number of measurements per
iteration 𝑛measurements. The initial number of configurations is the
product of 𝑛options and 𝑁initial. We construct the Cartesian product
of all parameter ranges and specify a maximum number of 30 itera-
tions. In addition, we synthesize for each parameter combination
in the parameter grid five different software systems by employing
different seeds such that no seed is used twice. The total number of
experiments with seeds is 10, 800.
For each parameter combination, we record the number of mea-
surements at each iteration, the required number of iterations for
termination, as well as each iteration’s candidate solution. To as-
sess the accuracy of a parameter combination’s outcome (as well
as of intermediate iterations), we use the F1 score, a combination
of precision and recall. Precision refers to the fraction of correctly
identified associations (true positives) among the associations of the
retrieved (candidate) solution. Recall is the fraction of total number
of the relevant associations (i.e., those we intend to find). The F1
score is the harmonic mean of precision (𝑃) and recall (𝑅), defined
as F1 = 2 · 𝑃 ·𝑅

𝑃+𝑅 . In our context, we defined a correctly identified
change point when a commits falls in a narrow 5 commit interval
from the ground truth. To assess efficiency, we employ the required
number of iterations for termination and required measurements

Table 2: Project characteristics of subject systems.

Name #Options #Commits

xz 16 1193
lrzip 9 743
oggenc 12 935

in relation to the F1 score as proxy metrics. The idea is that we
consider an experiment run as efficient if it provides an accurate
change point estimation with few iterations or few measurements.

4.2 Real-World Experiment Setup
In the second experiment, we evaluate our approach from a prac-
titioner’s perspective, where the properties and whereabouts of
change points are unknown. By means of three real-world con-
figurable software systems, we investigate in particular practi-
cal challenges and check whether our algorithm is able to detect
performance-relevant commits with respect to configuration op-
tions.

4.2.1 Exploratory Pre-Study. Of course, we cannot obtain complete
ground truth data of our selected subject systems since the search
space is exponential in the number of configuration options. How-
ever, to provide some context for interpretation of our results, we
measured performance for a representative subset of configurations
across all commits. To be precise, we sampled configurations using
feature-wise, negative feature-wise, pair-wise, and also uniform
random sampling strategies, which have been successfully applied
to learn performance influences before [1]. We sampled as many
random configurations as there are valid configurations sampled
with pairwise sampling, which amounts to 79 configurations for
lrzip, 152 for oggenc, and 161 for xz. An overview of the three
software systems is given in Table 2.
As a workload for the file compression tools lrzip and xz, we used
the Silesia corpus, which contains over 200 MB of files of different
types. It was designed to compare different file compression algo-
rithms and tools and has been used in previous studies [19]. For the
audio transcoder oggenc, we encoded a raw WAVE audio file of
over 60 MB from the Wikimedia Commons collection. For all three
subject systems, we assess performance by reporting the execution
time.
All measurements were conducted on clusters of Ubuntu machines
with Intel Core 2 Quad CPUs (2.83 GHz) and 8 GB of RAM (xz
and lrzip) and 16 GB of RAM (oggenc). To mitigate measurement
bias, we repeated each measurement five times. The coefficient of
variation (the ratio of standard deviation and the arithmetic mean)
across all machines was well below ten percent. For commits that
did not build, we reported the performance measurement of the
most recent commit that did not fail to build.

4.2.2 Operationalization. For the actual experiment, we apply our
approach on the performance measurements obtained in the pre-
study, with a few adjustments. First, although our study provides a
broad and representative sample set of configurations, we cannot
arbitrarily sample valid configurations for a couple of reasons. In
particular, these include the commits that do not build as well as

Identifying Software Performance Changes Across Variants and Versions ASE ’20, September 21–25, 2020, Virtual Event, Australia

hidden configuration options and constraints. While we collected
configuration options and constraints thoroughly from documenta-
tion artifacts, we cannot assure that our selection is complete. We
discuss this limitation further in Section 5.
Instead, when acquiring new configurations (cf. Section 3.4), we
select configurations from our batch of measurements that (1) have
not been used already by our algorithm, and (2) are "closest" to the
requested configuration (i.e., with the minimal Hamming distance).
The rationale is that this allows us to quickly run rapid repetitions
with different initializations of our algorithm. Since we employ
multiple sampling strategies in our pre-study, we are confident
that our broad batch of measurements is representative. Second,
we set the number of measurements per iteration 𝑛measurements to
300. Third, as an initial sample set, we randomly sample 5 config-
urations from our pre-study set. Last, we initialize our approach
with a relative performance threshold 𝜃𝜏 (cf. Equation 3) of ten
percent. In the context of the reported relative variation among per-
formance measurements on the machines used, we consider this a
rather conservative threshold. We repeat the experiments 10 times
with different seeds to quantify the robustness of our approach
and to account for the randomness in exploring the configuration
space. We assess practicality by reporting measurement effort, num-
ber of iterations in relation to the pre-study’s results, which are
based on a vastly greater measurement budget. We qualitatively
investigate whether the detected commits and options are actu-
ally causes of performance changes. That is, we analyze commit
messages of the respective repositories for the identified commits
to find occurrences of option names or indicators of performance
changes. Moreover, we looked into the code changes (e.g., when the
commit message just states ’merge’) to rationalize about possible
performance affecting code changes.

4.3 Results
4.3.1 RQ1 (Controlled Experiment). We illustrate the results of our
first set of experiments in Figures 5a, 5b, and 5c. The vast major-
ity of experiments terminated within the limit of 30 iterations, as
shown in Figure 5b. A small portion of experiments, however, did
not meet our termination criteria (more on that below). From all
experiments that terminated in Figure 5a, we depict the F1 score
after they have terminated, that is, after their last iteration2. For
most iterations, the mean F1 score falls around or over 0.7, with
the first quartile only slightly being as low as 0.5 (at iteration 29).
In the grand scheme of things, the vast majority of experiments
terminated with reasonably high F1 score. Regarding measurement
effort, for small systems with 8 configuration options, we required
up to 50% of all possible measurements. For greater systems, the
required measurement effort was well below 1%. The high reported
measurement effort for smaller systems is due to our choice of
the measurements per iterations, which vastly over-approximates.
Since we are able handle systems with more configuration options
with similar effort, we are confident that a smaller number of mea-
surements per iteration would reduce the relative measurement
effort required substantially.

2Due to space limitations, we report precision and recall on the paper’s companion
Web site.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 281 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
Terminated at Iteration...

0.0

0.2

0.4

0.6

0.8

1.0

F1
 S

co
re

(a) F1 score of experiments terminating at different iterations.

5 10 15 20 25 30
Iterations Required for Termination

0

200

400

600

800

1000

(b) Frequency of experiments terminating at different iterations.

1 2 3 4 5 6 7 8 9 10
Max. Interaction Degree of Change Points

0.0

0.2

0.4

0.6

0.8

1.0
Ac

cu
ra

cy
 [F

1
Sc

or
e]

n_changepoints
1
2
5
10

(c) Influence of the number of change points and interaction degree
on accuracy.

Figure 5: Result for the synthetic experiment.

In Figure 5c, we decompose the reported F1 scores to learn how
the number of change points or the interaction degree influence
our approach. The x-axis shows the highest interaction degree of
change points for an experiment run. For interactions of a degree
up to 5, the F1 score is mostly above 0.5. We observe a downward
trend in the box plots: the more change points a system contained,
the less accurate our algorithm’s prediction is.
For the experiments not terminating within limit (the rightmost bar
in Figure 5b), we conducted an additional analysis. We compared
whether and how the parameter setting of Table 1 explains this non-
termination. One setting stands out as the cause for not finishing the
experiment within 30 iterations: the number of measurements per
iterations. The lower the number of measurements (𝑛measurements),
the more iterations our approach needs.

Summary (RQ1): We are able to identify and pinpoint config-
uration-dependent performance change points accurately and
at scale. The number of measurements per iteration is the main
factor influencing how fast our algorithm terminates.

4.3.2 RQ2 (Pre-Study). For our three subject systems, we have
manually identified a number of commits, for which performance
changed substantially. We have found 7 change points for lrzip,

ASE ’20, September 21–25, 2020, Virtual Event, Australia Stefan Mühlbauer, Sven Apel, and Norbert Siegmund

2 for xz, and 2 for oggenc. For lrzip, 5 of 7, and for xz, 2 of 2
performance changes affect multiple configurations. By contrast, 2
change points for lrzip affect all measured configurations. All of the
measured configurations for oggenc show a shift in performance.
That is, the identified change points for oggenc as well as the
two for lrzip are likely not configuration-dependent. To further
understand possible relations of change points with configuration
options, we searched in commit messages for clues. We discuss two
notable findings.
For xz, the commit messages for both change points referenced
three particular configuration options (hc3, hc4, MatchFinder). For
lrzip, one commit message references configuration option (zpac).
Four of seven commit messages contained keywords relating to
performance. Two examples are the following:

"liblzma: Adjust default depth calculation for HC3

and HC4. [...]" (revision 626 of xz)

"Use ffsl for a faster lesser_bitness function."
(revision 521 of lrzip)

Of the remaining 6 commits for lrzip, we identified one as a suc-
cessor to a merge commit. Within the related pull request3, we
discovered that the configuration lzma was set to be ignored. This
plausibly corresponds to an observed performance shift for con-
figurations with this option enabled. However, this orphan config-
uration option results in an inconsistent configuration interface,
which we discovered with our approach.

4.3.3 RQ2 (Real-World Performance Data). Across the repetitions
of our experiments, we found a number of candidate solutions close
to the two change points commits for xz and oggenc, respectively,
on average after, 3 to 5 iterations. After more than five iterations,
the majority of repetitions pinpointed commits correctly within
our narrow 5 commit interval. By contrast, for lrzip, we required
up to fifteen iterations to reach this temporal precision. Note that,
for lrzip, the number of change points is more than three times
greater than for the other two software systems. In addition, three
pairs of change points are 10 commits or less apart, which led to
falsely identified commits.
The association of commits to configurability, with the exception
of oggenc, is inconclusive. For oggenc, our approach consistently
reported both change points as not configuration-related. For lrzip,
the reported associations included a variety of possible options, but
did not converge and report solutions in line with our pre-study. For
xz, the majority of association configuration options were „match
finder“ options referenced in the commit messages.
We attribute the inconclusive results for lrzip in part to the incon-
sistency of the configuration interface. For both xz and lrzip, many
configuration options are alternatives. That is, for a functionality
such as the compression algorithm, only one of the available options
can be selected. In our approach, we employ LASSO regression for
automated feature selection. This regression model might, given
only a small configuration sample, have difficulties with attributing
a change point to multiple alternative configuration options and
rather opt for one instead.

3https://github.com/ole-tange/lrzip/commit/1203a1853e892300f79da19f14aca11152b5b890

Summary (RQ2): Our approach is able to precisely link change
points to commits with real-world data. Manually associating
commits with configuration options worked in many cases,
whereas the automated analysis was inconclusive due to in-
complete data in the repositories. We observed, at least, one
inconsistency in the configuration interface of one subject sys-
tem.

5 DISCUSSION
Efficiency. Among all experiments conducted with our synthetic
setup, our approach yielded reasonable to high accuracy across
most parameter settings. A subsequent analysis of parameter set-
tings showed that our algorithm is not limited by the size of a
problem space, but rather by the number of measurements per iter-
ation. Our algorithm found multiple change points across different
parameter settings, including those with large numbers of commits
and configuration options. The vast majority of cases terminated in
early iterations with high accuracy. That is, we were able to tackle a
problem with exponential complexity (with respect to the number
of configuration options from which we can draw new measure-
ments) with a measurement budget that is linear in the number of
iterations (we used only 30) and the measurements per iteration
(between 100 and 500 measurements per iteration), respectively.
Hence, we are confident that our approach scales and can efficiently
approximate change points for large software systems. Notably, we
are able to reproduce this finding in real-world settings when iden-
tifying the temporal location of change points. For our controlled
experiment setup, we have not tuned the algorithms’ parameters to
reach optimal efficiency or accuracy. However, even without tun-
ing, we demonstrated the feasibility and efficiency of our approach.
Project-specific fine tuning of parameters may further improve the
performance of our approach.

Pinpointing Configuration Options. The synthetic setup has shown
that our algorithm can conceptually handle both time and space.
We were able to precisely identify commits for which performance
changed substantially. By contrast, we were not able to fully re-
produce this in a setting with real-world data when attempting to
pinpoint change points to configuration options, which we attribute
to missing information on and inconsistencies in the configuration
interface. Missing information in the real-world setup emphasizes
the importance of a synthetic setup to evaluate approaches such as
ours and to explore possible limitations and necessary extensions.
So, we have documented that, given a precisely identified commit,
we can link the affected files to configuration options with little
effort. In turn, given a set of code segments of a commit, match-
ing this with the overall code base has been extensively studied
before under the umbrella of feature location [9]. Inconsistencies
in the documentation of configuration options is a well known
and prevalent problem [23]. Our approach complements existing
feature location techniques with information on configuration-
dependent performance changes. In our latter experiment, instead
of directly sampling new arbitrary configurations, we used a finite
set of configurations as a proxy (cf. Section 4.2.2). This does not
reflect the original layout of our algorithm, but lets us efficiently
explore some limitations of the approach. We have learned that,
for interpreting the results of our approach, domain knowledge

https://github.com/ole-tange/lrzip/commit/1203a1853e892300f79da19f14aca11152b5b890

Identifying Software Performance Changes Across Variants and Versions ASE ’20, September 21–25, 2020, Virtual Event, Australia

is advantageous, especially, as we have identified incomplete and
inconsistent configuration interfaces as possible limiting factors.
We acknowledge that, while our approach performs well as an
automated pipeline in a controlled environment, for real-world
applications, a semi-automated setup with additional manual mea-
surement prioritization and deeper knowledge of configuration
constraints would improve the applicability of our approach.

Threats to Validity. Threats to internal validity includemeasurement
noise, which may distort change point approximation. We mitigate
this threat by repeating each measurement five times and reporting
the mean. With respect to the mean performance, the reported
variation was below 10%. For RQ2, we considered only performance
changes of, at least, 10%. Hence, we are confident that our raw data
are robust against outliers. The setup in RQ2 relies on a limited set
of previously sampled configurations instead of actively acquiring
new ones. We mitigate this limitation by selecting a broad set of
configurations in our pre-study with different sampling strategies.
We sampled as many randomly selected configurations as there
are pairs of configuration options, resulting in a reasonably high
coverage of the configuration space.
Regarding external validity, we cannot claim that we have identi-
fied all limitations possibly arising in a practical setting. However,
we selected popular software systems that are well optimized for
performance and often make use of configuration options to tune
performance. Although we have encountered possible limitations in
a practical setting, our results, in conjunction with our exhaustive
synthetic study, are reproducible, and we were able to test corner
cases and assess scalability so that we believe that our results hold
for many practical use cases.

6 RELATEDWORK
Performance-relevant Commits. Identifying performance-changing
commits is a prevalent challenge in regression testing, often apply-
ing change point detection algorithms on batches of performance
observations [2, 3]. A way to reduce testing overhead is to em-
ploy only a fraction of performance observations or to prioritize
commits. Alcocer et al. assess performance for uniformly selected
commits to estimate the risk of a performance change introduced
by unobserved commits [24, 25]. Huang et al. estimate the risk of
performance changes solely based on static analysis of individual
commits to prioritize commits for regression testing without as-
sessing performance [10]. Mühlbauer et al. use Gaussian Processes
and iterative sampling to learn performance histories with few per-
formance observations [19]. They extract performance changing
commits by applying change point detection algorithms to learned
performance histories. All of the above approaches reduce test-
ing overhead, but do not address the performance across different
configurations of software systems. Our approach incorporates
performance changes across different configurations by leveraging
similarities in related configuration’s performance histories.

Performance of Configurable Software Systems. Associating configu-
ration options and interactions with their influence on performance
is a conceptual basis for our work. There exists extensive work

on modeling configuration options as features for machine learn-
ing, such as classification and regression trees [4, 6, 20, 26], multi-
variable regression [28], and deep neural networks [7]. Predictive
models for software performance can be used to find optimal soft-
ware configurations [21]. In contrast to learning performance for
arbitrary configurations, our approach aims at finding performance
changes, and subsequently, pinpointing them to configuration op-
tions and interactions. A similar scenario to ours has been studied
by Jamshidi et al. [11–13]. Between software versions, the perfor-
mance influence of only few configuration options changes. The
authors propose two approaches for learning a transfer function
between performance models of different environments, such as
versions, based on Gaussian Processes [13] and progressive shrink-
ing the configuration space [12]. We see great potential for future
work in applying Gaussian Processes to our problem.

7 CONCLUSION
Finding optimal configurations and relevant configuration options
that influence the performance of a software system is already
challenging, but in the light of software evolution, configuration-
dependent performance changes may lurk in a potentially large
number of different versions of the system. Consequently, detecting
configuration-dependent performance changes by measuring all
configurations is often intractable in practice. We devise a novel
approach to identify configuration-dependent performance changes
with low effort. Starting from a small sample of measurements (pairs
of configurations and commits), our approach iteratively selects
new measurements along two dimensions: time and configuration
space. The selection is guided by an estimation of the likelihood that
a commit introduces a performance change as well as by identifying
configuration options that are relevant for performance, both based
on previous measurements.
To demonstrate soundness and efficiency, we applied our approach
to a synthetic data set modelling different software systems that
vary in the length of their version history and in the complexity
of their configuration space. With only few measurements, our
approach was able to accurately identify configuration-dependent
performance changes for software systems with thousands of com-
mits and millions of configurations. To demonstrate feasibility in a
practical setting, we applied our approach to performance data of
three substantial configurable software systems. Again, we were
able to detect performance changes accurately, and we even identi-
fied an inconsistency in the configuration interface of lrzip. While
pinpointing performance changes to individual configuration op-
tions was possible by hand, an automate analysis was inconclusive.
In further work, we will supplement our approach with results
from static analysis and commit messages, increasing accuracy and
providing a more holistic picture of performance behavior across
configuration space and project evolution.

8 ACKNOWLEDGMENTS
Apel’s work has been supported by the German Research Foun-
dation (DFG) under the contract AP 206/11-1. Siegmund’s work
has been supported by the DFG under the contracts SI 2171/2 and
SI 2171/3-1. We would also like to thank our reviewers for their
thoughtful comments.

ASE ’20, September 21–25, 2020, Virtual Event, Australia Stefan Mühlbauer, Sven Apel, and Norbert Siegmund

REFERENCES
[1] Juliana Alves Pereira, Mathieu Acher, Hugo Martin, and Jean-Marc Jézéquel. 2020.

Sampling Effect on Performance Prediction of Configurable Systems: A Case
Study. In Proceedings of the ACM/SPEC International Conference on Performance
Engineering (ICPE). ACM, 277–288. https://doi.org/10.1145/3358960.3379137

[2] Jürgen Cito, Dritan Suljoti, Philipp Leitner, and Schahram Dustdar. 2014. Identify-
ing Root Causes of Web Performance Degradation Using Changepoint Analysis.
In Proceedings of the International Conference onWeb Engineering (ICWE). Springer,
181–199. https://doi.org/10.5167/uzh-96073

[3] David Daly, William Brown, Henrik Ingo, Jim O’Leary, and David Bradford.
2020. Industry Paper: The Use of Change Point Detection to Identify Software
Performance Regressions in a Continuous Integration System. In Proceedings of
the ACM/SPEC International Conference on Performance Engineering (ICPE). ACM,
67–75. https://doi.org/10.1145/3358960.3375791

[4] Jianmei Guo, Krzysztof Czarnecki, Sven Apely, Norbert Siegmund, and Andrzej
Wasowski. 2013. Variability-aware Performance Prediction: A Statistical Learning
Approach. In Proceedings of the International Conference on Automated Software
Engineering (ASE). IEEE, 301–311. https://doi.org/10.1109/ASE.2013.6693089

[5] Jianmei Guo, Jules White, Guangxin Wang, Jian Li, and Yinglin Wang. 2011. A
Genetic Algorithm for Optimized Feature Selection with Resource Constraints
in Software Product Lines. Journal of Systems and Software (JSS) 84, 12 (2011),
2208–2221. https://doi.org/10.1016/j.jss.2011.06.026

[6] Jianmei Guo, Dingyu Yang, Norbert Siegmund, Sven Apel, Atrisha Sarkar, Pavel
Valov, Krzysztof Czarnecki, Andrzej Wasowski, and Huiqun Yu. 2018. Data-
efficient performance learning for configurable systems. Empirical Software
Engineering 23, 3 (2018), 1826–1867. https://doi.org/10.1007/s10664-017-9573-6

[7] Huong Ha and Hongyu Zhang. 2019. DeepPerf: Performance Prediction for
Configurable Software with Deep Sparse Neural Network. In Proceedings of
the International Conference on Software Engineering (ICSE). IEEE, 1095–1106.
https://doi.org/10.1109/ICSE.2019.00113

[8] Xue Han and Tingting Yu. 2016. An Empirical Study on Performance Bugs
for Highly Configurable Software Systems. In Proceedings of the International
Symposium on Empirical Software Engineering and Measurement (ESEM). ACM,
1–10. https://doi.org/10.1145/2961111.2962602

[9] Emily Hill, Alberto Bacchelli, Dave Binkley, Bogdan Dit, Dawn Lawrie, and Rocco
Oliveto. 2013. Which Feature Location Technique is Better?. In Proceedings of
the ACM/SPEC International Conference on Software Maintenance and Evolution
(ICMSE). IEEE, 408–411. https://doi.org/10.1109/ICSM.2013.59

[10] Peng Huang, Xiao Ma, Dongcai Shen, and Yuanyuan Zhou. 2014. Performance
Regression Testing Target Prioritization via Performance Risk Analysis. In Pro-
ceedings of the International Conference on Software Engineering (ICSE). ACM,
60–71. https://doi.org/10.1145/2568225.2568232

[11] Pooyan Jamshidi, Norbert Siegmund, Miguel Velez, Christian Kästner, Akshay
Patel, and Yuvraj Agarwal. 2017. Transfer Learning for Performance Modeling
of Configurable Systems: An Exploratory Analysis. In Proceedings of the Inter-
national Conference on Automated Software Engineering (ASE). IEEE, 497–508.
https://doi.org/10.1109/ASE.2017.8115661

[12] Pooyan Jamshidi, Miguel Velez, Christian Kästner, and Norbert Siegmund. 2018.
Learning to Sample: Exploiting Similarities across Environments to Learn Per-
formance Models for Configurable Systems. In Proceedings of the Joint Meeting
of the European Software Engineering Conference and the ACM SIGSOFT Sym-
posium on the Foundations of Software Engineering (ESEC/FSE). ACM, 71–82.
https://doi.org/10.1145/3236024.3236074

[13] Pooyan Jamshidi, Miguel Velez, Christian Kästner, Norbert Siegmund, and Prasad
Kawthekar. 2017. Transfer Learning for Improving Model Predictions in Highly
Configurable Software. In Proceedings of the International Symposium on Software
Engineering for Adaptive and Self-Managing Systems (SEAMS). IEEE, 31–41. https:
//doi.org/10.1109/SEAMS.2017.11

[14] Christian Kaltenecker, Alexander Grebhahn, Norbert Siegmund, Jianmei Guo,
and Sven Apel. 2019. Distance-based Sampling of Software Configuration Spaces.
In Proceedings of the International Conference on Software Engineering (ICSE).
IEEE, 1084–1094. https://doi.org/10.1109/ICSE.2019.00112

[15] Sergiy Kolesnikov, Norbert Siegmund, Christian Kästner, and Sven Apel. 2019.
On the Relation of Control-Flow and Performance Feature Interactions: A Case
Study. Empirical Software Engineering (ESE) 24, 4 (2019), 2410–2437. https:
//doi.org/10.1007/s10664-019-09705-w

[16] Sergiy Kolesnikov, Norbert Siegmund, Christian Kästner, Alexander Grebhahn,
and Sven Apel. 2019. Tradeoffs in Modeling Performance of Highly Configurable
Software Systems. Software and Systems Modeling (SoSyM) 18, 3 (2019), 2265–2283.
https://doi.org/10.1007/s10270-018-0662-9

[17] Flávio Medeiros, Christian Kästner, Márcio Ribeiro, Rohit Gheyi, and Sven Apel.
2016. A Comparison of 10 Sampling Algorithms for Configurable Systems. In
Proceedings of the International Conference on Software Engineering (ICSE). ACM,
643–654. https://doi.org/10.1145/2884781.2884793

[18] Ian Molyneaux. 2015. The Art of Application Performance Testing (2nd ed.).
O’Reilly, Beijing.

[19] Stefan Mühlbauer, Sven Apel, and Norbert Siegmund. 2019. Accurate Modeling
of Performance Histories for Evolving Software Systems. In Proceedings of the
International Conference on Automated Software Engineering (ASE). IEEE, 640–652.
https://doi.org/10.1109/ASE.2019.00065

[20] Vivek Nair, Tim Menzies, Norbert Siegmund, and Sven Apel. 2017. Using Bad
Learners to Find Good Configurations. In Proceedings of the Joint Meeting of the
European Software Engineering Conference and the ACM SIGSOFT Symposium
on the Foundations of Software Engineering (ESEC/FSE). ACM, 257–267. https:
//doi.org/10.1145/3106237.3106238

[21] Vivek Nair, Zhe Yu, Tim. Menzies, Norbert Siegmund, and Sven Apel. 2020.
Finding Faster Configurations Using FLASH. IEEE Transactions on Software
Engineering (TSE) 46, 7 (2020), 794–811. https://doi.org/10.1109/TSE.2018.2870895

[22] John Ousterhout. 2018. Always Measure One Level Deeper. Communications of
the ACM 61 (2018), 74–83. https://doi.org/10.1145/3213770

[23] Ariel Rabkin and Randy Katz. 2011. Static Extraction of Program Configuration
Options. In Proceedings of the International Conference on Software Engineering
(ICSE). ACM, 131–140. https://doi.org/10.1145/1985793.1985812

[24] Juan Pablo Sandoval Alcocer, Alexandre Bergel, and Marco Tulio Valente. 2016.
Learning from Source Code History to Identify Performance Failures. In Proceed-
ings of the ACM/SPEC International Conference on Performance Engineering (ICPE).
ACM, 37–48. https://doi.org/10.1145/2851553.2851571

[25] Juan Pablo Sandoval Alcocer, Alexandre Bergel, and Marco Tulio Valente. 2020.
Prioritizing Versions for Performance Regression Testing: The Pharo Case. Science
of Computer Programming 191 (2020), 102415. https://doi.org/10.1016/j.scico.
2020.102415

[26] Atri Sarkar, Jianmei Guo, Norbert Siegmund, Sven Apel, and Krzysztof Czar-
necki. 2015. Cost-Efficient Sampling for Performance Prediction of Configurable
Systems. In Proceedings of the International Conference on Automated Software
Engineering (ASE). IEEE, 342–352. https://doi.org/10.1109/ASE.2015.45

[27] Janet Siegmund, Norbert Siegmund, and Sven Apel. 2015. Views on Internal
and External Validity in Empirical Software Engineering. In Proceedings of the
International Conference on Software Engineering (ICSE). IEEE, 9–19. https:
//doi.org/10.1109/ICSE.2015.24

[28] Norbert Siegmund, Alexander Grebhahn, Sven Apel, and Christian Kästner. 2015.
Performance-Influence Models for Highly Configurable Systems. In Proceedings
of the Joint Meeting of the European Software Engineering Conference and the
ACM SIGSOFT Symposium on the Foundations of Software Engineering (ESEC/FSE).
ACM, 284–294. https://doi.org/10.1145/2786805.2786845

[29] Norbert Siegmund, Sergiy Kolesnikov, Christian Kästner, Sven Apel, Don Ba-
tory, Marko Rosenmüller, and Gunter Saake. 2012. Predicting Performance via
Automated Feature-Interaction Detection. In Proceedings of the International Con-
ference on Software Engineering (ICSE). IEEE, 167–177. https://doi.org/10.1109/
ICSE.2012.6227196

[30] Robert Tibshirani. 1996. Regression shrinkage and selection via the lasso. Journal
of the Royal Statistical Society: Series B (Methodological) 58 (1996), 267–288. https:
//doi.org/10.1111/j.2517-6161.1996.tb02080.x

[31] Jules White, Brian Dougherty, and Douglas C. Schmidt. 2009. Selecting Highly
Optimal Architectural Feature Sets with Filtered Cartesian Flattening. Journal of
Systems and Software (JSS) 82 (2009), 1268–1284. https://doi.org/10.1016/j.jss.
2009.02.011

https://doi.org/10.1145/3358960.3379137
https://doi.org/10.5167/uzh-96073
https://doi.org/10.1145/3358960.3375791
https://doi.org/10.1109/ASE.2013.6693089
https://doi.org/10.1016/j.jss.2011.06.026
https://doi.org/10.1007/s10664-017-9573-6
https://doi.org/10.1109/ICSE.2019.00113
https://doi.org/10.1145/2961111.2962602
https://doi.org/10.1109/ICSM.2013.59
https://doi.org/10.1145/2568225.2568232
https://doi.org/10.1109/ASE.2017.8115661
https://doi.org/10.1145/3236024.3236074
https://doi.org/10.1109/SEAMS.2017.11
https://doi.org/10.1109/SEAMS.2017.11
https://doi.org/10.1109/ICSE.2019.00112
https://doi.org/10.1007/s10664-019-09705-w
https://doi.org/10.1007/s10664-019-09705-w
https://doi.org/10.1007/s10270-018-0662-9
https://doi.org/10.1145/2884781.2884793
https://doi.org/10.1109/ASE.2019.00065
https://doi.org/10.1145/3106237.3106238
https://doi.org/10.1145/3106237.3106238
https://doi.org/10.1109/TSE.2018.2870895
https://doi.org/10.1145/3213770
https://doi.org/10.1145/1985793.1985812
https://doi.org/10.1145/2851553.2851571
https://doi.org/10.1016/j.scico.2020.102415
https://doi.org/10.1016/j.scico.2020.102415
https://doi.org/10.1109/ASE.2015.45
https://doi.org/10.1109/ICSE.2015.24
https://doi.org/10.1109/ICSE.2015.24
https://doi.org/10.1145/2786805.2786845
https://doi.org/10.1109/ICSE.2012.6227196
https://doi.org/10.1109/ICSE.2012.6227196
https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
https://doi.org/10.1016/j.jss.2009.02.011
https://doi.org/10.1016/j.jss.2009.02.011

	Abstract
	1 Introduction
	2 Configuration-Dependent Change Points
	2.1 Performance-Influence Models
	2.2 Evolution of Performance Influences
	2.3 Taming Complexity

	3 An algorithm for change point detection
	3.1 Initialization and Sampling
	3.2 Iteration: Change Point Likelihoods
	3.3 Iteration: Assembling a Candidate Solution
	3.4 Iteration: Acquiring New Measurements
	3.5 Solution Cache and Stoppage Criteria

	4 Evaluation
	4.1 Controlled Experiment Setup
	4.2 Real-World Experiment Setup
	4.3 Results

	5 Discussion
	6 Related Work
	7 Conclusion
	8 Acknowledgments
	References

