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Abstract—Today, many software systems are configurable with
conditional compilation. Just like any software system, config-
urable systems need to be refactored in their evolution, but
their inherent variability induces an additional dimension of
complexity that is not addressed well by current academic and
industrial refactoring engines. To improve the state of the art,
we propose a variability-aware refactoring approach that relies
on a canonical variability representation and recent work on
variability-aware analysis. The goal is to preserve the behavior
of all variants of a configurable system, without compromising
general applicability and scalability. To demonstrate practicality,
we developed MORPHEUS, a sound, variability-aware refactoring
engine for C code with preprocessor directives. We applied
MORPHEUS to three substantial real-world systems (BUSYBOX,
OPENSSL, and SQLITE) showing that it scales reasonably well,
despite of its heavy reliance on satisfiability solvers. By extending
a standard approach of testing refactoring engines with support
for variability, we provide evidence for the correctness of the
refactorings implemented.

I. INTRODUCTION

Today, many software systems are configurable to support
a variety of requirements and hardware platforms. A common
mechanism to implement configurable systems is conditional
compilation, with the C preprocessor (CPP) as its most
prominent and widely used tool. With CPP, programmers
annotate source code with preprocessor directives (e.g., #ifdef
WIN32) to include or exclude the annotated code conditionally
according to the selection or deselection of a configuration
option (e.g., WIN32) before compilation.

As most software systems, configurable systems evolve.
Refactoring is an important technique to governing software
evolution [41]. While refactoring has been studied thoroughly
in academia and proved successful in practice [41], the
variability of configurable systems adds a new dimension of
complexity that has not been tamed so far. A key challenge
is to ensure behavior preservation not only of a single system,
but of all system variants that can possibly be derived from a
configurable system. This turns out to be problematic because
of the possibly huge configuration space.

Existing refactoring approaches and tools use heuristics to
reason about variability (which does not guarantee behavior
preservation) [21], [46], employ a brute-force strategy to
process all variants individually (which does not scale
to realistic systems) [60], [61], [56], or limit the use of
variability (which makes many systems unrefactorable) [39],
[7], [25], [47]. To make matters worse, state-of-the-art
refactoring engines of widely used IDEs, such as ECLIPSE

and XCODE, even produce erroneous code when applying
standard refactorings in the presence of preprocessor directives
(e.g., RENAME IDENTIFIER or EXTRACT FUNCTION).

We strive for a refactoring solution that is sound (i.e.,
preserves the behavior of all variants), that is general (i.e.,
does not rule out large sets of configurable systems), and that
is scalable (i.e., scales to systems of substantial size—hundred
thousands of lines of code). The key idea is to build the
refactoring engine on a canonical representation of the
configurable system that includes all variability [30], and to
use variability-aware static analysis [13], [10], [31], [37] and
transformation to implement refactorings.

To this end, we build on recent developments of variational
data structures [18], [62] and variability-aware analysis tech-
niques [37], which make variability-aware refactoring possible
in the first place. While there have been some proposals for
variability-aware refactoring [50], [51], [52]—all based on
academic languages and tools—we go beyond that in supporting
the full power of C and CPP. We developed the refactoring
engine MORPHEUS that, exemplary, implements the three stan-
dard refactorings RENAME IDENTIFIER, EXTRACT FUNCTION,
and INLINE FUNCTION. We applied MORPHEUS to the three
substantial, real-world systems BUSYBOX, OPENSSL, and
SQLITE to assess its correctness and scalability. Although the
engine relies internally on solving many satisfiability problems,
it scales far beyond state-of-the-art tools (that guarantee behav-
ior preservation), which was not to be expected: The response
time of a standard refactoring is less than a second, on average.
For each subject system, we used a substantial test suite to
provide evidence for the correctness of our refactoring engine.
For this purpose, we extended a standard approach of testing
refactoring engines [16], [24], [54] with support for variability.

In summary, we make the following contributions:
• We characterize the problem of refactoring configurable

systems and discuss the shortcomings of existing refac-
toring approaches from academia and practice.

• We provide specifications of three variability-aware refac-
torings based on the three standard refactorings RE-
NAMING IDENTIFIER, EXTRACT FUNCTION, and INLINE
FUNCTION. The specifications rely on variational data
structures and variability-aware analysis.

• We offer a tool, called MORPHEUS, for variability-
aware refactoring of C code with preprocessor directives,
supporting the three refactorings we specified. MORPHEUS
has three desirable properties. First, MORPHEUS is sound:
It preserves the behavior of all variants of a given



configurable system, as it relies not on heuristics but on a
precise and efficient variability representation. Second, it
is general and can principally be applied to any C program
with preprocessor directives. Third, it is scalable, as it
uses variability-aware analysis to take advantage of the
similarities of variants.

• We apply MORPHEUS to three substantial, real-world sys-
tems: BUSYBOX, OPENSSL, and SQLITE. MORPHEUS
performs reasonably well in all three case studies; the
response time of a standard refactoring is less than a
second, on average.

• We use an extensive test suite to provide evidence that
MORPHEUS operates correctly. To this end, we extend
a standard approach of testing refactoring engines [16],
[24], [54] with support for variability.

• We discuss the merits and perspectives of variability-aware
refactoring based on the experience we gained.

MORPHEUS, the subject systems, and all experimental data are
available on the project’s Web site: http://fosd.net/morpheus/ .

II. STATE OF THE ART

Before we introduce our approach of variability-aware
refactoring, we review the refactoring capabilities of state-
of-the-art development environments for C. In particular, we
outline their operation principles and discuss shortcomings
in handling preprocessor directives. However, we start with
explaining the terminology that we use throughout the paper.
Refactoring is “the process of changing a software system in
such a way that it does not alter the external behavior of the
code yet improves its internal structure” [20]. Refactorings
employed by developers usually follow a set of refactoring
patterns, such as RENAMING IDENTIFIER or EXTRACT
FUNCTION [20]. A refactoring engine implements these
patterns as (semi-)automatic code transformations. We call the
application (including preparation and execution) of a particular
pattern within a refactoring engine a refactoring task. If it is
clear from the context, we simply use the term refactoring.

Next, we review a number of publicly available IDEs
for C and their refactoring engines, including commercial
tools, open-source tools, and research prototypes. Note that
most development environments lack a refactoring engine and
provide only a simple textual search-and-replace functionality.
This kind of functionality is barely a compensation for a missing
refactoring engine and only of limited usability, even for simple
refactoring patterns such as RENAMING IDENTIFIER. Therefore,
we omit them in our discussion. Table I summarizes the findings
of our investigation of refactoring engines and their capabilities.

Existing refactoring engines follow one of four operation
principles: No variability support, variant-based, disciplined
subset, and heuristics.

No Variability Support: Commercial refactoring tools,
such as ECLIPSE and XCODE, provide a set of basic
refactorings, including RENAMING IDENTIFIER, EXTRACT
FUNCTION, and INLINE FUNCTION, which are usually not
variability-aware. To handle variability induced by preprocessor
directives, these tools evaluate CPP directives implicitly by

using default values of the configurable system’s project setup.
Both ECLIPSE and XCODE basically work on only a single
default variant (one of possibly billions). In practice, this can
easily lead to errors. For example, in Figure 1, we depict
the application of two refactorings: RENAMING IDENTIFIER
in XCODE and EXTRACT FUNCTION in ECLIPSE. We were
able to apply both refactorings without any warning from the
refactoring engines. Unfortunately, after the application, the
transformed code contains errors for some system variants. As
for RENAMING IDENTIFIER, not all depending identifiers are
renamed, causing a compilation error if a particular variant is
compiled (variant A in Figure 1c). As for EXTRACT FUNCTION,
after the selection and extraction of a set of statements, the
resulting code compiles but has an altered behavior due to
a change in the statement order (Figure 1d vs Figure 1e).

Variant-based: Some refactoring engines do not handle
variability directly [60], [55], [56], [61], but employ a
variant-based approach. That is, they generate all system
variants that are affected by a refactoring, apply a particular
refactoring task to each variant independently, and propagate
the result back to the variable code. To this end, a developer
has to specify one or more configurations, which serve as
an input for the generation of system variants. Even though
the specification process is sometimes supported by a tool,
a major drawback is that specifying system configurations
remains a tedious and error prone task. Furthermore, errors
in the specification process may easily lead to incorrect code.

The variant-based approach rests on two assumptions. First,
a system’s number of valid configurations is often low, thus
configuration specification can be handled manually. Second,
the complexity induced by #ifdef directives cannot be handled
by refactoring algorithms in practice. In particular, checking the
satisfiability (i.e., validity) of configurations, which is a frequent
task when refactoring C code, is difficult. Both assumptions
do not hold in practice. First, configurable systems usually
have a huge number of configuration options giving rise to
billions of valid configurations [35], [37]. Second, we and
others observed that reasoning about configuration knowledge
is tractable even for large software systems using BDDs or SAT
solvers [15], [59], [37]. Finally, variant-based approaches face
a severe limitation. Since refactoring tasks are applied solely to
individual variants of a system, all transformed variants have
to be merged again, a problem that is challenging in its own
right [40]. Because of this reason, existing engines often support
only RENAMING IDENTIFIER, for which merging is easy.

Disciplined Subset: Basically, CPP is a token-based text
processor, enabling developers to annotate arbitrary code
fragments with #ifdef directives. Since refactoring engines
require structured input, usually in the form of an abstract
syntax tree (AST), a common idea is to disallow arbitrary
annotations of code [6], [47], and limit the developer to a subset
of disciplined annotations [36]: Annotations on entire functions,
type definitions, and statements. If developers use solely
disciplined annotations, #ifdef-annotated source code can be
parsed based on preprocessor-enriched grammars [6], [36], and
an AST with variability information can be used for further pro-



1 #ifdef A
2 int global = 1;
3 #else
4 int global = 0;
5 #endif
6
7 int foo() {
8 int local = global;
9 return local;

10 }

(a) Before renaming iden-
tifier global

1 #ifdef A
2 int global = 1;
3 #else
4 int activated = 0;
5 #endif
6
7 int foo() {
8 int local = activated;
9 return local;

10 }

(b) After renaming identifier
global

1 [A] file xcode.c:8:16--file xcode.c:8:25
2 activated undeclared (only under condition !A)

(c) Type error: Identifier activated not defined in variant A

1 #include <stdio.h>
2 #define DEBUG 1
3
4 int main() {
5 if (DEBUG) {
6 printf("Enter debug.\n");
7 #ifdef A
8 printf("A enabled.\n");
9 #endif

10 printf("Leave debug.\n");
11 }
12 return 0;
13 }

Output of variant A:
1 Enter debug.
2 A enabled.
3 Leave debug.

(d) Before extracting function foo

1 #include <stdio.h>
2 #define DEBUG 1
3
4 void foo() {
5 printf("Enter debug.\n");
6 printf("Leave debug.\n");
7 }
8
9 int main() {

10 if (DEBUG) {
11 foo();
12 #ifdef A
13 printf("A enabled.\n");
14 #endif
15 }
16 return 0;
17 }

Output of variant A:
1 Enter debug.
2 Leave debug.
3 A enabled.

(e) After extracting function foo

Fig. 1: Before (Figure 1a) and after (Figure 1b) applying RENAMING IDENTIFIER in XCODE; type error after renaming (Figure 1c); before
(Figure 1d) and after (Figure 1e) applying EXTRACT FUNCTION in ECLIPSE, including program outputs

cessing. To apply such a disciplined-subset approach, arbitrary,
undisciplined annotations have to be transformed (manually) to
disciplined annotations. Although researchers experienced that
such manual labor is feasible and scales to medium-sized soft-
ware systems [6], [47], a recent study showed that undisciplined
annotations occur frequently in practice [36]. Consequently,
manually disciplining annotations for such systems is a tedious
and error-prone task that will hardly be adopted in practice. Sim-
ilarly, the substitution of CPP by a new language for source-code
preprocessing also involves manual code transformation [11],
[39]. Even after undisciplined annotations have been disciplined,
the generation of a variability-aware AST is particularly
challenging, because complex interconnections between #ifdef

directives and #define macros have to be considered [30]. Ex-
isting approaches fail to handle such interconnections properly,
as they do not employ a sound and complete parsing approach.

Heuristics: Several approaches use heuristics for
automatically transforming undisciplined to disciplined
annotations [23], [45]. Then, similar to the disciplined-subset
approach, an engine uses an #ifdef-enriched grammar for the
generation of ASTs with variability information. Heuristics
either automatically rewrite #ifdef annotations that do not
align with the grammar specification or report problematic code
that cannot be parsed to the developer for manual rewriting [23],
[45]. The key problem is that an AST generated using unsound
heuristics introduces an additional source of error on top of the
refactoring challenge. Nevertheless, there are some approaches
applying the heuristics-based approach successfully. Padioleau
et al. applied a generic patch-generation engine to the
LINUX kernel [46]. Garrido and Johnson’s refactoring engine
CREFACTORY [22], [21] provides a set of simple refactoring
patterns (e.g., RENAME VARIABLE, a subclass of RENAMING
IDENTIFIER), neglecting complex patterns (e.g., EXTRACT
FUNCTION). In addition to the unsound heuristics during

parsing, CREFACTORY employs heuristics for reasoning about
configuration options: The engine comes without a SAT solver
or BDDs for answering configuration-related questions (e.g.,
whether a code fragment is still selectable after applying FUNC-
TION INLINE). To the best of our knowledge, CREFACTORY
has been applied only in refactoring tasks of small, manageable
software systems, so its scalability is an open issue [21].
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CODE::BLOCKS 10.051 X
CODELITE 2.8.01 X
CREFACTORY [21] X
CSCOUT [56], [55] X
COCCINELLE [46] X
DMS [7] X
ECLIPSE CDT 8.2.12 X
GEANY 0.211 X
GNAT GPS 5.0-61 X
KDEVELOP 4.3.11 X
MONODEVELOP 2.8.6.31 X
NETBEANS IDE 7.41 X
PROTEUS [61] X
PTT [47] X
XCODE 53 X
XREFACTORY [60] X
VISUAL STUDIO 2013 Prof.4 X5

1http://freecode.com/; 2http://eclipse.org/cdt/;
3http://developer.apple.com/xcode/; 4http://visualstudio.com/;

5by default support only via one of several, proprietary extensions



III. VARIABILITY-AWARE REFACTORINGS WITH MORPHEUS

The key to variability-aware refactoring is the introduction of
variability into data structures and algorithms that are used by
the refactoring engine [58], [19], [62]. In this section, we briefly
introduce variational data structures (Sections III-A and III-B),
and describe the development of a refactoring engine, which
is a novel contribution (Section III-C). We denote variability
in data structures and algorithms with the type V [T ], which
represents a variable set of values of data type T ; values of
T are selected based on a given configuration. The notation
and formalization of this representation is based on the choice
calculus by Erwig et al. [18]. For example, V [Int ] can be
used to store integer values, and choice(A, 1, 2) is an instance
of that type, providing the choice between the values 1 and 2,
depending on the selection of A. With ε we denote the empty
selection in choice nodes to express optional elements in the
input representation (e.g., #ifdef A int a = 0; #endif).

A. Variability-aware AST

To express variability induced by #ifdef directives, we
extend a standard AST with variability information [30]. To
this end, we annotate AST nodes with presence conditions. A
presence condition is a propositional formula over configuration
options that encodes dependencies among options using boolean
operators. We extract presence conditions from different
sources [17], including variability models [57], [9], build
scripts [8], and source code [53]. A variable program element
is represented with a choice node, which denotes a selection of
alternative AST nodes controlled by a presence condition. For
the generation of a variability-aware AST, we use the variability-
aware parsing and analysis framework TYPECHEF [30], which
can even handle undisciplined annotations: TYPECHEF has
a sound and complete parser that is capable of parsing any
C code with #ifdef directives and of representing it in the
form of a typed AST with presence conditions on AST
nodes (V[AST]). Figure 2 illustrates the alternative definition
of variable global (choice(A, global=0, global=1)) in our
RENAMING IDENTIFIER example (Figure 1a). Typical AST
nodes that we use are Id (identifier), Expr (expression),
FDef (function definition), and Stmt (statement). For more
information on the parsing process and variability-aware ASTs,
we refer the interested reader to the literature [30].

B. Variability-aware Analysis

On top of variability-aware ASTs, we created additional
data structures, in particular, variability-aware control-flow
graphs (CFGs), as well as algorithms to compute static-
analysis information that is required during the refactoring
process. For example, most refactoring engines exploit type
and reference information. Similar to a traditional type checker
that maintains a map of identifiers to types (Map[Id,Type])
to infer the types of the expressions of an input program
(getType : Map[Id,Type]× Expr→ Type), a variability-aware
type checker traverses a variability-aware input AST, collecting
type declarations in a symbol table and checking whether all
expressions are well typed [31]. During the type-checking

process, the variability-aware type checker incorporates pres-
ence conditions in typing information so that type checking
can be performed on all variants simultaneously (getType :
Map[Id,V[Type]]×Expr→ V[Type]) [37]. We use the results
of type checking to obtain reference information (RefInf =
Map[Id,List[V[Id]]]). The key (Id) represents a variable
usage or a variable declaration, while the values (List[V[Id]])
represent corresponding variable declarations and variable
usages. For example, Figure 2 shows reference information
for variable global of our RENAMING IDENTIFIER example
(Figure 1a). All references of variable global in Line 8 are
linked to their original declarations including presence condi-
tions (List[V[Id]]). For more details on variability-aware type
checking, we refer the reader to the literature [3], [29], [31].

In a similar fashion, we created variability-aware CFGs [37].
In a nutshell, we augmented the CFG’s successor relation
for the representation of all execution paths in a program
with variability (succ : CFG → List[V[CFG]]). That is,
depending on variability in the code, the successor of a program
element may vary, and again we used presence conditions to
encode this variability. For example, the successor of statement
printf("Enter debug.\n") in Line 6 in our EXTRACT FUNC-
TION example (Figure 1d) is either printf("A enabled.\n")

(Line 8) or printf("Leave debug.\n") (Line 10), depending
on the selection of configuration option A. This kind of informa-
tion is crucial for the definition of variability-aware refactoring
patterns [49]. For more details on variability-aware control-flow
analysis, we refer the reader to the literature [12], [37], [10].

TranslationUnit

choice A

int global = 1

int global = 0

FunctionDef

... Stmt-Block

int local = global

...

A
¬A

Fig. 2: AST representation enriched with reference information of
the RENAMING-IDENTIFIER example in Figure 1a; node choice A
represents a variable AST node providing a selection of two different
definitions of variable global

C. Specification of Variablity-Aware Refactorings

As representative and widely used refactoring patterns [42],
we select RENAMING IDENTIFIER, EXTRACT FUNCTION, and
INLINE FUNCTION. For the definition and implementation of
the refactorings, we abstract from the underlying variability-
aware analysis framework and rely on an interface, as
illustrated in Figure 3. Note that the signature of the interface
incorporates variability (use of the V type constructor).

Renaming Identifier: The challenge of the specification of
RENAMING IDENTIFIER is that all identifiers in a configurable
program (e.g., function names, function parameters, local



addFDef : V[AST] × V[FDef] → V[AST]

compatibleCFG : V[AST] × V[FDef] → Boolean

genFCall : V[AST] × List[V[Stmt]]× Id→ V[Stmt]

genFDef : V[AST] × List[V[Stmt]]× Id→ V[FDef]

genFPro : V[FDef] → V[Stmt]

getDefs : RefInf× List[V[Id]]→ List[V[Id]]

getPC : List[V[Stmt]]→ PC

getUses : RefInf× List[V[Id]]→ List[V[Id]]

getModuleReferences : RefInf× Id→ List[V[Id]]

getProgramReferences : CProgram× Id→ List[(V[AST],List[V[Id]])]

insertBefore : V[AST] × V[FDef] × V[Stmt] → V[AST]

isFunctionCall : V[AST] × Id→ Boolean

isRecursive : V[AST] × V[FDef] → Boolean

isValidId : Id→ Boolean

isValidInModule : TypeEnv × List[V[Id]× Id→ Boolean

isValidInProgram : CProgram× V[Id] × Id→ Boolean

isValidSelection : V[AST] × List[V[Stmt]]→ Boolean

isWritable : V[Id] → Boolean

replaceFCalls : V[AST] × List[Id]× List[V[FDef]]→ V[AST]

replaceIds : V[AST] × List[V[Id]]× Id→ V[AST]

replaceStmts : V[AST] × List[V[Stmt]]× V[Stmt] → V[AST]

typeCheck : V[AST] → (TypeEnv, RefInf)

Fig. 3: Auxiliary functions of MORPHEUS that provide the interface
to the underlying variability-aware analysis and transformation engine

or global variables, and user-defined data types) may vary
depending on configuration options. In our RENAMING-
IDENTIFIER example (Figure 1a), variable global is defined
twice, for A and ¬A. For a consistent renaming of such
identifiers, which can possibly be scattered across multiple
source files, we employ reference information (within a file
using RefInf and across files using CProgram). If we select
one identifier for renaming, we rename also all dependent
references, even across several files.

The refactoring expects the following input: A selected
identifier (oid ), a variable AST (tunit), a global linking
interface (li), and a name for the new identifier (nid );
MORPHEUS applies the refactoring as follows: After checking
that nid conforms to the C standard of identifiers (isValidId),
the engine applies variability-aware type checking on the
variable input AST (typeCheck). As a result, we get a
type environment (te) including all identifiers and their
(possibly variable) types (Map[Id,V[Type]]) and reference
information (ri) of declarations and usages of variables
(Map[Id,List[V[Id]]]). The representation of identifiers and
their types in the former map ensures detecting conflicting
identifiers, i.e, an identifier cannot be renamed to nid , if this
identifier is already available with a corresponding type (with
respect to the given presence condition). The latter map helps to
preserve name binding—the crucial property of this refactoring.
For example, to rename variable global in Line 8 (Figure 1a),
the engine determines the transitive closure of identifier usages
and their declarations (getModuleReferences). The resulting
list contains all variable identifiers including their presence
condition: rid = [choice(A, global , global)] (Figure 2).

MORPHEUS performs three checks: First, MORPHEUS rules
out impossible renamings of identifiers in system-header files

(e.g., the renaming of function printf in file stdio.h)—files
affected by the refactoring must be writable (isWritable).
Although simple, this condition is not checked by ECLIPSE’s
refactoring engine for C.1 Second, to preserve binding and the
visibility of identifiers, the engine checks possible violations of
C’s scoping rules for each identifier (isValidInModule) that is
going to be replaced with nid . To do so, MORPHEUS accesses
the type environment te and determines whether there is a
variable definition in any variant that is in conflict with the
identifier nid . Third, RENAMING IDENTIFIER does not affect
only the source file (module) on which the developer currently
operates; renaming a function declaration or function call may
require renamings of corresponding calls or declarations in
other modules. To support refactorings with a ‘global’ effect,
we rely on a data structure for module interfaces (CProgram),
i.e., a map of all modules and their imported/exported symbols
(function declarations),2 including presence conditions [31].
Using li (CProgram), MORPHEUS determines defined symbols
(limited to declarations determined with getDefs) in conflict
to nid (isValidInProgram), and terminates if there are any.
If all premises (isValidId, isWritable, isValidInModule, and
isValidInProgram) apply, we replace all references of oid
(using rid ) in the variable AST tunit with nid (using
replaceIds). The RENAMING-IDENTIFIER specification in
Figure 4 does not include renamings of files with linked
identifiers. To support their renamings, MORPHEUS uses
getProgramReferences to fetch dependent variable ASTs and
linked identifiers. The engine uses both to apply renamings
in dependent files in the same fashion as rename (Figure 4).

Extract Function: We have already seen in Figure 1a that
EXTRACT FUNCTION can be problematic. A program’s control
flow has to be preserved while different code transformations
are performed. To address this problem, we employ
variability-aware CFGs and reference information. Given a
variability-aware AST (tunit), a selection of statements (lstmt),
a global linking interface (li ), and a function name (fname),
we apply EXTRACT FUNCTION as defined in Figure 4: First,
MORPHEUS validates the conformance of the given function
name with the C standard of identifiers (isValidId). Second, the
engine determines whether lstmt is a valid statement selection
for extraction (isValidSelection). In particular, MORPHEUS
computes a variability-aware CFG and determines whether
the selection contains elements that will disrupt the control
flow after extraction. To check this property, we traverse
the CFG (using the variability-aware successor relation) and
ensure that jump targets of problematic code constructs (e.g.,
break, continue, and goto) belong to the input selection
in any variant. Third, as function identifiers can be variable
too, MORPHEUS checks fname for violations of C’s typing
rules within the same module (isValidInModule) and across
modules (isValidInProgram) and for all system variants (using
the auxiliary function getPC to obtain the common presence
condition of the selected statements). This check enables us to

1https://bugs.eclipse.org/bugs/show bug.cgi?id=396361
2Externally visible global variables are currently unsupported.



turn down the extraction of the selected statements in Figure 1d
and put them into a function named main, as the same symbol
is already applied in Line 4. Both validation functions require
SAT checks to determine conflicting declarations by querying
the type environment (te) and the global linking interface (li ). If
both checks are successful, MORPHEUS replaces lstmt with the
appropriate function call (fcall generated with genFCall), and
introduces the new function declaration (fdef generated with
genFDef) and its prototype (fpro generated with genFPro) with
the auxiliary functions addFDef and insertBefore, respectively.

Inline Function: Similar to EXTRACT FUNCTION,
we need to check control-flow properties and reference
information. INLINE FUNCTION requires merging a caller’s
control flow with the callee’s control flow, which may result
in a disrupted control flow. The merge operation is particularly
challenging, because each function call to be inlined may
have a different context (e.g., available identifiers) and have
a different presence condition. To apply INLINE FUNCTION
properly, MORPHEUS must check a set of different premises,
which requires solving SAT problems (Figure 4).

First, the engine uses the auxiliary function isFunctionCall
to validate that the selected identifier (fcall ) is a function call.
Subsequently, MORPHEUS type checks the variability-aware
input AST to infer the type environment (te) and reference
information (ri ). The former is necessary to determine conflict-
ing identifiers of variables that need to be renamed before the
function can be inlined. The latter is necessary to determine all
function declarations available for this refactoring. Again, since
the source code is annotated with presence conditions, a single
function call may reference different function declarations that
need to be inlined (if possible), including their context. Using
reference information, MORPHEUS determines all dependent
identifiers (getModuleReferences) and filters them regarding
function calls (getUses) and function declarations (getDefs).

For each function definition in fdefs , the engine validates
that the function is not recursive (recursive functions cannot
be inlined) and that it has a compatible non-disruptive control
flow (compatibleCFG). If both checks pass, MORPHEUS inlines
each function call incrementally (replaceFCalls). During each
inline operation, the engine repeatedly determines reference
information for variables and renames them on demand, if they
violate C’s scoping rules. This occurs especially when multiple
function calls that are located next to each other are inlined or
when identifiers of the callee function are in conflict with iden-
tifiers of the caller function. To handle such cases, MORPHEUS
accesses variational data structures, such as reference informa-
tion (ri ), type environment (te), and variability-aware CFG.

IV. EXPERIMENTS

To show that variability-aware refactoring is feasible in
practice, we applied MORPHEUS to the three, real-world subject
systems BUSYBOX, OPENSSL, and SQLITE. As MORPHEUS
relies heavily on SAT solving, a crucial question is whether
applying variability-aware refactoring scales in practice.

Next, we introduce the three subject systems and our
experiment setup. Then, we present our measurement results

and reflect on our experience with applying variability-aware
refactoring in practice.

A. Subject Systems

For our experiments, we selected three software systems of
substantial size, of which billions of variants can be generated.
Beside variability, an important selection criterion was that each
subject system is shipped with a test suite. The selected systems
have been used in part in previous case studies [30], [31], [37].
The sole restriction to the three subject systems is accounted by
the complex setup of variability-aware analysis, which has to be
aligned with a system’s setup (in particular, the build system).
• BUSYBOX3 is a collection of standard UNIX tools (e.g.,

list files with LS) in a single binary, which is often
deployed on embedded systems. It consists of 522 files and
191 615 lines of C code (version 1.18.5). BUSYBOX can
be configured using 792 different configuration options,
resulting in 1.26× 10159 variants.

• OPENSSL4 is an open-source implementation for secure
Internet communication protocols. Its implementation
serves as a foundation for many different software systems,
such as Web servers. We used OPENSSL version 1.0.1c
with 733 files and 233 450 lines of source code. OPENSSL
has 589 configuration options, with which 6.5× 10175

variants can be derived.
• SQLITE5 is a library implementing a relational database-

management system. The library gained much attention
due to a number of desirable properties (e.g., zero-
configuration, cross-platform, transactions, small footprint)
and is considered the most widespread database man-
agement system worldwide, with installations as part
of ANDROID, MOZILLA FIREFOX, and PHP. To ease
embedding of SQLITE in other software systems, its code
base consists only of two source-code files (amalgamation
version). We use a recent version of SQLITE (3.8.1) with
143 614 lines of C code, which can be configured using
93 configuration options (1.02× 1039 variants).

B. Experiment Setup

To create variability-aware ASTs of C code with #ifdef

directives, we used TYPECHEF (Section III-A) [30]. Based on
TYPECHEF’s AST representation, we employed TYPECHEF’s
analysis facilities for type checking and control-flow analysis
(Section III-B) [31], [37]. After parsing and analyzing the
C code, we applied the three refactorings (RENAMING
IDENTIFIER, EXTRACT FUNCTION, and INLINE FUNCTION)
to each input file of all systems. As refactoring tasks, we
selected code fragments (an identifier, a statement sequence,
and a function call) randomly and applied the appropriate
refactoring. Since we wanted to measure the effect of
variability, we preferably selected code fragments that
contained variability. Nevertheless, our refactorings do still
work when the selected code fragments do not contain any

3http://busybox.net/
4http://openssl.org/
5http://sqlite.org/



rename : CProgram× V[AST] × Id× Id→ V[AST]

isValidId(nid) (te, ri) = typeCheck(tunit) rid = getModuleReferences(ri , oid)

∀r : r ∈ rid : isWritable(r) ∀r : r ∈ rid : isValidInModule(te, r ,nid)

∀d : d ∈ getDefs(ri , rid) : isValidInProgram(li , d ,nid) tunit
′
= replaceIds(tunit , rid ,nid)

rename(li , tunit , oid ,nid)→ tunit
′

extract : CProgram× V[AST] × List[V[Stmt]]× Id→ V[AST]

isValidId(fname) isValidSelection(tunit , lstmt) (te, ri) = typeCheck(tunit) pc = getPC(lstmt)

isValidInModule(te, tunit , fname) isValidInProgram(li , choice(pc, fname, empty), fname)

fcall = genFCall(tunit , lstmt , fname) fdef = genFDef(tunit , lstmt , fname)

tunit
′
= replaceStmt(tunit , lstmt , fcall) tunit

′′
= addFDef(tunit

′
, fdef )

fpro = genFPro(fdef ) tunit
′′′

= insertBefore(tunit ′′, fdef , fpro)

extract(li , tunit , lstmt , fname)→ tunit
′′′

inline : V[AST] × Id→ V[AST]

isFunctionCall(tunit , fcall) (te, ri) = typeCheck(tunit) rid = getModuleReferences(ri , fcall)

fcalls = getUses(ri , rid) fdefs = getDefs(ri , rid) @fd : fd ∈ fdefs : isRecursive(tunit , fd)

∀fd : fd ∈ fdefs : compatibleCFG(tunit , fd) tunit
′
= replaceFCalls(tunit , fcalls, fdefs)

inline(tunit , fcall)→ tunit
′

Fig. 4: Specification of RENAMING IDENTIFIER, EXTRACT FUNCTION, and INLINE FUNCTION

variability. In this case, the variational data structures remain
invariable, and accesses to them can be handled without
consulting BDDs or a SAT solver. Finally, to obtain a proper
test suite, we parametrized each refactoring pattern based on
a previous test setup for refactoring engines as follows [24]:

Renaming Identifier: For each file, we randomly selected
up to 50 identifiers (e.g., function names, local or global
identifiers, user-defined data types), and renamed them using a
predefined name. Each selected identifier was annotated with at
least 1 configuration option (up to 27 options) and its renaming
affected multiple configurations (Table II). If the renaming
had a global effect, we employed a global module interface
for consistent renamings of dependent identifiers in other
files (Section III-C). Overall, we renamed 5832 identifiers of
BUSYBOX, 5186 of OPENSSL, and 50 of SQLITE.

Extract Function: For each file, we attempted to extract a
statement sequence into one function with a predefined name.
To this end, we randomly selected sequences of statements
(up to 100 selections, similar to Gligoric et al. [24]) from
a function’s implementation that contain variability in form
of #ifdef annotated statements. In our experiments, the
selected statement sequences were partially annotated with
at least 1 and up to 18 configuration options. Given a valid
selection, MORPHEUS determined whether the statement
sequence satisfied the refactoring’s preconditions, as stated
in Section III-C. Many files contained only a small number of
functions with a small function body, for which we were not
able to apply EXTRACT FUNCTION. Overall, we extracted 61
functions of BUSYBOX, 172 of OPENSSL, and 1 of SQLITE.

Inline Function: Similar to EXTRACT FUNCTION,
INLINE FUNCTION is not always applicable. Hence, for each

file, MORPHEUS scanned the source code for possible function
calls with function definitions that could be inlined. Such
definitions satisfied the refactorings preconditions, as described
in Section III-C. Either the function call or the corresponding
function definition contained variability that our refactoring
engine had to take into account during the transformation
process. At least 1 and up to 6 configuration options affected
the refactorings in our experiments. Overall, we inlined 50
functions of BUSYBOX, 126 of OPENSSL, and 1 of SQLITE.

Applying a refactoring, MORPHEUS solves many satisfiability
problems, in particular, when accessing the global module
interface, reference information, and the control flow (Figure 4).
To avoid expensive satisfiability checks, a common approach
is to cache the outcome of satisfiability problems already
solved [3], [4]. MORPHEUS and the underlying parsing and
analysis infrastructure also make extensive use of caching,
and we are interested in whether variability-aware refactorings
can benefit from caching, too.

C. Performance Results

We ran the experiments for OPENSSL on a LINUX machine
with AMD Opteron 8356 CPUs, 2.3GHz, and 64GB RAM. For
BUSYBOX and SQLITE, we used a LINUX machine with a Intel
Core2 Quad Q6600 CPU, 2.4GHz, and 8GB RAM. We con-
figured the Java JVM with 2 GB RAM for memory allocation.

In Table II, we list the measurement results for each
refactoring and subject system. We report refactoring times
and affected variant configurations in terms of mean± standard
deviation as well as the maximum for a single refactoring task.
Additionally, we use box plots to visualize the distribution
of time measurements and of the number of affected variants



of the refactoring per subject system. The numbers do not
include times for parsing and type checking the input C code.6

Overall, the results demonstrate that variability-aware refac-
toring is feasible in practice. For BUSYBOX and OPENSSL, the
refactoring times are less than one second (RENAMING IDENTI-
FIER and EXTRACT FUNCTION), on average. Applying INLINE
FUNCTION is a little more expensive since we need to update
reference information each time we inline a function call.

For SQLITE, the results are different. Due to the nature of
this system (in particular, the fact that the source code has been
merged in a single file with more than 140 000 lines of code),
a refactoring task takes a comparably large amount of time.
But, this is not caused by variability, nor by shortcomings of
our approach.

D. Testing the Refactoring Engine

To validate that our refactorings are behavior-preserving,
we employed a standard testing approach for refactoring
engines [16], [24]. We used two test oracles that checked
automatically whether a refactoring’s code transformation
was correct. Our oracles were: (1) the source code of our
subject systems still compiles and (2) the results of the system
tests (post-refactoring and pre-refactoring) do not vary. In
contrast to existing test suites, which do not incorporate
variability, we determined which variant configurations were
affected and tested them against both oracles automatically.
This way, we ensured that MORPHEUS did not introduce any
variability-related errors to a system’s code base.

For our three subject systems, we used the following tests:
• BUSYBOX comes with a test suite of 410 single test cases

in 74 files, of which 46 tests fail (which we ignored
during our evaluation). Each test checks the correctness
of a single component of BUSYBOX’ tool collection.

• OPENSSL’s test suite is delivered with its source and
checks individual components of OPENSSL’s implemen-
tation, including the correct implementation of hashing
algorithms (e.g., MD5 and SHA-256), key-generation algo-
rithms (e.g., NIST prime-curve P-192), and encryption/de-
cryption of messages using cryptographic algorithms. The
test suite runs as a whole and test success is indicated by
the output “ALL TESTS SUCCESSFUL”.

• For testing SQLITE, we used the proprietary test suite
TH3.7 TH3 is a test program generator and provides a
full branch test coverage of the compiled object code.

The test setup was as follows: During the application
of a refactoring task, MORPHEUS determined, based on
the variability-aware transformations, all affected presence
conditions. For example, renaming the variable global in
Line 8 of Figure 1a, has an impact on the presence conditions
A and ¬A. After collecting the affected presence conditions
for all refactoring tasks (e.g., applying up to 50 times

6Both tasks are usually done as background tasks in development environ-
ments and their results (AST and reference information) are used for other
tasks beside refactoring (e.g., syntax highlighting and static analysis for error
checking).

7http://sqlite.org/th3/

RENAMING REFACTORING), MORPHEUS computes valid
system configurations for the configurable system. For each
configuration, the engine compiles and applies all system tests
before and after the refactoring and compares their results.

During our experiments, our selected test oracles did not
reveal any alteration of a variant’s behavior. So there is evidence
that MORPHEUS did not introduce any variability-related bugs
during refactorings.

E. Perspectives of Variability-aware Refactoring

Despite the encouraging results, there are two engineering
issues that need to be solved before MORPHEUS can be
applied in a practical setting. First, the parsing infrastructure
TYPECHEF applies partial preprocessing of source code before
the parser creates the variability-aware AST [30], [32]. That
is, the preprocessor directives #define and #include are
resolved using automatic macro expansion and file inclusion.
Both resolutions are necessary to be able to parse C code
at all, as both directives manipulate the token stream—even
conditionally if annotated with #ifdef directives—that serves
as the input to the parser. As a result, generating source code
from the variable-aware ASTs (i.e., pretty printing) requires
the additional effort of reversing macro expansion and file
inclusion. Existing refactoring engines, such as CREFACTORY,
preserve partial-preprocessing information in AST nodes, so
that the pretty printer can use them when recreating source
code. This approach can also be used in MORPHEUS to support
the full round trip (parsing→refactoring→pretty-printing).

Second, setting up TYPECHEF and MORPHEUS for a new
software system is a non-trivial task. The main burden is the
creation of a proper setup for the parsing, type-checking, and
linking infrastructure. As TYPECHEF solely works on the basis
of C files, the possibly complex setup of a software system
(e.g., configuration scripts, library dependencies, and the build-
system setup) has to be made explicit (by hand). In principle, it
is possible to use TYPECHEF as a compiler replacement, with
the downside that a user has to specify additional information
for variability (e.g., which configuration options should be
considered variable and which dependencies exist between
configuration options). So far, we have made use of a number
of existing tools for the extraction of configuration knowledge
from build systems [57], [8] and configuration models [9].
Further approaches, such as the automatic inference of configu-
ration knowledge [43], will simplify the setup process further.

We have not yet tried to do everything possible to speed
up the transformation process. There is one optimization
possibility that is likely to improve the refactoring times
substantially. With the idea of continuous development of a
software system in mind, there is some potential for improving
transformation times by reusing results of variability-aware
analyses in subsequent transformations. We can facilitate reuse
by storing analysis results persistently, including type-checking,
linking, and control-flow information. Using such a cache, it
is sufficient to recompute information that changed between
consecutive transformation runs by inferring the delta between
the versions in question. Along the same line, we can reuse the



TABLE II
MEASUREMENT RESULTS, INCLUDING MEAN± STANDARD DEVIATION (SD) AND MAXIMUM (MAX) TIME FOR PERFORMING A REFACTORING TASK IN
MILLISECONDS; SAME FOR THE NUMBER OF CONFIGURATIONS A REFACTORING TASK AFFECTS (# CONFIGS); BOX PLOTS SHOW THE CORRESPONDING

DISTRIBUTIONS (EXCLUDING OUTLIERS)

System RENAMING IDENTIFIER EXTRACT FUNCTION INLINE FUNCTION

time in ms # configs time in ms # configs time in ms # configs

mean± sd max mean± sd max mean± sd max mean± sd max mean± sd max mean± sd max

BUSYBOX 72± 77.8 988 15.9± 20.5 52 410± 99.6 778 10.6± 18.4 52 4049± 2976 19282 4.1± 8.2 52

40 50 60 7040 50 60 70 0 20 400 20 40 250 400 550250 400 550 2.0 3.0 4.02.0 3.0 4.0 2000 50002000 5000 1.5 2.51.5 2.5

OPENSSL 114± 159 2089 1.73± 1.36 11 1065± 316 2345 1.5± 0.72 7 3552± 2040 13140 1.11± 0.39 3

0 50 1500 50 150 1.0 2.0 3.01.0 2.0 3.0 600 1200600 1200 1.0 2.0 3.01.0 2.0 3.0 1000 40001000 4000 0.6 1.0 1.40.6 1.0 1.4

SQLITE 476± 98.4 1164 56± 0 56 1350± 0 1350 4± 0 4 85378± 0 85378 8± 0 8

460 470460 470 40 60 8040 60 80 800 1400800 1400 2.5 4.0 5.52.5 4.0 5.5 50000 9000050000 90000 5 7 9 115 7 9 11

results from SAT solving not only within a single refactoring
task but across consecutive tasks.

F. Threats to Validity

First of all, our selection of only three subject systems
threatens external validity, because refactoring tasks in these
systems may be particularly easy, and a significant performance
loss may only occur when using MORPHEUS with different
software systems. We consider this as a minor threat, since we
selected systems with a substantial code base (containing sev-
eral thousand lines of source code), which have been developed
over decades by many different developers, and which have
been well-received in practice. Furthermore, in our experience,
the crucial performance factor of variability-aware refactoring is
the time for SAT solving. In general, the time to resolve a single
SAT call depends on the number of configuration options and
dependencies between them. While existing systems usually
have many configuration options [35], the number of option
dependencies is usually small, such that satisfiability problems
can be solved efficiently. Additionally, recent advances in SAT-
solver technology make it easier to solve large problems with
thousands of configuration options quickly [59].

Second, for our experiments, we could not rely on existing
refactoring tasks, which one could extract from the system’s
version history. Hence, our tasks may not be representative
of practical refactoring tasks applied by developers in the
wild. Still, we believe that our large random selection of
code fragments for refactoring tasks largely compensates this
threat, and that the results provide a reasonable picture of the
refactoring performance in practice.

Third, the application of the selected refactoring patterns
may be particularly easy and, as a result, not representative
of refactorings in practice. We did not strive for incorporating
more refactoring patterns, because existing studies show that
RENAMING IDENTIFIER, EXTRACT FUNCTION, and INLINE
FUNCTION are among the most important refactorings that
developers use in practice [42]. Furthermore, other refactorings,
such as DELETE UNREFERENCED VARIABLE or REORDER

FUNCTION PARAMETERS, have a similar complexity and make
use of preconditions and code transformations already covered
by our three refactorings. Therefore, we expect a similar
performance. Finally, our three refactorings already represent an
improvement over the capabilities of state-of-the-art refactoring
engines. Such engines typically lack an implementation for
more complex refactorings, such as EXTRACT FUNCTION and
INLINE FUNCTION, and mainly focus on simpler refactor-
ings (CREFACTORY [22], [21] supports RENAME VARIABLE,
DELETE UNREFERENCED VARIABLE, and MOVE VARIABLE
INTO STRUCTURE; CSCOUT [55] supports RENAMING IDENTI-
FIER and REMOVE PARAMETER; XREFACTORY [60] supports
RENAMING IDENTIFIER and EXTRACT FUNCTION).

Fourth, one technical problem is that the variability-aware
parsing and analysis infrastructure TYPECHEF does not fully
support the ISO/IEC standard for C. In particular, the infrastruc-
ture implements only a subset of the C standard and extensions
of GNU C that are used in our and a set of other subject systems
(including the LINUX kernel). During analysis, TYPECHEF
ignores unsupported constructs, so we had to exclude 6 files
from BUSYBOX and 11 from OPENSSL. Furthermore, we
changed 9 files syntactically (e.g., changing invalidly formatted
hexadecimal numbers from \x8 to \x08 ). For OPENSSL, we
had to exclude 127 identifiers from refactoring, as they use
function pointers in a way not supported by TYPECHEF.
SQLITE’s source code remained untouched.8 All our numbers
and plots have been generated after excluding problematic files.

V. RELATED WORK

Beside refactoring, which we already discussed in Section II,
there are three areas of related work: Variability-aware code
transformations, testing refactoring engines, and testing
configurable systems.

Variability-aware Transformations: As researchers often
discourage the use of preprocessors for the development

8A list of all changed and excluded files is available on the project’s Web
site.



of configurable systems [27], they have proposed novel
implementation mechanisms [2], such as aspects [33] and
feature modules [5], for variability implementation. There
has been some effort of transforming preprocessor-based
implementations into aspects [48], [14], [1] and feature
modules [28]. This transformation usually rests on the
identification of typical patterns of preprocessor use [1], [35]
and the definition of appropriate transformation rules for code
extraction [28]. Prior to code extractions, developers often have
to prepare the source code manually [48], which, however,
can be automated in part using MORPHEUS. While the
objectives of variability-aware transformations (e.g., separation
of concerns) are different, the variant-preservation challenge
is the same. To ensure behavior preservation, developers
sometimes use run-time tests [38], [28], but in general they
do not employ a systematic testing approach as we do.

Closest to our work is the project OPENREFACTORY/C [25],
[26], which—similar to our approach—employs variational
data structures and algorithms to cope with multiple system
configurations. Up to now, the available prototype has not been
ready for production use and suffers from several limitations
(e.g., support for only one configuration [26] and missing
support for preprocessor directives #define and #include in
the source code).

Testing Refactoring Engines: Testing is a common
approach of detecting errors in a refactoring engine’s
implementation [16], [54], [24]. Existing approaches usually
generate input programs [54], [16] or use real software
projects as test input [24]. Testing procedures usually involve
an automatic check of one or more test oracles. In addition to
previous work, our testing approach incorporates variability.

Testing Configurable Systems: Since the number of
valid configurations of a system can grow exponentially
with the number of configuration options, testing all variants
individually is elusive [58]. We and others employed sampling
(i.e., reducing the number of configurations to an interesting
subset) to take variability into account [44], [37]. Sampling
was successfully applied in different contexts, enabling the
detection of errors in a reasonable amount of time. Fortunately,
variability-aware refactoring has a mostly local effect on
source code. That is, in our subject systems, RENAMING
IDENTIFIER, EXTRACT FUNCTION, and INLINE FUNCTION
usually affected only a few configuration options, which
enabled exhaustive testing of all variants. Nevertheless, testing
approaches such as SPLAT [34], which employ a dynamic
analysis of execution traces to infer affected configurations,
could reduce the number of configurations to be tested further.

VI. CONCLUSION

Refactoring C code with preprocessor directives is challeng-
ing, because a single refactoring may affect not only a single
but a multitude of system variants that can be derived from a
configurable system. We propose a sound, general, and scalable
refactoring approach for C code with preprocessor directives,
accompanied by a refactoring-engine implementation, called

MORPHEUS. A comparative analysis of state-of-the-art refac-
toring engines for C revealed that most refactoring engines
suffer from one of several shortcomings: They cannot handle
variability at all, provide only limited support for variability-
aware refactoring, or make use of unsound heuristics. Based on
variational data structures and variability-aware static analysis,
we specified and implemented sound variability-aware instances
of common refactorings (RENAMING IDENTIFIER, EXTRACT
FUNCTION, and INLINE FUNCTION). We demonstrated the
feasibility of variability-aware refactoring with our variability-
aware refactoring engine MORPHEUS by applying it to the three
real-world systems BUSYBOX, OPENSSL, and SQLITE with a
total number of 11 479 refactorings. Our experimental results
show that MORPHEUS performs well, especially, compared to
the state of the art: The average transformation time is in the
order of milliseconds, performing sound refactorings on real,
variable C code.

To verify that our refactorings are indeed behavior-
preserving, we extended a standard testing approach with
support for variability. We were able to show that all variants
of our subject systems still compiled and conformed to the
systems’ test suites after applying the refactorings.

On top of our interface specification of variability-aware anal-
ysis and transformation, further refactorings, such as DELETE
UNREFERENCED VARIABLE or REORDER FUNCTION PARAM-
ETERS, are possible, making our refactoring engine MORPHEUS
an ideal testbed for experiments of variability-aware refactoring
for other researchers. Overall, we demonstrated that sound
refactoring engines for C and its preprocessor are within reach,
and that variability-aware refactorings, including analysis
and transformation, scale to substantial, real-world software
systems. MORPHEUS closes a gap in concrete tool support for
the development of software systems written in C with CPP.

ACKNOWLEDGEMENTS

This work has been supported by the DFG grants: AP 206/4
and AP 206/6.

REFERENCES

[1] B. Adams, W. De Meuter, H. Tromp, and A. Hassan. Can we
Refactor Conditional Compilation into Aspects? In Proceedings of
the International Conference on Aspect-Oriented Software Development
(AOSD), pages 243–254. ACM, 2009.
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SPLLIFT — Statically Analyzing Software Product Lines in Minutes
Instead of Years. In Proceedings of the International Conference on
Programming Language Design and Implementation (PLDI), pages 355–
364. ACM, 2013.

[11] Q. Boucher, A. Classen, P. Heymans, A. Bourdoux, and L. Demonceau.
Tag and Prune: A Pragmatic Approach to Software Product Line
Implementation. In Proceedings of the International Conference on
Automated Software Engineering (ASE), pages 333–336. ACM, 2010.

[12] C. Brabrand, M. Ribeiro, T. Tolêdo, and P. Borba. Intraprocedural
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