
Renaming and Shifted Code in Structured Merging:
Looking Ahead for Precision and Performance

Olaf Leßenich,∗ Sven Apel,∗ Christian Kästner,† Georg Seibt,∗ Janet Siegmund∗
∗University of Passau, Germany

†Carnegie Mellon University, USA

Abstract—Diffing and merging of source-code artifacts is an
essential task when integrating changes in software versions.
While state-of-the-art line-based merge tools (e.g., GIT MERGE)
are fast and independent of the programming language used,
they have only a low precision. Recently, it has been shown
that the precision of merging can be substantially improved
by using a language-aware, structured approach that works on
abstract syntax trees. But, precise structured merging is NP
hard, especially, when considering the notoriously difficult sce-
narios of renamings and shifted code. To address these scenarios
without compromising scalability, we propose a syntax-aware,
heuristic optimization for structured merging that employs a
lookahead mechanism during tree matching. The key idea is that
renamings and shifted code are not arbitrarily distributed, but
their occurrence follows patterns, which we address with a syntax-
specific lookahead. Our experiments with 48 real-world open-
source projects (4,878 merge scenarios with over 400 million lines
of code) demonstrate that we can significantly improve matching
precision in 28 percent of cases while maintaining performance.

I. INTRODUCTION

Due to the success of distributed version control systems,
merging software artifacts has become a common task for
software developers. However, the state-of-the-art technique
used to perform merging in practice is basically still the same
as thirty years ago [1]: unstructured, line-based merging of
text files (e.g., using GIT MERGE). The success of line-based
merging is based on the fact that it is easy to use, applicable
to all kinds of text files, and cheap to compute. However,
line-based merging also has several shortcomings: Since it
completely ignores the (syntactic) structure of the artifacts that
it merges, it is not able to either resolve or properly present
conflicts to the developer conducting the merge.

It has been shown that merging at a structural level can
improve the quality of the merged artifacts significantly [2, 3,
4, 5, 6, 7]. Instead of using text lines as a basic unit, a structural
merge tool operates on the abstract syntax trees (ASTs) of the
input artifacts. As in line-based merging, the key to merging
artifacts is to identify matches and differences between these
artifacts. The shortcoming of structured merging compared to
line-based merging is that comparing ASTs is computationally
expensive in general.

In previous work [5], we have proposed an approach to
achieve a balance between precision and execution time of
merging, using a simple, but effective mechanism: As long
as no conflicts occur, a line-based merge strategy is used.
When a conflict is encountered, one switches to structured

merge and remerges the respective part, to increase precision.
As a further performance optimization, when computing the
matching between two ASTs, a top-down approach is used
that considers matches only between corresponding tree levels.
This optimization significantly reduces the runtime complexity
from one that was only feasible for the smallest examples to
one that is practical for real-world software projects [5].

While comparing ASTs only top-down and level-wise does
significantly improve performance and scales to real-world
projects, it lowers precision, in particular, when program
elements are renamed (e.g., methods) and when code is shifted
(e.g., shifting a code block into an exception handler). As
renamings and shifted code are not uncommon changes in
practice, this limitation is of practical importance. To catch
renamings and shifted code, one could perform the matching
only structurally (ignoring identifiers) and search also for
embedded subtrees (not only level-wise), both of which are
known to be NP hard and out of reach for a practical solution.

To gain precision without compromising performance, we
propose a syntax-aware, heuristic optimization for structured
merging that employs a lookahead mechanism during tree
matching. The key idea is that renamings and shifted code
are not arbitrarily used in software development, but their
occurrence follows patterns. For example, only few syntactic
program elements have names that are relevant for matching,
and code is typically not shifted arbitrarily across the AST.
While it is reasonable to test whether a block of statements has
been shifted into an if or try block, it is highly unlikely (and
even invalid) to shift a method declaration into a subexpression.

The main idea of our approach is employ a syntax-aware
lookahead mechanism that diverges from level-wise tree
matching depending on the kinds of syntax elements to be
matched. For example, if level-wise matching is not able
to match a block of statements on both sides, it searches
for exception handlers and steps one level down (i.e., looks
ahead) to find a match within the block. While this is more
expensive than level-wise matching, it is still feasible, as we
will demonstrate. Interestingly, both renamings and shifted
code can be treated equally with this lookahead mechanism.

To demonstrate the practicality of our approach, we imple-
mented the lookahead mechanism in our open-source structured
merge tool JDIME1, and we conducted a series of experiments
on 4,878 merge scenarios of 48 open-source projects, with over

1http://fosd.net/JDime/



400 million lines of code (aggregated over the merge scenarios).
Overall, we found that we can significantly improve matching
precision in 28 percent of the cases, without compromising
performance (i.e., it scales to real-world projects of substantial
size).

In summary, we make the following contributions:
• We present a heuristic matching technique based on a

syntax-aware lookahead mechanism to precisely match
ASTs in the presence of renamings and shifted code.

• We provide a practical implementation of our approach
on top of our open-source tool JDIME.

• We evaluate our approach on a substantial set of real-
world merge scenarios (48 projects, 4,878 merge scenarios,
400 million lines of code); we found that our approach
significantly improves matching precision in 28 percent
of cases while maintaining performance.

The implementation and a replication package are available on
a supplementary Web site.2

II. PROBLEM STATEMENT

A. Structured Merge

Structured merging is an advanced merging strategy that
operates at the level of ASTs. While a regular line-based
merge tool is limited to the granularity of lines, a structured
tool is aware of what kind of source code elements it is
handling, and, therefore, is able to present better solutions in
terms of quality, especially when it comes to conflict handling.
A typical example where structured merging is superior to
line-based merging is reordering of methods. The matching
result produced by a line-based tool is limited by its capability
of comparing just lines, which in most cases fails to match
the reordered methods. A structured merge tool knows what
methods are and that, for example, in JAVA, the order of their
definition does not affect program semantics, hence it is able
to match method declarations independently of their order in
the source code.

The improved matching precision of structured merging
comes at a cost, though: Beside technical overhead, such
as parsing and pretty printing, matching of trees is per se
more expensive as matching of sequences of text lines. In
general, there are different algorithms for tree matching and
merging with different degrees of precision and computational
complexity. To maximize precision, one would need to handle
cases where subtrees are shifted and nodes are renamed, which
corresponds to solving the Tree Amalgamation Problem [8]
and the Maximum Common Embedded Subtree Problem [9],
both of which are known to be NP hard.

To reduce computational complexity to a practical degree, a
top-down matching approach, which compares corresponding
tree levels only (corresponds to the Maximum Common Subtree
Problem [10]), is feasible (see Section VIII). In Figure 1,
we illustrate an example: In the base version, Method A has
three statements, Stmt 1, Stmt 2, and Stmt 3. While version A
does not change Method A, version B shifts the statements

2https://www.infosun.fim.uni-passau.de/se/papers/lookahead/

Method A

Stmt 3Stmt 2Stmt 1

Method A

If

Stmt 3Stmt 2

Stmt 1

Method A

Stmt 3Stmt 2Stmt 1

3

7 7

Base Version

Version A Version B

Figure 1. Top-down, level-wise AST matching (Stmt 1 can be matched (3);
Stmt 2 and Stmt 3 can not be matched (7) as they are not at the same level)

Stmt 2 and Stmt 3 into an If block. As a result, Stmt 1 can
be matched across the versions A and B, but both Stmt 2 and
Stmt 3 cannot, as they are at different levels in the two versions.
Furthermore, the matching procedure terminates recursion early
when an element could not be matched. These optimizations
lead to quadratic (for ordered elements) [10] or cubic (for
unordered elements) [11] runtimes, which is still practicable
for merging real-world projects and has proved to provide
practically relevant results [5]. There are, however, situations
where structured merging is less precise than a line-based
approach. In previous work [5], we found that these less precise
situations are a direct result of the two optimizations (level-
wise matching, early return) and often related to two common
change scenarios, which are also confirmed by our empirical
data (see Section IV): renaming and shifted code.

B. Renaming

Almost any programming language contains syntax elements
that are uniquely identified by their names. This fact is exploited
during structured merging, but poses problems when program
elements are renamed. As an example of a renaming, we
present a scenario of merging two versions of a JAVA stack
implementation in Figure 2. The methods size and length have
the same implementation in Version A and B, and differ only
in their names. The bottom-left listing shows the result of a
structured merge with JDIME. JDIME stops matching when
the method declarations themselves cannot be matched, instead
of looking further for similarities inside the method bodies. As
a result, JDIME does not recognize the renaming and, instead,
inserts both versions while merging—clearly, not the solution
that is wanted in this scenario. Instead, we would expect a
conflict that prompts the developer to make a decision, as
illustrated in the bottom-right listing. This way, the developer
can select the correct version.



Base Version

class Stack {
LinkedList<Integer> list

= new LinkedList<>();
public int pop() {

return list.pop();
}
public void push(int i) {

list.push(i);
}

}

Version A

class Stack {
LinkedList<Integer> list

= new LinkedList<>();
public int pop() {

return list.pop();
}
public void push(int i) {

list.push(i);
}
public int size() {

return list.size();
}

}

Version B

class Stack {
LinkedList<Integer> list

= new LinkedList<>();
public int pop() {

return list.pop();
}
public void push(int i) {

list.push(i);
}
public int length() {

return list.size();
}

}

MERGE

Structured Merge

class Stack {
LinkedList<Integer> list

= new LinkedList<>();
public int pop() {

return list.pop();
}
public void push(int i) {

list.push(i);
}
public int size() {

return list.size();
}
public int length() {

return list.size();
}

}

Desired Merge

class Stack {
LinkedList<Integer> list

= new LinkedList<>();
public int pop() {

return list.pop();
}
public void push(int i) {

list.push(i);
}
public int

<<<<<<<
size()

=======
length()

>>>>>>>
{

return list.size();
}

}

Figure 2. Method renaming example: Stack.java

C. Shifted Code

Program elements without unique names are structurally
matched based on their code (i.e., equality of AST nodes). If
a program element is moved in one version, but not the other,
they cannot be matched easily; the matching algorithm needs
to search for corresponding pairs. As an example, we show
in Figure 3 a new piece of code that was introduced by both
versions, but wrapped by an if statement only in one version.
In version A, the surrounding if is missing; in version B, it is
present. Performing a structured merge with JDIME results in
an unnecessary large conflict (bottom-left listing), because the
tool does not match the statement list.clear in the two versions.
This is due to the optimization that matching is limited to

Base Version

class Stack {
LinkedList<Integer> list

= new LinkedList<>();
public int pop() {

return list.pop();
}
public void push(int i) {

list.push(i);
}
public void clear() {

}
}

Version A

class Stack {
LinkedList<Integer> list

= new LinkedList<>();
public int pop() {

return list.pop();
}
public void push(int i) {

list.push(i);
}
public void clear() {

list.clear();
}

}

Version B

class Stack {
LinkedList<Integer> list

= new LinkedList<>();
public int pop() {

return list.pop();
}
public void push(int i) {

list.push(i);
}
public void clear() {

if(list.size()>0)
list.clear();

}
}

MERGE

Structured Merge

class Stack {
LinkedList<Integer> list

= new LinkedList<>();
public int pop() {

return list.pop();
}
public void push(int i) {

list.push(i);
}
public void clear() {

<<<<<<<
list.clear();

=======
if(list.size()>0)

list.clear();
>>>>>>>

}
}

Desired Merge

class Stack {
LinkedList<Integer> list

= new LinkedList<>();
public int pop() {

return list.pop();
}
public void push(int i) {

list.push(i);
}
public void clear() {

<<<<<<<
if(list.size()>0)

=======
>>>>>>>

list.clear();
}

}

Figure 3. Shifted code example: Stack.java

corresponding tree levels only. The if statement inserts an
additional level in the tree, which causes JDIME to miss the
match between the list calls. The desired output includes a
smaller conflict (i.e., fewer lines involved in the conflict), as
illustrated in the bottom-right listing.

D. Discussion

To produce the desired merge result for both examples, we
must improve the matching algorithm of the structured merge
approach. One option is to resort to established algorithms from
graph theory. In particular, one could perform the matching



only structurally (ignoring identifiers, which corresponds to
the Tree Amalgamation Problem [8]) and search also for
embedded subtrees (not only level-wise, which corresponds
to the Maximum Common Embedded Subtree Problem [9])
However, due to the sheer size of ASTs of real-world programs,
this is not feasible in practice (e.g., for unordered trees, the
Maximum Common Embedded Subtree Problem is NP hard.3)

Our key insight is that identifying arbitrarily renamed
program elements and shifted code is not necessary in practice.
The reason is that renaming and shifted code are not arbitrarily
used in software development, but their occurrence follows
patterns. For example, only few syntactic program elements
have names that are relevant for matching, and even less have
substantial nested code that would lead to imprecise conflicts as
in our example of Figure 2. Thus, we concentrate on renamed
methods in our experiments (see Section IV). Furthermore,
code is typically not shifted arbitrarily across the AST. While
it is reasonable to test whether a block of statements has been
shifted into an if or try block, it is highly unlikely (and even
invalid) to shift a method declaration into a subexpression or
field initialization. Instead, we aim for a syntax-aware heuristic
that, for certain (language-specific) elements in the AST, allows
the matching algorithm to descend a few levels in the subtree
and look ahead for a better match. Specifically, we propose such
a heuristic, implemented on top of JDIME, using a configurable
lookahead mechanism that produces significantly better matches
while still achieving a performance comparable to state-of-the-
art structured merging.

III. A SYNTAX-AWARE LOOKAHEAD MECHANISM

In Algorithm 1, we show the existing top-down matching
approach used in JDIME, which matches only corresponding
tree levels and stops descending when two nodes do not
match. The algorithm starts matching at the root nodes of
both ASTs and, if the nodes match, inspects their children to
determine whether ordered or unordered matching is required
(Line 7). Ordered matches between nodes are computed
with an adaptation of the Longest Common Subsequence
Algorithm [10], unordered matches are computed using the
Hungarian method [11]. Both subroutines for ordered and
unordered matchings include recursive calls to the match
function shown in Algorithm 1. For more details on the
ordered and unordered matching in JDIME, we refer the reader
elsewhere [5].

One of the limitations that we discussed previously arises if
two nodes cannot be matched (even if one could be matched
with a child of the other; Line 3). As discussed in Section II,
we need to change this behavior in certain situations to achieve
better overall matching results.

If a program element cannot be matched (by name or
structure), we can still look ahead (i.e., further descend in
the ASTs) and search for potential matches. So, we have to

3More precisely, the problem is APX hard [9]; APX is the set of
NP optimization problems that can be approximated with polynomial-time
algorithms with an approximation ratio bounded by a constant.

Algorithm 1 AST MATCHING (level-wise, early return)
1: function MATCH(Node L, Node R)
2: if L 6= R then
3: return 0 . Nodes do not match, early return
4: end if
5: l← children of L
6: r ← children of R
7: if ISORDERED(l) ∨ ISORDERED(r) then
8: return ORDEREDMATCHING(L, R) . Considering order
9: else

10: return UNORDEREDMATCHING(L, R) . Ignoring order
11: end if
12: end function

alter the algorithm to continue the descent when specific AST
nodes (e.g., two method declarations) could not be matched.

A. Looking Ahead

To prevent a combinatorial explosion of potential matchings,
and therefore, exponential runtime complexity, we add a param-
eter, called “lookahead distance”, to our matching algorithm
that tracks the number of levels it has descended in each tree
without matching a node. As the influence of this parameter
on runtime is quite high, we have to explore the structure of
our ASTs to infer a reasonable configuration. For most syntax
elements, a maximum value of 3 or 4 should be sufficient to
match the relevant code blocks in most situations, this way,
identifying renamed program elements and shifted code.

While it is technically possible to use a generic lookahead
distance (i.e., independent of the type of program element
to match), it is highly inefficient in practice, as it leads
to numerous matching calls that yield no better result. For
example, it is highly unlikely to identify a matching of method
declarations by descending into sub-statement level. Instead,
we exploit structural knowledge of typical changes: Because the
subtree structure of, say, method declarations and if statements
differs, this parameter has to be set specifically for each AST
node type that is subject of our lookahead procedure to find
an optimal balance between matching precision and algorithm
performance.

In Figure 5, we illustrate the lookahead procedure for a
renaming scenario. In version A, Method A has been renamed
to Method B, thus, it cannot be matched with its counterpart in
version B. Looking ahead three levels on both sides, they can
be matched, as their bodies are identical (both containing Stmt 1
and Stmt 2). Note that this example illustrates a further issue:
Real-world parse trees and ASTs typically contain various
auxiliary nodes (Body and StmtList, in our case). This needs
to be taken into account when choosing the distance of the
lookahead.

In Figure 4, we illustrate the lookahead procedure for an
example with shifted code. In the base version, Method A
contains the statements Stmt 1 and Stmt 2.4 In version A, Stmt 2
is shifted into an if block (one level down); in version B, Stmt 1
is shifted into an try block, which itself is wrapped by an if

4For simplicity, we do not show auxiliary nodes, such as Body and StmtList.



Method A

Stmt 2Stmt 1

Method A

Stmt 2If

Try

Stmt 1

Method A

If

Stmt 2

Stmt 1 lh = 1

lh = 2

3

3

Base Version

Version A Version B

Figure 4. Looking ahead to match shifted statements

Method A

Body

StmtList

Stmt 2Stmt 1

Method A

Body

StmtList

Stmt 2Stmt 1

Method B

Body

StmtList

Stmt 2Stmt 1

lh = 3 lh = 3lh = 3 lh = 3

3 3

Base Version

Version A Version B

Figure 5. Looking ahead to match a renamed method

block (two levels down). While for matching Stmt 1, we need
to look ahead two levels, for Stmt 2, we need to look ahead
only one level.

B. Algorithm

Algorithm 2 shows the whole procedure of AST matching
with lookahead. If two nodes do not match and the algorithm
is allowed to look ahead (Lines 8 and 9)—instead of an early
return (Line 6)—we still compute the matches between the

child nodes. First, the algorithm descends the left AST (Line 8)
and then tries the right AST (Line 9). The distance of looking
ahead depends on the type of the nodes involved (Lines 3 and 4).
The lookahead mechanism itself, shown in Algorithm 3, is a
straightforward recursive descent in the AST, controlled by
the given lookahead distance (Lines 5 and 9). To guarantee a
certain matching quality, the resulting matches are used only
if the similarity between the subtrees is, at least, the value of
a given threshold (Algorithm 2, Lines 24–28). Note that the
threshold is not always 1 (i.e., perfect match) as in the case of
a method renaming, at least the names of the methods differ.
So, the threshold depends on the type of the node to take that
aspect into account.

In particular, we are interested in cases where the nodes
themselves do not match, but their entire subtrees (or the
most relevant parts, excluding some auxiliary nodes). In these
cases, we optimize the lookahead by incorporating the identical
subtree optimization proposed by Dotzler et. al [7] (not shown
in Algorithm 2). In a nutshell, prior to matching, we create
a hash for each node, using its type, label (if available), and
children hashes as input for the hash function. Looking back at
our method renaming example, we can determine whether their
subtrees are completely identical by comparing the hash values.
This optimization significantly reduced the number of matching
operations for the renaming example, because the identity of
the method bodies can be detected in O(1) by looking at the
hash, instead of O(n2) using an ordered matching algorithm.

Algorithm 2 AST MATCHING WITH LOOKAHEAD

1: function MATCH(Node L, Node R, double threshold )
2: if L 6= R then
3: l_dist ← LOOKAHEADDIST(L) . depends on the node’s type
4: r_dist ← LOOKAHEADDIST(R) . depends on the node’s type
5: if l_dist = 0 ∧ r_dist = 0 then
6: return 0 . Nodes do not match, early return
7: else . Perform lookahead
8: L← LOOKAHEAD(L, R, l_dist) . Descending left
9: R← LOOKAHEAD(R, L, r_dist) . Descending right

10: if L = NULL ∨R = NULL then
11: return 0 . No matching nodes deeper in subtree
12: else
13: return MATCH(L, R) . Recursive call
14: end if
15: end if
16: end if
17: l← children of L
18: r ← children of R
19: if ISORDERED(l) ∨ ISORDERED(r) then
20: matching ← ORDEREDMATCHING(L, R)
21: else
22: matching ← UNORDEREDMATCHING(L, R)
23: end if
24: if matching ≥ threshold then . Maximum depth reached?
25: return matching
26: else
27: return 0
28: end if
29: end function



Algorithm 3 LOOKAHEAD

1: function LOOKAHEAD(Node N , Node M , int dist)
2: if N = M then
3: return N . Match found
4: end if
5: if dist < 0 then . Maximum depth reached?
6: return NULL
7: end if
8: for c in children of N do
9: n← LOOKAHEAD(c, M , dist − 1) . Recursive call

10: if n 6= NULL then . Further children?
11: return n
12: end if
13: end for
14: return NULL
15: end function

IV. EVALUATION

To evaluate our approach with respect to relevance, precision,
and performance, we conducted an empirical study on 4,878
merge scenarios from 48 projects. In this section, we describe
the setup and the results of our experiments. We provide a
replication package on the supplementary Web site.

A. Research Questions

To learn about the precision and performance of matching
with lookahead, we address six research questions. In particular,
we concentrate on renamed methods and statements shifted
into if , try, and catch blocks; as for the latter, we limit our
attention to shifts across one level. To understand whether these
types of changes are indeed relevant in practice (i.e., whether
they occur frequently), we determine how often they occur in
real-world merge scenarios, as determined by our lookahead
mechanism.

RQ1.1 How often do renamings occur in real-world
merge scenarios?

RQ1.2 How often does shifted code occur in real-
world merge scenarios?

Apart from the frequency of occurrences, we also evaluate
whether we can handle these situations better with the looka-
head mechanism. Therefore, we measure precision in terms
of the percentage of matched nodes, both with and without
lookahead enabled. We expect a significantly higher precision
with the lookahead mechanism.

RQ2.1 What is the precision of matching in the
presence of renaming with and without lookahead?

RQ2.2 What is the precision of matching in the
presence of shifted code with and without lookahead?

In practice, the time a merging algorithm needs to perform its
task is relevant to the user. To evaluate whether the lookahead
mechanism is applicable in practice, we determine what the
cost of the additional matching operations (induced by looking
ahead) is. To this end, we measure the runtime of the algorithm
with and without lookahead.

RQ3.1 What is the runtime cost of matching in the
presence of renaming with and without lookahead?

RQ3.2 What is the runtime cost of matching in the
presence of shifted code with and without lookahead?

B. Subject Systems and Merge Scenarios

We selected 48 popular GIT projects from various application
domains from the collaboration platform GITHUB, including
popular projects, such as RXJAVA, ELASTICSEARCH, GUAVA,
APACHE STORM, and APACHE WEEX. Our main criteria for
selecting subject projects were that they are written (mainly) in
JAVA and have a substantial number of merge scenarios in their
history. We identified the merge scenarios by iterating over all
commits in the version control history and by extracting those
with more than one parent. Then, we performed a two-way
diff between the competing versions of the merge. Of course,
for an actual merge, a three-way comparison would be done,
using the additional information from the common ancestor
to decide which changes to select. However, as our goal is to
evaluate the matching precision of the diff algorithms, it is
sufficient to use two-way comparisons. A list of all subject
systems along with relevant information is available in Table I.

C. Procedure

In our experiments, we compute a structured diff for each
merge scenario with and without our lookahead mechanism.
Then, we compare the achieved matchings as well as the time
needed to perform the diff. To this end, we let the GIT client
use our extension of JDIME as an external diff tool. Based on
the output of JDIME, we measure whether we matched fewer
or more AST nodes, overall and aggregated per type of node.
Furthermore, we manually inspected about 200 scenarios to
estimate the quality of matchings produced by our tool (see
Section VII). This step is necessary to avoid that our approach
simply matches more AST elements, while producing “wrong”
results that would be harmful as input for the actual merge.

Our analysis framework is written in PYTHON; it is available
at the supplementary Web site. We executed all experiments
on Intel Xeon E7-4870 machines with 128 GB of memory.

V. RESULTS

A. RQ1.1 and RQ1.2 (Frequency)

In our experiments, we found that renaming of methods
occurs in 25.44% of the considered merge scenarios. On
average, these renamings were spread over 2.06 files. Code
shifted into if , try, and catch blocks occurred in 18.02% of
all merge scenarios, in most cases located in just one file.

Figure 6 and Figure 7 show the distributions of numbers of
files affected by renaming and shifted code. While, in both
cases, most occurrences concern only a single or few files,
there are outliers, which point to major refactorings.

B. RQ2.1 and RQ2.2 (Precision)

By using our lookahead mechanism, we matched 141
additional AST nodes per affected scenario, on average (123
nodes by detecting renamings and 18 nodes by detecting shifted
code), increasing our matching precision. Overall, matching



0 50 100 150 200 250 300
Number of files affected

100

101

102

Fr
eq

ue
nc

y 
(lo

g 
sc

al
e)

Figure 6. Files per scenario that contain renamings

0 200 400 600 800 1000
Number of files affected

100

101

102

Fr
eq

ue
nc

y 
(lo

g 
sc

al
e)

Figure 7. Files per scenario that contain shifted code

precision could be improved in 28 % of the evaluated merge
scenarios.

Figure 8 and Figure 9 show the distributions of numbers
of nodes additionally matched by looking ahead for renamed
methods and shifted code. In many cases, the number is 150
and below, but there are cases with up to several hundreds and
thousands of nodes. As the number of nodes is a proxy of the
amount of code, these results show that code of substantial size
could be matched, which would be missed without lookahead.

C. RQ3.1 and RQ3.2 (Costs)

JDIME without lookahead had a total runtime of 31 min,
383ms per scenario, on average. By enabling our lookahead
mechanism, we spent a total runtime of 41 min, 505ms per
scenario, on average. Figure 10 and Figure 11 show the runtime
per scenario with and without lookahead.5 Overall, matching
with lookahead is—as expected—slower than without, but still
reasonably close. On average, looking ahead is less than half
a second slower per scenario.

5Note that matching with lookahead is slightly faster in some cases in the
figures, which is just an artifact of measurement inaccuracy, though.

0 200 400 600 800
Additionally matched nodes

100

101

102

103

Fr
eq

ue
nc

y 
(lo

g 
sc

al
e)

Figure 8. Number of additionally matched AST nodes by renaming detection

0 500 1000 1500 2000 2500 3000
Additionally matched nodes

100

101

102

103

104

Fr
eq

ue
nc

y 
(lo

g 
sc

al
e)

Figure 9. Number of additionally matched AST nodes by shifted code detection

VI. THREATS TO VALIDITY

A. Internal Validity

For our experiments, we selected only merge scenarios
actually committed to the GIT repositories, this way, ignoring
scenarios where a merge was possibly too hard and the
developers gave up instead of integrating the changes. We
deliberately made this decision to increase confidence in the
practical relevance of our merge scenarios, especially, as there
is no reliable way to identify and extract merge scenarios that
failed. Likewise, there is also no reliable way of identifying
rebases, so these are also excluded.

In our experiments, we considered only on a few instances of
renaming and shifted code (method renaming, shifting blocks
of statements into if , try, and catch blocks). The mechanism
we propose here is much more general, though, so our results
mark just a lower bound of its applicability. Still, we were able
to improve matching precision in a practical relevant number
of situations.

We adjusted the lookahead distance parameter based on
the structure of JDIME ASTs that we had at our disposal.
Different AST implementations may require (slightly) different
parameter settings, but a deviation from our high-level results
are not to be expected. We set the threshold for matching



Merge scenarios (sorted by runtimes with lookahead switched off)

102

103

104

105

Ru
nt

im
e 

in
 m

illi
se

co
nd

s (
lo

g 
sc

al
e)

Lookahead: Method
Lookahead: off

Figure 10. Runtimes in milliseconds with a lookahead for renamed methods
switched on and off

Merge scenarios (sorted by runtimes with lookahead switched off)

102

103

104

105

Ru
nt

im
e 

in
 m

illi
se

co
nd

s (
lo

g 
sc

al
e)

Lookahead: Shifted
Lookahead: off

Figure 11. Runtimes in milliseconds with a lookahead for shifted code switched
on and off

similarity such that only “perfect matches” are obtained (e.g.,
equal method bodies and blocks of shifted code). Relaxing this
requirement would produce more desired matches, but possibly
also undesired matches.

Finally, in our research questions, we concentrated on the
matching routine, which is only one part of the overall merging
procedure. Performing the actual merge based on the improved
matching would add a further dimension of possible design
decision and optimizations, which is well beyond the scope of
this paper.

B. External Validity

One has to be careful with generalizing our findings beyond
our corpus. We selected a substantial and diverse corpus
of projects, covering different development practices and
application domains, but other projects may have different
characteristics. Likewise, our implementation and experiments
are limited to JAVA. While our findings do not necessarily
translate to any language, our results likely also apply to
languages with similar syntactic structure, especially, with
regard to method or function declarations and nesting of code
blocks (e.g., C++, C#, and PYTHON).

VII. DISCUSSION

Summarizing the results of our experiments, looking ahead
pays off! First of all, renaming methods and shifting code
are changes that happen in practice (in 25.44% of the merge
scenarios, methods are renamed; in 18.02% of the merge
scenarios, code is shifted). This finding illustrates the relevance
of targeting these changes in our lookahead mechanism.
Furthermore, pursuing a syntax-aware lookahead mechanism
improves precision considerably. Overall, matching precision
could be improved in 28 % of the considered merge scenarios.
Finally, the improvement in precision does not affect the
practicality of the approach in terms of performance. On
average, enabling the lookahead mechanism is less than half a
second slower per merge scenario (up to 23 s).

Matching is an automatic procedure and must be automatic to
be practical. To gain confidence in the correctness or “quality”
of the computed matchings, we manually inspected about 200
samples of code that were matched differently by our lookahead,
compared to without using the lookahead. For the manual
inspection, we compared both pretty-printed diff outputs from
JDIME with the output computed by a line-based diff tool, to
judge whether our matching approach produced a correct result.
During this inspection, we did not find any indication that our
approach produces false positives. The reason for this is very
likely the threshold parameter that is used by the algorithm to
decide whether or not two trees are similar: In our evaluation,
this value was set to 90 %, which leads to matches of mostly
identical code fragments. When reduced, say to, 50 %, we
assume that false positives will be produced along with correct
matches, but this is outside the scope of our study.

The other tunable parameters are the language-specific
lookahead distances: They need to be high enough to find
matching code, but at the same time, introduce a performance
penalty, due to the additional matching operations. Good values
can be deduced from the structure of the AST: To find shifted
code, a distance of 1 or 2 is sufficient. For renaming, a value
of 4 or 5 is required to find better matches.

To learn more about the influence of the syntax-specific
lookahead distances, we experimented with a generic, un-
bounded lookahead variant that always tries to find matching
code in subtrees, irrespective of the type of node. As expected,
this variant was much slower, with average runtimes of up to
200 % compared to the unoptimized version of JDIME.

Most of the shifted code that we looked at during our manual
inspection, appeared like bug fixes of some sort: statements
wrapped by a try block for better exception handling, or code
wrapped by an if statement to execute it conditionally. We also
observed the opposite situations: try blocks or if statements
being removed. Typically, only one file was affected by shifting
code per merge scenario, whereas renaming seems to be more
common in practice.

VIII. RELATED WORK

After the seminal work of Westfechtel [2] and Buffen-
barger [3], several of approaches of structured merging for



mainstream programming languages such as JAVA have been
proposed [4, 6, 5, 12].

JDIME is a structured merge tool that merges JAVA ASTs top-
down and level-wise [5]. It distinguishes between ordered and
unordered nodes and treats them differently during matching,
which improves precision. Leßenich et al. [5] proposed an
auto-tuning approach on top of JDIME, which essentially
switches between structured and unstructured merge based on
the presence of conflicts (if there are conflicts, a more precise,
but also more costly, structured merge is used; otherwise, only
a line-based merge). Without lookahead, JDIME is not able
to match renamed program elements and shifted code.

Apel et al. [13] addressed problem of computational com-
plexity of structured merging by treating individual artifacts
only to some extent in terms of their syntactic structure (e.g.,
until the method level) and the fine-grained parts as plain
text, which is effectively a semistructured merging approach.
Much like JDIME, renamed program elements and shifted code
cannot be matched.

Asenov et al. [12] encode the tree structure of ASTs in plain
text, such that a line-based merging tool can be used. The
matching algorithm relies on node identifiers, though, which
must be supplied from an external source (e.g., from an editor),
which simplifies the matching problem. However, in many
practical settings, such as using version control systems, this
information is not available.

GUMTREE uses a two-phase strategy for AST matching [6].
In the first phase, it searches top-down for nodes whose names
match and whose subtrees are isomorphic. In the second phase,
it revisits unmatched nodes and searches for pairs which
have a significant number of matching descendants. This way,
renamed program elements and shifted code can be detected.
In contrast to our lookahead mechanism, their approach
is not syntax-specific, thus, searches for potential matches
irrespective of syntactic categories of the program elements
involved. As discussed in Section VII, this incurs an overhead
for searching matches that are very unlikely or even invalid.

Dotzler et al. [7] discuss five optimizations that may be used
as pre- or postprocessing steps for tree matching algorithms,
with the aim of shortening the resulting edit scripts. In particular,
they search for identical subtrees as a preprocessing step and
target specific cases such as unmapped or moved leaf nodes.
Much like GUMTREE, they do not optimize for matching
program elements of different syntactic categories.

JDIFF goes beyond the AST and matches at the level of
control flow [4], which changes the problem from tree matching
to graph matching. Graph matching is in general NP hard
and not feasible for the scenarios that we addressed in our
experiments.

Malpohl et al. [14] developed a language-independent
detector of renamed program elements that operates on parse
trees. Besides tree matching, it considers also the static program
semantics in the form of def–use pairs, which is more precise
but harms performance (unfortunately, there is no evaluation
on substantial programs available). The detector is not syntax-
aware in the sense that it incorporates the types of nodes to find

better matchings, as we do in our lookahead mechanism. So,
it is not surprising that, in a case study, they had to calculate
similarity measures for all possible pairs of identifiers to arrive
at over 3000 identifier pairs, about 50 of which were renamings.

Beside mainstream programming languages, some ap-
proaches target model artifacts [15, 16, 17]. They are mostly
based on graphs, which allow precise merging but harm
performance. So, it is unlikely that they scale to problem
sizes in the order of our subject projects.

Finally, tracing which change operations give rise to the
versions to be merged can help in the detection and resolution
of conflicts [18, 19, 20, 21, 22]. However, such an operation-
based approach is infeasible when traces are not available
or difficult to obtain, which is common in practice. Dig et
al. [23, 24] proposed techniques to detect renamings in such
scenarios. Other approaches require that the artifacts to be
merged come with a formal semantics [25, 26], which is also
rarely the case in practice (e.g., for mainstream programming
languages). Another line of work attempts to detect refactorings
by identifying semantic changes in a diff [27, 28, 29]. Finally,
approaches that rely on model finders for semantic merge have
substantial limitations with regard to performance [30].

IX. CONCLUSION

Diffing and merging software artifacts are central tasks
in software development. While the state of the art still
relies on an unstructured, lined-based approach to merging,
recent developments demonstrate the merits and prospects of
structured merging approaches.

Precise structured merging is computationally expensive,
though, so practical approaches introduced a number of
optimizations (top-down, level-wise matching and early return
if nodes do not match). While these optimizations improve
performance to a degree that makes structured merging practi-
cal, the imprecision induced touches two very relevant change
scenarios: renaming and shifted code.

To improve precision without compromising performance,
we have developed a syntax-aware, heuristic optimization of
structured merging by devising a lookahead mechanism that,
based on the type of the program element to match, descends
the matching traversal efficiently. This way, we can handle
renaming and shifted code uniformly.

In a series of experiments, on 48 real-world open-source
projects (4,878 merge scenarios with over 400 million lines
of code), we demonstrate that a syntax-aware lookahead
mechanism can significantly improve matching precision in
28 percent without compromising performance. A qualitative
analysis confirms the relevance and quality of the matchings
produced.

X. ACKNOWLEDGEMENTS

This work has been supported by the German Research
Foundation (AP 206/4, AP 206/5, and AP 206/6).



Table I
SUBJECT PROJECTS AND EXPERIMENT DATA (LOC: LINES OF CODE)

Project # Scenarios First Commit # LOC # Renamings # Pieces of Shifted Code

ACTIONBARSHERLOCK 90 2011-03-21 41,993 13 19
ANDROID-CLEANARCHITECTURE 11 2014-09-05 5,207 0 0
ANDROID-OBSERVABLESCROLLVIEW 13 2015-01-29 17,043 0 3
ANDROID-PULLTOREFRESH 50 2011-12-10 6,102 11 11
ANDROID-UNIVERSAL-IMAGE-LOADER 78 2011-12-10 13,857 7 21
ANDROIDSWIPELAYOUT 34 2014-08-25 3,383 0 2
ANDROIDUTILCODE 20 2016-07-31 21,359 10 0
EVENTBUS 26 2012-07-31 7,709 8 6
HOMEMIRROR 14 2015-09-09 2,462 0 2
HYSTRIX 6 2012-04-09 78,541 0 2,105
MPANDROIDCHART 276 2014-04-25 42,570 68 84
MATERIAL-ANIMATIONS 7 2015-03-17 1,240 0 0
MATERIALDESIGNLIBRARY 21 2014-10-28 3,771 4 28
MATERIALDRAWER 188 2014-03-15 13,964 94 86
PHOTOVIEW 50 2012-10-08 2,303 2 4
POCKETHUB 114 2011-10-17 36,594 474 2,267
RXANDROID 70 2014-02-05 1,666 28 42
RXJAVA 438 2012-04-09 360,054 1,477 109
SLIDINGMENU 41 2012-07-01 4,932 8 16
VIEWPAGERINDICATOR 21 2011-09-26 4,059 15 6
ANDROID-ULTRA-PULL-TO-REFRESH 17 2014-12-09 6,879 0 1
ANDROID-UNIVERSALMUSICPLAYER 22 2015-03-10 9,222 0 8
ANDROID-ASYNC-HTTP 167 2011-03-15 12,609 7 9
ANDROIDANNOTATIONS 113 2011-10-13 68,297 140 338
BUTTERKNIFE 145 2013-03-06 12,058 228 232
DUBBO 49 2012-06-19 163,252 10 10
ELASTICSEARCH 10 2011-04-21 939,086 1 2
FASTJSON 37 2011-11-09 172,913 7 355
FRESCO 2 2015-03-26 109,561 32 65
GLIDE 77 2013-07-20 58,141 284 308
GUAVA 3 2010-07-07 732,697 52 102
IOSCHED 243 2014-04-02 70,691 247 31
JAVA-DESIGN-PATTERNS 81 2014-08-16 62,014 3,473 2,698
KOTLIN 40 2010-12-10 702,579 30 286
LEAKCANARY 109 2015-05-08 5,736 21 106
LOTTIE-ANDROID 5 2016-10-07 9,241 6 0
MATERIAL-DIALOGS 138 2014-11-08 9,013 8 36
NETTY 4 2010-11-23 365,984 0 0
OKHTTP 750 2012-07-23 74,251 955 754
PICASSO 337 2013-02-18 12,676 48 56
PLAID 32 2015-09-07 24,438 2 10
REALM-JAVA 12 2012-04-26 101,040 31 60
RETROFIT 482 2010-10-13 23,987 444 256
SPRING-BOOT 129 2013-05-27 353,034 353 607
STORM 231 2011-09-21 67,422 50 455
TINKER 13 2016-09-24 42,508 6 2
WEEX 21 2016-04-13 185,533 5 5,210
ZXING 41 2014-01-24 66,148 181 571



REFERENCES

[1] T. Mens, “A State-of-the-Art Survey on Software Merg-
ing,” IEEE TSE, vol. 28, no. 5, pp. 449–462, 2002.

[2] B. Westfechtel, “Structure-Oriented Merging of Revisions
of Software Documents,” in Proc. SCM. ACM, 1991,
pp. 68–79.

[3] J. Buffenbarger, “Syntactic Software Merging,” in Se-
lected Papers from SCM-4 and SCM-5, vol. LNCS 1005.
Springer, 1995, pp. 153–172.

[4] T. Apiwattanapong, A. Orso, and M. Harrold, “JDiff:
A Differencing Technique and Tool for Object-Oriented
Programs,” ASE J., vol. 14, no. 1, pp. 3–36, 2007.

[5] O. Leßenich, S. Apel, and C. Lengauer, “Balancing
Precision and Performance in Structured Merge,” ASE J.,
vol. 22, no. 3, pp. 367–397, 2015.

[6] J.-R. Falleri, F. Morandat, X. Blanc, M. Martinez, and
M. Monperrus, “Fine-grained and Accurate Source Code
Differencing,” in Proc. ASE. ACM, 2014, pp. 313–324.

[7] G. Dotzler and M. Philippsen, “Move-optimized Source
Code Tree Differencing,” in Proc. ASE. ACM, 2016, pp.
660–671.

[8] S. Böcker, D. Bryant, A. Dress, and M. Steel, “Algo-
rithmic Aspects of Tree Amalgamation,” J. Algorithms,
vol. 37, no. 2, pp. 522–537, 2000.

[9] K. Zhang and T. Jiang, “Some MAX SNP-hard Results
Concerning Unordered Labeled Trees,” Information Pro-
cessing Letters, vol. 49, no. 5, pp. 249–254, 1994.

[10] W. Yang, “Identifying Syntactic Differences Between Two
Programs,” Software: Practice and Experience, vol. 21,
no. 7, pp. 739–755, 1991.

[11] H. Kuhn, “The Hungarian Method for the Assignment
Problem,” Naval Research Logistics Quarterly, vol. 2, no.
1–2, pp. 83–97, 1955.

[12] D. Asenov, B. Guenat, P. Müller, and M. Otth, “Precise
Version Control of Trees with Line-Based Version Control
Systems,” in Proc. FASE, vol. LNCS 10202. Springer,
2017, pp. 152–169.

[13] S. Apel, J. Liebig, B. Brandl, C. Lengauer, and C. Kästner,
“Semistructured Merge: Rethinking Merge in Revision
Control Systems,” in Proc. ESEC/FSE. ACM, 2011, pp.
190–200.

[14] G. Malpohl, J. J. Hunt, and W. F. Tichy, “Renaming
Detection,” ASE J., vol. 10, no. 2, pp. 183–202, 2003.

[15] A. Mehra, J. Grundy, and J. Hosking, “A Generic Ap-
proach to Supporting Diagram Differencing and Merging
for Collaborative Design,” in Proc. ASE. ACM, 2005,
pp. 204–213.

[16] D. Kolovos, R. Paige, and F. Polack, “Merging Models

with the Epsilon Merging Language (EML),” in Proc.
MODELS, vol. LNCS 4199. Springer, 2006, pp. 215–
229.

[17] C. Treude, S. Berlik, S. Wenzel, and U. Kelter, “Difference
Computation of Large Models,” in Proc. ESEC/FSE.
ACM, 2007, pp. 295–304.

[18] E. Lippe and N. van Oosterom, “Operation-Based Merg-
ing,” in Proc. SDE. ACM, 1992, pp. 78–87.

[19] D. Dig, K. Manzoor, R. Johnson, and T. Nguyen,
“Refactoring-Aware Configuration Management for
Object-Oriented Programs,” in Proc. ICSE. IEEE, 2007,
pp. 427–436.

[20] M. Koegel, J. Helming, and S. Seyboth, “Operation-
Based Conflict Detection and Resolution,” in Proc. CVSM.
IEEE, 2009, pp. 43–48.

[21] G. Taentzer, C. Ermel, P. Langer, and M. Wimmer,
“Conflict Detection for Model Versioning Based on Graph
Modifications,” in Proc. ICGT, vol. LNCS 6372. Springer,
2010, pp. 171–186.

[22] H. Gall, B. Fluri, and M. Pinzger, “Change Analysis with
Evolizer and ChangeDistiller,” IEEE Software, vol. 26,
no. 1, pp. 26–33, 2009.

[23] D. Dig, C. Comertoglu, D. Marinov, and R. Johnson,
“Automated Detection of Refactorings in Evolving Com-
ponents,” in Proc. ECOOP, vol. LNCS 4067. Springer,
2006, pp. 404–428.

[24] D. Dig, K. Manzoor, R. Johnson, and T. Nguyen, “Effec-
tive Software Merging in the Presence of Object-Oriented
Refactorings,” IEEE TSE, vol. 34, no. 3, pp. 321–335,
2008.

[25] V. Berzins, “Software Merge: Semantics of Combining
Changes to Programs,” ACM TOPLAS, vol. 16, no. 6, pp.
1875–1903, 1994.

[26] D. Jackson and D. Ladd, “Semantic Diff: A Tool for
Summarizing the Effects of Modifications,” in Proc. ICSM.
IEEE, 1994, pp. 243–252.

[27] B. Fluri, M. Würsch, M. Pinzger, and H. Gall, “Change
Distilling: Tree Differencing for Fine-Grained Source
Code Change Extraction,” IEEE TSE, vol. 33, no. 11, pp.
725–743, 2007.

[28] P. Weißgerber and S. Diehl, “Identifying Refactorings
from Source-Code Changes,” in Proc. ASE. IEEE, 2006,
pp. 231–240.

[29] K. Prete, N. Rachatasumrit, N. Sudan, and M. Kim,
“Template-based Reconstruction of Complex Refactor-
ings,” in Proc. ICSM. IEEE, 2010, pp. 1–10.

[30] S. Maoz, J. Ringert, and B. Rumpe, “CDDiff: Semantic
Differencing for Class Diagrams,” in Proc. ECOOP, vol.
LNCS 6813. Springer, 2011, pp. 230–254.


