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ABSTRACT
Software-language engineering is gaining momentum in research
and practice, but it faces many challenges regarding language evo-
lution, reuse, and variation. We propose language families, a feature-
oriented approach to language engineering inspired by product lines
and program families. The goal is to systematically manage the
development and evolution of variants and versions of a software
language in terms of the language features it provides. We offer
a tool chain for the development and management of composable
language features and language families. By means of a case study
on the Web-programming language Mobl, we evaluate the practi-
cality of our approach and discuss our experiences, open issues,
and perspectives.

Categories and Subject Descriptors
D.2.13 [Software Engineering]: Reusable Software; D.3.2 [Pro-
gramming Languages]: Language Classifications—Extensible lan-
guages

General Terms
Languages

Keywords
Language families, language evolution, feature-oriented program-
ming

1. INTRODUCTION
Software languages are widely used in many areas of software

engineering. Beside general-purpose programming languages, soft-
ware languages comprise domain-specific languages, modeling and
specification languages, pattern languages, application program-
ming interfaces, and ontologies. The emerging paradigm of soft-
ware-language engineering is concerned with the systematic devel-
opment, use, and maintenance of these languages; this includes de-
sign, implementation, testing, and evolution of software languages.

Software languages are rarely designed and implemented in a
single step. Instead, software languages are subject to incremental
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development and evolution, giving rise to different variants and ver-
sions of the language [39]. Even general-purpose languages evolve
over time (e.g., Java 5 = Java 4 + generics) and pose major chal-
lenges on software-language engineers (e.g., tool builders).

Inspired by product-line and program-family approaches [1, 15,
17, 33], we propose the concept of a language family to systemat-
ically manage the development and evolution of variants and ver-
sions of software languages. A language family is a set of lan-
guages that share a base of common language features, but that also
differ in certain language features. The goal of the language-family
engineering is to facilitate reuse, variability, and automation: (1)
language features are reused among the individual languages of the
family; (2) different languages satisfy different requirements of dif-
ferent stakeholders by providing corresponding features; and (3) a
language is specified and derived automatically based on a user’s
feature selection.

A language family targets a particular domain, such as data mod-
eling, Web programming, query processing, or circuit design. The
features of the language family represent abstractions of the tar-
get domain. For example, a language for query processing may
provide features for supporting spatial and streaming queries, but
in many application scenarios these two language features are not
necessary, and—although not used in a particular scenario—they
may even have negative effects, such as performance penalties, ac-
cidental complexity, and misbehavior.

Our proposal of language families aims at supporting the practi-
cal development and evolution of software languages. We propose
to decompose a language definition along the language features it
provides. This is in the spirit of modular language (de)composition,
but it goes beyond that in that we employ non-classic modular-
ization mechanisms (i.e., crosscutting decomposition using mix-
ins), and we systematically manage variability among the family
members, which is inspired by recent work on software product
lines [4, 5, 10, 17]. For example, a query language could be de-
composed into a base language and features for stream processing,
spatial queries for sensor networks, and view management. Based
on a user’s feature selection, a simplified language variant—along
with corresponding tools (e.g., compiler and editor)—can be gen-
erated on demand, excluding unnecessary language features that
may result in disadvantages such as distraction of programmer’s
attention, performance reduction, and error introduction. On the
contrary, nowadays languages have grown to a level of complex-
ity that makes them hard to maintain and evolve, with the result
of the mentioned disadvantages [39]. For example, in the database
community it has been shown that “one size fits all” is not feasible
in practice for SQL [40]. Instead, the trend goes toward special-
ized SQL dialects to downsize and simplify the corresponding lan-
guage tools (e.g., analysis tools), to give the programmer a chance



to understand the language’s features and their interactions, and to
exploit optimization potential [36].

In addition to recent work on language (de)composition [13, 21,
24, 27], which concentrates on syntax, we consider all aspects of
a language, including syntax, static and dynamic semantics, anal-
ysis and optimization, as well as documentation. Furthermore, we
focus on technical aspects rather than on formal semantics. We
provide means (in the form of a tool chain) to decompose a lan-
guage definition along its features, and compose the pieces consis-
tently based on a user’s feature selection. We base our approach
on recent advancements in software-language engineering. As a
technological basis, we integrate and extend a number of existing
languages and tools including SDF [44] and Stratego [12] for lan-
guage specification, Spoofax for generating language tools [26],
and FeatureHouse for composing language features (i.e., the cor-
responding documents and specifications) [4]. In a case study, we
used this tool chain to refactor the existing language Mobl for mo-
bile Web applications [23] into features and to compose them in
different combinations to create different language variants. Here,
we reflect on our experience with feature (de)composition of Mobl
and discuss open issues and perspectives.

In summary, we make the following contributions:
• We introduce the concept of a language family, which is cen-

tered around the concept of composable language features.
• We provide an approach and a tool chain for the development

and management of language families.
• By means of a case study on the Web-programming language

Mobl, we evaluate the practicality of our approach and dis-
cuss our experience, open issues, and perspectives.

2. LANGUAGE FAMILIES
After introducing a running example, we introduce the concept

of a language family and discuss issues such as variability and con-
sistency.

Running Example. As our running example, we use a small
language for expressions [34]. For now, it supports only boolean
values and a conditional construct. We call the language EXPRB.
In Figure 1, we provide a specification of its syntax and semantics
in terms of grammar rules (left), typing rules (middle), and evalua-
tion rules (right). The syntax is specified in Backus-Naur-Form. It
comprises three syntactic forms (boolean constants and conditional
statement) and distinguishes between terms and values. The type
system consists of three typing rules (one for each syntactic form)
that assign types to terms (in our case, we have only type Bool).
Similarly, there is one evaluation rule per syntactic form, of which
the last one is merely a congruence rule. Further details are outside
the scope of our discussion and we refer the reader elsewhere [34].

Much like the syntax and semantics specifications, we can define
rules for syntax highlighting and optimization, and we could in-
clude corresponding proofs of soundness and completeness of the
type system, documentation, test cases, etc.

Language Features. The idea of a language family is not to
specify a single language, but a whole set of related languages. The
different languages of a family are related by the features they pro-
vide. Typically, a language shares features with other languages,
but has also some unique ones. A key idea is to make the language
features explicit by factoring them out of the language specification
in terms of composable units, called henceforth language feature
units. The expression language we have discussed so far can be
seen as one unit. On top of it, we can define further units that ex-

Figure 3: Composing language specifications on demand; the
example consists of the four features A–D, of which two combi-
nations are selected and composed

Figure 4: A feature model of the family of expression languages

tend and refine existing specification documents incrementally (cf.
Fig. 3; left).

As a concrete example, suppose we want to extend EXPRB by a
feature for supporting arithmetic expressions (i.e., natural numbers
and corresponding operations). To this end, we introduce a new
language feature unit, called EXPRN, that encapsulates the defini-
tions concerned with arithmetic expressions and that builds on the
definitions of EXPRB. In Figure 2, we show EXPRN’s syntax, typ-
ing, and evaluation rules. The dots (‘. . . ’) within the new rules
added by EXPRN denote the locations where the rules of EXPRB are
extended. Essentially, EXPRN introduces a number of new syntac-
tic forms (constant numbers, successor, predecessor, and zero test).
Furthermore, it introduces the new type Nat as well as straight-
forward typing and evaluation rules for the new syntactic forms.
Details of the rules are available elsewhere [34].

Families of Languages. Once we have multiple language fea-
ture units, a user can compose them in different combinations, in
our simple case, (1) boolean expressions only and (2) boolean and
arithmetic expressions. In our example, we use superimposition as
a composition operator [4, 5], which merges the rules of two doc-
uments recursively by name. While superimposition has proved
useful for the extension of grammars, other composition operators
such as weaving [11] or inheritance [27] are possible.

The user can compose language features in different combina-
tions, as illustrated in Figure 3. However, in practice, not all com-
binations may be valid and represent desirable languages, so we
need to constrain the set of possible feature combinations properly.
We use feature models for this task. In Figure 4, we show a possi-
ble feature model for our expression language family. Using feature
models, a language engineer can model complex relations between
language feature units [17].

Dimensions of Variability. A key observation is that a fam-
ily of languages induces two dimensions of variability [9]. First,
we have the language features that a user can combine on demand
(e.g., booleans and natural numbers or stream processing and spa-
tial queries). Second, we have the different kinds of specification
documents relevant for different kinds of language-processing tools
(e.g., grammar rules and typing rules). To distinguish the choices of
tools to be generated from the language features, we call them tool



Syntax rules

t ::= terms:
true constant true
false constant false
if t then t else t conditional

v ::= values:
true true value
false false value

Typing rules

T ::= types:
Bool booleans

Typing rules t : T

true : Bool (T-TRUE)
false : Bool (T-FALSE)

t1 : Bool t2 : T t3 : T
if t1 then t2 else t3 : T

(T-IF)

Evaluation rules t −→ t′

if true then t2 else t3 −→ t2 (E-IFTRUE)
if false then t2 else t3 −→ t3 (E-IFFALSE)

t1 −→ t′1
if t1 then t2 else t3 −→ if t′1 then t2 else t3

(E-IF)

Figure 1: Specification syntax and semantics EXPRB

Syntax rules

t ::= . . . terms:
0 constant zero
succ t successor
pred t predecessor
iszero t zero test

v ::= . . . values:
nv numeric value

nv ::= numeric values:
0 zero value
succ nv successor value

Typing rules

T ::= . . . types:
Nat natural numbers

Typing rules t : T

. . .

0 : Nat (T-ZERO)
t1 : Nat

succ t1 : Nat
(T-SUCC)

t1 : Nat
pred t1 : Nat

(T-PRED)

t1 : Nat
iszero t1 : Bool

(T-ISZERO)

Evaluation rules t −→ t′

. . .

t1 −→ t′1
succ t1 −→ succ t′1

(E-SUCC)

pred 0 −→ 0 (E-PREDZERO)

pred (succ nv1) −→ nv1 (E-PREDSUCC)

t1 −→ t′1
pred t1 −→ pred t′1

(E-PRED)

iszero 0 −→ true (E-ISZEROZERO)

iszero (succ nv1) −→ false (E-ISZEROSUCC)

t1 −→ t′1
iszero t1 −→ iszero t′1

(E-ISZERO)

Figure 2: Syntax and semantics specification of EXPRN, which extends EXPRB
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Bool X X X X X X ...
Nat X X X X X X ...

String X X X X X X ...
Lambdas X X X X X X ...
Variables X X X X X X ...

... ... ... ... ... ... ... ...

Table 1: Two dimensions of variability in the family of expres-
sion languages

features. We illustrate both dimensions for the expression-language
family in Table 1.

Note that, when adding a feature to one dimension, it is likely
that we have to change and extend the features (i.e., their represen-
tation) of the other dimension. For example, when adding support
for strings to the expression language, we have to add correspond-
ing syntax, typing, and evaluation rules, we have to update the
soundness proof, we have to extend the documentation, and so on.
Or, when adding support for syntax highlighting, we have to extend
the representations of all language features in order to define proper
syntax-highlighting rules, for conditionals, lambdas, functions, etc.

The two-dimensional structure of Table 1 reveals that there are
many interactions between language and tool features, which makes
it even more important to make features and variability explicit.
The situation is very similar to issues discussed in product-line ar-
chitecture and programming languages. For example, Batory et
al. [9] observed that features in product lines can be assigned to
dimensions that form multi-dimensional program cubes; folding
cubes dimension-wise corresponds to feature composition. The fa-
mous expression problem1 illustrates a similar problem: Given a set
1The expression problem was named by Phil Wadler in 1998 but
has been known for many years [16, 28, 35].

of recursive data types (e.g., different kinds of terms and expres-
sions) and a number of operations defined over them (e.g., evalu-
ation and pretty printing), it is challenging to extend the program
both by new data types and operations in a modular way [43].

Software-language engineers should be aware of the fact that lan-
guages have different dimensions of variability, which leads, in the
worst case, to an explosion of interactions between language and
tool features [25]. Our proposal of language families makes the di-
mensions explicit and provides guidelines for (de)composition. For
example, if we want to generate a parser and type checker for the
expression language with booleans and natural numbers, we can
see from Table 1 that we have four units to compose:

Bool#Syntax, Nat#Syntax, Bool#Typing, Nat#Typing

where A#B denotes the part of a language feature A that is con-
cerned with tool feature B.2 Given a selection l ⊆ L of language
features and a selection s ⊆ S of specification types, the desired
language variant is composed via  |l|

i=1

(
 |s|

j=1 (li#sj)
)

, where •
denotes composition of feature units.

Decomposing a language specification along features and man-
aging dimensions of variability, allows a user/tool to compose lan-
guage variants effectively and consistently (cf. Fig. 5). Looking
at Table 1, we gain a maximum of reuse of feature units and vari-
ety of corresponding languages. The mapping of dimensions and
features to units enables the automatic derivation of languages and
corresponding tools based on a user’s feature selection.

3. TOOL CHAIN
We developed a tool chain for language-family engineering. The

tool chain rests on a number of existing tools that we adapted and
integrated for language families. First, there is a number of tools for
the specification of software languages and the generation of cor-

2The notation is based on work of Batory et al. [8].



Figure 5: Language families gives rise to two dimensions of
variability: (1). selecting language features and (2). selecting
tool features

responding language tools, and, second, there are tools for the rep-
resentation, management, and composition of language features.

Language Specification. As discussed in Section 2, we spec-
ify a language in terms of its syntax and semantics rules. For defin-
ing the syntax, we use SDF [44], an expressive and concise syn-
tax definition formalism and tool. We chose SDF because it has a
number of desirable properties: SDF integrates lexical and context-
free syntax in a single formalism. It is a declarative language and
supports arbitrary context-free grammars. That is, a syntax defi-
nition can be used for different purposes, including the generation
of parsers, pretty printers, and data type definitions. SDF syntax
definitions can be modular, enabling their reuse in different syntax
definitions.

For the definition of the semantics of a software language, we
use Stratego [12]. Stratego is a domain-specific language for pro-
gram transformation. It is based on programmable rewriting strate-
gies, which makes Stratego useful for traversing, analyzing, and
transforming syntax trees. In particular, we use it to define typing
rules and code-generation rules for software languages, which boils
down to traversing and transforming abstract-syntax trees.

To generate language tools from the syntax and semantics defini-
tions, we use Spoofax [26], a language workbench for the develop-
ment of textual software languages. In particular, we use Spoofax
to generate parsers based on SDF grammars and type checkers,
and code generators and interpreters based on declarative rules sets
written in Stratego. Furthermore, Spoofax can be used to gener-
ate Eclipse-based editor tools based on declarative rules, including
syntax highlighting and code completion as well as on-line refer-
ence resolution.

Language Features. Using our tool chain, we specify a lan-
guage by providing SDF grammar and Stratego typing and code-
generation rules. For the development of a language family, we
have to (de)compose the documents that contain the rules along the
language features that the family is supposed to provide. (From
right to left in Figure 3.)

For representing and composing language features, we use Fea-
tureHouse [4], which is a tool chain for software composition based
on superimposition. We extended FeatureHouse with support for
SDF and Stratego, so that language feature units consisting of SDF
and Stratego documents can be composed based on a user’s feature
selection. The extension includes writing parsers and pretty print-
ers for SDF and Stratego documents, as well as providing compo-
sition rules for SDF and Stratego documents. In Figure 6, we show
a Stratego document defining basic typing rules (top, feature Base)
for our Mobl case study and a refinement of that document that adds
typing rules for HTML (bottom, feature HTML). SDF and Stratego
documents are represented in FeatureHouse using a tree-like data
structure with terminal and non-terminal nodes. Based on the lan-

terminal nodes non-terminal nodes

SD
F

module name, module declaration,
production, priority, restriction

disambiguations, export declaration,
hidden declaration, import declara-
tion, module, productions

St
ra

te
go

definition, module name, overlay,
rule definition, signature declaration
(sorts, constructors), strategy defini-
tion (ID)

declaration (rules, strategies, signa-
ture, signatures, overlays), module,
strategy definition (external)

Table 2: Classification of SDF and Stratego syntactic elements
into terminal and non-terminal

Feature Base
1 module check
2 imports include/MoBL lookup type rename desugar mobl pp /∗ ... ∗/
3
4 rules
5 find−duplicate :
6 [el|k] −> <find−duplicate(|el)> k
7 constraint−warning :
8 Module(qid,_) −> (qid,$[Module name does not match file path.])
9 where not(<eq>($[[<qid−to−path>qid].mobl],<CompilingFilename>))

10 /∗ ... ∗/

Feature HTML
1 module check
2
3 rules
4 constraint−error :
5 Html(tag,_,_,closeTag) −> (closeTag,$[Wrong closing tag])
6 where not(<eq> (tag,closeTag))
7 constraint−error :
8 NamedHtml(_,tag,_,_,closeTag) −> (closeTag,$[Wrong closing tag])
9 where not(<eq> (tag,closeTag))

10 /∗ ... ∗/

Figure 6: Excerpts of two language feature units of Mobl; fea-
ture HTML extends feature Base

guage semantics, we classified for a relevant (according to language
composition) subset of AST nodes of SDF and Stratego, all termi-
nal and non-terminal nodes and specified how they can be com-
posed. For example, rules in Stratego documents represent a non-
terminal node and therefore an existing rule-set can be extended
with new rules. In our example (cf. Fig. 6), the two constraint-error
rules of feature HTML extend the rule-set of feature Base. Table 2
summarizes the entire classification of SDF and Stratego syntactic
elements into FeatureHouse’s terminal and non-terminal nodes.

Note that, of course, not all combinations of language features
may be valid (e.g., composing two valid grammars may result in
an invalid grammar). If not ruled out by a corresponding feature
model, invalid combinations of language feature can be detected
using safe-composition techniques [2, 18, 42]. This issue is outside
the scope of this paper.

Dimensions of Variability. In Figure 7, we illustrate the in-
terplay between the tools for language specification and tool gener-
ation, and for the development and composition of language fea-
tures. A key point is that we base our approach on declarative
rule-based specifications that will allow us to develop and evolve
language families easier than implementing language tools using
general-purpose languages such as Java. For example, it is easier to
extend a given type system by adding new typing rules and refining
existing ones than by extending and modifying the corresponding
Java implementation.

The two dimensions of variability are quite explicit in Figure 7.
From top to bottom, we have different variants of a language speci-
fication that provide different sets of language features. From left to
right, we have the choice of generating different tools from parsers



Figure 7: Using Spoofax to generate language tools, and Fea-
tureHouse and FeatureIDE to compose language specifications

to editors—the tool features. For example, if we want to generate a
parser for our expression language with support for booleans only,
we just invoke Spoofax on the SDF grammar that contains only the
grammar rules for booleans. If we want additionally a type checker,
we invoke Spoofax also on the Stratego typing rules to generate a
corresponding type checker. If we want support for natural num-
bers, we include the corresponding grammar and typing rules using
FeatureHouse (i.e., top-down, by means of superimposition) and
invoke Spoofax as done before. Following the earlier composition
equation, all three examples can be expressed as compositions of
specification documents and refinements thereof:

Bool#Syntax

Bool#Syntax • Bool#Typing

Bool#Syntax • Nat#Syntax • Bool#Typing • Nat#Typing

Depending on the document type, the composition operator may
differ. Some compositions may involve the extension of existing
documents (e.g., adding new syntax rules), others may connect ex-
isting components and tools (e.g., invoking a type checker on the
syntax tree produced by a parser).

4. THE MOBL CASE STUDY
To demonstrate the practicality of our approach, to gain expe-

rience with language families, and to reveal open issues, we con-
ducted an initial case study on the basis of a real software language
called Mobl. In this section, we introduce Mobl, we describe how
we refactored it into language feature units, we explain how we de-
rived different language and tool variants, and we discuss the merits
of language families based on the resulting Mobl language family.

The Mobl Language. Mobl is a free and open-source language
for programming mobile Web applications [23]. It integrates all as-
pects of a mobile Web application into a single language, includ-
ing data modeling, user interfaces, application logic, styling, and
Web services. Mobl programs are translated to 100% client-side
HTML5-based applications, there is no dependency on a specific
server-side technology, and the applications are principally off-line
capable. Mobl is statically typed and employs type inference to
simplify coding. Furthermore, it is deployed with a powerful edi-
tor that offers syntax highlighting, content completion, and as-you-
type error detection. Mobl has been used to develop a number
of real-world applications (e.g., e-learning, podcatching, and time
management).3

3http://docs.mobl-lang.org/showcase

Mobl has been developed with Spoofax. That is, its syntax and
semantics as well as editor services and so on are defined by means
of SDF and Stratego. The corresponding tools are generated with
Spoofax. Hence, it is a perfect candidate for our case study.

Feature Decomposition. Overall, the Mobl sources consist of
17 SDF documents (912 non-blank lines) that specify Mobl’s syn-
tax, 38 Stratego documents (5270 non-blank lines) that define its
semantics, and 8 further documents (85 non-blank lines) that de-
fine the editor’s appearance.

For the purpose of the case study and based on domain knowl-
edge, we have selected 4 features along which we decomposed the
specification documents of Mobl: HTML, Service, Async, and Or-
derBy. As a result, we have a language feature unit for the base
Mobl language and 4 additional language feature units that can be
added in different combinations (HTML is mandatory).

The process of feature decomposition was as follows. For each
feature, we selected one or more rules that obviously belong to
the feature (e.g., rule "async" "" Statement* "" -> Statement
cons("Async") for feature Async). Then, we removed the rules
and looked at other specification documents for dependencies and
references to them. For each rule we found, we decided whether
it belongs to the feature in question (in this case, we removed it
as well) or to another feature. For example, for feature Async,
we found, among others, references to type checking and pretty
printing, which represents a dependency between a language and
a tool feature. Beside the syntactic search process, we manually
inspected all remaining rules of Mobl to catch also rules that be-
long to the feature in question, but that are without references to
other rules of the feature. Then, we moved all removed rules to a
distinct language feature unit. During the decomposition process,
we applied minor refactorings, such as splitting of long grammar
rules into several shorter ones, to removed and remaining rules to
ensure that they can be composed seamlessly. Overall, we had to
apply refactorings to the Mobl specification infrequently. We did
not observe any interactions between the identified features, such
as the change of behavior of a feature in the presence of another
one. While feature interactions may occur in larger languages, it is
possible to encapsulate them using derivatives [29].

During the decomposition process, we observed that language
features crosscut multiple specification documents. In Figure 8,
we show the crosscutting nature of Mobl’s language feature units.
Our observation confirms the necessity of expressive composition
mechanisms such as superimposition.

Deriving Mobl Variants. Mobl’s feature model is simple. Ex-
cept the basic language specification and the mandatory feature
HTML, all features are optional and independent. This results in
8 valid language variants. A language variant is derived by select-
ing the desired features and passing them to FeatureHouse. On
the basis of the feature selection, it generates the corresponding
specification documents (in SDF, Stratego, and so on). Based on
the generated specification documents, we can generate selectively
corresponding language tools such as a parser using Spoofax. We
identified, 3 tool features which give rise to 3 tool sets.

In Table 3, we provide information on the individual Mobl vari-
ants we generated and, implicitly, the degree of reuse among the
language-family members. Using our approach, it is simple to ex-
tend the language. One simply adds a new language feature unit
and refines the existing specification documents non-invasively—
the same holds for adding new tool features.

For illustration, we show in Figure 9 a Mobl variant in action.
This variant does not support feature Async, hence the generated

http://docs.mobl-lang.org/showcase


Figure 8: Crosscutting nature of language features in Mobl

Figure 9: A Mobl variant in action: This variant does not pro-
vide feature Async, thus it does not understand keyword async
and reports an error

Mobl editor reports an error because keyword async is not known.
This error and the numbers of Table 3 show that feature Async has
really been removed from the corresponding Mobl variant.
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X X X X X 866 17 853 857
X X X X X 876 17 859 171
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X X X X 5 837 24 490 287
X X X X X 5 895 24 520 002
X X X X X 5 911 24 548 812
X X X X X 5 885 24 533 243
X X X X X X 5 969 24 577 114
X X X X X X 5 943 24 550 214
X X X X X X 5 959 24 593 531
X X X X X X X 6 017 24 626 201

X X X X X 5 922 24 474 441
X X X X X X 5 980 24 521 693
X X X X X X 5 996 24 551 352
X X X X X X 5 950 24 545 311
X X X X X X X 6 054 24 600 655
X X X X X X X 6 028 24 597 107
X X X X X X X 6 044 24 616 153
X X X X X X X X 6 102 24 657 767

Table 3: Overview of the generated Mobl variants

Discussion and Perspectives. Our case study demonstrates
the practicality of our approach. We decomposed a real-world lan-
guage into language feature units that can be reused in different
language variants, which are automatically generated based on a
user’s feature selection. The language features are specified declar-
atively and composed via superimposition. This way, we are able
to add new features easier than based on low-level implementa-
tions in general-purpose languages. The use of superimposition
as composition operator allows us to encapsulate even crosscut-
ting features, as it was the case for all features of Mobl we consid-
ered (cf. Fig. 8). Crosscutting appears to be the rule in software-
language engineering—induced by multiple dimensions of vari-
ability (cf. Sec. 2).

During our experiments with Spoofax, we recognized that, actu-
ally, it uses a combination of generation and interpretation. Parts
of the overall tool chain are generated, but some parts of the Strat-
ego rules are interpreted by the generated tool chain at runtime.
Unfortunately, we were not able to precisely quantify the amount
of generation and interpretation and the implications for the binary
size of the generated code. Still, our results are promising in that
they demonstrate the principle benefits of language families.

Decomposing a language along the features it provides allows
us to generate tailored language variants. The variants of Mobl
do really provide only the features that have been selected during
variant generation. Hence, tailoring has an effect on the complex-
ity of the language and the size of the resulting language tools, as
shown in Table 3. Of course, in our case study, the size of the
language features, compared to the overall size of the language, is
rather small—naturally, the influence of the tools features is higher
in this respect. Anyway, the extraction of more substantial language
features will likely have a larger effect on downsizing.

Once accepting the feature idea, language evolution boils down
to feature inclusion. But, as with any other system, not all evolution
tasks can be anticipated and may require refactorings of existing
features. This issue is subject of ongoing research on product-line
evolution [41].



5. RELATED WORK

Stepwise and Feature-Oriented Language Development.
The idea of decomposing a language specification along its features
has been first proposed by Batory et al. [10]. They developed and
evolved languages by adding language features incrementally in the
form of composable units. They applied their approach to gram-
mars as well as to language-processing tools written in Java. In this
spirit, Apel et al. developed a formal language in a feature-oriented
way, including syntax, typing, and evaluation rules [2, 3, 7]. How-
ever, they did not develop corresponding tools and they did not ap-
ply their approach to a real language. Batory and Börger developed
a model of the Java language incrementally (feature by feature),
but the work was only at the conceptual level, without implemen-
tation or tool support. In a related attempt, Batory et al. applied
the idea of decomposing language specifications to theorems about
properties of a particular language. Based on a user’s selection, the
corresponding correctness proof is generated [7, 19].

Cazzola proposed the framework NEVERLANG, which provides
means to encapsulate language and tool features and to generate
specific language variants using feature composition [14]. Lan-
guage and tool features are encoded directly in a programming
language including the generator for language variants. By con-
trast, we use the language workbench Spoofax [26], which uses
generic language specifications in the form of SDF/Stratego doc-
uments, which can be composed using our software composition
tool FeatureHouse [4]. Furthermore, our approach integrates fea-
ture models to rule out invalid language variants.

Extensible Compiler Frameworks. A number of extensi-
ble compiler frameworks have been developed, for example, Poly-
glot [31], abc [6], and JastAdd [20]. The idea is to provide exten-
sion points in the framework to extend and refine a given language.
Typically, compiler frameworks are written in general-purpose lan-
guages such as Java. They are inherently complex, hard to under-
stand, and difficult to adapt to unanticipated extensions [30, 38].
Our approach aims at the development of language families based
on declarative languages specifications and feature decompositions
thereof. The underlying assumption is that declarative language
descriptions are easier to understand and extend—an assumption
that drives the development of parsers for many years (in terms of
parser generation based on grammars).

Language Composition. A number of approaches aim at com-
position of languages that serve different purposes. The main focus
was on embedding domain-specific languages into general-purpose
languages or combining multiple domain-specific languages. Fur-
thermore, the approaches concentrated on grammar combination
and pure syntax embedding, for example [13, 21, 24, 27]. On the
one hand, our approach goes beyond these approaches by consid-
ering all kinds of declarative language specifications and the sub-
sequent generation of language tools. On the other hand, we do
not consider the integration of completely independent languages
(e.g., integrating SQL into Java), but families of related languages
that differ in some language features (e.g., SQL with and without
spatial queries), which poses less challenges.

Extensible Type Systems. Recently, researchers noted that type
systems either grew too big or were too less restrictive. An early ap-
proach is used in the Glasgow Haskell compiler, which can be con-
figured to support additional syntax and type rules via command-
line flags. However, the support for the syntax and typing rules,

although disabled, remains in the compiler and may degrade per-
formance or introduce errors. A recent idea is to develop extensi-
ble type systems that form a framework for basic types and type
checking, but that supports also plugging in new types and typing
rules [22, 32]. In contrast to our approach, types are plugged in by
the user on demand. There is no explicit family of type systems
that is developed and evolved systematically, in sync with declara-
tive specifications of the language’s syntax and semantics.

Intentional Programming. Simonyi et al. proposed intentional
programming, an approach to express the programmer’s intention
explicitly in the language [37]. It is based on powerful editors that
allow developers to create easily domain-specific abstractions and
to use them right ahead in their programs (see the JetBrains Meta
Programming System for a recent implementation4). In fact, user-
defined domain-specific abstractions can be composed in different
combination, thus representing a language family. Our approach
is similar in spirit but pursues a generative approach. There is no
single powerful, programmable editor in which one has to load ab-
stractions, but a set of language feature units that are composed by
a generator based on a feature selection.

6. CONCLUSION
We have presented an approach to feature-oriented language en-

gineering. The idea is to decompose a language along the features
it provides, thus giving rise to a language family. We have assem-
bled a tool chain for the development of language families, and we
used it to refactor the given language Mobl into a language family.
As a result, we can derive 24 variants of Mobl simply by specifying
the language and tool features it shall provide. This has an immedi-
ate effect on the complexity and size of the language variants. Our
approach is able to handle crosscutting features and facilitates an
incremental style of language development.

In further work, we shall gather more experience with language
families, for instance, by applying the approach to a subset of SQL
and its versions. Furthermore, it is interesting to explore the influ-
ence of unused language features and feature interactions on per-
formance, memory consumption, and defects of the programs in
question.
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