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Abstract—Detecting feature interactions is imperative for ac-
curately predicting performance of highly-configurable systems.
State-of-the-art performance prediction techniques rely on super-
vised machine learning for detecting feature interactions, which,
in turn, relies on time consuming performance measurements to
obtain training data. By providing information about potentially
interacting features, we can reduce the number of required
performance measurements and make the overall performance
prediction process more time efficient. We expect that the in-
formation about potentially interacting features can be obtained
by statically analyzing the source code of a highly-configurable
system, which is computationally cheaper than performing mul-
tiple performance measurements. To this end, we conducted
a qualitative case study in which we explored the relation
between control-flow feature interactions (detected through static
program analysis) and performance feature interactions (detected
by performance prediction techniques using performance mea-
surements). We found that a relation exists, which can potentially
be exploited to predict performance interactions.

I. INTRODUCTION

A feature is an end-user-visible behavior or character-
istic of a (software) product that satisfies a stakeholder’s
requirement [1]. Features are used to guide structure, reuse,
and variation through the development of highly-configurable
software systems [2]. While facilitating the development of
highly-configurable software, reducing development costs, and
improving product quality, making features optional introduces
new challenges, such as the feature interaction problem [3].
A feature interaction occurs when the functionality of a
feature or its non-functional properties (e.g., performance)
are influenced by the presence or absence of one or more
other features [2]. The presence of feature interactions hinders
program comprehension and compositional reasoning about
the functional and non-functional properties of features. That
is, we cannot reason about the properties of a system con-
figuration (i.e., a valid feature combination) in terms of a
straightforward combination of the individual influences of
the involved features on these properties. This is because we
also have to consider the influences of possible interactions. A
common practical scenario is searching for the best configura-
tion of a system with respect to performance. To identify this
configuration for a given operational environment, we need to
know not only the individual influences of the involved fea-
tures on performance, but also which interactions among these
features exist and what influence on performance they have.

The problem of detecting feature interactions and quanti-
fying their influence on performance has been addressed in
the past by employing machine learning [4], [5], [6]. For
building a training dataset and identifying interactions, these

techniques rely on selecting a representative subset from all
system configurations (i.e., sampling) and on measuring the
performance of each configuration in this sample (Sec. III-C).
The time needed to perform the measurements often makes
up a substantial part of the overall time required by machine
learning [7]. Therefore, reducing the measurement effort—by
concentrating on system configurations that potentially have
feature interactions—can make these techniques more time
efficient and accurate [4].

The main question that we address in this paper is whether
we can efficiently extract information about potentially ex-
isting feature interactions, which then can be used in per-
formance prediction, which is, in turn, imperative to guide
maintenance and evolution tasks. In our previous work [3],
we described two types of interactions: (1) external feature
interactions, which can be identified by observing the external
behavior of a system, such as performance; and (2) internal
feature interactions, which can be identified by analyzing or
interpreting the source code of a system, for example, using
control-flow analysis [3]. Our main hypothesis here is that
there is a relation between internal and external interactions,
and that we can make use of this relation to automatically iden-
tify external interactions by identifying internal interactions in
a fast and efficient way. For example, multiple function calls
from one feature to another (internal feature interactions) can
result in a performance overhead. This performance overhead
is present only if both—the caller and the callee features—
are present in a configuration (external feature interaction).
This way, the internal interaction is related to its external
counterpart. This relation, if present, would give us hints about
the existence of external feature interactions based on the
internal ones. In this work, we follow up on this idea and
report on at exploratory case study in which we investigated
the control flow among features and its relation to perfor-
mance feature interactions. We conjecture that by supplying
the performance-prediction procedure with hints about which
feature combinations are more likely or less likely to exhibit
external feature interactions, the procedure can be made more
focused on finding actual interactions.

Taking into account the exploratory nature of our study,
the qualitative character of the expected results, as well
as substantial technical challenges, we chose a case-study
approach (see Sec. III-A) as our research method and two
systems—the MBEDTLS encryption library and the SQLITE
database engine—as non-trivial, real-world subject systems.1
MBEDTLS and SQLITE are highly-configurable systems used

1https://tls.mbed.org/ https://www.sqlite.org/
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by several large projects, such as OPENVPN and FIREFOX,2
which makes our case study practice-oriented.

In a nutshell, using a recent machine learning technique
(Sec. III-C), we learned the external (performance) feature
interactions among the features of the subject systems. Fur-
thermore, we manually inspected the code of the systems and
confirmed that the learned performance interactions actually
exist and that they are actually caused by the interplay of the
corresponding features, and not just misinterpreted artefacts of
measurement bias or environment noise.

Using a variability-aware control-flow analysis augmented
by manual code inspection (Sec. III-B), we identified control-
flow interactions among the features of MBEDTLS and
SQLITE. That is, we identified the code locations where the
features pass the control to one another.

Comparing the set of internal (control-flow) interactions
with the set of external (performance) interactions revealed
that those features that interact internally also interact exter-
nally (Sec. IV-B3b), which is in line with our expectation.
Using the identified relation, we were able to substantially
shrink the search space of performance feature interactions
(Sec. IV-C). Furthermore, we made first steps towards devel-
oping an automated predictor for identifying features that are
likely to interact externally based on the set of internal in-
teractions, although, with mostly negative results (Sec. III-E).
To the best of our knowledge, this is the first case study that
analyzed both the external and the internal feature interactions
for the same systems and investigated possible connections
between these two types of interactions.

The contributions of this work are the following:
• We define a relation between internal and external inter-

actions based on the features these interactions concern,
and we discuss the plausibility of this relation.

• We define a conceptual framework for exploring the
relation between internal and external interactions.

• In a first case study of this kind based on two real-
world highly-configurable subject systems, we explore
and confirm the relation between internal and external
feature interactions.

• We discuss the implications of our findings for perfor-
mance prediction of highly-configurable systems.

II. INTERNAL AND EXTERNAL FEATURE INTERACTIONS

To illustrate how features may interact internally and ex-
ternally and how these interactions can be related, we use
a simple example of an audio streaming system with five
optional features: COMPRESS compresses the audio stream;
ENCRYPT encrypts data; ADDMETADATA adds data about the
stream quality, description of the audio content, information
about its authors, etc., to the stream; LOGIP logs IPs of the
users receiving the stream; RANKCONTENT ranks the audio
content according to its popularity. The performance of the
system is measured by the maximum number of users that
can simultaneously receive an audio stream without the system
becoming overloaded.

2https://openvpn.net/ https://www.mozilla.org/

#ifdef ENCRYPT
void encrypt(payload t ∗payload) {...}
#endif
#ifdef ADDMETADATA
void add meatadata(packet t ∗packet) {...
#ifdef ENCRYPT

encrypt(matadata);
#endif...
}
#endif
#ifdef LOGIP
void log(char ∗ip) {...
#ifdef ENCRYPT

encrypt(log entry);
#endif...
}
#endif
#ifdef COMRPRESS
void compress(payload t ∗payload) {...}
#endif
#ifdef RANKCONTENT
void rank() {...}
#endif

(a) Control-flow interactions in the audio streaming system.

ADDMETADATA ∧ ENCRYPT

LOGIP ∧ ENCRYPT

COMPRESS ∧ ENCRYPT

100−15·COMPRESS−15·ENCRYPT−5·ADDMETADATA−5·LOGIP−5·RANK
−5· ADDMETADATA·ENCRYPT
+10· COMPRESS·ENCRYPT

(b) A performance influence model with performance interactions.

feature interactions

Fig. 1: Interactions in the audio streaming system.

A. Control-Flow Interactions (Internal)

In Figure 1a, we illustrate an excerpt of the implementation
of the audio streaming system. The code of each feature is
delimited using C preprocessor #ifdef annotations. We denote
internal interactions among features with arrows. The boxes on
the arrows contain presence conditions for the corresponding
interactions [8], that is, which features must be enabled (or
disabled) for the interaction to take place. For example, if
both features ADDMETADATA and ENCRYPT are enabled, then
metadata are encrypted along with the audio data. For this
purpose, ADDMETADATA calls the encryption function of fea-
ture ENCRYPT (denoted by the solid red arrow). Consequently,
there is a control-flow interaction between these two features.

Likewise, there is a control-flow interaction between fea-
tures LOGIP and ENCRYPT (denoted by the dashed green
arrow), since the log entries are encrypted if both features
are enabled.

Finally, an internal interaction exists between features COM-
PRESS and ENCRYPT (denoted by the dotted blue arrow). This
is a data-flow interaction, because both features operate on the
same resource (i.e., the audio stream).

B. Performance Interactions (External)

In Figure 1b, we show a performance influence model [9]
of the audio stream system. For a given system configuration,
the model can predict the maximum number of users that

https://openvpn.net/
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can simultaneously receive an audio stream without the
system becoming overloaded.3 To calculate the predicted
value, we substitute 1 for the names of the enabled features
and 0 for the names of all disabled features. Then, we
evaluate the arithmetic expression. For example, for the
configuration with feature COMPRESS enabled and the
rest of the features disabled the system can reliably serve
100− 15 · 1− 15 · 0 + · · ·+ 10 · 0 = 85 users.

The individual terms of the model (i.e., the summands)
describe the influence of individual features as well as of
their interactions on the performance of the system. The
first term (100) describes the performance of the base con-
figuration (with all features disabled). The second term
(−15·COMPRESS) describes the influence of feature COM-
PRESS on the performance relative to the performance of
the base system. Thus, the computationally expensive feature
COMPRESS reduces the base performance by 15.

The terms containing more than one feature (denoted by
boxes in Figure 1b) describe the influences of the interactions
among the involved features on performance. For example,
enabling both features ADDMETADATA and ENCRYPT makes
the system encrypt not only the audio stream, but also the
metadata that are added to the stream. This results in a com-
putational overhead, which reduces the system’s performance
by 5 users that can be served.

In our example, we assume that encrypting a small string
containing an IP address is so fast that this has no measurable
effect on the performance of the system. Therefore, there is
no a performance interaction between features LOGIP and
ENCRYPT. Consequently, there is no a corresponding term in
our performance influence model.

The last term in the model describes an interaction between
features COMPRESS and ENCRYPT with a positive influence
of the performance. Each of the two features individually
has a negative influence of −15 on the system performance,
but encryption is faster if the data were compressed before.
Therefore, the combined influence of both features on per-
formance is less than the sum of their individual influences:
−15− 15 + 10 = −20 and not −30.

Finally, feature RANKCONTENT as well as all other pos-
sible feature combinations have no measurable influence on
performance and, therefore, they are not in the performance
influence model.

C. Relating Control-Flow and Performance Interactions
Table I summarizes the control-flow and the correspond-

ing performance interactions from our example (Fig. 1).
The feature combinations (ADDMETADATA, ENCRYPT) and
(COMPRESS, ENCRYPT) give rise to both control-flow and
performance interactions. Based on our knowledge about the
implementation, we can explain the causal relation between the
control-flow and performance interactions captured by these
feature combinations: The call to the computationally expen-
sive encryption functionality (a control-flow interaction) leads
to the performance decrease in the configurations containing
the features that implement and use the encryption function-
ality (i.e., a performance interaction between these features
occurs). Notice that the related control-flow and performance

3Here, we assume that the model is 100 % accurate.

TABLE I: A lists of interacting features from Figure 1. It
illustrates which of the features interact internally (control-
flow interaction), externally (performance interaction), or both.

Interacting Features Control flow Performance

ADDMETADATA, ENCRYPT X X
COMPRESS, ENCRYPT X X
LOGIP, ENCRYPT X –

interaction involve exactly the same features, so we can also
relate them based on the features they involve. However,
the mere presence of control flow among features does not
always indicate the presence of a performance interaction. For
example, the control-flow interaction between features LOGIP
and ENCRYPT has no corresponding performance interaction.
So, it is an open question to what extent a presence of a
control-flow interaction can be used as an indicator for a
potentially existing performance interaction.

Also note that from 26∗ feature combinations possible in the
audio streaming system only three combinations give rise to
feature interactions. All remaining feature combinations can be
ignored by an interaction detection technique, because features
in these combinations do not interact.

In what follows, we investigate to what extent a relation
between control-flow and performance interactions exists in
a real-world setting. Furthermore, we define and evaluate a
predictor that uses control-flow interactions to predict potential
performance interactions. With such a predictor in place, we
could make interaction detection more efficient and accurate,
which would be a valuable contribution to research fields, such
as optimization of non-functional properties, combinatorial
testing, and sampling techniques.

III. CONCEPTUAL FRAMEWORK

Next, we describe the methods and tools used in our study
and how we combined them in a conceptual framework to
study relations among internal and external interactions.

A. Research Method
Our study is explorative in nature, because the way we study

the relation between control-flow and performance interactions
is novel and requires careful validation in itself. Our study
involves bleeding-edge techniques for detecting control-flow
and performance interactions that are technically challenging
and, therefore, cannot be easily applied to a large number of
non-trivial real-world systems. By focusing on two systems,
we aim at increasing the internal validity of the study, because,
this way, we can better identify and control confounding
effects that may vary substantially from one subject system
to another (e.g., architecture, size of features). Ultimately, we
want to obtain deep insights in the nature of the relation
between control-flow and performance feature interactions and
not only report on shallow statistics. Taking these characteris-
tics of our study into account, the literature on conducting
empirical research in software engineering suggests a case
study as a research method: Shull et al. describe case studies as
“initial investigations of some phenomena” [10], Yin extends
the description by stating that a case study is “an empirical

∗10 combinations with 2 features, 10 with 3, 5 with 4, and 1 with 5.



inquiry that investigates a contemporary phenomenon within
its real-life context, especially when the boundaries between
phenomenon and context are not clearly evident” [11], and
Flyvbjerg adds that “case studies offer in-depth understanding
of how and why certain phenomena occur, and can reveal the
mechanisms by which cause–effect relationships occur” [12].

B. Identifying Control-Flow Interactions

To identify control-flow interactions, we use a variability-
aware call-graph analysis [13] implemented in TYPECHEF4

that identifies function calls among features implemented with
preprocessor annotations (Fig. 1a). The central idea of a
variability-aware analysis is to achieve efficiency by analyzing
code parts that are shared by multiple system configurations
only once. This is achieved by analyzing the source code of
the system that still contains variability (e.g., the code with
preprocessor annotations in Figure 1a), as opposed to analyz-
ing the source code of individual configurations, which may be
exponentially many in the number of features. A variability-
aware call-graph analysis provides an efficient way to identify
function calls among features of a highly-configurable system
and makes the detection of internal interactions feasible.

The underlying data structure for the analysis is the variable
abstract syntax tree. Similar to an abstract syntax tree (AST),
a variable AST provides an abstraction of the source code that
can be efficiently analyzed, but it also provides information on
which part of the code belongs to which features (in the form
of presence conditions). Using this information, a call-graph
analysis can identify, for each function call, which feature is
the caller and which feature is the callee. Furthermore, the
analysis can identify a presence condition for each call, that
is, which features must be enabled (or disabled) for the call to
take place at runtime. For example, in Figure 1a, the call from
feature ADDMETADATA to feature ENCRYPT (solid red arrow)
occurs only if both features ADDMETADATA and ENCRYPT
are enabled (denoted by the presence condition in the box
under the arrow). Due to the static nature of the technique, the
collected information about the calls may be an overapproxi-
mation, but this is a problem with any static analysis approach.
The current implementation of the analysis also uses pointer
analysis to increase the accuracy of the call graph [13].

C. Identifying Performance Interactions

For detecting performance feature interactions, we learn
performance influence models (Fig. 1b). As discussed in
Section II-B, a performance influence model captures the
influences of individual features and their interactions on
performance of a configurable system. We learn performance
influence models using the tool SPL CONQUEROR,5 which im-
plements a state-of-the-art machine learning algorithm based
on multivariate regression and forward feature selection [9].
The algorithm takes as input a sample of system configurations
and corresponding performance measurements. The accuracy
of the learned performance influence model depends, among
other factors, on how representative the sampled configurations
are for the entire configuration space. To get a performance

4http://fosd.net/TypeChef/
5http://fosd.net/SPLConqueror/

influence model of the highest possible accuracy, and, con-
sequently, to detect feature interactions as precise as possible
(i.e., to obtain the ground truth), we measured not a sample
but all configurations of the subject system and used these
measurements as the algorithm input. The performance mea-
surements were done using a standard benchmark.

To build an influence model, SPL CONQUEROR starts with
calculating a set of features and their combinations that can
be included in the model to reduce the model’s prediction
error. For example, COMPRESS · ENCRYPT in Figure 1b is
a feature combination that has been eventually included in
the model during the learning process. The algorithm iterates
over the set of features and their combinations and selects one
element of the set that explains variations in the performance
of the system best; that is, the element yielding the model’s
lowest prediction error, when incorporated into the model.
The selection of candidates continues until either a predefined
accuracy is reached or all features and feature combinations
that could reduce the prediction error of the model have been
considered. For a more in-depth description of the algorithm,
we refer the reader to previous work [9].

D. Relating Control-Flow and Performance Interactions
After we have identified the internal (control-flow) interac-

tions, the question is what we can learn from them regarding
external (performance) interactions. To answer this question,
we relate the control-flow interactions and performance inter-
actions based on the features involved in them, as we explained
it in our example in Section II-C. The goal is to find out if
the features involved in performance interactions also occur
in one or more internal interactions and vice versa. This is
a feasibility check to see if the interactions can be related
based on the features’ occurrence at all. That is, if we find
no interactions that can be related in this way, this would
mean that it is impossible to define any relation between
interactions based on the corresponding feature occurrences
in these interactions.

We define a performance interaction ip and a control-flow
interaction ic as related if features(ip) ⊆ features(ic) or if
features(ip) ⊇ features(ic), where features(i) is the set of
features that contribute to the interaction i.

Furthermore, for each related pair of interactions, we de-
termine how similar the interactions are (i.e., if they contain
exactly the same features or if they also contain features that
are present only in one of them). The similarity of the related
interactions can be interpreted as the strength of their relation:
the higher the similarity, the higher the strength of the relation.
We calculate the similarity of interactions using the Jaccard
index J [14]:

J(ip, ic) =
features(ip)∩features(ic)
features(ip)∪features(ic)

where features(i) is the set of features involved in the interac-
tion i. The Jaccard index equals 1 if both interactions involve
exactly the same features and is less than 1 otherwise.

E. Predicting Performance Interactions
If we find a relation between control-flow and performance

feature interactions as defined in Section III-D, the question
is whether we can use this relation to predict performance
feature interactions.

http://fosd.net/TypeChef/
http://fosd.net/SPLConqueror/


One method is to build on our argumentation in Section II-C
and to assume that every control-flow interaction corresponds
to an existing performance interactions. Of course, we already
know that there may be control-flow interactions without
corresponding performance interactions. Nevertheless, it is an
open question how accurate this simple method can be if
applied to a real-world system.

We can also use a more advanced method based on reoc-
curring feature combinations in control-flow interactions: We
argue that, if a set of features occurs in multiple control-flow
feature interactions, then this set of features is also likely to
give rise to one or more external interactions. The rationale
behind this argument is that, if a set of feature is involved in
many control-flow feature interactions, then chances are high
that it is also involved in performance interactions, because
the accumulated influence of the control-flow interactions on
performance have a measurable effect.

The method that we use to identify such frequent feature sets
is frequent item set mining [15], which has been successfully
used as a general pattern mining method [16], [17]. In terms
of frequent item set mining, we refer to a feature as an item.
The set of all items (all features) is the item base B. A subset
of the item base I ⊆ B is an item set that corresponds to a
feature combination. An item set (i.e., a feature combination)
that denotes an internal interaction in a system is a transaction
t ∈ T , where T is a set of transactions. Based on these
definitions, we define the support (a.k.a. absolute frequency)
s of an item set: s = |{t : t ∈ T ∧ I ⊆ t}|. The support value
and a threshold E ∈ [0,∞) is used to decide which of the item
sets are considered frequent: All item sets with the support
value s ≥ E are frequent item sets. Based on our hypothesis,
frequent item sets predict external feature interactions. We use
an implementation of the Apriori algorithm from the ORANGE
library6 to calculate the support value.

IV. CASE STUDY

We address the following research questions in our study:
• RQ1: Do control-flow feature interactions and perfor-

mance feature interactions relate (in terms of the defi-
nition of Section III-D)?

• RQ2: If the relation identified in RQ1 exists, what is
the predictive power (i.e., precision and recall) of the
predictors that we propose in Section III-E?

To answer these research questions, we search for control-
flow and performance interactions in the subject systems,
study their properties, identify relations between them, and
evaluate predictors for performance interactions based on these
relations.

A. Subject Systems
The case study was conducted using two real-world highly-

configurable software systems: the MBEDTLS library imple-
menting the transport security network protocol TLS/SSL and
a SQL database engine SQLITE. The initial use case for the
systems was embedded domain, but now they are also used in
non-embedded projects, such as OPENVPN and FIREFOX.

Similar to a large number of other real-world highly con-
figurable systems, the subject systems are written in C using

6http://orange.biolab.si/

C-preprocessor directives to implement compile-time variable
features. MBEDTLS comprises 50 K and SQLITE 195 K lines
of code. Both systems have a highly modular architecture,
which is thoroughly documented along with the corresponding
preprocessor macro names allowing relatively easy matching
of code to the corresponding modules and submodules.

a) MBEDTLS Features and Feature Model: At the top
level, MBEDTLS consists of modules, such as Cipher, Public
Key, Hashing. Each module implements the corresponding
algorithms and protocols. For example, the Cipher module
includes submodules that implement cipher algorithms, such
as AES, DES, and ARC4. Submodules implement the features
of the system. The cipher-algorithm features can be combined
with other features, such as hash algorithms and public-
key implementations, to provide an encryption protocol. We
used the original documentation and manual code inspection
to construct a feature model for MBEDTLS version 2.2.1,
comprising 97 features and 1921 configurations.

b) SQLITE Features and Feature Model: SQLITE con-
sists of a Core providing a C-language interface and being
responsible for executing compiled SQL code, an SQL Com-
piler, and a Backend providing the low-level implementa-
tion of the database. A user can configure the operation of
these modules by enabling or disabling their features through
compile-time options. For example, Core can be configured
to operate safely in a multithreaded environment by enabling
the SQLITE THREADSAFE feature. We studied the docu-
mentation and the source code of version 3.16.2 to construct a
feature model comprising 12 features and 1533 configurations.

c) MBEDTLS Performance Measurements: The primary
application of MBEDTLS is the encryption of data transmitted
over a TCP/IP network. Ensuring fast and secure data transfer
is commonly considered an important property of communi-
cation networks, such as the Internet. So, the time required to
encrypt data and transfer them over the network is an important
non-functional property of MBEDTLS. Measuring the time
required by encryption alone is not representative, because
different configurations may produce different amounts of
payload (e.g., due to data compression and different amounts
of generated metadata) influencing the transmission time.
Therefore, we defined the performance measure for a con-
figuration of MBEDTLS as the amount of time (in seconds)
required to encrypt and successfully transmit a fixed amount
of input data.

To detect performance feature interactions reliably based on
performance benchmarks, it must be ensured that every feature
included in a configuration is invoked during the benchmark
of this configuration. Otherwise, the influence of features and
their interactions on performance cannot be deduced from the
benchmark results. The original automated test framework of
MBEDTLS includes tests that check the library’s functionality
in a client-server environment and is suitable to serve as a
typical benchmark suite. During the tests, the functionality
of every feature in the configuration is tested, that is, every
feature is actually invoked.

We used 2 GB of random data as input to ensure that
the fastest configuration requires, at least, five seconds for
transmission and to mitigate the influence of warm-up effects
on the result. We repeated the benchmark 30 times to further

http://orange.biolab.si/


reduce the influence of measurement bias. To exclude the
influence of network latencies, we ran the benchmark locally
using the local network interface.

d) SQLITE Performance Measurements: The developers
of SQLITE provide a performance benchmark that measures
time required by the database to execute a set of queries.7 The
original benchmark is not compatible with the latest version
of the system that we use, so we used it as guidance to create
a new compatible benchmark. While constructing the bench-
mark we made sure that the features of SQLITE are actually
invoked during the benchmarking process. Our benchmark
measures the execution time in seconds. To reduce the influ-
ence of warm-up effects and measurement bias, the benchmark
runs, at least, 25 seconds and every run is repeated 30 times.

The benchmarks for both systems were conducted on an
Intel i5-4590, 16 GB RAM, 256 GB SSD, Ubuntu 16.04.

B. Results
1) Performance Interactions: We used SPL CONQUEROR

and the performance benchmark results (cf. Sec. IV-A) as
input data to identify performance interactions in MBEDTLS
and SQLITE, as described in Section III-C. Table II lists for
both systems the performance interactions and their influences
on performance of the systems in seconds. The negative
values in the influence column denote positive influences of
the corresponding interactions on performance. That is, they
denote how much less time a configuration that includes them
would need to execute the benchmark.

The mean standard deviation for the performance mea-
surements of MBEDTLS is 0.42 s. Therefore, we classified
all interactions with the absolute influences less than this
value as noise and discarded them. From the remaining 16
interactions, 11 are interactions between two features; and
five are interactions among three features. The mean standard
deviation for the performance measurements of SQLITE is
0.09 s. The influences of the three identified interactions for
the system are much higher and, therefore, are unlikely to be
noise. Two of the interactions are interactions between two
features and one is an interaction between three features.

a) MBEDTLS: All identified interactions in MBEDTLS
are among features implementing different ciphers, block ci-
pher modes of operation (simply “modes”), and cryptographic
hash functions. This is plausible, because these three types of
algorithms work tightly together to implement an encryption
protocol. Ciphers (e.g., AES) are used to encrypt data, modes
(e.g., CBC) are used in combination with block ciphers to en-
crypt amounts of data larger than a block (i.e., a fixed amount
of data a block cipher can operate on; 128 bit for AES), and
cryptographic hash functions (e.g., SHA) are used with modes
to implement authentication and to ensure data integrity.

To confirm that the identified performance interactions
actually result from the interplay of the corresponding features,
we manually inspected the source code of MBEDTLS. Next,
we present the results of this code inspection.

Interaction 1 in Table II arises between a mode (CBC) and
a hash function (SHA256). CBC uses hashing extensively to
calculate keyed-hash message authentication code (HMAC).
SHA256 is computationally more expensive than, for example,

7http://sqlite.org/speed.html

TABLE II: Performance interactions, their influences on perfor-
mance of the systems in seconds, the number of the control-
flow interactions related to them, and the mean value of the
corresponding Jaccard indexes. (’) marks the relations for
manually added control-flow interactions.

ID Influence Performance Interaction Rela- Jaccard
(sec) (features involved) tions (mean)

M
B

E
D

T
L

S

1 10.73 CIPHER MODE CBC, SHA256 C 1’ 1.00
2 -9.71 AES C, AESNI C 10 0.53
3 8.53 AESNI C, SSL CBC RECORD SPLITTING 2 0.38
4 6.93 CIPHER MODE STREAM, AESNI C 1’ 1.00
5 6.08 SHA256 C, CIPHER MODE STREAM 1’ 1.00
6 5.75 AES C, AESNI C, GCM C 4 0.53
7 3.49 CIPHER MODE CBC, SHA256 C, 1’ 1.00

SHA256 SMALLER
8 3.45 SHA256 C, CIPHER MODE STREAM, 1’ 1.00

SHA256 SMALLER
9 3.44 SHA256 C, AESNI C, 1’ 1.00

CIPHER MODE STREAM
10 3.14 CIPHER MODE CBC, RIPEMD160 C 1’ 1.00
11 -2.97 AES C, GCM C 13 0.40
12 -2.84 CIPHER MODE STREAM, MD5 C 1’ 1.00
13 1.93 AESNI C, CAMELLIA C 4 0.35
14 1.68 CIPHER MODE CBC, SHA1 C 1’ 1.00
15 1.60 CIPHER MODE STREAM, AESNI C, 1’ 1.00

MD5 C
16 1.51 RIPEMD160 C, CIPHER MODE STREAM 1’ 1.00

SQ
L

IT
E 1 1.50 DEFAULT MEMSTATUS, THREADSAFE 1’ 1.00

2 1.47 MEMDEBUG, THREADSAFE 16 0.45
3 1.41 DEFAULT MEMSTATUS, MEMDEBUG, 1’ 1.00

THREADSAFE

To relate the influences to configuration run times, note that the fastest
MBEDTLS configuration completed its benchmark in 6.7 seconds and the
fastest SQLITE configuration completed its benchmark in 26.7 seconds.

MD5; therefore, this combination with the mode has a negative
influence of 10.73 seconds on performance. Interactions 5, 7,
8, 10, 12, 13, 14, and 16 have a similar cause and explanation.
In addition to a mode and a hash function, interactions 7
and 8 also include the feature SHA256 SMALLER, which
denotes that an implementation of SHA256 with smaller
binary footprint was used. However, this implementation
also has a lower performance, which leads to the negative
influence of this interaction on performance. Interaction 12
has a positive influence on performance of using a mode
(stream mode, in this case) with a less computationally
complex (but also less secure) MD5 hash function. In
interaction 13, the AES cipher is used as a hash function in
combination with the Camelllia cipher.

Interaction 2 arises from the usage of the AES cipher
for encryption in combination with a native implementation
of the AES algorithm in assembler (AESNI). The native
implementation makes encryption faster, so this interaction has
a positive influence of 9.71 seconds on performance.

Interaction 3 arises from the usage of the AES cipher
for encryption in combination with an implementation of the
CBC mode that includes a record splitting algorithm. This
algorithm is a countermeasure against the BEAST attack on
the SSL algorithm. The way record splitting is implemented
increases the number of packets to be transmitted (compared
to the number of packets without this countermeasure). The
increased number of packets results, in turn, in a negative
influence on performance.

Interactions 4, 6, 9, 11, and 15 arise from the influence of



further combinations of ciphers, modes, and hash functions on
performance, similar to the first interaction.

b) SQLITE: All performance interactions in SQLITE
include the feature THREADSAFE. This is plausible, be-
cause THREADSAFE is a crosscutting feature that adds the
mutex and thread-safety logic to all unsafe regions in the
code. This additional thread-safety code imposes a runtime
overhead and makes the benchmarks for the configurations
containing it run longer. We inspected the code of SQLITE and
confirmed that both features DEFAULT MEMSTATUS and
MEMDEBUG retrieve a mutex (i.e., use THREADSAFE
feature) at a certain stage of operation that results in interaction
among THREADSAFE and these features.

c) Summary: Overall, we identified 16 performance
interactions in MBEDTLS. 11 of them occur between 2
features and 5 among 3 features. In SQLITE, we identified 3
performance interactions. 2 interactions between 2 features
and 1 among 3 features. Using domain knowledge and
manual inspection of the source code, we identified the cause
of all interactions and thereby confirmed that they actually
exist in the systems and are caused by the interplay of the
corresponding features.

2) Control-Flow Interactions: We used the variability-
aware call-graph analysis implemented in TYPECHEF
(Sec. III-B) to detect control-flow interactions in MBEDTLS
and SQLITE.

a) MBEDTLS: From 761 992 function calls in the sys-
tem, we detected 575 560 control-flow feature interactions.
This number of interactions includes duplicate interactions
that appear if the corresponding function call between features
occurs in multiple locations in the code. The number of unique
control-flow interactions is 73.

Notably, among the unique control-flow interactions, there
are interactions with up to 10 features, but most unique inter-
actions involve only two features (Fig. 2a). If we also consider
the duplicates (Fig. 2b), the overall picture stays largely the
same: Only the number of interactions involving four features
becomes larger than the number of those involving three
features.

While manually exploring the source code of MBEDTLS,
we found that cipher, mode, and hash algorithms call each
other indirectly, using function pointers. This indirection was
introduced by the designers of the library to decouple the
algorithms and to make their concrete implementations inter-
changeable. TYPECHEF would need to be extended with a
variability-aware, inter-procedural data-flow analysis to iden-
tify which features interact using indirect function calls.
Being aware of this technical limitation of TYPECHEF, we
added 11 indirect control-flow interactions that we collected
while manually exploring the code to the set of interactions.
Therefore, the total number of the identified unique control-
flow interactions is 84 (73 were found using TYPECHEF and
11 manually). It would be infeasible to find manually all
instances of indirect control-flow interactions, so their exact
number (including duplicates) is unknown. We discuss the
corresponding threats to validity in Section V.

b) SQLITE: From over 14 587 337 function calls in the
system, we detected 14 587 335 control-flow feature interac-
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Fig. 2: MBEDTLS: counts of features in control-flow interac-
tions.

2 3 4 5 6
Number of involved features

0

10

C
ou

nt

(a) Unique interactions only

2 3 4 5 6
Number of involved features

103

105

107

C
ou

nt

(b) All interactions

Fig. 3: SQLITE: counts of features in control-flow interactions.

tions. That is, all but two function calls involved more than one
feature. The number of unique control-flow interactions is 37.

In contrast to MBEDTLS, most unique interactions involve
4 features, and there are interactions with up to 6 features
(Fig. 3a). Although, if we also consider duplicates (Fig. 3b),
the picture becomes similar to that in MBEDTLS: Interactions
among 2 features prevail and the count of interactions de-
creases with the increasing number of involved features.

While manually inspecting the code of SQLITE, we found
that the option SQLITE DEFAULT MEMSTATUS (which
is used by TYPECHEF to identify the code belonging to
the feature DEFAULT MEMSTATUS) is used to set a
Boolean variable at compile-time. This variable is then used
at runtime to check if feature DEFAULT MEMSTATUS is
enabled or disabled. This way, the feature can be enabled or
disabled at runtime. Again, TYPECHEF would need a data-
flow analysis to trace the connection the preprocessor macro
to the corresponding Boolean variable to detect control-flow
interactions in which feature DEFAULT MEMSTATUS is
involved. By further exploring the code, we identified two
control-flow interactions of this kind and added them to the
set of automatically detected interactions. Therefore, the total
number of the identified unique control-flow interactions is 39.

c) Summary: Overall, we identified 575 571 control-
flow interactions in MBEDTLS among which 84 were
unique. Some interactions involve up to 10 features, but most
interactions are between 2 features. For SQLITE, we iden-
tified 14 587 335 control-flow interactions, with 39 unique.
Due to technical limitations of TYPECHEF, indirect control-
flow interactions in MBEDTLS and interactions induced
by runtime variability in SQLITE could not be detected
by TYPECHEF. We manually inspected the source code to
collect these interactions.

3) Relating Interactions:
a) Performance Interactions → Control-Flow Inter-

actions.: Using the relation definition features(ip) ⊆



features(ic) (Section III-D), for each performance interaction,
we identified all unique related control-flow interactions (i.e.,
all control-flow interactions involving exactly the same fea-
tures as the performance interaction). Furthermore, for each
pair of related interactions, we calculated the Jaccard index
(Section III-D), which denotes how similar the interactions
are (the index equals 1 if both interactions involve exactly the
same features and is less than 1 otherwise).

Table II summarizes the results. For each performance inter-
action, it shows the number of the related control-flow interac-
tions and the mean of all Jaccard indexes calculated for these
relations. The apostrophe (’) denotes the performance interac-
tions that are related to the manually identified indirect control-
flow interactions for which we were not able to establish the
exact number of occurrences (cf. Section IV-B2). The numbers
show that there is a relation between every performance inter-
action and, at least, one control-flow interaction. The Jaccard
indexes show further that the related control-flow interactions,
which were automatically detected by TYPECHEF, involve, on
average, twice as many or even more features than there are
in the corresponding performance interactions.

b) Control-Flow Interactions → Performance Inter-
actions.: Using the relation definition features(ip) ⊇
features(ic) (Section III-D), for each control-flow interaction,
we identified all related performance interactions (i.e., all
performance interactions involving exactly the same features
as the control-flow interaction).

Table III summarizes the results. For MBEDTLS, among the
84 unique control-flow interactions, we found 4 interactions
that have one or more related performance interactions. For
SQLITE, among the 39 unique control-flow interactions, we
found 2 interactions that have one or more related performance
interactions. The Jaccard indexes show that the related perfor-
mance interactions that were automatically detected by TYPE-
CHEF involve mostly the same features as the corresponding
control-flow interactions. The manually added control-flow in-
teractions match exactly the related performance interactions.

c) Summary: We found a relation between every of
the 16 identified performance interactions and one or more
control-flow interactions. The Jaccard indexes for the related
interactions show that the interactions do not generally con-
tain exactly the same features and that the related control-
flow interactions involve, on average, twice as many features
than there are in the corresponding performance interactions.

4) Predicting Performance Interactions:
a) MBEDTLS Direct Matching: As we describe in Sec-

tion III-E, one prediction method is to assume that every
control-flow interaction induces a performance interaction that
involves exactly the same features. In MBEDTLS, from the
73 automatically identified unique control-flow interactions
there are three—interactions 1, 3, and 4 in Table III—that
have exactly the same features as the related performance
interactions 2, 6, and 11 in Table II. That is, three of the
16 performance interactions could be predicted by the direct
matching. Therefore, the precision of the direct matching is
4.11 % and the recall is 18.75 %. If we also incorporate the
11 indirect control-flow interactions, which we identified by
manually inspecting the code, the total number of match-

TABLE III: Control-flow interactions, the number of the
related performance interactions, and the mean value of the
corresponding Jaccard indexes. Control-flow interactions with-
out related performance interactions are not listed. (’) marks
the relations for manually added control-flow interactions.

ID Control-Flow Interaction Rela- Jaccard
(features involved) tions (mean)

M
B

E
D

T
L

S

1 AES C, AESNI C 2 0.83
2 GCM C, AESNI C 1 0.67
3 GCM C, AES C 2 0.83
4 GCM C, AES C, AESNI C 1 1.00
5 CIPHER MODE CBC, SHA256 C 1’ 1.00
6 CIPHER MODE STREAM, AESNI C 1’ 1.00
7 SHA256 C, CIPHER MODE STREAM 1’ 1.00
8 CIPHER MODE CBC, SHA256 C, 1’ 1.00

SHA256 SMALLER
9 SHA256 C, CIPHER MODE STREAM, 1’ 1.00

SHA256 SMALLER
10 SHA256 C, AESNI C, 1’ 1.00

CIPHER MODE STREAM
11 CIPHER MODE CBC, RIPEMD160 C 1’ 1.00
12 CIPHER MODE STREAM, MD5 C 1’ 1.00
13 CIPHER MODE CBC, SHA1 C 1’ 1.00
14 CIPHER MODE STREAM, AESNI C, MD5 C 1’ 1.00
15 RIPEMD160 C, CIPHER MODE STREAM 1’ 1.00

SQ
L

IT
E 1 DEFAULT MEMSTATUS, THREADSAFE 1’ 1.00

2 DEFAULT MEMSTATUS, MEMDEBUG, 1’ 1.00
THREADSAFE

ing control-flow interactions becomes 14. Including indirect
control-flow interactions increases the precision and recall to
16.7 % and 51.85 % respectively.

b) SQLITE Direct Matching: In SQLITE, there are no
automatically identified unique control-flow interactions that
match exactly any of the performance interactions. Including
the manually added control-flow interactions gives the predic-
tion precision of 5.13 % and the recall of 67 %.

c) MBEDTLS Frequent Item Sets: Using frequent item
set analysis (cf. Sec. III-E) on the set of control-flow inter-
actions for MBEDTLS, we found 44 item sets, of which we
calculated the support values. The support values range from
11 % to 34 %, meaning that there are item sets occurring in
11 % to 34 % of all control-flow interactions.

Two of the found item sets match exactly the performance
interactions 2 and 11 of Table II. Notice that we ran the
frequent item set analysis only on the automatically detected
control-flow interactions. We were not able to run it on the
indirect control-flow interactions, because then we would have
to find every instance of such interaction manually, which is
infeasible. Nevertheless, we incorporated the indirect control-
flow interactions into further analysis by approximating their
support values based on the distribution of support values
for similar indirect interactions (see Sec. V, for threats to
validity). Among the 44 detected item sets, there are 33 item
sets capturing interactions among ciphers, modes, and hash
functions. We assigned support values to the indirect control-
flow interactions according to the distribution of the support
values of these 33 item sets. That is, 6 % of the interactions
were assigned a support value of 11 %, 3 % were assigned a
support value of 12 %, and so on.

By varying the threshold E, as described in Section III-E,
we are able to decide which of the identified item sets are
considered frequent. By setting the threshold to 0, we consider



all identified item sets as frequent. When the threshold is
increased the item sets with lower support values are not
considered frequent anymore. For example, if we set the
threshold to 15 % only 25 % of the identified item sets will
have a higher support value and will be considered frequent.
Changing the threshold this way allows us to observe its
influence on the predictive power (i.e., precision and recall)
of the frequent item sets.

To calculate how good the item sets are in predicting perfor-
mance interactions, we compared how many of them denote
the actually identified performance interactions (i.e., contain
exactly the same features as the performance interactions). The
low precision and recall values for MBEDTLS summarized in
Table IV show that our predictor based on the frequent item
sets has only a low predictive power. Increasing the threshold
value decreases the precision and recall of the predictor.

d) SQLITE Frequent Item Sets: Applying the same
frequent item set method to the control-flow interactions of
SQLITE resulted in four frequent item sets with support
values ranging from 20 % to 100 %. None of these frequent
item sets matched the performance interactions. We could
not approximate the distribution of the support values for the
manually detected control-flow interactions, because they do
not exhibit any commonalities with the calculated frequent
item sets as it was the case for MBEDTLS.

e) Summary: We defined two predictors for perfor-
mance interactions based on their relation with control-flow
interactions. The first predictor is based on the assumption
that every control-flow interaction induces a performance
interaction that involves exactly the same features. The sec-
ond predictor is based on the assumption that the recurring
feature combinations in control-flow interactions capture the
related performance interactions. The evaluation showed that
both predictors have only low precision and recall values.

C. Discussion

Based on our results, we conclude that there is indeed a
quantifiable relation between control-flow and performance in-
teractions. We confirmed this by manually inspecting the code
and by comparing which features are involved in the detected
performance interactions and how these features interact at the
control-flow level. We found that features involved in perfor-
mance interactions work closely together to implement the sys-
tems’ functionality and also interact at the control-flow level.
That is, the same features that are involved in performance
interactions are also involved in control-flow interactions.
Therefore, we can positively answer research question RQ1.

The relation we found among control-flow and perfor-
mance feature interactions has implications for performance
prediction techniques for highly-configurable systems. As we
discussed in Section IV-B3, the identified control-flow interac-
tions capture the features that are involved in the performance
interactions. Of course, we cannot identify these features pre-
cisely, because the same control-flow interactions also involve
other features that are not involved in performance interactions
(this is also a reason for direct matching prediction having low
precision and recall; cf. Sec IV-B4). Nevertheless, assuming
that only the features from the identified control-flow interac-

TABLE IV: Precision and recall values for the item sets
as predictors for the performance interactions in MBEDTLS.
(*) marks the precision and recall values for the item sets with
incorporated indirect control-flow interactions.

Threshold Precision Recall Precision* Recall*

0 4.5 12.5 23.6 48.1
15 2.3 6.3 5.5 11.1
20 0 0 1.8 3.7

tions can give rise to a performance interaction considerably
reduces the search space of the potential performance feature
interactions, because otherwise we have to assume that any
(valid) feature combination may give rise to a performance
interaction. MBEDTLS has 134 057 valid feature combinations
of two and three features, but the 84 identified unique control-
flow interactions (Sec. IV-B2) result in only 452 potential
performance interactions (among two and three features).
Notice that these include all 16 actually existing performance
feature interactions that we identified. That is, we are able
to shrink the search space of performance feature interactions
by almost 300 times (452 instead of 134 057) without losing
any of the actually existing performance feature interactions.
SQLITE has 524 valid feature combinations of two and
three features and (based on the 39 identified unique control-
flow interactions) only 131 potential performance interactions
(among two and three features). These potential performance
interactions also include all 3 actually existing performance
interactions that we identified. That is, the search space shrinks
by 4 times. These results have immediate consequences for
performance prediction techniques based on machine learning
and relying on sampling for building a training dataset: By ex-
ploiting our findings they can make sampling more focused on
the configurations that potentially include interacting features,
which may improve their prediction accuracy.

With respect to RQ2, we conclude that predictors based on
direct matching and frequent item sets have low precision and
recall values. One possible reason is that the predictors rely
solely on control-flow data, but features can also interact via
data flow. For example, they can exchange data through shared
data structures. This interplay at the data-flow level can be
interpreted as data-flow feature interactions (much like control-
flow feature interactions), which may also induce performance
interactions. For example, a feature may block other features
by locking a shared data structure, which may have a negative
influence on the performance of the system. Therefore, enrich-
ing the data used by the predictors with the information about
data-flow interactions may increase their predictive power. So,
a takeaway message here is that predictors should consider the
interplay of features not only on the control-flow level, but also
at the data-flow level, and other levels. Another reason may
be that not all features involved in a control-flow interaction
are also involved in a related performance interaction. The
Jaccard index values in Table II show that only about half
of the features in a control-flow interaction are also present
in the related performance feature interaction. For example,
the interaction (AES C, AESNI C) has the average Jaccard
index of 0.46. This means that, on average, a related control-
flow interaction has two other features additionally involved,



in addition to features AES C and AESNI C. Both predictors
for a given control-flow interaction are not able to distinguish
among features that are involved in a related performance
interaction and those that are not.

a) Further Observations.: A further observation is re-
lated to the distribution of the number of features involved in
the control-flow and performance interactions. For MBEDTLS,
in most cases, interactions (both, control-flow and perfor-
mance) involve two or three features. For SQLITE, in most
cases, control-flow interactions involve four features, but this
is only the case because every single control-flow interaction
involves the two crosscutting features THREADSAFE and
ENABLE API ARMOR. If we ignore these crosscutting
features, the pictures becomes similar to MBEDTLS. The
performance interactions in SQLITE involve two or three fea-
tures as in MBEDTLS. From these data, we conclude that the
frequency of interactions decreases with the growing number
of the involved features. This shows that features tend to
interact at the same rate (two or three features per interaction)
independently of the type of the interaction (control-flow or
performance). This is another indication for a relation between
control-flow and performance interactions.

Finally, for MBEDTLS, we found that most of the frequent
item sets that we identified in the control-flow interactions
contain features from three groups of algorithms: ciphers,
modes, and hashes. Even though most of the frequent item
sets do not resemble existing performance interactions, they
still capture the general pattern of the detected performance
interactions, namely, that these interactions involve features
from these three groups of algorithms. For SQLITE the
frequent item sets capture the crosscutting features, such as
THREADSAFE and ENABLE API ARMOR. The cross-
cutting feature THREADSAFE was involved in all identified
performance interactions.

V. THREATS TO VALIDITY

a) Internal Validity.: Due to technical limitations of
TYPECHEF, we were unable to identify the exact number of
indirect function calls between features (i.e., calls made using
function pointers) and, consequently, the exact support values
for the corresponding item sets (Sec. IV-B4). We approxi-
mated these support values based on the distribution of the
support values for the item sets calculated from direct function
calls. Our approximation method may result in an inaccurate
calculation of the precision and recall values of the frequent
item set predictor. Nevertheless, we expect that improving the
approximation would rather improve the precision and recall
of the predictor.

b) External Validity.: Our study is exploratory in nature
and aims at the initial investigation of the relation between
control-flow and performance feature interactions. Since we
focused on analyzing two systems, our results may not hold
for other highly-configurable systems. Our study setup can
serve as a blueprint for further studies that can rely on our
conceptual framework for studying relations among external
and internal interactions.

VI. RELATED WORK

In recent years, a number of papers aimed at detecting fea-
ture interactions in highly-configurable systems. We summa-

rize and subdivide them according to our classification [3] into
those considering internal feature interactions and those con-
sidering external feature interactions. To our best knowledge,
there is no work that study these two types of interactions in
combination, as we do it in this study.

a) Internal Feature Interactions: Detection of internal
feature interactions is often used by techniques that aim at min-
imizing test-suite and test-effort for highly configurable sys-
tems. Reisner et al. [18], Nguyen et al. [19], Tartler et al. [20]
apply symbolic evaluation, dynamic and static program anal-
ysis respectively to infer minimal sets of features responsible
for a given code coverage. Kim et al. [21] apply static program
analysis to identify features that do not interact with other fea-
tures w.r.t. to the test-suite. Garvin et al. explores a connection
between feature interactions and interaction faults [22]. Lillack
et al. extends static taint analysis to automatically identify
interactions among load-time configuration options [23].

b) External Feature Interactions: A number of recently
proposed performance prediction techniques for highly con-
figurable systems by Guo et al. [5], Siegmund et al. [4],
Sarkar et al. [24], Thereska et al. [25], Westermann et al. [26],
and Zhang et al. [6] use machine-learning techniques, such
as, CART, multivariate regression, and Fourier learning, for
learning a performance function based on the performance
measurements of a configuration sample. These techniques
learn performance (external) feature interactions as an integral
part of the overall black-box learning process, that is, without
considering the internal feature interactions.

VII. CONCLUSION

In our case study we explored the relation among control-
flow and performance feature interactions that occur in highly
configurable systems. Using the encryption library MBEDTLS
and the database engine SQLITE as real-world subject sys-
tems, we identified control-flow and performance feature in-
teractions using static program analysis and machine learning.
Analyzing the interactions, we found that they can be related
based on the involved features. By manually inspecting the
code, we confirmed the causal relation between the interplay
of features at the control-flow level and the identified per-
formance interactions among the same features. Furthermore,
based on the identified relation, we defined two predictors for
performance feature interactions and conducted a preliminary
evaluation of these predictors. The evaluation showed that the
predictors have low precision and recall, presumably, because
features also interact at the data-flow level. Future predictors
based on the internal feature interactions should consider
both control-flow and data-flow interactions to improve their
predictive power.

Beside this negative result, using the identified relation
among control-flow and performance feature interactions, we
are still able to shrink the search space of performance feature
interactions (by almost 300 times for MBEDTLS and by 4
times for SQLITE) without losing any of the performance
feature interactions actually existing in our subject systems.
Performance prediction techniques that rely on sampling can
use our results to make their sampling more focused on
configurations with potential performance interactions.
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