
Noname manuscript No.
(will be inserted by the editor)

Performance Evolution of Configurable Software Systems: An
Empirical Study

Christian Kaltenecker · Stefan Mühlbauer ·
Alexander Grebhahn · Norbert Siegmund · Sven
Apel

the date of receipt and acceptance should be inserted later

Abstract As a software system evolves, its performance can improve or degrade over
time. Performance evolution is especially delicate in configurable software systems, where
performance degradation may manifest only for specific configurations, making it especially
hard to spot and fix.

Problem. Prior work concentrated mainly on performance-bug detection and root-cause
analysis of a single version of a system. The big picture of how performance co-evolves with
a system and what role configurability plays is largely unclear.

Approach. In an empirical study, we investigate the relation between configurability and
performance evolution. Specifically, we analyze a total of 190 releases of 12 configurable
real-world systems and examine the extent to which performance changes are specific to
particular configurations and whether few or many configuration options cause performance
changes. We triangulate our findings by analyzing change logs and commit messages of the
respective projects to pin down causes of performance changes.

Results. We found that almost every release of every subject system exhibits performance
changes in some of their configurations. Notably, the majority of performance changes affects
only a subset of the configuration space, and most performance changes are triggered by
multiple options (up to 6). In a deeper analysis, we found that a considerable number of
releases mention performance changes in the change log and commits: performance changes
are reported in 45% and 69% of the releases in the change log and the commit messages,
respectively, but only a fraction report the involved configuration options.

Keywords configurable software systems · performance · evolution · performance changes

C. Kaltenecker · S. Apel
Saarland University,
Saarland Informatics Campus

A. Grebhahn
adesso SE

S. Mühlbauer · N. Siegmund
Leipzig University

2 Christian Kaltenecker et al.

1 Introduction

Software systems must evolve constantly to adapt to changes of hardware and user require-
ments (Xu et al., 2015). Software evolution is driven by the integration of new functionality
or libraries, refactoring, and bug fixes. Beside functionality, the performance of the system
may change considerably. A performance change refers to a situation in which the execution
time (or another property such as throughput) of a software system degrades (performance
regression) or improves (performance fix or performance optimization) compared to previous
releases.
There is a substantial corpus of previous work on analyzing, detecting, and reverting perfor-
mance changes (Chen and Shang, 2017; Burnim et al., 2009; Han et al., 2012; Mühlbauer
et al., 2019), considering only a single or few default configurations across multiple releases
of the software. However, performance changes may be configuration-dependent, that is, they
appear only in a subset of configurations of the system in question (Han and Yu, 2016). As
such, configuration-dependent changes could be easily missed by considering only the default
configuration. Given that contemporary software systems are often configurable (Han and
Yu, 2016), this calls for investigating performance changes not only across multiple versions,
but simultaneously across multiple configurations.
So far, there is no clear picture of how severe and frequent performance changes are in
configurable software systems and whether individual configurations or configuration options
play a central role in the evolution of a system’s performance behavior. A systematic analysis
of performance changes of configurable software systems holds the promise of providing
insights beyond just studying default configurations or average performance behavior. Devel-
opers and users are interested in which specific configurations exhibit diverging performance
behavior and which configuration options (or interactions among options) are responsible for
this. At a conceptual level, insights on the nature and prevalence of configuration-dependent
performance changes can be used to improve configuration sampling and performance mod-
eling techniques, where only a representative subset of all software configurations is used
for performance prediction (Siegmund et al., 2015; Jamshidi et al., 2018; Kaltenecker et al.,
2019; Pett et al., 2019).
To learn about performance changes in configurable software systems, we conduct an empiri-
cal study on performance evolution of 12 popular configurable open-source software systems
from different domains across multiple releases and covering the entire configuration space.
To pin down the performance changes to configuration options, we make use of the structure
of performance-influence models (obtained by machine learning).
In particular, we address the following research questions:

– RQ1.1: What is the fraction of the configuration space containing performance changes
between consecutive releases?

– RQ1.2: How stable is the relative performance of configurations in the presence of
performance changes between consecutive releases?

– RQ2.1: How frequent and how strong are changes of performance influences of individual
configuration options and interactions between consecutive releases?

– RQ2.2: How stable is the relative influence of configuration options and interactions in
the presence of performance changes between consecutive releases?

To answer these research questions, we examine the prevalence and properties of performance
changes at two levels of abstraction:

– Configuration-level: performance of individual configurations
– Option-level: performance influence of individual configuration options and interactions.

Performance Evolution of Configurable Software Systems: An Empirical Study 3

In a deeper analysis, we contrast this information to the change log and commit messages of
the respective projects.
Overall, we make the following contributions:

– A novel approach to use performance-influence models to identify performance changes
associated with specific configuration options.

– An empirical study of 12 popular configurable software systems involving their complete
configuration spaces for a series of releases considering up to 15 years of evolution.

– Insights on what role configurability plays in performance evolution of configurable
systems, which (kinds of) options and interactions cause performance changes, and
which performance changes are documented.

In a nutshell, we found that almost all 190 releases that we analyzed exhibit, at least, one
performance change in, at least, one configuration. Most performance changes (75%) affect
less than half of the configurations of a system, and most of the performance changes (91%)
affect multiple options (up to 6). Notably, despite the prevalence of performance changes, the
performance ranking of configurations and influences of individual options are in many cases
not affected. That is, developers and users can assume a certain stability of configuration-
dependent performance behavior. About 43% of the performance changes are documented in
change logs, 64% in commit messages. Specific configuration options were mentioned in
67% of the cases.
Our results have direct implications for configuration sampling, performance modeling, and
transfer learning in the area of configurable software systems. That is, for instance, some
performance changes affect only 1% of the configurations and demand for comprehensive
performance measurements to spot performance changes. Additionally, we found that the
relative influence of configuration options and interactions on the performance is stable in
80% of the releases. That is, performance engineers can assume a certain stability also on
the options’ influences while performing transfer learning across different releases (Jamshidi
et al., 2017). A deeper analysis of change logs and commit messages shows that using a
configuration-aware performance testing pipeline could help in identifying configuration-
specific performance changes early. Our measurement and analysis framework provides a
solid foundation for further experiments on different software systems and non-functional
properties. All results along with analysis scripts and further information are available at a
supplementary website1 .

2 Preliminaries

2.1 Configurable Software Systems

A configurable software system offers a set O of configuration options, each of which
can be selected or deselected.2 C denotes the set of valid configurations, where c ∈ C
represents a single configuration represented as a function c : O → {0, 1}, which assigns
to each configuration option o ∈ O either 1 if it is selected in configuration c or 0 if not.
For illustration, we show in Table 1 the configurations of a compression tool with four

1 https://github.com/ChristianKaltenecker/PerformanceEvolution_Website
2 Numeric configuration options can be discretized or explicitly represented (Siegmund et al., 2015); most

options in our experiments are binary, the numeric options are discretized. This, however does not change the
configuration space, only its representation and enables us to learn step functions as they typically appear in
configurable software systems (Oh et al., 2017).

https://github.com/ChristianKaltenecker/PerformanceEvolution_Website

4 Christian Kaltenecker et al.

configuration options: Encryption (E), Compression (C), and two alternative compression
algorithms, gzip (G) and ZPAQ (Z).
Note that not all combinations of configuration options o ∈ O are valid (i.e., |C|< 2|O|),
due to constraints among configuration options. In our example, exactly one compression
algorithm, either gzip or ZPAQ has to be selected if Compression is selected; none of them
can be selected if Compression is deselected.

Table 1: All valid configurations and their predicted performance values of a compression
tool with three configuration options: Encryption (E),Compression (C), gzip (G), and ZPAQ
(Z).

Configuration c(E) c(C) c(G) c(Z)
∏

(c)

c1 0 0 0 0 10
c2 0 1 1 0 5
c3 0 1 0 1 25
c4 1 0 0 0 30
c5 1 1 1 0 20
c6 1 1 0 1 45

2.2 Performance-Influence Models

Performance-influence models allow us to model and predict the performance of all individual
configurations of a configurable software system (Siegmund et al., 2015). The resulting
performance-influence model is a polynomial in which each additive term consists of a
coefficient that describes either the base performance, the influence of a single configuration
option (denoted as φ), or an interaction among multiple options (denoted as ψ) on the
performance of the system. We denote a performance-influence model as a function

∏
:

C → R, which takes a configuration c ∈ C and returns its predicted performance value. For
illustration, consider the configurable system from Table 1. A corresponding performance-
influence model could be as follows:

∏
(c) =10 +

φE︷ ︸︸ ︷
20 · c(E)+

φZ︷ ︸︸ ︷
15 · c(Z)−

φG︷ ︸︸ ︷
5 · c(G)−

ψE,G︷ ︸︸ ︷
5 · c(E) · c(G)

Notice that influences may be positive, negative, or negligible (close to 0). In our example,
E increases the execution time by 20 (φE), whereas G decreases the execution time by 5
(φE). Only if both E and G are selected, the system is additionally speeded up by 5, which
is effectively an interaction between two configuration options (ψE,G). The configuration-
independent base performance is denoted by the polynomial’s intercept 10.
In general, performance models are of the following form:

∏
(c) =

Base︷︸︸︷
β0 +

Option influences︷ ︸︸ ︷∑
o∈O

βo · c(o) +

Interaction influences︷ ︸︸ ︷∑
o1..oi∈O

βo1..oi · c(o1) · . . . · c(oi)

To obtain performance-influence models, we use multiple linear regression with feature
forward selection (Andrews, 1974; Kuhn and Johnson, 2013). The underlying problem of
multiple linear regression is to solve the following equation:

y = Xβ + ε

Performance Evolution of Configurable Software Systems: An Empirical Study 5

where X denotes the input matrix in which each row corresponds to a configuration and
each column represents a configuration option or interaction. β is a vector that encodes the
influences of the configuration options and interactions; ε is a vector containing the predic-
tion errors. Finally, y is a vector containing our dependent variable (i.e., our performance
measurement results). The objective of multiple linear regression is to fit the vector β such
that the error ε is minimal.
For further illustration, we use the example from Table 1 to fill the equation:

Base E C G Z

c1 1 0 0 0 0
c2 1 0 1 1 0
c3 1 0 1 0 1
c4 1 1 0 0 0
c5 1 1 1 1 0
c6 1 1 1 0 1

·

β0

βE

βC

βG

βZ

+

εc1
εc2
εc3
εc4
εc5
εc6

 =

10
5
25
30
20
45

 (1)

In this example, we have encoded only the base influence and all individual options, but not
interactions. To also support interactions, the columns of the matrix C′ and the vector β′ in
Equation 1 have to be expanded accordingly.

Algorithm 1: Learning a performance-influence model
1 Function learn_model(feature_model, performance_data):
2 error←∞
3 error_reduction←∞
4 model← ∅
5 while error > 1% and error_reduction > 0.1% do
6 candidates← create_candidates(model, feature_model)
7 best_candidate_model← ∅
8 best_candidate_error←∞
9 foreach candidate ∈ candidates do

10 candidate_model, candidate_error← fit_and_predict(candidate, performance_data)
11 if candidate_error < best_candidate_error then
12 best_candidate_error← candidate_error
13 best_candidate_model← candidate_model
14 end
15 end
16 model← best_candidate_model
17 error_reduction← error− best_candidate_error
18 error← best_candidate_error
19 end
20 model← backward_selection(model)
21 return model, error

The overall idea of learning a performance-influence model is to refine a model iteratively
until a user-defined threshold is reached (Siegmund et al., 2015; Kolesnikov et al., 2019b),
as defined in Algorithm 1. Function learn_model receives the performance data and
the feature model (i.e., information about the configuration options) as input. In Lines 2–3,
we initialize two variables, prediction error and the error improvement, which are used to
check against the threshold for aborting the learning process. Lines 5–19 contain the iterative
procedure to perform multiple linear regression with feature forward selection (Andrews,
1974; Kuhn and Johnson, 2013). Therein, a list of different candidates (or features) is created
in each step(Line 6). Each individual configuration option is a suitable candidate and so are
interactions of configuration options with options that have already been added to the model.
For instance, if a model contains the configuration option E, then also interactions with E

6 Christian Kaltenecker et al.

such as E · C, E · G, or E · Z become candidates. The rationale of this iterative extension of
the model is to counter the combinatorial explosion of combining all configuration options.
This iterative approach is hierarchical in that it can add interactions for only those options
that have been found in reducing the model error in prior iterations. For instance, if E · G
interact with each other, the approach would firstly include either E or G into the model and,
in a later iteration, E · G if both together would reduce the prediction error for a hold-out set.
After creating the candidates, each candidate is evaluated within a model that represents the
state of the prior iteration (Lines 9–15). To this end, we first fit the model to the performance
data of a hold-out set (see Equation 1) in Line 10 returning the model including the candidate
and the overall error of the corresponding model. In Lines 11–14, the current candidate is
selected as the best candidate if it reduces the error more than previous candidates. The
best candidate of the current iteration is added to the model in Line 16. The reduction of
the error resulting from the newly added candidate and the new error are then calculated.
Note that choosing the best candidate represents a limitation of our approach since a worse
performing candidate could lead to a better reduction of the error in future iterations. This
iterative process is continued until one of the thresholds in Line 5 is no longer satisfied.
Due to its hierarchical nature, the model can potentially include configuration options or
interactions that may become irrelevant in later iterations. For instance, if only the interaction
E · G is relevant for performance but the individual configuration options E and G are not,
this approach would still include, at least, E or G as it reduced for some configuration the
prediction error in previous iterations. To remove such unnecessary options and interactions,
we apply a backward selection in Line 20. The backward selection removes all options and
interactions that no longer improve the model error.

In many cases, it is desirable that a performance-influence model contains only the most
relevant influences, which can be achieved by adjusting the learning procedure at the cost
of predictive power (Kolesnikov et al., 2019b). In any case, predictions of performance-
influence models are rarely totally accurate, even if we included all possible configurations
for learning the performance-influence models. To some extent, the measurement setup
introduces systematic error, resulting in noisy data.

Performance-influence models are not specific to execution time. They can be used to model
any non-functional property that can be quantified on an interval scale. Performance-influence
models have been applied to accurately predict execution time, throughput, memory con-
sumption, binary footprint, energy consumption, verification effort, and more (Siegmund
et al., 2013; Knüppel et al., 2018; Grebhahn et al., 2017). We selected performance-influence
models for our empirical study since their additive structure makes them easy to interpret
and compare. Typically, a performance-influence model is learned based on a sample set
of configurations and used for performance prediction. However, instead of using them for
predictions, in this paper, we use performance-influence models to explain which configura-
tions or interactions thereof are affected by a performance change. For this purpose, we learn
a performance-influence model based on the whole configuration space so that we obtain
an accurate picture of the performance influences of configuration options and interactions
thereof. In the past, Kolesnikov et al. (2019b) and Grebhahn et al. (2017) have successfully
applied this approach for understanding and verifying the influence of configuration options
and interactions on performance, respectively.

Performance Evolution of Configurable Software Systems: An Empirical Study 7

2.3 Software Evolution

Version control systems help developers to keep track of code changes that arise during
software evolution. For this purpose, most version control systems provide the concept of
revisions. A revision is effectively a view on the code base at a certain point in time. In what
follows, RV denotes the set of revisions of a software system. To highlight revisions that (1)
contain prominent changes, (2) are assumed as running stable, or (3) mark major milestones,
a revision can be tagged as release, with R ⊆ RV denoting the set of releases. In our study,
we consider only releases (1) to focus on important revisions, (2) to keep measurement effort
feasible, and (3) releases are usually the revisions that are used in production. Intermediate
revisions are not guaranteed to compile/run without errors since those revisions typically
are incremental modifications and "work in progress". Further, we measure not all, but only
certain releases. The rationale behind this is that older software versions do not compile and
run anymore on current operating systems, which limits the time span that we can observe.
Furthermore, we do not measure each minor release in each software system since measuring
each release would require to measure all configurations of the configuration space again. In
this case, we opted to distribute the releases in similar time frames (e.g., one release per half
year) to cover each time frame equally.

2.4 Multicollinearity

Multicollinearity is one of the biggest challenges in regression analysis and refers to a
situation, in which a term of a linear model can be linearly predicted by other terms. That is,
multiple terms represent the same effect such that it becomes unclear, which of these terms
has the true influence on the independent variable and to what extent.
For a comprehensive and an unambiguous analysis of a software system’s evolution, we have
to assure that the terms of our models are not multicollinear. Otherwise, we can end up with
different performance-influence models all predicting the same value, but with diverging
influences of options and interactions, threatening internal validity of our analysis. As a
countermeasure, one can apply a variance inflation factor (VIF) analysis (James et al., 2013;
Dorn et al., 2023) and exclude terms that can be completely linearly predicted by other terms.
For illustration, consider Table 1 and the following performance-influence models:∏

1
(c) =10 + 15 · c(C) · c(Z)∏

2
(c) =10 + 15 · c(Z)

Both performance-influence models predict the same performance values. The terms c(Z) and
c(C) · c(Z) are perfectly multicollinear because when Z is selected in a configuration, C is
also always selected. Hence, we cannot distinguish the influence of the interaction c(C) · c(Z)
from the influence of the option c(Z). Having both terms in a performance-influence models
would cause infinite possibilities of assigning coefficients to these terms, as demonstrated
here: ∏′

1
(c) =10− 10 · c(C) · c(Z) + 25 · c(Z)∏′

2
(c) =10 + 10 · c(C) · c(Z) + 5 · c(Z)

8 Christian Kaltenecker et al.

Again, both performance-influence models make the same predictions but assign completely
different coefficients to the terms. The VIF analysis detects such cases and declares the terms
as multicollinear3.

Algorithm 2: Learning a performance-influence model
1 Function learn_comparable_models(feature_model, releases, release_performance_data):
2 terms← ∅
3 foreach release ∈ releases do
4 model← learn_model(feature_model, release_performance_data[release])
5 terms← include_terms_from_model(terms, model)
6 end
7 terms← variance_factor_analysis(terms)
8 models← ∅
9 foreach release ∈ releases do

10 model← fit(terms, release_performance_data[release])
11 models← models ∪ {model}
12 end
13 return models

In our empirical study, we follow the approach of Algorithm 2 to bring the performance-
influence models into a comparable form (i.e., all performance-influence models contain the
same terms). In Lines 2–6, we learn a performance-influence model for each release. This is
necessary to identify the performance-relevant configuration options and interactions. These
configuration options and interactions are included as terms into the model in Line 5. This
way, we obtain a set containing all relevant configuration options and interactions among
them. However, this set cannot be immediately used as a performance-influence model since
this step includes configuration options and interactions that might be multicollinear. Hence,
we remove multicollinear terms by applying a VIF analysis (Dorn et al., 2023) in Line 7. Note
that this does not affect our prediction error since we remove only perfectly multicollinear
terms (i.e., terms that are completely interchangeable). After this step, we use the same terms
and fit them for each release in Line 10. These performance-influence models contain the
same configuration options and interactions and can now be compared.

3 Study Setup

In this section, we discuss our research questions and how we attempt to answer them by
analyzing 12 subject systems.

3.1 Research Questions

Our overarching goal is to understand the performance evolution of configurable software
systems. To this end, we study the characteristics of performance changes and their relation
to configurability. For a detailed analysis, we consider two levels of abstraction: configuration
level and option level.

3 Note that we exclude only perfectly multicollinear terms, since perfect multicollinear terms are completely
interchangeable. We do not use any threshold such as 5 as commonly used in literature because configuration
options and their interactions can always be multicollinear to some extent due to overlap.

Performance Evolution of Configurable Software Systems: An Empirical Study 9

Configuration level As a first approximation, we address our goal at the level of individual
configurations. In particular, we are interested in (1) whether performance changes affect
typically many or only a few configurations and (2) whether performance changes alter
typically the overall ranking of configurations with regard to their performance optimality.
For the first research question (RQ1.1), we compare for each pair of releases each configura-
tion with its successor in terms of the extent to which the performance has changed. This
will allow us to make quantitative statements about how many performance changes exist
in practice and what fractions and kinds of configurations are affected. These insights can
inform sampling strategies and maintenance activities by prioritizing specific configurations
that likely exhibit performance changes.

RESEARCH QUESTION 1.1
What is the fraction of the configuration space containing performance changes between
consecutive releases?

For the second research question (RQ1.2), we analyze to what extent performance changes
affect the ranking of configurations with regard to their performance. That is, the slowest
configuration has the lowest rank, the fastest configuration the highest rank, etc. Often
developers and users are less interested in the actual performance values, but rather in their
relative importance, including which configurations are performance-optimal and which fall
below a certain threshold (Nair et al., 2017). It might be that performance changes exist
but that most of them do not alter the performance ranking of configurations. That is, the
performance ranking of configurations is stable. This would be useful for researchers (e.g.,
for transfer learning of performance models (Jamshidi et al., 2017, 2018)) and practitioners
(so they can rely on a certain stability in the relative performance influences).

RESEARCH QUESTION 1.2
How stable is the relative performance of configurations in the presence of performance
changes between consecutive releases?

Option level Beside knowing which configurations are affected by a performance change, we
would like to know which configuration options or interactions among options are responsible
for this change. As with configurations, we are interested in (1) whether typically many or only
few options or interactions cause performance changes and (2) whether performance changes
alter typically the overall ranking of performance influences of options and interaction. To
obtain information on the influences of options and their interactions, we learn a performance-
influence model per release and compare their terms and coefficients (see Section 2). Since
we use linear regression to learn our performance models, multicollinearity might occur
between multiple terms (see Section 2.4). As a countermeasure, we apply a VIF analysis
and remove all terms causing perfect multicollinearity. By doing so, 9 out of 707 terms were
removed leaving the predictions of our performance-influence models unaffected.
For the first research question (RQ2.1), we compare for each pair of releases each influence
of each model term with its successor regarding the extent to which its influence has changed.
This will allow us to make quantitative statements about how many options and interactions
are responsible for performance changes. Knowing whether many or only few options are
responsible for performance changes helps to understand root causes of these changes and to
guide corresponding actions. Identifying patterns here can inform performance engineers to
guide and improve the detection and tracing of performance bottlenecks (Gahvari et al., 2011).
Comparing each pair of releases further gives us the opportunity to assess the distribution

10 Christian Kaltenecker et al.

of relative influences of the configuration options on performance (i.e., all options have a
similar influence on performance, or a few influence performance the most).

RESEARCH QUESTION 2.1
How frequent and how strong are changes of performance influences of individual configu-
ration options and interactions between consecutive releases?

For the second research question (RQ2.2), we analyze to what extent performance changes
affect the global ranking of performance influences of configuration options and interactions.
As with configurations, it is often sufficient to know which configuration options have a
strong influence on performance without knowing exact performance values. For instance,
when optimizing for performance, a user may concentrate on the configuration options having
a strong influence on performance and ignore others (Xu et al., 2015). When optimizing
for performance in a compression software, the performance-influence model might point
out to consider low instead of high compression levels and to neglect debug options. For a
developer, it might be interesting to confirm own expectations of how configuration options
perform, as shown in a former study (Grebhahn et al., 2017).

RESEARCH QUESTION 2.2
How stable is the relative influence of configuration options and interactions in the presence
of performance changes between consecutive releases?

Table 2: Overview of the subject systems, including application domain, lines of code (LOC)
in the last measured release, number of valid configurations (|C|) in each release, configuration
options (|O|), releases (|R|), and performance metric.

Name Domain LOC |C| |O| |R| Performance Metric

BROTLI Compression 30k 181 30 12 Compression time
FAST
DOWNWARD

Planning system 90k 374 39 9 Solving time

HSQLDB Database 194k 864 29 19 Response time
LRZIP Compression 16k 1 440 27 22 Compression time
MARIADB Database 1 969k 972 21 22 Response time
MYSQL Database 2 792k 972 21 20 Response time
OPENVPN VPN software 80k 512 24 12 Response time
OPUS Audio encoder 54k 6 480 31 12 Encoding time
POSTGRESQL Database 1 160k 864 18 22 Response time
VP8 Video encoder 324k 2 736 27 15 Encoding time
VP9 Video encoder 324k 3 008 25 7 Encoding time
Z3 Constraint solver 415k 1 024 13 18 Solving time

3.2 Subject Systems

For our experiments, we selected 12 real-world configurable software systems based on the
following criteria: (1) different sizes (number of configurations and configuration options)
to evaluate scalability, (2) different application domains to increase external validity, (3)

Performance Evolution of Configurable Software Systems: An Empirical Study 11

different application architectures (e.g., client-server vs. desktop) to cover different per-
formance aspects, and (4) actively maintained systems to detect historical changes in a
realistic context; see Table 2, for an overview. As of 2023, all systems in our selection are
actively maintained, and we consider lifetimes of 21 months (POSTGRESQL) to 137 months
(OPENVPN). From the respective development histories, we extracted all releases, which
we identified based on GIT tags and respective documentation. All considered configuration
options represent run-time configuration options. We provide all variability models, selected
releases, measurements, results from our deeper analysis, and a complete description of the
configuration options on our supplementary website. It is important to note that we carried
out the performance measurements on multiple machines in parallel to keep the measurement
time manageable. While we use different machines across different subject systems, we use
equally equipped machines for the measurements of each subject system. Parallelizing our
performance measurements this way was possible, since we only compare revisions and
configurations in subject systems and not across subject systems.

BROTLI is an open-source file compression tool by Google written in C. We considered 30
configuration options that give rise to 181 configurations, including configuration options
setting the window size and compression level. We used UIQ24 to generate a general work-
load for compression (see Section 3.3 for more detail). As performance measure, we used
compression time. The measurements took place on machines with Intel Core i7-4790 CPUs
at 3.60 GHz with 16 GiB RAM (Debian 9). Overall, we considered 12 releases, from release
0.3.0 to 1.0.7, covering almost 3 years of history.

FAST DOWNWARD is an open-source domain-independent planning system for optimization.
To identify performance-relevant configuration options and a proper workload, we contacted
a domain expert. Based on the feedback, we considered 39 configuration options that give rise
to 374 configurations. 7 out of 39 configuration options control different search heuristics;
all other configuration options represent parameters for these heuristics. Here, we mainly
consider different heuristics to solve the planning task. Each heuristic comes with its own
parameters (i.e., configuration options). We measured the time to find an optimal solution for
the planning task. All measurements were conducted on machines with Intel Xeon E5-2630
v4 at 2.20 GHz with 256 GiB RAM (Debian 11). Overall, we considered 9 revisions chosen
in cooperation with the domain expert. In total, we cover 5 years of history.

HSQLDB is a lightweight database engine. We considered 29 configuration options that give
rise to 864 configurations. Configuration options include support for different encryption
algorithms, transaction control settings, and incremental backup. We measured throughput
with the benchmarking tool POLEPOSITION5. We have used multiple thousands of read,
insert, and update queries. We also considered nested queries. The tool emulates realistic
user interaction by performing a number of insertions, deletions, updates, and queries. All
measurements were conducted on machines with Intel Core i5-4590 CPUs at 3.30 GHz with
16 GiB RAM (Debian 9). Overall, we considered 19 releases, from release 2.1.0 to 2.4.1,
covering over 7 years of history.

LRZIP is an open-source file compression tool. We considered 27 configuration options that
give rise to 1, 440 configurations. Relevant configuration options are, for instance, different
compression algorithms, compression levels, and processor numbers. We used the same setup
as for BROTLI. All measurements were conducted on machines with Intel Xeon E5-2650v2

4 http://mattmahoney.net/dc/uiq/
5 http://polepos.org

http://mattmahoney.net/dc/uiq/
http://polepos.org

12 Christian Kaltenecker et al.

CPUs at 2.60 GHz with 128 GiB RAM (Debian 10). Overall, we considered 22 releases,
from release 0.530 to 0.631, covering almost 6 years of history.

MARIADB and MYSQL are open-source relational database management systems. For both
subject systems, we considered 21 configuration options that give rise to 972 configurations.
Among others, we included different buffer pool sizes, table sizes, and flush methods. We
measured throughput with the benchmarking tool POLEPOSITION. All measurements were
conducted on machines with Intel Xeon E5-2650v2 CPUs at 2.60 GHz with 128 GiB RAM
(Debian 10). For MARIADB, we considered 22 releases, from release 5.5.23 to 10.4.7,
covering over 7 years of history. For MYSQL, we considered 20 releases, from release 5.6.10
to 8.0.17, covering over 6 years of history.

OPENVPN is an open-source software that provides secure communication between comput-
ers using virtual private networks. We considered 24 configuration options that give rise to
512 configurations. We included, for instance, support for compression, different encryption
ciphers, authentication methods, and renegotiation settings. We set up an experiment with
one client and one server exchanging files to measure the throughput of the application. All
measurements of OPENVPN were conducted on machines with Intel Xeon E5-2650v2 CPUs
at 2.60 GHz with 128 GiB RAM (Debian 10). Overall, we considered 22 releases, from
release 2.1.0 to 2.4.6, covering over 11 years of history.

OPUS is a codec for lossy audio compression. We considered 31 configuration options, giving
rise to 6 480 configurations. Configuration options include choices of bit rates, sample rates,
and numbers of channels. We measured the performance of OPUS by repeatedly encoding a
test vector, which has been used to validate the implementation against OPUS’s file format
specification. All measurements were conducted on machines with Intel Xeon E5-2620v4
CPUs at 2.10 GHz with 256 GiB RAM (Debian 10). Overall, we considered 12 releases,
from release 1.0.0 to 1.3.1, covering almost 7 years of history.

POSTGRESQL is an open-source relational database management system. We considered
18 configuration options that give rise to 864 configurations. As configuration options, we
include synchronous commits as well as different sizes of buffers and working memory. As
with HSQLDB, we used the benchmarking tool POLEPOSITION for measurements. All
measurements were conducted with machines with Intel Xeon E5-2650v2 CPUs at 2.60 GHz
with 128 GiB RAM (Debian 9). Overall, we considered 22 releases, from release 9.6.3 to
11.2, covering almost 2 years of history.

VPXENC (VP8/VP9) is a video encoder that can be customized with different codecs, of
which we study VP8 and VP9. We considered 27 and 25 configuration options that give rise
to 2 736 and 3 008 configurations for VP8 and VP9, respectively. VPXENC provides a variety
of configuration options, for instance, to adjust the quality or bitrate of the encoded video
and multithreading operation. We used the raw trailer from the movie “Sintel” (480p, y4m
format) as a benchmark and measured the encoding time of both codecs, respectively. VP8
was measured on machines with Intel Core i5-4590 CPUs at 3.30 GHz with 16 GiB RAM.
VP9 was measured on machines with Intel Xeon E5-2650v2 CPUs at 2.60 GHz with 128 GiB
RAM (Debian 10). For VP8, we considered 15 releases, from release 0.9.1 to 1.8.0, covering
almost 9 years of history. For VP9, we considered 7 releases, from release 1.3.0 to 1.8.0,
covering over 5 years of history.

Z3 is an open-source SMT solver from Microsoft Research. We considered 13 configuration
options that give rise to 1 024 configurations. Configuration options include the generation of
proofs, model validation, and model simplification. As a benchmark, we selected four sce-

Performance Evolution of Configurable Software Systems: An Empirical Study 13

narios from the International SMT Competition (LRA, QF_FP, QF_LRA, and QF_UFLRA).
We measured and report the execution time for solving these tasks. Z3 was measured on
machines with Intel Core i5-4590 CPUs at 3.30 GHz with 16 GiB RAM (Debian 11). Overall,
we considered 18 releases, from release 4.3.2 to 4.8.13, covering more than 7 years of history.

3.3 Workloads

To obtain a representative workload and increase external validity (see Section 4.4 and
Section 5) for each subject system, we selected one benchmark that originates from the
respective system developers or community.
Audio Encoding (OPUS): For the audio encoding, we used test vectors provided by the
developers of OPUS6. Test vectors are designed to test all aspects of the implementation of
the audio encoder.

Compression (BROTLI/LRZIP): We used the tool UIQ27 to generate a large text compression
workload. It creates a generic and general purpose compression workload of a specified size.
The generated data was the same for both subject systems and has a size of about 100 MB.

Database (HSQLDB/MARIADB/MYSQL/POSTGRESQL): Each of the database systems
supports SQL queries. We used the SQL benchmark POLEPOSITION8, which was also used
in multiple publications (Pukall et al., 2013; van Zyl et al., 2006). The benchmark enables
us to generate different types of queries, such as SELECT, UPDATE, nested queries, and
complex queries.

Planning System (FAST DOWNWARD): We applied the workload DATA-NETWORK-OPT18-
STRIPS/P059 that was suggested by an experienced user of Fast Downward as a general
workload. In addition, this workload does not contain specific characteristics that make the
benchmark unsolvable for certain heuristics.

Solver (Z3): We selected multiple benchmarks from the Satisfiability Modulo Theories
Library10 having different types of logics LRA, QF_FP, QF_LRA, and QF_UFLRA.
These benchmarks cover floating point, linear real arithmetic, free sort and function symbols,
formulas with and without quantifier, and satisfiable and unsatisfiable formulas, thus, covering
a large range of options provided by Z3.

Video Encoding (VP8/VP9): We used the Sintel trailer as a well-established workload when
assessing the quality of different encoders. The Sintel trailer is listed in the Xiph repository11

and has been used in different publications (Seidel et al., 2013; Pereira et al., 2020).

VPN (OPENVPN): Similar to compression, we created a generic general purpose file using
UIQ2 with a size of 1 400 MB. We opted for UIQ2 since it generates compression workloads
for the LZO compression, which is a functionality enabled by an option in OPENVPN. We
adjusted the size of the file as suggested by a community guide for performance testing12.

6 https://opus-codec.org/docs/opus_testvectors-rfc8251.tar.gz
7 http://mattmahoney.net/dc/uiq/
8 http://polepos.org/
9 https://github.com/aibasel/downward-benchmarks/blob/master/data-network-opt18-strips/p05.pddl

10 https://smtlib.cs.uiowa.edu/benchmarks.shtml
11 https://media.xiph.org/
12 https://community.openvpn.net/openvpn/wiki/PerformanceTesting#Testcases

https://opus-codec.org/docs/opus_testvectors-rfc8251.tar.gz
http://mattmahoney.net/dc/uiq/
http://polepos.org/
https://github.com/aibasel/downward-benchmarks/blob/master/data-network-opt18-strips/p05.pddl
https://smtlib.cs.uiowa.edu/benchmarks.shtml
https://media.xiph.org/
https://community.openvpn.net/openvpn/wiki/PerformanceTesting#Testcases

14 Christian Kaltenecker et al.

3.4 Operationalization

To answer our research questions, for each release, (1) we measured all configurations of a
subject system and (2) learn a performance-influence model on the entire set of configurations,
resulting in one model per system and release. S refers to the set of subject systems. For
a system s ∈ S, Cs refers to its set of configurations (see Section 2.1) and Rs to its set of
releases. Mr

s : Cs → R maps the configurations c ∈ Cs of release r ∈ Rs to their measured
performance values in R. Πrs denotes the performance-influence model for revision r ∈ Rs

of system s.

Configuration level Conducting performance measurements on the history of a configurable
software system raises the question of whether the addition and removal of configuration
options across releases should be considered. To simplify the analysis, we resort to a fixed set
of options that is available across all releases of a subject system. While this way we might
miss some interesting cases, our data set is still large and diverse enough to answer reliably
our research questions.
The independent variables for RQ1.1 and RQ1.2 are (1) the subject system s, (2) the release
r, and (3) the configuration c. The dependent variable is the performance value Mr

s(c).
A confounding factor is measurement noise caused by particularities of the hardware and
software platform (Mytkowicz et al., 2009). To control for this factor, we measured all
configurations multiple times (3 to 5 times depending on the subject system) until the
coefficient of variation (i.e., standard deviation divided by the mean) of the repetitions is
lower than 10%.
To answer RQ1.1, we determine the performance values Mr

s(c) for each configuration c ∈ Cs
and each release r ∈ Rs. We consider a performance change between a configuration of two
consecutive releases relevant if:∣∣Mri

s (c)−Mri+1
s (c)

∣∣ > 2 ·max
(
sdris (c), sdri+1

s (c)
)

(2)

where sdrs(c) denotes the standard deviation of performance values of a configuration across
repeated measurements. In other words, if a performance change does not exceed twice the
larger standard deviation of the two releases, it is not further considered. The rationale for
this conservative threshold is to filter out measurement noise and tiny performance changes.

Table 3: All valid configurations of our exemplary system from Section 2.1, their predicted
performance values for two different releases, and the performance ranking of the configura-
tions of the exemplary compression tool. The last column indicates whether the performance
change is relevant according to Equation 2.

Release 1 Release 2

Configuration
∏

(c) Rank (
∏

(c))
∏′(c) Rank (

∏′(c)) Relevant

c1 10 2 10 2 7
c2 5 1 6 1 3
c3 25 4 25 4 7
c4 30 5 30 5 7
c5 20 3 21 3 3
c6 45 6 45 6 7

To answer RQ1.2, we rank the configurations of each release ri by their performance value.
For illustration, we show the performance ranking of our exemplary compression tool for

Performance Evolution of Configurable Software Systems: An Empirical Study 15

two releases in Table 3. c2 represents the fastest configuration in both releases and c6 the
slowest configuration. Further, instead of directly comparing the rankings of two consecutive
releases, we first filter out irrelevant performance changes according to our definition in
Equation (2). That is, the ranking order of the second release is affected only by relevant
changes. In Table 3, we show in the last column which configurations are relevant according
to Equation 2, assuming a relative standard deviation of 1%. After filtering, the ranking of
only c2 and c5 would be compared, resulting in a perfect correlation, since both configurations
maintain their ranking in both releases (i.e., c2 < c5 holds).
To quantify the similarity of two rankings (i.e., the performance rankings of the config-
urations of the current and the previous release), we use the Kendall’s Tau correlation
coefficient (Kendall, 1938). A correlation value of 1 indicates perfect correlation, a value
close to 0 means no correlation, and −1 indicates that the rankings are fully opposed (i.e.,
the configuration with the highest rank in release ri has the lowest rank in release ri+1,
the configuration with the second highest rank in release ri has the second lowest rank in
release ri+1, etc.). In other words, a high correlation indicates that the performance ranking
of configurations remains stable across releases, whereas a low correlation indicates that
the ranking changes considerably. We omit computing Kendall’s Tau for releases where the
rank changes for less than two configurations. Calculating the correlation of the relevant
configurations in Table 3, we would obtain a perfect correlation of τ = 1.0.

Option level In RQ2.1 and RQ2.2, we aim at identifying the configuration options and inter-
actions that are responsible for the performance change that we observed at the configuration
level. To identify changes of the performance influence of an individual configuration option
or interaction, we build on previous work by Siegmund et al. (Siegmund et al., 2015): We use
multiple linear regression with feature forward selection to create for each revision r ∈ Rs

a performance-influence model Πrs of the form described in Section 2. Note that we do not
follow a sample-based learning approach (i.e., one that uses only a subset of configurations).
Instead, we learn models on the whole configuration space. This would be impractical in
practice but gives us the most accurate results. So, the independent variables for RQ2.1

and RQ2.2 are (1) the subject system s and (2) the release r; the dependent variable is the
corresponding performance-influence model Πrs for r ∈ Rs.
To answer RQ2.1, we determine for each r ∈ Rs the performance influences βrs (t) of
all terms t ∈ Πrs. A term can either consist of the base term (i.e., β0 in Section 2.2), a
configuration option (i.e., βo · c(o) for o ∈ O), or an interaction among multiple options (i.e.,
βo1..oi · c(o1) · · · · · c(oi) for o1, . . . , oi ∈ O). Function βrs (t) returns the coefficient of the
term. Similar to RQ1.1, we consider a performance change between two coefficients relevant
if: ∣∣βris (t)− βri+1

s (t)
∣∣ > 2 ·max(sd

ri
s , sd

ri+1

s).

where sd
ri
s denotes the mean standard deviation of all configurations of release ri ∈ Rs.

As with RQ1.1, if a change of performance influence does not exceed twice the larger
average standard deviation of the two releases, it is not further considered. The rationale of
using the maximum of the mean standard deviation is that we use the entire configuration
space for learning performance models and thus accumulate the standard deviation over all
configurations.
To answer RQ2.2, we rank the terms t ∈ Πrs based on their coefficients βrs (t). Similar to
RQ1.2, the most influential term has the highest rank, the second most influential term has
the second rank, and so on. As in RQ1.2, we quantify to what extent the ranks between two
releases ri and ri+1 differ by using the Kendall’s Tau correlation coefficient.

16 Christian Kaltenecker et al.

BROTLI

0.3
.0

0.4
.0

0.5
.2

0.6
.0

1.0
.0

1.0
.1

1.0
.2

1.0
.3

1.0
.4

1.0
.5

1.0
.6

1.0
.7

Release

0

25

50

75

100
C
ha

ng
es

 [%
]

−1.0

−0.5

0.0

0.5

1.0

Ke
nd

al
l's
 T
au

FASTDOWNWARD

20
16
.07

20
17
.01

20
17
.07

20
18
.01

20
18
.07

20
19
.01

20
19
.06

20
19
.12

20
20
.06

Release

0

25

50

75

100

C
ha

ng
es

 [%
]

−1.0

−0.5

0.0

0.5

1.0

Ke
nd

al
l's
 T
au

HSQLDB

2.1
.0
2.2
.0
2.2
.1
2.2
.2
2.2
.3
2.2
.4
2.2
.5
2.2
.6
2.2
.7
2.2
.8
2.2
.9
2.3
.0
2.3
.1
2.3
.2
2.3
.3
2.3
.4
2.3
.5
2.4
.0
2.4
.1

Release

0

25

50

75

100

C
ha

ng
es

 [%
]

−1.0

−0.5

0.0

0.5

1.0

Ke
nd

al
l's
 T
au

LRZIP

53
0
54
3
54
4
55
0
55
1
55
2
56
0
57
1
60
1
60
2
60
4
60
6
60
7
60
8
61
1
61
2
61
4
61
5
61
6
62
0
62
1
63
1

Release

0

25

50

75

100

C
ha

ng
es

 [%
]

−1.0

−0.5

0.0

0.5

1.0

Ke
nd

al
l's
 T
au

MARIADB

5.5
.23
5.5
.27
5.5
.29
5.5
.31

5.5
.33
a
5.5
.35
5.5
.38
5.5
.40

10
.0.
17

10
.0.
19
10
.1.
8

10
.1.
12

10
.1.
14

10
.1.
16
10
.2.
6
10
.2.
7

10
.2.
11

10
.2.
14
10
.3.
8

10
.3.
11

10
.3.
14
10
.4.
7

Release

0

25

50

75

100

C
ha

ng
es

 [%
]

−1.0

−0.5

0.0

0.5

1.0

Ke
nd

al
l's
 T
au

MYSQL

5.6
.10
5.6
.13
5.6
.15
5.6
.17
5.6
.20
5.6
.22
5.6
.24
5.6
.265.7

.9
5.7
.11
5.7
.14
5.7
.17
5.7
.18
5.7
.20
5.7
.21
5.7
.22
8.0
.12
8.0
.13
8.0
.15
8.0
.17

Release

0

25

50

75

100

C
ha

ng
es

 [%
]

−1.0

−0.5

0.0

0.5

1.0

Ke
nd

al
l's
 T
au

OPENVPN

2.1
.0

2.1
.2

2.1
.4

2.2
.0

2.2
.1

2.2
.2

2.3
.0
2.3
.18 2.3

.9
2.4
.0

2.4
.3

2.4
.6

Release

0

25

50

75

100

C
ha

ng
es

 [%
]

−1.0

−0.5

0.0

0.5

1.0

Ke
nd

al
l's
 T
au

OPUS

1.0
.0

1.0
.1

1.0
.2

1.0
.3 1.1 1.1

.1
1.1
.2

1.1
.5 1.2 1.2

.1 1.3 1.3
.1

Release

0

25

50

75

100

C
ha

ng
es

 [%
]

−1.0

−0.5

0.0

0.5

1.0

Ke
nd

al
l's
 T
au

POSTGRESQL

8.3
.0
8.3
.5
8.4
.0
8.4
.2
9.0
.0
9.0
.4
9.1
.0
9.1
.3
9.2
.0
9.2
.4
9.3
.0
9.3
.4
9.4
.0
9.4
.4
9.5
.0
9.5
.3
9.6
.0
9.6
.3
10
.0
10
.4
11
.0
11
.2

Release

0

25

50

75

100

C
ha

ng
es

 [%
]

−1.0

−0.5

0.0

0.5

1.0

Ke
nd

al
l's
 T
au

VP8

v0
.9.
1
v0
.9.
2
v0
.9.
5
v0
.9.
6
v0
.9.
7

v0
.9.
7-p

1
v1
.0.
0
v1
.1.
0
v1
.2.
0
v1
.3.
0
v1
.4.
0
v1
.5.
0
v1
.6.
1
v1
.7.
0
v1
.8.
0

Release

0

25

50

75

100

C
ha

ng
es

 [%
]

−1.0

−0.5

0.0

0.5

1.0

Ke
nd

al
l's
 T
au

VP9

v1
.3.
0

v1
.4.
0

v1
.5.
0

v1
.6.
0

v1
.6.
1

v1
.7.
0

v1
.8.
0

Release

0

25

50

75

100

C
ha

ng
es

 [%
]

−1.0

−0.5

0.0

0.5

1.0

Ke
nd

al
l's
 T
au

Z3

4.3
.2
4.4
.0
4.4
.1
4.5
.0
4.6
.0
4.7
.1
4.8
.1
4.8
.3
4.8
.4
4.8
.5
4.8
.6
4.8
.7
4.8
.8
4.8
.9
4.8
.10
4.8
.11
4.8
.12
4.8
.13

Release

0

25

50

75

100

C
ha

ng
es

 [%
]

−1.0

−0.5

0.0

0.5

1.0

Ke
nd

al
l's
 T
au

Fig. 1: Fraction of performance changes and stability of performance ranking at configuration
level. The red line indicates the fraction of configurations of the whole configuration space
containing performance changes (in %); the blue line indicates the stability of the ranked
configuration performance as measured by Kendall’s Tau.

Performance Evolution of Configurable Software Systems: An Empirical Study 17

BROTLI

0.3
.0

0.4
.0

0.5
.2

0.6
.0

1.0
.0

1.0
.1

1.0
.2

1.0
.3

1.0
.4

1.0
.5

1.0
.6

1.0
.7

Release

0

25

50

75

100
C
ha

ng
es

 [%
]

−1.0

−0.5

0.0

0.5

1.0

Ke
nd

al
l's
 T
au

FASTDOWNWARD

20
16
.07

20
17
.01

20
17
.07

20
18
.01

20
18
.07

20
19
.01

20
19
.06

20
19
.12

20
20
.06

Release

0

25

50

75

100

C
ha

ng
es

 [%
]

−1.0

−0.5

0.0

0.5

1.0

Ke
nd

al
l's
 T
au

HSQLDB

2.1
.0
2.2
.0
2.2
.1
2.2
.2
2.2
.3
2.2
.4
2.2
.5
2.2
.6
2.2
.7
2.2
.8
2.2
.9
2.3
.0
2.3
.1
2.3
.2
2.3
.3
2.3
.4
2.3
.5
2.4
.0
2.4
.1

Release

0

25

50

75

100

C
ha

ng
es

 [%
]

−1.0

−0.5

0.0

0.5

1.0

Ke
nd

al
l's
 T
au

LRZIP

53
0
54
3
54
4
55
0
55
1
55
2
56
0
57
1
60
1
60
2
60
4
60
6
60
7
60
8
61
1
61
2
61
4
61
5
61
6
62
0
62
1
63
1

Release

0

25

50

75

100

C
ha

ng
es

 [%
]

−1.0

−0.5

0.0

0.5

1.0

Ke
nd

al
l's
 T
au

MARIADB

5.5
.23
5.5
.27
5.5
.29
5.5
.31

5.5
.33
a
5.5
.35
5.5
.38
5.5
.40

10
.0.
17

10
.0.
19
10
.1.
8

10
.1.
12

10
.1.
14

10
.1.
16
10
.2.
6
10
.2.
7

10
.2.
11

10
.2.
14
10
.3.
8

10
.3.
11

10
.3.
14
10
.4.
7

Release

0

25

50

75

100

C
ha

ng
es

 [%
]

−1.0

−0.5

0.0

0.5

1.0

Ke
nd

al
l's
 T
au

MYSQL

5.6
.10
5.6
.13
5.6
.15
5.6
.17
5.6
.20
5.6
.22
5.6
.24
5.6
.265.7

.9
5.7
.11
5.7
.14
5.7
.17
5.7
.18
5.7
.20
5.7
.21
5.7
.22
8.0
.12
8.0
.13
8.0
.15
8.0
.17

Release

0

25

50

75

100

C
ha

ng
es

 [%
]

−1.0

−0.5

0.0

0.5

1.0

Ke
nd

al
l's
 T
au

OPENVPN

2.1
.0

2.1
.2

2.1
.4

2.2
.0

2.2
.1

2.2
.2

2.3
.0
2.3
.18 2.3

.9
2.4
.0

2.4
.3

2.4
.6

Release

0

25

50

75

100

C
ha

ng
es

 [%
]

−1.0

−0.5

0.0

0.5

1.0

Ke
nd

al
l's
 T
au

OPUS

1.0
.0

1.0
.1

1.0
.2

1.0
.3 1.1 1.1

.1
1.1
.2

1.1
.5 1.2 1.2

.1 1.3 1.3
.1

Release

0

25

50

75

100

C
ha

ng
es

 [%
]

−1.0

−0.5

0.0

0.5

1.0

Ke
nd

al
l's
 T
au

POSTGRESQL

8.3
.0
8.3
.5
8.4
.0
8.4
.2
9.0
.0
9.0
.4
9.1
.0
9.1
.3
9.2
.0
9.2
.4
9.3
.0
9.3
.4
9.4
.0
9.4
.4
9.5
.0
9.5
.3
9.6
.0
9.6
.3
10
.0
10
.4
11
.0
11
.2

Release

0

25

50

75

100

C
ha

ng
es

 [%
]

−1.0

−0.5

0.0

0.5

1.0

Ke
nd

al
l's
 T
au

VP8

v0
.9.
1
v0
.9.
2
v0
.9.
5
v0
.9.
6
v0
.9.
7

v0
.9.
7-p

1
v1
.0.
0
v1
.1.
0
v1
.2.
0
v1
.3.
0
v1
.4.
0
v1
.5.
0
v1
.6.
1
v1
.7.
0
v1
.8.
0

Release

0

25

50

75

100

C
ha

ng
es

 [%
]

−1.0

−0.5

0.0

0.5

1.0

Ke
nd

al
l's
 T
au

VP9

v1
.3.
0

v1
.4.
0

v1
.5.
0

v1
.6.
0

v1
.6.
1

v1
.7.
0

v1
.8.
0

Release

0

25

50

75

100

C
ha

ng
es

 [%
]

−1.0

−0.5

0.0

0.5

1.0

Ke
nd

al
l's
 T
au

Z3

4.3
.2
4.4
.0
4.4
.1
4.5
.0
4.6
.0
4.7
.1
4.8
.1
4.8
.3
4.8
.4
4.8
.5
4.8
.6
4.8
.7
4.8
.8
4.8
.9
4.8
.10
4.8
.11
4.8
.12
4.8
.13

Release

0

25

50

75

100

C
ha

ng
es

 [%
]

−1.0

−0.5

0.0

0.5

1.0

Ke
nd

al
l's
 T
au

Fig. 2: Fraction of performance changes and stability of performance ranking at option level.
The red line indicates the fraction of options containing performance changes (in %); the blue
line indicates the stability of the ranked options performance as measured by Kendall’s Tau.

18 Christian Kaltenecker et al.

4 Evaluation

In this section, we summarize our results (Section 4.1). We use these results in subsequent
metadata analysis (Section 4.2) and discuss the results along with further observations
(Section 4.3) and potential threats to validity (Section 4.4).

4.1 Results

In what follows, we refer to the plots given in Figure 1 and Figure 2. For each subject system,
there is one plot per figure: the plots in Figure 1 show the number of changes (red line) and
the stability of the performance ranking (blue line) at configuration level; and the plots in
Figure 2 show the number of changes (red line) and performance ranking stability (blue line)
at the option level.

0% 20% 40% 60% 80% 100%

Configurations / Options [%]

0%

20%

40%

60%

80%

100%

R
el
ea

se
s
[%

]

Configurations
Options

Fig. 3: Cumulative plot on the fraction of involved configurations (blue) or options (orange)
in all performance changes of RQ1.1 and RQ2.1, respectively.

RQ1.1: What is the fraction of the configuration space containing performance changes
between consecutive releases?

In Figure 1, we show the fraction of configurations containing performance changes across
consecutive releases (red lines)—the larger the value, the higher the fraction of configurations
involved in a performance change. In Figure 3 (blue line), we provide a cumulative overview
that shows how many of the 178 consecutive releases have a performance change in at least a
certain fraction of configurations. For instance, we see that in more than 40% of the releases
the performance changed in at least 20% of the configurations. Notably, 176 out of 178
(99%) releases have, at least, one configuration with a performance change.13 Further, 2 (1%)
performance changes are observed in the entire configuration space, 133 (75%) performance
changes are observed in less than half of the configuration space, and 26 (15%) performance
changes are observed only in 1% of the configuration space.
In Figure 4, we show the intensity of performance changes for VP9. Red color indicates
performance degradation, blue color indicates performance improvement. For releases 1.4.0
and 1.6.0, we observe that the performance behavior of a considerable number of con-
figurations (30%) of VP9 has changed substantially (i.e., the blue and the red colored
configurations)—much more than our threshold of twice the standard deviation used in
Figure 4.

13 We have detected no configurations with performance changes between releases 9.2.0 and 9.2.4 of
POSTGRESQL and between releases 2.2.1 and 2.2.2 of OPENVPN.

Performance Evolution of Configurable Software Systems: An Empirical Study 19

Configuration
v1.8.0

v1.7.0

v1.6.1

v1.6.0

v1.5.0

v1.4.0

v1.3.0

R
el
ea

se

−2000

−1000

0

1000

2000

Pe
rfo

rm
an

ce
 [s

]

Fig. 4: Performance changes of VP9 across all configurations (x-axis) and releases (y-axis).
We use a color palette to illustrate performance degradation (> 0, red) and performance
improvement (< 0, blue). The configurations are sorted in ascending order according to their
mean performance over all releases. There are 3 008 configurations on the x-axis; axis ticks
have been omitted for readability.

SUMMARY RQ1.1

Almost every release of every subject contains, at least, one performance change in some
configuration. The majority of performance changes affects less than half of the configura-
tions.

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00

Kendall's Tau

0%

20%

40%

60%

80%

100%

R
el

ea
se

s
[%

]

Configura ions
Op ions

Fig. 5: Cumulative plot on the stability of configurations (blue) or options (orange) in all
performance changes of RQ1.2 and RQ2.2, respectively.

RQ1.2: How stable is the relative performance of configurations in the presence of perfor-
mance changes between consecutive releases?

In Figure 2, we show the stability of the performance ranking of configurations, as quantified
by Kendall’s Tau (blue lines). A high value indicates high stability: the performance ranking
of configurations changes only slightly (i.e., the fastest configurations stay the fastest, etc.).
Across all systems and releases, the ranking is largely stable: τ = 0.74. In Figure 5, we
provide an overview of the stability (blue line) between all 178 consecutive releases. 148
(83%) releases have a τ value higher than 0.5, 105 (59%) releases have a τ value higher than
0.80, and 64 (36%) releases have a τ value higher than 0.90. OPUS is most stable (τ = 0.98),
POSTGRESQL is least stable (τ = 0.36).

20 Christian Kaltenecker et al.

Ro
ot

SH
A1
 · L
ZO

SH
A5
12
 · L
ZO

RS
A S
HA
51
2 ·
 LZ
O

LZ
O

SH
A1

SH
A5
12

RS
A S
HA
51
2

SH
A5
12
 R
SA
 PR

N
Ge
n.

SH
A5
12
 PR

N
Ge
n.

SH
A1
 PR

N
Ge
n.

TC
P N

o D
ela
y

AE
S-
12
8-C

BC

Configuration Choice

2.4.6
2.4.3
2.4.0
2.3.9

2.3.18
2.3.0
2.2.2
2.2.1
2.2.0
2.1.4
2.1.2
2.1.0

R
el
ea
se

−100

0

100

In
fl−

en
ce

 D
iff
er

en
ce

 [s
]

Fig. 6: Performance influence of options and interactions (x-axis) of OPENVPN across
all releases (y-axis). A color palette illustrates performance degradation (> 0, red) and
improvements (< 0, blue).

SUMMARY RQ1.2

The performance ranking of configurations is largely stable across consecutive releases
(τ = 0.74), with some notable exceptions.

RQ2.1: How frequent and how strong are changes of performance influences of individual
configuration options and interactions between consecutive releases?

In Figure 2, we show the fraction of how many options or interactions have changed from one
release to another (red line). As explained in Section 3.4, the influences were determined by
learning a performance-influence model per release. It is important to note that the prediction
errors of the models were generally low (3.9%, on average), so we are confident that the
influences are accurate.
Frequency: The fraction of configuration options and interactions involved in performance
changes ranges from 0.45% (e.g., LRZIP) to 95% (e.g., VP8). In Figure 3 (orange line),
we provide a cumulative overview that shows how many of the consecutive releases have a
performance change in at least the certain fraction of configuration options. For instance, we
see that about 12% of the consecutive releases indicate a change on more than 40% of the
configuration options and interactions. On average, the influence of 28% of the configuration
options and interactions change across all releases. While, in most of the changes (91%),
multiple configurations options and interactions are involved, there are cases where just a
single option is responsible for a performance change (POSTGRESQL). Figure 6 shows the
intensity of performance influences of individual configuration options and interaction for
OPENVPN: In releases 2.3.0 and 2.3.9, we note substantial performance changes, each of
which is caused by only a subset of options, some of which interact causing the effect (e.g.,
SHA512 and LZO).
Distribution: In Figure 7, we show the distribution of relative performance influences across
all subject systems and releases. 83% of the model terms (options or interactions) have only
a very small influence on performance (less than 7.5%), which is in line with theoretical
considerations of influencing factors in sensitivity analysis (Saltelli, 2008); only 3% of the
model terms have an influence of 80% and more on the system’s performance. That is,
the influence on the performance is mostly distributed over all configuration options and
interactions. A notable exception is POSTGRESQL, where only three terms are relevant,

Performance Evolution of Configurable Software Systems: An Empirical Study 21

0 25 50 75 100

Relative Influence
0

20

40

60

80

100

Fr
eq

ue
nc

y
[%

]

All subject systems

0 25 50 75 100

Relative Influence
0

20

40

60

80

100

Fr
eq

ue
nc
y
[%

]

PostgreSQL

Fig. 7: Distribution of the relative influences of model terms across all subject systems (left)
and for POSTGRESQL (right).

v1
.3.
0

v1
.4.
0

v1
.5.
0

v1
.6.
0

v1
.6.
1

v1
.7.
0

v1
.8.
0

Release

5

4

3

2

1

Pe
rfo

rm
an

ce
 R
an

k

Fig. 8: Evolution of the performance ranking of the 5 most important model terms of VP9.
Connected nodes illustrate the change of ranking from one release to another. An unconnected
node means that the ranking in the next release is lower than 5.

namely the base term, fsync (which enables synchronized writes), and trackActivities (which
enables the collection of information on the executed commands).

SUMMARY RQ2.1

There is a substantial number of cases where influences of individual configuration options
or interactions change across releases, but only few have a substantial influence on perfor-
mance. Most performance changes (91%) are caused by multiple options and interactions,
but there are cases where only a single option is responsible.

RQ2.2: How stable is the relative influence of configuration options and interactions in the
presence of performance changes between consecutive releases?

In Figure 2, we show the stability of the performance ranking of individual influences
of options and interactions, as quantified by Kendall’s Tau (blue lines). We included a
cumulative overview in Figure 5 (orange line). In comparison to RQ1.2, stability is much
higher: τ = 0.91. 151 (85%) have a τ larger than 0.8, and 142 releases (80%) have a τ larger
than 0.9. For two subject systems (OPUS and POSTGRESQL), the performance ranking is
stable across all releases. The performance model ranking (i.e., blue line of the right plot)
of the consecutive releases 1.3.0 and 1.4.0 in VP9 contain slightly negative values, which
indicate larger fluctuations and even a partial reversal of the ranking (see change of ranking
of first and fourth options between 1.3.0 and 1.4.0 in Figure 8).
For illustration, we show in Figure 8 the evolution of the ranking of the 5 most influential con-
figuration options or interactions of VP9. The ranking changes considerably over time, where

22 Christian Kaltenecker et al.

Fig. 9: Methodology of our deeper analysis. Step 0 includes our previously discussed results.
In Step I, we select consecutive releases with certain degrees of performance change. After-
wards in Step II, we identify the configuration options with a changed performance influence
from one release ri to another ri+1. In Step III, we read change logs for documented perfor-
mance changes to find the cause and extract for each release whether performance changes
were documented or not. In Step IV, we read commit messages of the relevant consecutive
releases and include the changed configuration options from Step II to our analysis to aid
finding the cause. In this step, we obtain for each release whether a performance change
was documented in the commits and whether at least one affected configuration option was
mentioned or not. Last, in Step V, we compare the results from Step 0, Step III, and Step IV.
In particular, we show in which cases the change log and commit messages correspond or
differ from our results and in which cases the configuration option is mentioned.

the most changes are in between 1.3.0 and 1.4.0. The reason is a performance regression in
the options realtime and quality encoding, which was fixed in 1.6.0.

SUMMARY RQ2.2

The performance ranking of influences of individual configuration options and interactions
is largely stable across consecutive releases (τ = 0.91), with some exceptions.

4.2 Metadata Analysis

To triangulate the results of Section 4.1, we have conducted a deeper analysis that aligns the
identified performance changes and influential model terms with reported cases in change
logs and commit messages of the respective subject systems. In particular, we are interested
in to what extent the learned performance models are able to pin down configuration options
or interactions that are involved in a performance change.

Conduct In Figure 9, we show the steps of our deeper analysis. In Step I, we check the
performance change of each consecutive release at the configuration level and the option
level (see Figure 1 and Figure 2). We consider a release as relevant if the performance
change at option or configuration level of one release exceeds 5% of the previous release. We
exclude releases for which only the performance of the base program (i.e., the term base) has
changed. There are two reasons for this: (1) a code change to the common base code affects
all configurations; (2) a code change affects an option that is not included in our analysis.

Performance Evolution of Configurable Software Systems: An Empirical Study 23

For instance, changing the default value of an unconsidered configuration option (e.g., by
enabling it by default) can be the reason for performance changes in base. This scenario
occurred only in POSTGRESQL, in which in 4 out of 5 relevant releases, only the term base
has a changed performance value.
Applying both filters, 79 out of 181 (43%) releases are relevant for our investigation. OPUS

is the only subject system with no detectable performance changes. Thus, OPUS will not be
considered in this analysis. By contrast, all releases of VP8 and VP9 are included in our
analysis.
In Step II, we inspect performance-influence models of Section 4.1 in more depth to gather
information on which configuration options and interactions thereof have actually changed.
Based on this information, we search for documented performance changes in the entire
change log between each pair of relevant consecutive releases including the change log for
the current release for documented performance changes in Step III.
In Step IV, we analyze the commit messages between each pair of relevant consecutive
releases. Fortunately, our selected subject systems are open source relying on publicly acces-
sible version control systems (mostly git). Since reading all commit messages is infeasible for
larger projects, we filter the commit messages using the following keywords similar to other
studies (Jin et al., 2012; Chen et al., 2018): slow, fast, time, perf (ormance), optim(ize), and
regression. Additionally, we added the name of the configuration options that we identified
in Step II and check whether a configuration option is mentioned. If one of these keywords
matches, we analyzed the commit message in detail.
Finally, in Step V, we contrast the obtained information by comparing them with each other.
In particular, we report in how many cases the commit messages reported a performance
change in comparison to the change log and in how many cases the configuration option was
mentioned. For brevity, we provide only a summary of our analysis in Table 4; the full set of
results is available on our supplementary website.
To reduce interpretation bias, the first and the second author performed the analysis of Step
III and Step IV independently. After the analysis, they compared their results and discussed
the differences to reach a consensus. Only in 3 pairs of releases of MARIADB, where the
commit messages were larger than 10 MB, the third author checked and confirmed the results
of the first author’s manual analysis.

Results In Table 5, we list an excerpt of the results of our deeper analysis. We provide
the complete list of results on our supplementary website14. Details on each result are also
included on our supplementary website15. We show which of the consecutive releases have
reported a speed-up or a slow-down in change logs or in commit messages, and whether the
affected configuration option has been mentioned. The table also includes information which
fractions of configurations improved or decreased performance.
7 out of 88 (8%) consecutive releases do not include a change log. In summary, in 35 out of
81 (43%) consecutive releases, the change log reported a performance change, whereas 2
reported a slow down and 33 a speed-up. In 56 pairs of releases (64%), the commit messages
reported a performance change. Comparing change log and commit messages, we found that
in 48 out of 81 (59%) consecutive releases, the change log and commit messages correspond
to each other. In the remaining 33 consecutive releases (41%), 26 (32%) list other (and more)

14 https://github.com/ChristianKaltenecker/PerformanceEvolution_Website/blob/master/MetadataAnalysis/
AnalysisTable.md

15 https://github.com/ChristianKaltenecker/PerformanceEvolution_Website/blob/master/MetadataAnalysis/
MetadataAnalysis.md

https://github.com/ChristianKaltenecker/PerformanceEvolution_Website/blob/master/MetadataAnalysis/AnalysisTable.md
https://github.com/ChristianKaltenecker/PerformanceEvolution_Website/blob/master/MetadataAnalysis/AnalysisTable.md
https://github.com/ChristianKaltenecker/PerformanceEvolution_Website/blob/master/MetadataAnalysis/MetadataAnalysis.md
https://github.com/ChristianKaltenecker/PerformanceEvolution_Website/blob/master/MetadataAnalysis/MetadataAnalysis.md

24 Christian Kaltenecker et al.

Table 4: Overview of the number of relevant releases (RR) and releases reporting speed-ups
() or slow-downs () in the change log and commit messages. The last column indicates
the number of releases where at least one affected configuration option is mentioned in the
commit messages.

System |RR| Change log Commit Option

BROTLI 9 2 0 4 0 5
FAST DOWNWARD 9 0 0 2 1 5
HSQLDB 8 4 0 1 0 1
LRZIP 15 7 0 7 1 9
MARIADB 5 2 0 5 0 5
MYSQL 3 2 0 3 0 3
OPENVPN 2 2 0 2 0 2
POSTGRESQL 1 0 0 0 0 1
VP8 14 7 0 10 0 12
VP9 6 6 0 6 1 5
Z3 16 1 2 15 2 11

Table 5: Excerpt of the 88 relevant consecutive releases, the fraction of sped up and slowed
down configurations, whether speed-ups () or slow-downs () are mentioned in the change
log or in the commit message, and whether changes in the identified options/interactions are
reported.

System Release Speed-up (%) Slow-down (%) Change log Commit Option

BROTLI 0.3.0–0.4.0 54.4 16.1 3
0.4.0–0.5.2 66.1 9.4 7 3
0.5.2–0.6.0 36.1 7.7 3
0.6.0–1.0.0 10.0 27.2 7 7
1.0.2–1.0.3 51.6 14.4 7 7 3
1.0.6–1.0.7 26.1 0.0 7 7 7

HSQLDB 2.1.0–2.2.0 0.3 47.2 7 7
2.2.1–2.2.2 26.6 0.2 7
2.2.5–2.2.6 0.9 15.2 7 7 3

LRZIP 530–543 3.8 36.6 7
543–544 25.0 73.1 3
544–550 95.3 3.4 3
552–560 7.7 81.9 7
560–571 85.2 0.6 3

MARIADB 5.5.23–5.5.27 22.5 0.7 3
5.5.35–5.5.38 1.6 4.0 7 3
5.5.40–10.0.17 5.9 25.6 3
10.1.16–10.2.6 5.9 25.6 7 3
10.2.7–10.2.11 17.8 0.1 7 3

MYSQL 5.6.26–5.7.9 0.0 51.4 7 3
5.7.22–8.0.12 0.0 92.2 3
8.0.13–8.0.15 2.3 3.0 3

POSTGRESQL 9.0.0–9.0.4 50.0 0.0 7 7 3
VP8 1.3.0–1.4.0 40.3 6.2 7 3
VP9 1.3.0–1.4.0 34.31 65.6 3

1.6.0–1.6.1 0.0 100.0 3
Z3 4.8.7–4.8.8 8.1 28.9 3

4.8.8–4.8.9 16.2 44.0 3

Performance Evolution of Configurable Software Systems: An Empirical Study 25

Fig. 10: Performance changes of BROTLI across all releases (y-axis). The color code highlights
performance degradation (> 0, red) and performance improvement (< 0, blue).

performance-relevant information in the commit messages than in the change log. The change
log delivers more performance-relevant information in only 5 consecutive releases (6%). In
total, 60 out of 88 (68%) consecutive releases mention a performance change in the change
log or commit message.
In 4 cases (5%), speed-ups and slow-downs were reported in commit messages. At least
one affected configuration option was mentioned in 59 cases (67%), out of which 14 pairs
of releases (16%) mention only changes in the configuration option’s code base but no
performance changes in the change log or commit messages. In 29 of the cases (33%), no
affected configuration option is mentioned. Moreover, in 7 cases (8%), some configurations
show a minor but relevant performance change while the performance-influence model does
not (i.e., the performance-influence models are similar in these cases). In 12 cases (15%), the
change log or commit messages report speed-ups without mentioning a configuration option.

Details To provide in-depth insight into our deeper analysis, we show in Figure 10 the
configuration options WindowSize and CompressionLevel of BROTLI which control the
compression rate of files. A blue color represents performance increase and a red color a
decrease from one release to another. In the first pair of consecutive releases, 0.3.0 – 0.4.0,
an increase in performance of compression levels 0 – 3 can be observed, which is also
mentioned in the change log and the commit message. However, the speed-up of compression
levels 10 and 11 are not directly mentioned and may be a product of memory improvements,
which was another focus of release 0.4.0. In release 0.5.2, the performance is improved for
66% of the configurations, which is not mentioned in the change log. One commit message,
however, addresses speed and the affected configuration options: "new hasher - improved
speed, compression and reduced memory usage for q:5-9 w:10-16"16

Note that q stands for compression level (or quality) and w for the window size. The slow-

16 https://github.com/google/brotli/commit/2048189048

https://github.com/google/brotli/commit/2048189048

26 Christian Kaltenecker et al.

down in compression level 11, however, is not addressed until the next release 0.6.0 and
mentioned there as fixed. We can see the fix for the compression level 11 only later in release
1.0.0. In release 0.6.0, the developer also report optimizations for mid-level compression
levels (5–9). Another interesting pair are releases 1.0.2 and 1.0.3. Although more than half
of the configurations experience a performance change in this range, there are no direct
relations to these performance changes in the change log or the commit messages. Only a
fix in compression level 10 is reported. The changes are a consequence of a new dictionary
generator that was introduced in this release. In the latest release 1.0.7, where a quarter of
the configurations was sped up but no configuration was slowed down, nothing relevant is
reported in the change log and the commit messages. The changes focus on optimizations on
the ARM architecture. Some of these changes may also affect the x86 architecture where our
experiments were performed on.
Between releases 2.1.0 to 2.2.0 of HSQLDB in Table 5, we measured a slow-down in 47%
of the configurations and a speed-up of only 0.3% of the configurations, whereas the change
log reports only a speed-up. With the option-level analysis, we could relate the slow-down to
the configuration option logSize, which controls the size of the log file before an automatic
checkpoint occurs. A deeper analysis of commit messages did not confirm any evidence of a
slow-down.
In Table 5, we show notable cases for LRZIP. In the pair 530–543, more than 36% of con-
figurations show a slow-down and more than 3% show a speed-up. The change log and
commit messages only mention the latter. In the option-level analysis, we find a slow-down
in different compression algorithms, compression levels, and in multi-threading. The commit
messages mention changes on multi-threading and compression algorithms, but in relation to
decompression, which was not measured. In the next pair of releases, 543–544, we have a
similar situation, with 73% of configurations showing a slow-down and 25% of the config-
urations showing a speed-up. According to our option-level analysis, similar configuration
options as in the release pair 530–543 are affected. Commit messages report that the way
how threads are spawned has been changed to improve the performance of compression17.
However, this slow-down is addressed between 544–550, where the respective commit was
completely reverted18. Another situation appears in the release pair 552–560. Change logs
and commit messages report only speed-ups and no slow-downs. Again, multiple configura-
tion options, such as compression algorithms, compression levels, and multi-threading are
affected. Moreover, the commit messages do not mention any of the affected configuration
options, only in relation to another operating system (Mac OSX). Later, in the release pair
560–571, more than 85% of the configurations are sped up and less than 1% have a slow-
down. Both change log and commit messages report speed-ups in multi-threading, whereas
only the commit messages also report a minor slow down.
MARIADB and MYSQL are also included in the excerpt in Table 5 since the first is a fork of
the latter. Both projects use semantic versioning and introduce new functionality in new major
releases that may break backward compatibility. In the major release of MARIADB between
releases 5.5.40–10.0.17 and MYSQL between releases 5.7.22–8.0.12, the InnoDB engine
was updated and, in the case of MYSQL, some refactoring was applied. Further refactoring
of logging and binlogging was applied in MYSQL, between releases 5.6.26–5.7.9, which
resulted in a slow-down. Releases 8.0.13–8.0.15 of MYSQL contain further bug fixes that
result in speed-ups. Between releases 5.5.35–5.5.38, MARIADB applied several bug fixes
and speed-up fixes. Later, between releases 10.1.16–10.2.6, the InnoDB engine was updated.

17 https://github.com/ckolivas/lrzip/commit/688aa55c7930
18 https://github.com/ckolivas/lrzip/commit/8dd9b00

https://github.com/ckolivas/lrzip/commit/688aa55c7930
https://github.com/ckolivas/lrzip/commit/8dd9b00

Performance Evolution of Configurable Software Systems: An Empirical Study 27

Between releases 10.2.7–10.2.11, MARIADB reverted an InnoDB fix from MYSQL19 and
performed code optimization.
Interestingly, we observed that MARIADB and POSTGRESQL have the same fixes between
releases 5.5.23–5.5.27 and 9.0.0–9.0.4, respectively. There, forcing fdatasync for physical
data synchronization on Linux causes an improvement in performance and assures that the
files are synchronized on the physical storage, which is important for data recovery in case of
system crashes. Interestingly, MARIADB reports speed-ups in the change log and commit
messages, whereas POSTGRESQL does not.
Another interesting case in Table 5 includes VP8 and VP9. Both video encoders are developed
in the same repository and VP9 represents the successor of VP8. The consequence is that
the developers compare VP9 with its predecessor in terms of performance, which applies
to the pair 1.3.0–1.4.0. There, the developers report a regression in the commit messages
in comparison to VP8: "Was 20% faster than speed -5 of vp8. Now 20% slower but adds
motion search(...)"20. This change demonstrates that VP9 comes with additional functionality
at the cost of deviating from the performance of VP8. Interestingly, VP9 contains the single
consecutive release 1.6.0–1.6.1 where all configurations indicate a slow down. To increase
confidence in this particular findings, we have additionally executed all configurations of
releases 1.6.0–1.6.1 on another current setup (i.e., another hardware and current operating
system21) and were able to observe the slow-down too. The change log and the commit
messages, however, report only speed-ups. Our performance-influence model related the
changes to multiple configuration options and interactions, some of which are mentioned in
the commit messages.
Z3 also contains pairs of consecutive releases (i.e., 4.8.7–4.8.8 and 4.8.8–4.8.9) where the
developer reported a regression already in the change log and the commit message. The reason
behind lies in nightly performance tests that are performed for Z3 on different platforms
and, thus, the developers of Z3 are informed early about performance changes. However, the
affected configuration options are not mentioned in these releases.

SUMMARY METADATA ANALYSIS

In most consecutive releases (68%), the developers mention performance changes in the
change log or commit messages. In a similar amount of releases (67%), the developers
mention the affected configuration option in the commit message, but there are cases (16%)
where no performance change but changes in affected configuration options have been
reported.

4.3 Implications

Insight: Need for prioritization of configurations for testing Our study shows that change
in performance behavior is not the exception but the rule (i.e., 99% of the releases contain
a performance change in RQ1.1) as also confirmed by others (Jiang and Hassan, 2015;
Mühlbauer et al., 2020). What is interesting is that most performance changes (78%) affect
less than half of the configuration space and a non-negligible number (16%) only 1% of the
configuration space. This is bad news for developers as, this way, performance problems are
more difficult to spot with standard methods, such as testing default or random configurations

19 https://github.com/MariaDB/server/commit/cb9648a6b5
20 https://github.com/webmproject/libvpx/commit/ea8aaf15b55
21 Intel Core i5-4590 CPU with 16 GiB RAM (Debian 11)

https://github.com/MariaDB/server/commit/cb9648a6b5
https://github.com/webmproject/libvpx/commit/ea8aaf15b55

28 Christian Kaltenecker et al.

(we will get back to this shortly). Only in few (1%) cases, the whole configuration space
is affected by a performance change, which is easy to discover by measuring the default
configuration for instance. This result is notable and corroborates the need for performance
modeling and testing methods that incorporate configurability. Random testing is unlikely
sufficient to reveal cases where only few configurations are affected by a change. Furthermore,
we found that, in 7% of the releases with a performance change, functional changes on the
affected configuration options are reported but not observable with our models (i.e., a speed-
up or slow-down). Combining configuration testing with performance modeling could help
in such cases.

Insight: Mixed-strategy sampling Another notable result is that performance changes are
often caused by multiple configuration options (i.e., in 91% of the changes in RQ2.1).
This includes (1) cases where the performance change is a cumulation of the individual
influences of several options and (2) cases where multiple options interact and, this way,
cause a performance change. Both cases are interesting as they demonstrate that configuration
sampling methods based on simple structured coverage criteria (e.g., t-wise sampling) or
simple random sampling are doomed to fail. The distribution of influences of options and
interactions shows that only a combination of random and structured sampling methods
is able to sufficiently cover the configuration space. That is, our results demonstrate that
simple pair-wise sampling would miss many relevant interactions—in Z3, we found even a
performance-relevant interaction among 6 configuration options! At the same time, pair-wise
sampling would consider way too many pair-wise interactions that are irrelevant, rending
the whole approach expensive or even intractable in practice (von Rhein et al., 2018). A
random approach would likely miss important interactions, too. For example, in the case
of POSTGRESQL, a single option is responsible for a substantial performance change
between 9.0.0 and 9.0.4. Our results (in particular, distributions of influences) shall inform
recent developments in combining structured and random sampling to improve sample
quality and reduce cost. In the past, the application of such a combined sampling strategy,
distance-based sampling, already outperformed other sampling strategies with regards to
performance (Kaltenecker et al., 2019; Pereira et al., 2020).

Insight: Configuration sensitivity A further notable result is that, in about 80% of the releases
(see RQ2.2), the ranking of configuration options and interactions is stable (τ > 0.8). This is
good news, as developers and users can assume a certain stability of the relative performance
of individual configurations. In other words, there is no immediate need for reconfiguring
the system after a new release. However, there are exceptions such as POSTGRESQL, where
the performance ranking changes considerably over time (see Figure 1). Knowing about this
general behavior sheds light onto the sensitivity of the system’s performance behavior on
configuration. Our results suggest that this sensitivity varies across systems and developers
need to know that for performance testing and tuning.
At the level of individual configuration options and influences, we observe a similar picture.
The sensitivity of individual options regarding performance differs across systems and may
change over time. An option that influences performance to a large extent in one release may
have only a minor influence in the next release. This finding has implications for configuration
sampling across revisions (Thüm et al., 2019) and transfer learning (Jamshidi et al., 2017):
In both cases, a set of options is selected based on few revisions and then applied to other
revisions (for further sampling or learning transfer). Our results indicate that this approach
may work for most of the cases, but is too simplistic for the general case, as the set of relevant
options and interactions may change considerably (e.g., VP9). For most cases nevertheless,

Performance Evolution of Configurable Software Systems: An Empirical Study 29

focusing on the configuration options or interactions with the highest influence could be a
promising way when using sampling, since their relative influence remains largely the same.

Insight: Diverging performance behavior An interesting aspect of our selection of subjects is
that VP8 and VP9 share some of their history and are still developed in the same repository.
One might expect that this leads to similarities in performance behavior and evolution, since
fixes and optimizations might be transferred easily. Our data do not confirm this expectation.
On the contrary, we even found an opposing performance regression in 1.3.0–1.4.0: VP8 was
sped up for 40% of the configurations and slowed down for only 6.2% of the configurations
whereas VP9 shows a massive slow-down for 65.6% of the configurations. The same holds
for MARIADB and MYSQL, where the first is a fork of the later. Both show different
performance changes in their evolution. While this does not have to be a problem per se, our
analysis framework provides proper means for developers to identify such divergences.

Insight: Main-effects sampling still necessary, but not sufficient Moreover, our results con-
tribute to the new feature-interaction challenge (Apel et al., 2013). The idea is that there are
different kinds of feature interactions, at different levels of abstraction, including functional
and non-functional interactions that manifest in externally observable or internal behavior.
The goal is to collect data from many different cases and triangulate results on interactions
between options or features to learn about their nature and to predict one kind of interaction
based on information about another kind (Kolesnikov et al., 2019a). Our results in RQ2.1

and RQ2.2 provide real-world data on likelihood and properties of performance feature
interactions; our measurement and analysis framework offers a blueprint for conducting
further experiments on other kinds of interactions (e.g., regarding memory utilization or
energy consumption).

v1
.3.
0

v1
.4.
0

v1
.5.
0

v1
.6.
0

v1
.6.
1

v1
.7.
0

v1
.8.
0

Release

0

500

1000

1500

2000

Ex
ec

ut
io
n
tim

e
[s
]

Fig. 11: The performance of all configurations (green dots) and the default configuration
(blue dotted line) of VP9. The x-axis shows the releases and the y-axis the execution time in
seconds.

Insight: Configuration awareness Another interesting issue of our empirical study is whether
we are able to reveal new information in terms of performance changes in addition to what is
already documented and thus well-known among developers and users. To investigate whether
performance changes are explicitly documented by developers (i.e., the developers added the
performance change intentionally), we manually analyzed the change logs (if available) of 6

30 Christian Kaltenecker et al.

out of 12 systems (i.e., FASTDOWNWARD, HSQLDB, LRZIP, VP8, VP9, Z3) in Section 4.2.
Several performance changes have been documented by developers, but not all. We found
that developers often report speed-ups in commit messages and change logs but only rarely
slow-downs. The reason may be that developers become aware of these slow-downs only after
deployment, as several cases indicate in which the slow-down was encountered and fixed one
or two releases later. Such issues could be detected early by a configuration-aware continuous
performance testing pipeline. Although some software systems, such as Z3 and VP9 use
performance tests, these are not configuration-aware. This could explain why these subject
systems report regressions, but only to a certain extent. Our results suggest that configuration-
aware performance testing can indeed provide new information in an automated manner and
simultaneously validates our findings. Interestingly, in some of the performance changes, we
observed a slow-down, although the change logs reported a speed-up. In particular, version
1.4.0 of VP9 promises faster encoding in change log, although the change results in a
slow-down of 265%, which can be considered as an unintentional slow-down. The reason
behind this discrepancy is that the change log referred only to the default configurations; all
other configurations, however, were affected by a massive slow-down, possibly untested and
unaware by the developers. For illustration, we contrast in Figure 11 the performance of the
default configuration and the mean performance of all configurations. Notably, in version
1.6.0 the performance regression has been fixed resulting in a speed-up of all configurations;
the performance of the default configuration, however, remains largely unchanged. This
performance optimization was achieved by avoiding and reordering some of the processor
instructions for Intel chips and is mentioned in the change logs. This is an interesting aspect,
since such cases demonstrate the importance of automated support and paves the way for
further research in this area.

4.4 Threats to Validity

Construct validity To guarantee comparability across releases and to simplify benchmarking,
we selected options that are available in all releases. While we may have missed interesting
cases, this way, we increase internal validity by ruling out effects from option-specific
benchmarks. Moreover, while performance changes could affect newly included configuration
options that are enabled by default, this would affect either the whole configuration space or
certain configuration options if the configuration option does depend on another configuration
option. Either way, this would be visible in the performance-influence models. This affected
also our deeper analysis and is the reason for why we have excluded consecutive releases
where only the base code changes. In the end, only 4 pairs of consecutive releases of
POSTGRESQL were excluded by this filter. In all other cases, the performance-influence
model shows changes in certain configuration options or interactions or does not change at
all. Another threat to validity arises from the selection of the keywords for filtering commit
messages. Choosing another set of keywords may yield other results. However, all selected
keywords were used in related publications (Jin et al., 2012; Chen et al., 2018) that focus on
identifying performance regressions in commit messages or issue lists. One reason for the low
number of reported configuration options is that developers may state configuration options
under different names (e.g., q or quality for the compression level in BROTLI). We have
encountered few cases in which very specific parts of the code were addressed in a commit
message, but a clear relation to a configuration option is hard to discover without domain
knowledge and code inspection. Another reason could be data-flow dependencies between
the configuration options. For instance, in HSQLDB, the configuration option blowfish was

Performance Evolution of Configurable Software Systems: An Empirical Study 31

not mentioned a single time in any commit message when a performance change occurred.
When other configuration options affect the data that has to be encrypted by blowfish, then
we relate the change to blowfish as the effect occur here, but the cause resides in code of
another option.

Internal validity Measurement noise is not only caused by software but also by hard-
ware (Mytkowicz et al., 2009). To limit measurement noise, we used identical hardware per
subject system, running with a minimum DEBIAN installation. Furthermore, we preceded the
measurements with a CPU warm-up phase. The measurements of the Java-based database
(HSQLDB) are additionally preceded by a complete benchmark execution because of the
JIT compilation as proposed by Georges et al. (Georges et al., 2007). Furthermore, we
isolated the benchmark execution of client-server software (i.e., HSQLDB, MARIADB,
MYSQL, OPENVPN, and POSTGRESQL) by running the server on a different node than
the client(s) running the benchmark. To avoid wrong benchmark results, Costa et al. (Costa
et al., 2021) observe and solve different bad practices in method-level performance tests.
Since we measure the system as a whole and not individual methods by, for instance, issuing
SQL queries to the database system, we are not affected by these bad practices. We varied
the hardware across subject systems, since we do not need to compare measurements among
systems. Furthermore, we used, if possible, the same version of the libraries over all releases,
and we repeated our measurements three to five times until the relative standard deviation
of the repetitions was lower than 10%. To control measurement noise, we used the standard
deviation to pin down performance changes.
The choice of the learning algorithm may threaten internal validity. Other learning algorithms
could have produced other results for RQ2.1 and RQ2.2. We used multiple linear regression
with feature forward selection (Siegmund et al., 2015) because the additive structure of models
enables us to track performance influences across releases by comparing the coefficients of
model terms. Further, choosing always the best candidate in the feature forward selection (see
Lines 11–14 in Algorithm 1) represents another limitation of our approach, since choosing a
worse performing candidate in one iteration might lead to much better performing candidates
in a later iteration. In other words, our learned models could not represent the optimum
models. However, the prediction error of the models was 3.7% on average, which indicates
that the models cover nearly all influences of options and interactions on performance
accurately. To reduce spurious terms, which are only an artifact of the measurement and
learning procedure, we checked the documentation (i.e., commit messages and change logs,
if available) of our subject systems.
Additionally, we have used the variance inflation factor analysis to reduce variance in the
performance-influence models as described in Section 2.4. This step removed a few terms
by maintaining the error rate of the performance-influence models. Removing terms that are
not perfectly multicollinear but exceed these thresholds removes important terms needed
to predict specific parts of the configuration space and, thus, the error rate decreases. In a
pre-study, we have applied the variance factor analysis by using the commonly threshold of
5 (Sheather, 2009) on the subject system LRZIP. From 230 terms, 160 were removed by the
variance factor analysis but at the cost of increasing the error rate of the performance-influence
model from 6 % to 60 %. In our setup, we removed only terms with perfect collinearity. In
Table 6, we show the number of terms of the performance-influence models before and after
the VIF analysis. Overall, we removed 14 out of 702 terms while the performance-influence
models’ error rate remained constant.
Finally, our metrics for identifying performance changes may threaten internal validity, since
other metrics would identify other performance changes. For instance, the work of Costa et

32 Christian Kaltenecker et al.

Table 6: The number of terms of the performance-influence model per subject system before
and after the variance inflation factor (VIF) analysis.

System |Initial Terms| |Terms after VIF|

BROTLI 166 166
FAST DOWNWARD 44 41
HSQLDB 21 21
LRZIP 220 220
MARIADB 35 33
MYSQL 25 23
OPENVPN 13 13
OPUS 66 66
POSTGRESQL 3 3
VP8 40 40
VP9 51 44
Z3 18 18

Total 702 688

al. (Costa et al., 2021) investigates the performance change of some bad practices at method
level of one single configuration and uses the Wilcoxon non-parametric test and Clifft’s
Delta effect size to identify significant performance changes of their benchmark results. We
refrained from using statistical tests to assess a significant performance change because the
number of performance values per configuration (i.e., 3 or 5 performance values; 1 from
each repetition) is far too low for a significance test and the suggested effect size metric,
whereas the work of Costa et al. had at least 100 performance values due to a high number
of repetitions. Increasing the number of repetitions on a similar level is infeasible despite
the number of releases and configurations, we measured. Instead, we have used the standard
deviation as an effect size to express the variance of measurement noise across multiple
repetitions.
Due to the absence of a baseline, we need to resort to an automated approach, which we
complemented, though, by studying commit messages and change logs manually (see above).

External validity To increase external validity, we chose configurable software systems from
different domains, including throughput-intensive applications (compression tools, video
encoders) and client-server applications (Web servers, databases). In total, our corpus contains
software systems ranging from 181 to 6 480 configurations and 7 to 22 releases.
To keep experiment effort feasible, we limited the selection of configuration options to a
tractable number. This limitation is due to our experiment setup, which aimed for high
internal validity, and is not a principal limitation of our analysis framework. Considering
more configuration options would require to sample the configuration space for learning
performance influence models, instead of considering the whole space. While learning
performance-influence models on small sample sets works well in practice (Kaltenecker et al.,
2020), we aimed for high internal validity, ruling out possible inaccuracies.
The choice of the workload for performance measurement poses another threat to external
validity. We have fixed the workload/benchmark across configurations and releases, this way
gaining internal validity for external validity—see the discussion above. However, we used
established community or developer workloads to catch typical scenarios, which already
provided numerous interesting insights (see Section 3.3). For instance, the selection of the

Performance Evolution of Configurable Software Systems: An Empirical Study 33

developer workload might be a reason why we found no performance changes in OPUS.
Varying the workload shall bring even more insights in further studies.

5 Related Work

In this section, we discuss related work with respect to (1) the role and evolution of software
performance, (2) methods to analyze the performance changes, and (3) the evolution of
software configurability.

Performance & Software Evolution Root causes of performance changes and their effect on
maintainability have been studied before. Zaman et al. conducted an analysis of over 400
bugs from MOZILLA FIREFOX and GOOGLE CHROME (Zaman et al., 2012). They found that
performance bugs often require more effort to fix and, therefore, are more costly than fixing
functional bugs. A study on MOZILLA FIREFOX, APACHE, and MYSQL found a strong
relation between configurability and performance: 113 out of 193 bugs were configuration
related (Han and Yu, 2016).
Alcocer et al. studied the performance evolution of 19 software systems’ releases. By analyz-
ing the performance of multiple benchmarks, they found that one third of releases introduced
performance bugs. The authors identified 9 patterns for performance changes (Alcocer and
Bergel, 2015), which include performance improvements, due to removing redundant method
calls or caching, as well as performance regressions arising from the composition of collection
operations. Our work links both research directions—software configuration and software
evolution—and explores performance of software systems across their configuration spaces
and along their development histories.

Performance Change Detection The detection of performance changes has been approached
from different angles, such as using different statistical methods, and taking one or more
performance characteristics of the software system into account. For example, statistical
process control charts were used to capture changes of an observed metric, such as the
performance of the system, and provide thresholds, which, when exceeded by accumulated
change, indicate a performance degradation (Nguyen et al., 2014; Malik et al., 2013; Lee et al.,
2012). Other statistical approaches rely on testing and determining whether two observations
are statistically different. For example, Heger et al. compare the performance distributions for
different versions with ANOVA (Heger et al., 2013). Reichelt et al. apply different statistical
tests to identify performance anomalies from performance histories (Reichelt and Kühne,
2018).
Aside from considering only a single performance measure, previous work considers multiple
measures and their relations. Foo et al. mine repositories regarding performance regression
tests and automatically detect performance changes by tracking the correlation of perfor-
mance measures over time (Foo et al., 2010). Malik et al. analyze performance regression
by automatically selecting a subset of performance measures that describe system perfor-
mance (Malik et al., 2013). Using principal component analysis, they correlate the measures
to obtain a performance fingerprint, which then can be compared across releases.
All this work illustrates that performance changes can manifest in many ways. However,
it does not consider configurability and to what extent individual configuration options or
interactions cause performance changes, which is the focus of this paper.

34 Christian Kaltenecker et al.

Evolution: Configurability & Performance Mühlbauer et al. devised a prediction tech-
nique for performance changes in software repositories, across versions and configura-
tions (Mühlbauer et al., 2020). This work is the closest but complementary to ours: While
we study the prevalence and properties of performance feature interactions in the wild, they
propose a technique to discover them with little effort. In principle, we could have used
their technique to collect the data for our study. But, as their approach only approximates
performance changes with iterative sampling, we analyze the configuration space as a whole
for accuracy.
Several studies have observed and categorized recurring patterns in the evolution of variability
models, such as the introduction or removal of new configuration options (often called
features) or splitting generic options into more precise ones. There are three relevant patterns:
a new feature is added, a mandatory feature becomes optional, or a mandatory/optional
feature is split into alternative features (Peng et al., 2011; Seidl et al., 2012; Passos et al.,
2016, 2021). Our study considers only configuration options that exist in all releases of the
software system, which is the majority, though. However, for the interpretation of our results
(cf. RQ2.2), these patterns provide some context that can help map changes in the performance
influence across releases. Recent work by Jamshidi et al. explores the applicability of transfer
learning to adapt performance-influence models to different environments (Jamshidi et al.,
2017). Their key insight, after investigating 4 configurable software systems, is that only
a subset of configuration options and interactions among them have a strong influence on
performance and that the performance influence is generally preserved across environments
and software releases.

Workload Dependence Clearly, the performance of a software system may change depending
on the workload. There is a substantial corpus of work studying this phenomenon and
providing models and solutions that incorporate workload-dependent performance (Feitelson,
2002; Wolf et al., 2014; Mühlbauer et al., 2023). The work of Costa et al. and Leitner
et al. focuses on studying and improving performance tests in Java-based open source
projects (Leitner and Bezemer, 2017; Costa et al., 2021). Our work is complementary
in that we study system configurability, which is a further dimension that influences a
system’s performance. To increase internal validity, we fixed the workload per system
in our experiments. Ultimately, our approach and previous work on workload-dependent
performance behavior shall be combined.

6 Conclusion

Although performance evolution has been extensively studied in the literature, prior work
concentrated on single or few default configurations. Since most software systems are
configurable, performance changes can easily be missed this way. Specifically, we are
interested in the role of configurability for performance evolution, for example, whether
specific configurations exhibit diverging performance behavior and what configuration options
(or interactions among options) are responsible for this.
In an empirical study, we analyzed performance changes of 12 real-world configurable
software systems across 190 releases that span a total of 15 years of history. We found that
almost every release of every subject system exhibits performance changes in some of their
configurations. Notably, the majority of performance changes affects only a small subset of
the configuration space, and most performance changes affect multiple options (up to 6),
either by accumulation of influences or interactions among options.

Performance Evolution of Configurable Software Systems: An Empirical Study 35

A deeper analysis of these configurable software systems shows that performance changes are
reported in the change log or the commit messages in most cases. Similarly often, changes
regarding affected configuration options have been mentioned.
Our results confirm prior beliefs that configuration-dependent performance changes are the
rule, not the exception. This has direct implications for configuration sampling, performance
modeling, and transfer learning in the area of configurable software systems. For example,
our results confirm assumptions that simple random configuration sampling is not sufficient
to catch all relevant performance changes. Likewise, structured sampling strategies likely
overestimate the prevalence of performance-relevant interactions among options. Our results
clearly indicate that combined sampling strategies such as distance-based sampling hit a
proper sweet spot.
A further notable insight is that, despite the prevalence of performance changes, the perfor-
mance ranking of configurations and influences of individual options are in many cases not af-
fected. That is, developers and users can assume a certain stability of configuration-dependent
performance behavior. Still, we found cases where the performance ranking fluctuates consid-
erably across releases. This phenomenon seems to be application- or domain-specific and is
worth further exploring, as it has implications for transfer learning of performance behavior
across releases since more stable applications or domains could focus on the most relevant
configuration options; in other applications and domains such approaches are doomed to fail.
Additionally, our deeper analysis demonstrates that using a configuration-aware performance
testing pipeline could help in identifying configuration-specific performance changes early.
Our measurement and analysis framework offers a solid basis for exploring these and related
issues.

Acknowledgements We thank our reviewers for their constructive comments. Apel’s work has been funded by
the German Research Foundation (DFG) under the contracts AP 206/11-1, AP 206/11-2, and Grant 389792660
as part of TRR 248 – CPEC. Siegmund’s work has been funded by the German Research Foundation (SI 2171/2-
2), by the Federal Ministry of Education and Research of Germany, and by the Sächsische Staatsministerium
für Wissenschaft Kultur und Tourismus in the program Center of Excellence for AI-research Center for
Scalable Data Analytics and Artificial Intelligence Dresden/Leipzig, project identification number: ScaDS.AI,
and by the BMBF project Agile-AI.

References

Alcocer J, Bergel A (2015) Tracking Down Performance Variation Against Source Code
Evolution. In: Proceedings of the Symposium on Dynamic Languages (DLS), ACM, pp
129–139

Andrews D (1974) A Robust Method for Multiple Linear Regression. Technometrics
16(4):523–531

Apel S, Kolesnikov S, Siegmund N, Kästner C, Garvin B (2013) Exploring Feature In-
teractions in the Wild: The New Feature-Interaction Challenge. In: Proceedings of the
International Workshop on Feature-Oriented Software Development (FOSD), ACM, pp
1–8

Burnim J, Juvekar S, Sen K (2009) WISE: Automated Test Generation for Worst-Case
Complexity. In: Proceedings of the International Conference on Software Engineering
(ICSE), IEEE, pp 463–473

Chen J, Shang W (2017) An Exploratory Study of Performance Regression Introducing Code
Changes. In: Proceedings of the International Conference on Software Maintenance and
Evolution (ICSME), IEEE, pp 341–352

36 Christian Kaltenecker et al.

Chen Z, Chen B, Xiao L, Wang X, Chen L, Liu Y, Xu B (2018) Speedoo: Prioritizing
Performance Optimization Opportunities. In: Proceedings of the International Conference
on Software Engineering (ICSE), ACM, pp 811–821

Costa D, Bezemer C, Leitner P, Andrzejak A (2021) What’s Wrong with My Benchmark
Results? Studying Bad Practices in JMH Benchmarks. IEEE Transactions on Software
Engineering 47(7):1452–1467

Dorn J, Apel S, Siegmund N (2023) Mastering Uncertainty in Performance Estimations of
Configurable Software Systems. Empirical Software Engineering 28(2):33

Feitelson D (2002) Workload Modeling for Performance Evaluation. In: Performance Evalu-
ation of Complex Systems: Techniques and Tools, Springer, pp 114–141

Foo K, Jiang Z, Adams B, Hassan A, Zou Y, Flora P (2010) Mining Performance Regres-
sion Testing Repositories for Automated Performance Analysis. In: Proceedings of the
International Conference on Quality Software (QRS), IEEE, pp 32–41

Gahvari H, Baker A, Schulz M, Yang U, Jordan K, Gropp W (2011) Modeling the Per-
formance of an Algebraic Multigrid Cycle on HPC Platforms. In: Proceedings of the
International Conference on Supercomputing (ICSP), ACM, pp 172–181

Georges A, Buytaert D, Eeckhout L (2007) Statistically Rigorous Java Performance Eval-
uation. In: Proceedings of the Annual ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications, (OOPSLA), ACM, pp 57–76

Grebhahn A, Rodrigo C, Siegmund N, Gaspar FJ, Apel S (2017) Performance-Influence
Models of Multigrid Methods: A Case Study on Triangular Grids. Concurrency and
Computation: Practice and Experience 29(17)

Han S, Dang Y, Ge S, Zhang D, Xie T (2012) Performance Debugging in the Large via
Mining Millions of Stack Traces. In: Proceedings of the International Conference on
Software Engineering (ICSE), IEEE, pp 145–155

Han X, Yu T (2016) An Empirical Study on Performance Bugs for Highly Configurable
Software Systems. In: Proceedings of the International Symposium on Empirical Software
Engineering and Measurement (ESEM), ACM, pp 1–10

Heger C, Happe J, Farahbod R (2013) Automated Root Cause Isolation of Performance Re-
gressions During Software Development. In: Proceedings of the ACM/SPEC International
Conference on Performance Engineering (ICPE), ACM, pp 27–38

James G, Witten D, Hastie T, Tibshirani R (2013) An Introduction to Statistical Learning, vol
112. Springer

Jamshidi P, Siegmund N, Velez M, Kästner C, Patel A, Agarwal Y (2017) Transfer Learn-
ing for Performance Modeling of Configurable Systems: An Exploratory Analysis. In:
Proceedings of the International Conference on Automated Software Engineering (ASE),
IEEE, pp 497–508

Jamshidi P, Velez M, Kästner C, Siegmund N (2018) Learning to Sample: Exploiting Similar-
ities Across Environments to Learn Performance Models for Configurable Systems. In:
Proceedings of the Joint Meeting of the European Software Engineering Conference and
the ACM SIGSOFT Symposium on the Foundations of Software Engineering (ESEC/FSE),
ACM, pp 71–82

Jiang Z, Hassan A (2015) A Survey on Load Testing of Large-Scale Software Systems. IEEE
Transactions on Software Engineering 41(11):1091–1118

Jin G, Song L, Shi X, Scherpelz J, Lu S (2012) Understanding and Detecting Real-World
Performance Bugs. In: Conference on Programming Language Design and Implementation
(PLDI), ACM, pp 77–88

Kaltenecker C, Grebhahn A, Siegmund N, Guo J, Apel S (2019) Distance-Based Sampling
of Software Configuration Spaces. In: Proceedings of the International Conference on

Performance Evolution of Configurable Software Systems: An Empirical Study 37

Software Engineering (ICSE), IEEE, pp 1084–1094
Kaltenecker C, Grebhahn A, Siegmund N, Apel S (2020) The Interplay of Sampling and

Machine Learning for Software Performance Prediction. IEEE Software 37(4):58–66
Kendall M (1938) A New Measure of Rank Correlation. Biometrika 30(1/2):81–93
Knüppel A, Thüm T, Pardylla C, Schaefer I (2018) Understanding Parameters of Deductive

Verification: An Empirical Investigation of KeY. In: Proceedings of the International
Conference on Interactive Theorem Proving (ITP), Springer, pp 342–361

Kolesnikov S, Siegmund N, Kästner C, Apel S (2019a) On the Relation of Control-flow
and Performance Feature Interactions: A Case Study. Empirical Software Engineering
24(4):2410–2437

Kolesnikov S, Siegmund N, Kästner C, Grebhahn A, Apel S (2019b) Tradeoffs in Modeling
Performance of Highly-Configurable Software Systems. Software and System Modeling
18(3):2265–2283

Kuhn M, Johnson K (2013) Applied Predictive Modeling, vol 26. Springer
Lee D, Cha S, Lee A (2012) A Performance Anomaly Detection and Analysis Frame-

work for DBMS Development. IEEE Transactions on Knowledge and Data Engineering
24(8):1345–1360

Leitner P, Bezemer C (2017) An Exploratory Study of the State of Practice of Performance
Testing in Java-Based Open Source Projects. In: Proceedings of the International Confer-
ence on Performance Engineering (ICPE), ACM, pp 373–384

Malik H, Hemmati H, Hassan AE (2013) Automatic Detection of Performance Deviations in
the Load Testing of Large Scale Systems. In: Proceedings of the International Conference
on Software Engineering (ICSE), IEEE, pp 1012–1021

Mühlbauer S, Apel S, Siegmund N (2019) Accurate Modeling of Performance Histories for
Evolving Software Systems. In: Proceedings of the International Conference on Automated
Software Engineering (ASE), ACM, pp 640–652

Mühlbauer S, Sattler F, Kaltenecker C, Dorn J, Apel S, Siegmund N (2023) Analyzing the
Impact of Workloads on Modeling the Performance of Configurable Software Systems. In:
Proceedings of the International Conference on Software Engineering (ICSE), IEEE

Mytkowicz T, Diwan A, Hauswirth M, Sweeney P (2009) Producing Wrong Data Without
Doing Anything Obviously Wrong! In: Proceedings of the International Conference on
Architectural Support for Programming Languages and Operating Systems (ASPLOS),
ACM, pp 265–276

Mühlbauer S, Apel S, Siegmund N (2020) Identifying Software Performance Changes Across
Variants and Versions. In: Proceedings of the International Conference on Automated
Software Engineering (ASE), ACM

Nair V, Menzies T, Siegmund N, Apel S (2017) Using Bad Learners to Find Good Con-
figurations. In: Proceedings of the Joint Meeting of the European Software Engineering
Conference and the ACM SIGSOFT Symposium on the Foundations of Software Engi-
neering (ESEC/FSE), ACM, pp 257–267

Nguyen T, Nagappan M, Hassan A, Nasser M, Flora P (2014) An Industrial Case Study
of Automatically Identifying Performance Regression-Causes. In: Proceedings of the
Working Conference on Mining Software Repositories (MSR), ACM, pp 232–241

Oh J, Batory D, Myers M, Siegmund N (2017) Finding Near-Optimal Configurations in
Product Lines by Random Sampling. In: Proceedings of the Joint Meeting of the European
Software Engineering Conference and the ACM SIGSOFT Symposium on the Foundations
of Software Engineering (ESEC/FSE), ACM, pp 61–71

Passos L, Teixeira L, Dintzner N, Apel S, Wąsowski A, Czarnecki K, Borba P, Guo J
(2016) Coevolution of Variability Models and Related Software Artifacts: A Fresh Look at

38 Christian Kaltenecker et al.

Evolution Patterns in the Linux Kernel. Empirical Software Engineering 21(4):1744–1793
Passos L, Queiroz R, Mukelabai M, Berger T, Apel S, Czarnecki K, Padilla J (2021) A Study

of Feature Scattering in the Linux Kernel. IEEE Transactions on Software Engineering
(TSE) 47(1):146–164

Peng X, Yu Y, Zhao W (2011) Analyzing Evolution of Variability in a Software Product
Line: From Contexts and Requirements to Features. Information & Software Technology
53(7):707–721

Pereira J, Acher M, Martin H, Jézéquel JM (2020) Sampling Effect on Performance Prediction
of Configurable Systems: A Case Study. In: Proceedings of the International Conference
on Performance Engineering (ICPE), ACM

Pett T, Thüm T, Runge T, Krieter S, Lochau M, Schaefer I (2019) Product Sampling for
Product Lines: The Scalability Challenge. In: Proceedings of the International Systems
and Software Product Line Conference (SPLC), ACM, pp 14:1–14:6

Pukall M, Kästner C, Cazzola W, Götz S, Grebhahn A, Schröter R, Saake G (2013) JavAdaptor
- Flexible Runtime Updates of Java Applications. Software: Practice and Experience
43(2):153–185

Reichelt D, Kühne S (2018) How to Detect Performance Changes in Software History:
Performance Analysis of Software System Versions. In: Proceedings of the International
Conference on Performance Engineering (ICPE), ACM, pp 183–188

Saltelli A (2008) Global Sensitivity Analysis: The Primer. John Wiley
Seidel I, de Moraes B, Wuerges E, Güntzel J (2013) Quality Assessment of Subsampling

Patterns for PEL Decimation Targeting High Definition Video. In: Proceedings of the
International Conference on Multimedia and Expo (ICME), IEEE, pp 1–6

Seidl C, Heidenreich F, Aßmann U (2012) Co-Evolution of Models and Feature Mapping
in Software Product Lines. In: Proceedings of the International Software Product Line
Conference on (SPLC), ACM, p 76

Sheather S (2009) A Modern Approach to Regression with R. Springer Science & Business
Media

Siegmund N, Rosenmüller M, Kästner C, Giarrusso P, Apel S, Kolesnikov S (2013) Scalable
Prediction of Non-functional Properties in Software Product Lines: Footprint and Memory
Consumption. Information & Software Technology 55(3):491–507

Siegmund N, Grebhahn A, Apel S, Kästner C (2015) Performance-Influence Models for
Highly Configurable Systems. In: Proceedings of the Joint Meeting of the European
Software Engineering Conference and the ACM SIGSOFT Symposium on the Foundations
of Software Engineering (ESEC/FSE), ACM, pp 284–294

Thüm T, Teixeira L, Schmid K, Walkingshaw E, Mukelabai M, Varshosaz M, Botterweck G,
Schaefer I, Kehrer T (2019) Towards Efficient Analysis of Variation in Time and Space. In:
Proceedings of the International Systems and Software Product Line Conference (SPLC),
ACM, pp 69:1–69:8

von Rhein A, Liebig J, Janker A, Kästner C, Apel S (2018) Variability-Aware Static Analysis
at Scale: An Empirical Study. ACM Transactions on Software Engineering and Methodol-
ogy 27(4):18:1–18:33

Wolf F, Bischof C, Hoefler T, Mohr B, Wittum G, Calotoiu A, Iwainsky C, Strube A, Vogel
A (2014) Catwalk: A Quick Development Path for Performance Models. In: Proceedings
of the European Conference on Parallel Processing (Euro-Par), Springer, pp 589–600

Xu T, Jin L, Fan X, Zhou Y, Pasupathy S, Talwadker R (2015) Hey, You Have Given
Me Too Many Knobs!: Understanding and Dealing with Over-Designed Configuration
in System Software. In: Proceedings of the Joint Meeting of the European Software
Engineering Conference and the ACM SIGSOFT Symposium on the Foundations of

Performance Evolution of Configurable Software Systems: An Empirical Study 39

Software Engineering (ESEC/FSE), ACM, pp 307–319
Zaman S, Adams B, Hassan A (2012) A Qualitative Study on Performance Bugs. In: Pro-

ceedings of the Working Conference on Mining Software Repositories (MSR), IEEE, pp
199–208

van Zyl P, Kourie D, Boake A (2006) Comparing the Performance of Object Databases and
ORM Tools. In: Proceedings of the Annual Research Conference of the South African
Institute of Computer Scientists and Information Technologists on IT Research in Develop-
ing Countries (SAICSIT), South African Institute for Computer Scientists and Information
Technologists, p 111

	Introduction
	Preliminaries
	Study Setup
	Evaluation
	Related Work
	Conclusion

