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Abstract—Artificial intelligence has gained considerable momentum in software engineering.
One success story is the use of machine learning for performance prediction and optimization of
configurable software systems, for which it is often intractable to determine which configuration
is optimal. Despite notable success stories, there are major challenges that make this domain
special such that “just applying machine-learning techniques out of the box” is infeasible: First,
the configuration spaces of real-world software systems are often huge and highly constrained.
Second, since sampling is such an intricate problem for software configuration spaces, the
sampling strategy has substantial influence on the performance of the machine-learning
algorithm, so it is imperative to reason about the interplay of sampling and learning. In this
article, we review recent advancements in this area, raise awareness of the distinctiveness of
software configuration spaces, and provide practical guidelines for modeling, predicting, and
optimizing their performance.

A PROMISE of artificial intelligence is the
automation of the design, implementation, opti-
mization, and configuration of efficient and prov-
ably correct software. An area that has made
considerable progress in adopting artificial intelli-
gence techniques is highly-configurable software
systems.

Many software systems today are config-
urable. A configurable system provides a number

of configuration options that allow programmers,
administrators, and users to adapt the system to
their functional and non-functional requirements.
The benefits of configurability come with a price,
though: The sheer size of the configuration space
is often overwhelming [1]. For example, the
LINUX kernel has over 13 000 configuration op-
tions, which span a configuration space whose
size cannot even be quantified in reasonable time.
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But it is not only the plain size that is chal-
lenging. Configuration options may depend on
other options. For example, the support of multi-
user access to a database may require transaction
management and specific index structures. Such
dependencies constrain the set of configurations
that arises from combinatorics to a subset of valid
configurations. For instance, the VP9 video en-
coder offers 42 configuration options, which give
rise to 242 (∼ 1012) of combinations, but only
216 000 configurations are valid (i.e., 0.000021 %
of all combinations). In larger systems such as
the LINUX kernel with more than 300 000 con-
straints, determining the exact set of valid config-
urations is notoriously hard.

In any case, knowing and even guaranteeing
certain properties, such as performance or en-
ergy consumption, for all these configurations is
impossible. For example, identifying the optimal
configuration of the database system SQLITE for
a given workload would require more time than
the universe has existed so far. Worse, targeting
not only a single but multiple properties (e.g.,
performance and energy consumption) is even
harder [2], [3]. Only recently, researchers began
to use machine learning to address this problem.
The key idea is (1) to select and measure a
small number of configurations—the sample or
learning set—and (2) to learn a influence model
based on the sample set. Depending on the learn-
ing algorithm, the model can be a neural net-
work [4], regression tree [5], or linear influence
model [6], among others. The influence model
allows one then to predict the performance (or any
other measurable property) of any other configu-
ration [6]. Internally, the influence model captures
and combines the influences of all individual
configuration options and the relevant influences
of their interactions. So, an influence model is
not only useful for prediction and optimization
but also for understanding the external behavior
and the inner workings of the system [7].

But here is the caveat: Which configurations
should we sample? And: What learning technique
works best with the selected samples? As it
turns out, highly-configurable software systems
hold several challenges that makes “just apply-
ing machine-learning techniques out of the box”
impossible. First, due to the high constrained-
ness of software configuration spaces, simple

random sampling as proposed and used in any
machine-learning tutorial or book is challenging.
Obtaining a uniformly distributed random sample
in the presence of constraints is even known
to be computationally intractable [8]. Only re-
cently, researchers began to address the sampling
problem with dedicated sampling strategies [9],
[10], [11]. Beyond random sampling, researchers
developed a number of sampling strategies that
aim at certain forms of coverage, including t-wise
sampling (covering all tuples of configuration
options’ values of size t) and code coverage
sampling (selecting, at least, every single line of
source code once).

The multitude of proposed sampling strate-
gies is a testament to the distinctiveness of the
domain of configurable systems, which precludes
the use of off-the-shelf machine-learning toolk-
its (e.g., for random sampling). Even more, the
choice of the sampling strategy likely influences
the performance of the machine-learning proce-
dure. Different machine-learning techniques have
different strategies to generalize from a given
sample set and to deal with noise and interac-
tion effects, which likely depends on decisions
made by the sampling strategy. For example, if
a sampling strategy missed configurations with a
certain option or combinations of options enabled,
the machine-learning procedure cannot possibly
learn the corresponding influence, and so its effect
is absent in the resulting influence model. Only
very recently, researchers—including the author
team—began to study and understand the deli-
cate relationship between sampling and learning
technique in the domain of highly-configurable
software systems. In this article, we share our
insights and experience with this issue and pro-
vide an overview and practical guidelines for
software developers and administrators to model,
predict, and optimize the performance of their
configurable software systems.

Learning Influence Models
In Figure 1, we illustrate the overall process

of learning influence models for configurable
software systems. A sampling strategy is used to
select (Step I) and measure (Step II) a tractable
subset of configurations, which is then used to
learn an influence model (Step III). The influ-
ence model can then be used to predict the
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I. Sampling

c1
c2
c3
c4

Conf. Perf.

c1 ∅ 2

c2 { } 4
c3 { } 5

c4 { , } 6

II. Measuring

2 · + 3 · − 1 · · + 2

III. Learning

IV. Performance Prediction

Conf. Measured perf. Predicted perf. Error

c1 ∅ 2 2 0%

c2 { } 4 4 0%
c3 { } 5 5 0%

c4 { , } 6 6 0%

c5 { } 3 2 33%
c6 { , } 6 4 33%

c7 { , } 6 5 17%
c8 { , , } 8 6 25%

error = 13.5%

Figure 1. Predicting the performance of configurations: The subject is a configurable software system with
the configuration options ENCRYPTION ( ), COMPRESSION ( ), and LOGGING ( ). The steps for performance
prediction of configurations are sampling (I), measuring (II), learning (III), and performance prediction (IV). In
Step I, a sampling strategy selects a tractable number of configurations. These configurations are measured
in Step II. In Step III, a machine-learning algorithm is used to learn an influence model; terms representing
influences of options and interactions among options are underlined. The learned influence model can be
used in Step IV to predict the performance of any configuration. This way, one can compare the predicted
performance to the measured performance and compute the prediction or model error.

performance of any configuration (Step IV). In
our example, the influence model captures the
relevant influences of configuration options and
interactions on performance as a linear combi-
nation of the respective terms. An influence is
relevant if it increases the predictive power of
the model on configurations of the sample set.
The influence model has four components:

• 2 · represents the influence of option EN-
CRYPTION,

• 3 · represents the influence of option
COMPRESSION,

• −1 · · represents the influence that arises
from the interaction of ENCRYPTION and
COMPRESSION, and

• 2 represents the base performance (the inter-
cept).

The accuracy of the model depends on two
factors: (1) the sample set (Step I) and (2)
the machine-learning technique (Step III). Note
that other representations for the influence model

(e.g., regression trees) are possible and may even
result in improved accuracy [5]. However, an
important aspect for software engineers is inter-
pretability of the model, which is why we resort
to the simple, but yet reasonably expressive form
of a linear, multi-variable regression model.

Let us start with a closer look at the sampling
step. The goal of the sampling step is to select
a sample set such that all relevant influences
are covered. If an important option or interaction
among multiple options is not present in the
sample set (for example, the interaction among
ENCRYPTION and COMPRESSION in our exam-
ple), the learning step cannot possibly uncover it
and include it into the influence model.

The Sampling Problem
Researchers and practitioners have developed

a number of strategies to sample the configuration
space of a given configurable system. Although
incomplete (i.e., it selects only a subset of all
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configurations), sampling is the state of the art in
practice. For example, in Linux, code coverage
sampling is used to create a sample set that covers
all lines of source code [12]. Achieving com-
pleteness by exploiting parallelism to measure
all configurations is infeasible, since the number
of configurations grows exponentially with the
number of options.

A prominent sampling strategy among re-
searchers and practitioners is random sampling.
The idea is to select configurations randomly
from the configuration space in an unbiased way.
More precisely, the probability of selecting a con-
figuration c from configuration space C should be
1
|C| . Without any knowledge on relevant influences
and interaction effects, random sampling is a rea-
sonable choice. Nevertheless, random sampling
may miss important information—there is no
guarantee that a certain configuration option or
interaction is covered in the sample set, which
becomes more prevalent when the number of
samples is very low compared to the size of the
configuration space. Furthermore, obtaining an
unbiased random sample is computationally hard.
This is due to possible constraints among config-
uration options. While there has been progress in
this direction using binary decision diagrams or
satisfiability solvers [13], [14], existing solutions
are not ready for industrial adoption yet.

A strategy that is more systematic is t-wise
sampling. The idea is to select the sample set
such that it covers all interactions among all
combinations of t options. Pair-wise sampling
(t = 2) is most popular. It ensures that all pairs of
configuration options are present (i.e., enabled),
at least, once in the sample set. Option-wise
sampling (t = 1) ensures that each individual
option is selected, at least, once. Clearly, the
larger t is, the more possible interactions we can
catch, but the larger the sample set grows. Let
us illustrate this fundamental tradeoff with an
example—a function that contains preprocessor
directives to realize configurability:

1

2 void encrypt() {
3 #ifdef ENC
4 prepareData(); // Block 1: ENC
5 #ifdef COMP
6 compressData(); // Block 2: ENC ∧ COMP
7 #endif
8 encryptData(); // Block 3: ENC
9 #endif

10 }

This example illustrates the interplay of the op-
tions ENCRYPTION and COMPRESSION of Fig-
ure 1 at code level. Function encrypt uses two
macros, ENC and COMP, controlling the inclusion
of configuration-dependent code. Block 1 and 3
are included only in configurations that have
ENC selected. Block 2 is included only if both
ENC and COMP are selected. It can be seen at
the code level that, when data are compressed,
less data have to be encrypted, which speeds
up the encryption process. Option-wise sampling
would select only Block 1 and 3, not Block 2,
missing the speedup due to the interaction of the
two options. Pair-wise sampling would select an
additional configuration that includes Block 2, at
the cost of a larger sample set, though.

While t-wise sampling is systematic and para-
metric, it comes with its own challenges. First,
computing a sample set even for t ≥ 2 is
computationally expensive and even infeasible for
configuration spaces of the size of the LINUX

kernel [15]. Second, stoically including all pairs
(or triples, quadruples, etc.) may be unnecessarily
expensive since practice has shown that not all
interactions among options are relevant—actually
only few are [7]. To address these challenges,
hybrid sampling strategies have been proposed,
which combine an element of randomness with
coverage criteria such that certain combinations
of interactions or certain parts of the code are
selected [10], [16], [12]. Sampling strategies that
are dedicated to numeric configuration options
have been proposed as well [6].

The multitude of possible sampling strategies
distinguishes the domain of highly configurable
systems from other areas, such as image classi-
fication, where machine learning flourishes. The
reason is that there are typically many, intricate
constraints among configuration options and that
obtaining and measuring a sample set is com-
putationally very expensive (which is different
from image classification or speech recognition).
Practitioners are advised to take a closer look
at the sampling strategies mentioned here and
beyond to create optimal sample sets for their
problems at hand.
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Table 1. Sampling strategies considered in the empirical study of Grebhahn et al. [17]. We distinguish between binary
and numeric as well as structured and unstructured sampling.

Sampling strategy Abbreviation Numeric Structured

Option-wise OW 7 3
Negative Option-wise NegOW 7 3
t-wise (t ∈ {2, 3}) T2, T3 7 3
Random (Binary), three sizes (OW, T2, T3) RB-OW, RB-T2, RB-T3 7 7
One Factor at a Time OFAT 3 3
Box-Behnken Design BBD 3 3
Central Composite Inscribed Design CCI 3 3
Plackett-Burman Design PBD 3 3
D-Optimal Design DOD 3 3
Random (Numeric) RN 3 7

Table 2. Machine-learning algorithms considered in the empirical study of Grebhahn et al. [17].

Learning algorithm Abbreviation Category

Classification and Regression Trees CART Decision tree
k-Nearest-Neighbors Regression kNN Regression method
Kernel-Ridge Regression KRR Regression method
Multiple Regression MR Regression method
Random Forest RF Multiple decision trees
Support Vector Regression SVR Regression method

The Interplay of Sampling and Learning
Clearly, the choice of the sampling strategy

affects the learning algorithm—what information
it can extract from the sample set to be included
in the influence model. As mentioned previously,
the variety of sampling strategies for highly con-
figurable systems is unique. This has immediate
implications for the learning step. The question
is whether and to what extent the choice of the
sampling strategy affects the ability of different
learning algorithms to obtain accurate models.
The canonical literature on machine learning and
predictive modeling says not much about this
issue. A recent empirical study conducted by
Grebhahn et al. [17] (the authors) provides first
insights.

In this study, we have analyzed the depen-
dencies between 13 sampling strategies (see Ta-
ble 1) and 6 learning algorithms (see Table 2)
on 6 subject systems (see Table 3) in terms of
prediction accuracy, stability, and measurement
effort using SPL Conqueror [18]. We paid special
attention to the fact that different learning al-
gorithms provide different hyper parameters. As
hyper parameters affect efficiency and accuracy
of the learning procedure and even depend on the
selected sampling strategy, we included an exten-
sion hyper-parameter optimization step, to ensure
a fair comparison. For a detailed description, we
refer to Grebhahn et al. [17].

In Figure 2, we summarize the results in the
form of nested matrix plots. The outer plot shows
the error rates achieved by different machine-
learning algorithms. The inner plots show the
different sampling strategies that have been used
in combination with the respective learning al-
gorithm, divided by binary (x axis) and numeric
sampling strategies (y axis). Note that the sub-
ject systems contain beside binary configuration
options also numeric configuration options, such
as page size or number of threads, which require
dedicated numeric sampling strategies [6].

Note that we distinguish between plots that
are on the diagonal of the top-level matrix and
plots that are not: Each plot on the diagonal (gray-
scale) compares pairs of sampling strategies given
a specific learning algorithm. The lighter the gray
tone, the higher the accuracy (the lower the error
rate) of resulting influence model. For example,
in the upper left plot of Figure 2, we show the
error rates for Classification and Regression Trees
(CART) when used with different combinations
of sampling strategies. Apparently, the combina-
tion to 3-wise sampling and D-Optimal Design
(DOD) performs best (lightest tone of gray).

The plots beyond the diagonal compare pairs
of learning algorithms when combined with the
different sampling strategies. Shades of green
indicate that the learning algorithm in the row
is more accurate than the one in the column (the
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Table 3. Subject systems of the empirical study of Grebhahn et al. [17].

Subject system Application domain # Configuration options # Configurations

DUNE MGS Image processing framework 11 2 304
POLLY Code optimizer (plugin for LLVM) 19 59 592
HSMGP Multigrid solver for differential equations 14 3 456
JAVAGC JAVA garbage collector 11 193 536
TRIMESH Scientific code library 13 239 360
VP9 Video encoder 20 216 000

Figure 2. Comparison of combinations of machine-learning algorithms and sampling strategies in terms of
predictions accuracy. Plots on the diagonal compare pairs of sampling strategies; the lighter the gray tone,
the higher the prediction accuracy. Plots beyond the diagonal compare pairs of learning algorithms; shades of
green (red) indicate that the learning algorithm in the row is more (less) accurate than the one in the column.

more intense the green, the larger the effect), and
shades of red otherwise. For example, in upper
right plot, we compare the error rates achieved
when using CART with the error rates of using
Support Vector Regression (SVR). It is easy to
see that CART outperforms SVR irrespective of
the used sampling strategy.

Let us have a closer look at the results. First,
let us focus on the machine-learning algorithms
independently of the sampling strategy. Not sur-
prisingly, the choice of the algorithm matters and
has a significant effect on prediction accuracy.
Although a clear ranking is not readily appar-

ent, random forests (RF) outperform the other
learning algorithms in most of the cases; Multiple
Regression (MR) and CART also perform very
well.

Now let us look closer at combinations of
sampling strategies and learning algorithms. De-
spite the rather clear picture that we obtained for
learning algorithms, there seems to be no com-
bination that is clearly superior in all cases. Al-
though there is a trend to a specific combination
of learning algorithm and sampling strategy, this
does not hold for all cases. In many cases, random
forests or multiple regression in combination with
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option-wise or random sampling perform best, but
there are exceptions.

A further notable result, which is not directly
visible in Figure 2, is that, despite the rather
small sample sets selected by option-wise (e.g.,
72 configurations for VP9), random forests and
multiple regression are still able to learn compar-
atively accurate influence models. Increasing the
size of the sample set (e.g., from 350 for option-
wise to 3 780 for 3-wise for VP9) often increases
the prediction accuracy only marginally (e.g., by
only 1% for VP9). The paradigm “the more, the
better” holds for the domain of configurable soft-
ware systems only when the more configurations
also provide new information (e.g., influences of
interactions not seen before). However, due to the
possibly exponential number of interactions with
respect to the number of configuration options,
it is unclear which additional configurations im-
prove accuracy.

Conclusion and Perspectives
Machine learning has proved enormously use-

ful for performance prediction and optimiza-
tion of configurable software systems. This is
a success story par excellence at the inter-
section between artificial intelligence and soft-
ware engineering. Nevertheless, this success story
shows also that off-the-shelf machine learning
approaches alone do not necessarily succeed. The
domain of highly configurable software systems
is special in various ways, including that there
are substantial constraints among configuration
options and that data for learning are scarce (mea-
suring a configuration of a real-world software
system is not cheap, after all). Researchers and
practitioners reacted with the development of tai-
lored sampling strategies, which in turn influence
the performance of machine-learning algorithms.
A main goal of this article was to raise awareness
of this distinctiveness and to provide insights
into fundamental tradeoffs of selecting sampling
strategies and machine-learning techniques for
performance prediction. Recent experiments that
we summarized in this article demonstrate that
these tradeoffs have indeed a practically relevant
effect on prediction accuracy and measurement
cost. Our results provide guidance to select a
proper combination.

There are several open issues in this area that

deserve more attention. While we were able to
demonstrate the dependency between sampling
strategy and learning algorithm for performance
prediction, it is unclear for which application
domains (scientific computing, embedded sys-
tems, databases, or even software engineering in
general) it is relevant. Worse, we do not know
yet whether there are certain combinations of
sampling strategies and learning algorithms that
are universally (or, at least, most of the time)
better than others. While we are aware of the
“no free lunch theorem” in machine learning [19]
(i.e., if an algorithm performs well on a certain
class of problems, then it necessarily pays for
that with degraded performance on the set of all
remaining problems [19].), for performance pre-
diction and optimization of configurable software
systems, we found a certain homogeneity among
problem instances for which a single (or few)
learning algorithm(s) performs well. Fully char-
acterizing these problem instances (i.e., configu-
ration spaces) is a promising research direction.

Another major issue is that different combi-
nations of sampling strategies and learning algo-
rithms may not only differ in accuracy but also in
interpretability. After all, a key goal of influence
models is not only prediction, but also compre-
hension [7]. Developers, administrators, and users
would like to know why a certain configuration
is fast, not only whether it is faster than another.
Exploring the influence of sampling and learning
on interpretability of influence models is clearly
a rich and promising avenue of further work.

Finally, it would be interesting to repeat our
experiments in other areas of software engineer-
ing, such as defect prediction or code recommen-
dation. Our study provides a blueprint for this
endeavor.
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“Sampling Effect on Performance Prediction of Config-

urable Systems: A Case Study,” in Proceedings of the

International Conference on Performance Engineering

(ICPE). ACM, 2020.

17. A. Grebhahn, N. Siegmund, and S. Apel, “Predicting

Performance of Software Configurations: There is no

Silver Bullet,” Computing Research Repository (CoRR),

2019, available at https://arxiv.org/pdf/1911.12643.pdf.

18. N. Siegmund, M. Rosenmüller, M. Kuhlemann,
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